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Abstract: After reviewing a number of results from geometric singular perturbation theory,
we give an example of a theorem for periodic solutions in a slow manifold. This is illustrated
by examples involving the van der Pol-equation and a modified logistic equation. Regarding
nonhyperbolic transitions we discuss a 4-dimensional relaxation oscillation and also canard-
like solutions emerging from the modified logistic equation with sign-alternating growth
rates.

1 Singular perturbations and slow manifolds

In singular perturbations, certain attraction (or hyperbolicity) properties of the regular
(outer) expansion play an essential part in the construction of the formal approximation. In
the case of initial value problems, such a regular expansion is associated with the existence
of a so-called slow manifold. In the actual constructions, the Tikhonov theorem provides a
basic boundary layer property of the solution, leading naturally to a number of qualitative
and quantitative results.

1.1 The Tikhonov theorem

The following result was obtained in 1952 by Tikhonov [18]:

Theorem 1.1
Consider the initial value problem

ẋ = f(x, y, t) + ε · · · , x(0) = x0, x ∈ D ⊂ Rn, t ≥ 0,
εẏ = g(x, y, t) + ε · · · , y(0) = y0, y ∈ G ⊂ Rm.

For f and g, we take sufficiently smooth vector functions in x, y, and t; the dots represent
(smooth and bounded) higher-order terms in ε.

a. We assume that a unique solution of the initial value problem exists and suppose this
holds also for the reduced problem

ẋ = f(x, y, t), x(0) = x0,
0 = g(x, y, t),
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with solutions x̄(t), ȳ(t).

b. Suppose that 0 = g(x, y, t) is solved by ȳ = φ(x, t), where φ(x, t) is a continuous
function and an isolated root. Also suppose that ȳ = φ(x, t) is an asymptotically
stable solution of the equation

dy

dτ
= g(x, y, t)

that is uniform in the parameters x ∈ D and t ∈ R+.

c. y(0) is contained in an interior subset of the domain of attraction of ȳ = φ(x, t) in the
case of the parameter values x = x(0), t = 0.

Then we have
limε→0 xε(t) = x̄(t), 0 ≤ t ≤ L,

limε→0 yε(t) = ȳ(t), 0 < d ≤ t ≤ L

with d and L constants independent of ε.

The system
ẋ = f(x, y, t), 0 = g(x, y, t), (1)

is usually called the unperturbed, reduced or degenerate system.
In assumption (b), t and x are parameters and not variables. The idea is that during the
fast motion of the variable y, the small variations of these parameters are negligible as long
as the stability holds for values of the parameters x ∈ D and t ∈ R+. For a discussion of
the Tikhonov theorem see [22].

1.2 Early results on periodic solutions

An early example of a periodic solution theorem can be found in [9]. If the reduced system
(1) has a hyperbolic T -periodic solution, then under certain additional conditions, the full
system has a unique T -periodic solution.
Slightly more general results have been published in [1]. Hyperbolicity of the periodic
solution of the reduced system plays an essential part in both papers and this prohibits
application to the important case when the reduced system is Hamiltonian. Later extensions
by students of Anosov deal to some extent with this problem.
A major technical problem was the absence of a theorem on the existence of a manifold
of solutions (the so-called slow manifold), corresponding with the solutions of the reduced
system (1). This complicated the existence problem of the theorems of that time enormously.

1.3 The O’Malley-Vasil’eva expansion

How do we use Tikhonov’s theorem to obtain approximations of solutions of nonlinear initial
value problems? The theorem does not state anything about the size of the boundary layer
(the parameter d in the theorem) or the timescales involved to describe the initial behaviour
and the relative slow behaviour later on.
Asymptotic expansions are described as follows (for references see [22]):
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Theorem 1.2
(O’Malley-Vasil’eva)
Consider the initial value problem in Rn × Rm × R+

ẋ = f(x, y, t, ε), x(0) = x0, x ∈ D ⊂ Rn, t ≥ 0,

εẏ = g(x, y, t, ε), y(0) = y0, y ∈ G ⊂ Rm,

where f and g can be expanded in powers of ε to order (m+1). Suppose that the requirements
of Tikhonov’s theorem have been satisfied and moreover that for the solution of the reduced
system 0 = g(x, ȳ, t, 0), ȳ = φ(x, t) we have, with µ a constant independent of ε,

Re Sp gy(x, ȳ, t) ≤ −µ < 0, x ∈ D, 0 ≤ t ≤ L.

