Newton Polygon strata in the moduli space of abelian varieties.

Frans Oort

Introduction

We consider p-divisible groups (also called Barsotti-Tate groups) in characteristic p, abelian
varieties, their deformations, and we draw some conclusions.

For a p-divisible group (in characteristic p) we can define its Newton polygon. This is
invariant under isogeny. For an abelian variety the Newton Polygon of its p-divisible group is
7symmetric”. We are interested in the strata defined by Newton Polygons in local deformation
spaces, or in the moduli space of polarized abelian varieties.

In deformation theory of a p-divisible group it is difficult to keep track of behavior of
its Newton Polygon. Isogeny correspondences between components of the moduli space of
polarized abelian varieties in characteristic zero are finite-to-finite; however in general such
correspondences blow up an down in characteristic p. Hence an isogeny invariant seems difficult
to follow in local deformation theory. That is the true origin of fascinating aspects of the
problem we are considering.

Grothendieck showed that Newton polygons go up under specialization, see [5], page 149,
see [10], Th. 2.3.1 on page 143; we obtain Newton Polygon strata as closed subsets in the
deformation space of a p-divisible group or in the moduli space of polarized abelian varieties
in positive characteristic.

In 1970 Grothendieck conjectured the converse. In [5], the appendix, we find a letter of
Grothendieck to Barsotti, and on page 150 we read: “-- The wishful conjecture I have in
mind now is the following: the necessary conditions - -- that G' be a specialization of G are
also sufficient. In other words, starting with a BT group Go = G, taking its formal modular
deformation --- we want to know if every sequence of rational numbers satisfying - - - these

numbers occur as the sequence of slopes of a fiber of G as some point of S.”

In this paper we show that this conjecture for p-divisible groups by Grothendieck indeed is
true, see (2.1). We show that the analogon for principally (quasi-)polarized formal groups is
true, see (3.1). We show that the analogon is true for principally polarized abelian varieties,
see (3.2); this is a particular case of the theorems we prove about Newton Polygon strata. As
a result we can give precise information on these strata in Section 3 (their dimension can be
computed from combinatorial data; we show that generically on such a stratum the a-number
equals one) in case of principally polarized abelian varieties.

We study deformations keeping track of information about the Newton Polygon. The proof
relies on two rather different aspects of deformation theory of p-divisible groups.

e On the one hand we have studied deformations of simple p-divisible groups, keeping
the Newton Polygon constant. We use methods and results derived from “Purity” as



obtained in [8]. This works fine for simple groups. However the use of “catalogues” for
non-isoclinic groups does not seem to give what we want; it is even not clear that nice
catalogues exist in general.

e On the other hand we studied deformation theory with a(Go) = 1 as closed fiber; here
we study deformations where the Newton Polygon jumps. This works by using a non-
commutative version of the theorem of Cayley-Hamilton from linear algebra, see [18].
Note however that the Cayley-Hamilton approach breaks down essentially for a > 2.

In this paper a combination of the two methods give what we want. Hence, in spirit, the
proof of a straight statement is not uniform. We have not been able to unify these in one
straightforward method. We wonder what Grothendieck would have substituted for our proof.

Here is a survey of results on Newton Polygon strata inside A := A, @ F,.

o For every symmetric Newton Polygon & the locus We(A) = We C A is closed
(Grothendieck-Katz).

o For every & and every irreducible component W C Wy its dimension can be computed
easily: dim(W) = sdim(§); for the notation of this combinatorial invariant, see (4.1).

o Generically on W the Newton Polygon equals & and generically the a-number is at most
one, see (4.2).

o The supersingular locus Sy1 has “many components” (for p >> 0; Deuring-Eichler for
g = 1, Katsura-Oort for ¢ < 3, Li-Oort for all ¢), but we expect:

for every B # o the locus Wy is geometrically irreducible (?7), see (5.1).

We remark that in case of quasi-polarized p-divisible groups, or polarized abelian varieties,
without supposing that the polarization is principal, there are counterexamples to the existence
of deformations with given closed fiber, and expected Newton Polygon for the generic fiber.

The interesting phenomenon that Hecke correspondences (finite-to-finite in characteristic
zero) cause blowing up and down between various strata in positive characteristic is the origin
of these interesting facts. It seems a miracle that for the principally polarized case we obtain
such coherent, aesthetically beautiful theorems.

Many people have patiently listened to me in discussions about this topic. Especially I men-
tion, and I thank: Ching-Li Chai, Johan de Jong, Ke-Zheng Li, Shinichi Mochizuki and Ben
Moonen for sharing their time and interests with me.

1 Some definitions, notations, and results we are going to use

Throughout the paper we fix a prime number p. We apply notions as defined and used in
[18], and in [8]. For a p-divisible group GG, or an abelian variety X, over a field of positive
characteristic we use its Newton Polygon, abbreviated by NP, denoted by N (G), respectively
N (X). For dimension d and height h = d + ¢ of GG (respectively dimension g = d = ¢ of X)
this is a lower convex polygon in R X R starting at (0,0) ending at (h, ¢) with integral break
points, such that every slope is non-negative and at most equal to one. We write § < ~ if



every point of v is on or below 3 (the locus defined by + contains the one defined by ). For
further details we refer to [18].

(1.1) A theorem by Grothendieck and Katz, see [