Then, for t ∈ [0, L], x ∈ D, y ∈ G, the formal approximation described above leads to
asymptotic expansions of the form

xε(t) =
m∑

n=0

εnan(t) +
m∑

n=1

εnαn

(
t

ε

)
+ O(εm+1),

yε(t) =
m∑

n=0

εnbn(t) +
m∑

n=0

εnβn

(
t

ε

)
+ O(εm+1).

The constant L that bounds the domain of validity in time is in general an O(1) quantity
determined by the vector fields f and g. There are cases where L extends to ∞.
An intermediate step in the analysis by O’Malley and Vasil’eva is an expansion of the form

y = φ(x, t) + εy1(x, t) + ε2y2(x, t) + ε3 · · · . (2)

The expansion is derived from the fast equation and it is asymptotically valid on a timescale
O(1) outside the boundary layer in time where fast motion takes place.

1.4 The slow manifold: Fenichel’s results

Tikhonov’s theorem is concerned with the attraction, at least for some time, to the regular
expansion that corresponds with a stable critical point of the boundary layer equation. The
theory is quite general and deals with nonautonomous equations.
In the case of autonomous equations, it is possible to associate with the regular expansions∑m

n=0 εnan(t) and
∑m

n=0 εnbn(t), a manifold in phase-space and to consider the attraction
properties of the flow near this manifold. Such questions were addressed and answered in
a number of papers by Fenichel (1971, 1974, 1977, 1979), and other authors; the reader is
referred to the survey papers [11] and [12]. See for an introduction also [22].
Consider the autonomous system

ẋ = f(x, y) + ε · · · , x ∈ D ⊂ Rn,

εẏ = g(x, y) + ε · · · , y ∈ G ⊂ Rm.

In this context, one often transforms t → τ = t/ε so that

x′ = εf(x, y) + ε2 · · · , x ∈ D ⊂ Rn,

y′ = g(x, y) + ε · · · , y ∈ G ⊂ Rm,
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where the prime denotes differentiation with respect to τ .
As before, y is called the fast variable and x the slow variable. The zero set of g(x, y) is given
again by y = φ(x), which in this autonomous case represents a first-order approximation
M0 of the n-dimensional (slow) manifold Mε. The flow on Mε is to a first approximation
described by ẋ = f(x, φ(x)).
Note that the assumption for the system to be autonomous is not essential for Fenichel’s
theory; it only facilitates the geometric interpretation.
In Tikhonov’s theorem, we assumed asymptotic stability of the approximate slow manifold;
in the asymptotic constructions we assume that the eigenvalues of the linearised flow near
M0, derived from the equation for y, have negative real parts only.
In geometric singular perturbation theory, for which Fenichel’s results are basic, we only
assume that all real parts of the eigenvalues are nonzero. In this case of a slow-fast system,
the slow manifold Mε is called normally hyperbolic. A manifold is called hyperbolic if the
local linearisation is structurally stable (real parts of eigenvalues all nonzero), and it is
normally hyperbolic if in addition the expansion or contraction near the manifold in the
transversal direction is larger than in the tangential direction (the slow drift along the slow
manifold).
If M0 is a compact manifold that is normally hyperbolic, it persists for ε > 0 (i.e., there
exists for sufficiently small, positive ε a smooth manifold Mε close to M0). Corresponding
with the signs of the real parts of the eigenvalues, there exist stable and unstable manifolds
of Mε, smooth continuations of the corresponding manifolds of M0, on which the flow is
fast.

2 Periodic solutions

The existence and smoothness of the slow manifold, in combination with the possibility of a
regular expansion describing the slow manifold drift, enables us to take a fairly easy shortcut
to obtain periodic solutions. Note, that if we restrict ourselves to periodic solutions within
a slow manifold, this excludes the case of nonhyperbolic transition as found in relaxation
oscillations.

2.1 Averaging in the slow manifold

We will develop the following setup of a theorem leading to periodic solutions. Consider the
autonomous system in Rn × Rm × R+

ẋ = f0(x, y) + εf1(x, y) + ε2 · · · , x ∈ D ⊂ Rn, t ≥ 0,

εẏ = g0(x, y) + εg1(x, y) + ε2 · · · , y ∈ G ⊂ Rm,

where f0, f1, g0, g1 are C1 vector functions, the dots represent bounded and smooth higher
order terms. Furthermore the assumptions of Tikhonov’s and Fenichel’s theorems apply for
0 ≤ t ≤ L.
For the solutions in the slow manifold we can apply the expansion (2) y = φ(x) + εy1(x) +
ε2 · · · with g0(x, φ(x)) = 0.
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For x(t) in the slow manifold this results in

ẋ = f0(x, φ(x)) + ε
∂f0

∂y
(x, φ(x))y1(x) + εf1(x, φ(x)) + ε2 · · · . (3)

This is still a very general system and much depends on the explicit solvability of the re-
duced equation which arises for ε = 0 or, more in general, on what is known about the
reduced equation. Note, that if we would strictly apply the O’Malley-Vasil’eva expansion
for the equations governing the slow manifold flow, this may produce secular terms when
approximating periodic solutions. Using eq. (3), secular terms can be avoided.

We will give an example of a more specific result leading to periodic solutions. Using
the wealth of results on periodic solutions by averaging and normalisation, it is not difficult
to develop this idea to other cases.
Assume that the autonomous system above is of the form

ẋ = A(y)x + εf1(x, y) + ε2 · · · , x ∈ D ⊂ Rn, t ≥ 0,

εẏ = g0(x, y) + εg1(x, y) + ε2 · · · , y ∈ G ⊂ Rm,

with f1, g0, g1 smooth vector functions, A(y) a n × n-matrix with smooth entries, the dots
represent bounded and smooth higher order terms. For simplicity we assume that we have
shifted the root of g0(x, y) = 0 such that g0(x, 0) = 0; this is not a necessary restriction as is
shown by example 8.10 in [22]. Furthermore the assumptions of Tikhonov’s and Fenichel’s
theorems apply with

Re Sp
∂g0

∂y
(x, 0) ≤ −µ < 0, x ∈ D, 0 ≤ t ≤ L.

If the matrix A(0) has a spectrum with purely imaginary eigenvalues and can be diagonalised,
we can perform periodic or quasi-periodic averaging or apply the Poincaré-Lindstedt method.
Putting ε = 0, the solutions of the reduced equation ẋ = A(0)x are determined by a
fundamental matrix which is quasi-periodic or T-periodic.
For the slow manifold approximation, the expansion (2) becomes y = εy1(x)+ε2 · · · , leading
to

y1(x) = −∂g0

∂y

−1

(x, 0)g1(x, 0).

The behaviour of x(t) in the slow manifold is governed by the equation

ẋ = A(0)x + εA(y1(x))x + εf1(x, 0) + ε2 · · · . (4)

In the T-periodic case (condition T < L), we can apply to eq. (4) the Poincaré-Lindstedt
method, in general we can apply averaging. If the averaged vector field in the T-periodic
case has a critical point with only one eigenvalue with real part zero, we can apply the
Bogoliubov-Mitropolsky theorem to obtain the existence and approximation of a periodic
solution; for examples and proofs of the Poincaré-Lindstedt and the Bogoliubov-Mitropolsky
theorems see [20].
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Figure 1: Solution approaching the periodic solution in the slow manifold of the modified
logistic equation (5) with x(t) = 1.5 + sin t, x(0) = 1.5, y(0) = 1, ε = 0.01.

2.2 Examples

The ideas of the preceding subsection are illustrated by the following example.

Example 2.1
Consider the system

ẍ + x = µ(1− x2)ẋ + νf(x, ẋ, y) + ε2 · · · ,

εẏ = −g(x, ẋ)y + εh(x, ẋ, y) + ε2 · · · ,

in which µ, ν are constants, µ > 0, f, g, h are smooth scalar functions; g(x, ẋ) is a positive
function, bounded away from zero.
The behaviour of x(t) in the slow manifold is governed by

ẍ + x = µ(1− x2)ẋ + νf(x, ẋ, ε
g(x, ẋ)

h(x, ẋ, 0)
) + ε2 · · · .

Assume first that the constant µ is independent of ε, ν = ε, then the equation obtained by
putting ε = 0 is the van der Pol-equation without small parameter. This equation contains
a structurally stable periodic solution and for instance Anosov’s (1963) theorem applies to
obtain a nearby periodic solution of the original system.
Assume now that µ = ν = ε or µ = ε, ν = ε2. In these cases Anosov’s (1963) theorem (and
any other classical theorem) does not apply. If µ = ν = ε, the approximating equation is

ẍ + x = ε(1− x2)ẋ + εf(x, ẋ, 0) + ε2 · · · .

We can average the equation and if we find a critical point with one eigenvalue with real
part nonzero, we can apply the Bogoliubov-Mitropolsky theorem to obtain the existence and
approximation of a periodic solution.
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If µ = ε, ν = ε2, the approximating equation is to O(ε2) the van der Pol-equation with a
small parameter. This immediately leads to the existence of a nearby periodic solution in
the slow manifold.

If we have apriori knowledge of the behaviour of the slow solution x(t), it is easier to obtain
results.

Example 2.2
Consider the scalar equation

εẏ = x(t)y − y2, (5)

in which x(t) is determined by a differential equation or is explicitly given. The equation
for y is the modified logistic equation, modified in the sense that the growth rate is varying.
One can put t/ε = τ , then denote time again by t to obtain the equation

ẏ = x(εt)y − y2.

This equation represents for y ≥ 0 population changes with growth rate x, slowly varying
in time.
For y ≥ 0 the first order appoximation of the slow manifolds are y = 0 (also exact solution)
and y = x. To apply Fenichel theory, assume that 0 < α ≤ x(t) ≤ β with positive constants
α and β. In this case y = 0 is unstable, the slow manifold corresponding with y = x is stable.
Using the expansion y = x + εy1(x) + ε2 · · · , the approximation for the relation between y
and x in the stable slow manifold becomes

y(t) = x(t)− ε
ẋ(t)
x(t)

+ ε2 · · · .

As an example we choose
x(t) = 1.5 + sin t,

leading to the approximation of the periodic solution

y(t) = 1.5 + sin t− ε
cos t

1.5 + sin t
+ ε2 · · · .

The solutions will approach the periodic solution exponentially fast. The behaviour of such
a solution is pictured in fig. 1.

3 Nonhyperbolic transitions

Transitions arising from nonhyperbolicity have been studied in various contexts. For an
interesting boundary value problem and references, see [13].

3.1 Relaxation oscillations

A classical phenomenon are relaxation oscillations where jumps, fast transitions, take place
after moving along a slow manifold that becomes unstable. For this topic see [10], [14], [17]
and chapter 4 in [2]. Most rigorous analysis is carried out for two-dimensional autonomous
and forced problems and it is not easy to extend this to more dimensions. We discuss briefly
a four-dimensional problem from [21] where the evidence is partly numerical.
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Figure 2: A periodic limit set of system (6) for µ = 10, c = −2.2, d = 0.03, κ = 0.075
with high starting values of the y-oscillation. Transient orbits are left out. The stable part
of the slow manifold is present near the extreme values of y.

Example 3.1
Consider the system of coupled oscillators

ẍ + x = µ(1− x2)ẋ + µcẋy2, µ À 0,

ÿ + κẏ + q2y = dxy.
(6)

The quantity 1/µ plays the part of ε. In generalised Liénard variables, system (6) becomes

1
µ

ẋ = z + x− 1
3
x3 + cxy2,

ż = − 1
µ

x− 2cxyẏ

(7)

with the equation for y added. The slow manifold in 4-space is given by

z = −(1 + cy2)x +
1
3
x3,

which is unstable if 1 + cy2 − x2 > 0. The slow manifold corresponds with a 3-dimensional
cubic cylinder parallel to the ẏ-axis.
Consider the dynamics of the system with parameter values c = −2.2, d = 0.03, κ = 0.075,
for solutions starting at some distance from the y, ẏ-coordinate plane. Leaving out the
transient, we find a periodic limit set illustrated in fig. 2; this is a projection in 3-dimensional
space. Projecting the limit set on the x, ẋ-plane we find a strongly perturbed relaxation
oscillation, see fig. 3. For comparison the unperturbed relaxation oscillation (coupling
c = 0) is indicated by dots.
In the system we have coexisting attractors. We find also a chaotic attractor with Kaplan-
Yorke dimension 2.3 · · · . For details see [21].
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Figure 3: A periodic limit set of system (6) for µ = 10, c = −2.2, d = 0.03, κ = 0.075
with high starting values of the y-oscillation, projected on the x− ẋ plane. The dotted orbit
corresponds with the unperturbed relaxation oscillation. In the perturbed state the motion
on the slow manifolds is reduced and the limit cycle becomes asymmetric. SM is the stable
part of the slow manifold.

3.2 Canards

Canard solutions play a special part. We shall use the following description.
Canard solutions are bounded solutions that, starting near an attracting normally hyperbolic
slow manifold, cross a singularity of the system of differential equations and follow for an
O(1) time a normally hyperbolic repelling slow manifold.
Note that, depending on the dimension of the problem and the nature of the singularity, the
description usually has to be more specific.
The first example of such behaviour was found by the Strassbourg group working in non-
standard analysis for a perturbed van der Pol-equation; see for details and references [4].
In this first case, the singularity crossed is a fold point. In [16], second order slow-fast
systems have been analysed for homoclinic bifurcations; it contains a population dynamics
application with canard-like behaviour. This sticking to a repelling manifold is discussed
in a general context in [19] where it is called ’delay in loss of stability’. In [15] transitions
through transcritical and pitchfork singularities are analysed.
We will discuss an example of transition through a transcritical singularity, the logistic
canard, that can be calculated explicitly.

Example 3.2
Consider the modified logistic equation (5) for y ≥ 0

εẏ = x(t)y − y2,

in which the growth rate x(t) can now take positive and negative values. We can solve the

9



 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1  1.5

Y

X

X0=0; Y0=1

Figure 4: Solution approaching the periodic solution in y = 0 of the modified logistic
equation (5) with x(t) = sin t, x(0) = 0, y(0) = 1, ε = 0.01. To the right of the y-axis, y = 0
corresponds with an unstable slow manifold.

equation for general continuous x(t) and y(0) = y0 > 0:

y(t) =
e

1
ε

R t
0 x(s)ds

1
y0

+ 1
ε

∫ t

0
e

1
ε

R s
0 x(u)duds

. (8)

If x(t) is T -periodic we can write
x(t) = a + f(t)

with a a real constant and f(t) a zero average continuous function. In the cases that x(t) is
quasi- or almost-periodic we can write similar expressions.
Assuming that x(t) changes sign and is T -periodic, we have two cases.
Case 1: a ≤ 0. We state that limt→∞ y(t) = 0. In the extended (x, y) system, the only peri-
odic solution is the trivial solution x = x(t), y = 0. If a < 0 the proof is simple: multiplying
with exp(−at/ε) produces a bounded numerator and a monotonically increasing denomina-
tor. A similar reasoning applies if a = 0. In this case y(t) also decreases exponentially; this
can be seen by estimating a lower bound of the integral in the denominator by restricting
to the time-intervals where f(t) is positive. In fig. 4 we took x(t) = sin t for an illustration.
Case 2: a > 0 with a + min0≤t≤T f(t) < 0. In this case a canard-like periodic solution

exists. Several proofs are possible, but a simple one runs as follows.
Assuming that y(0) = y(T ) = y0(> 0), we obtain from the solution (8) the expression

y0 =
e

aT
ε − 1

1
ε

∫ T

0
e

1
ε

R s
0 (a+f(u))duds

.

The righthand side being positive, we have constructed a positive solution for y0 and so a
positive periodic solution.
For more explicit choices of x(t) we can show that y0 can be exponentially small and can be
O(1). Consider for instance the case x(t) = 0.5 + sin t, see fig. 5.
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Figure 5: Canard-like periodic solution of the modified logistic equation (5) with x(t) =
0.5 + sin t, ε = 0.01. To the right of the y-axis, y = 0 corresponds with an unstable slow
manifold.

It is of interest to know whether this canard-like behaviour of the solutions of the modified
logistic equation (5) persist if the growth rate function x(t) is quasi- or almost-periodic. Most
of the results of the periodic case carry over, although the arguments are more complicated.
A highly nontrivial case arises if we have an almost-periodic function with a spectrum that
is not bounded away from zero. If the generalised average of such a function vanishes, it
may still have an unbounded primitive. Consider the almost-periodic function with zero
mean average

f(t) =
∞∑

n=0

1
(2n + 1)2

sin
(

t

2n + 1

)
. (9)

In [22], appendix 15.8, the growth rate with time of the integral of this function is estimated.
Remarkably enough it has been shown in [3], that the canard-like behaviour of the solutions
of equation (5) persists for such functions. For an example using the function (9), see
fig. 6; the figure shows sudden population growth at irregular times, triggered off by the
almost-periodic function.

4 Discussion

In section 2 we discussed the existence of periodic solutions within slow manifolds. The
idea used here, is related to the much older analysis of the dynamics in center manifolds.
It is rather straightforward to extend these results to existence results for tori within slow
manifolds of dimension 3 or higher.
The modified logistic equation (5) with alternating negative and positive growth rates is
a simple metaphor for more complex models. It is interesting that the solutions of this
equation show sudden ‘population explosions’ related to canard behaviour.
Both slow manifolds as discussed in this paper and resonance manifolds in dynamical sys-
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Figure 6: Canard-like periodic solution of the modified logistic equation (5) with x(t) =
0.5 + f(t), ε = 0.05 with f(t) the almost-periodic function (9); 0 ≤ t ≤ 150.

tems represent slow-fast dynamics. However the similarity is superficial as in the equations
for resonance manifolds nonhyperbolic features are so typical that a different approach is
needed.
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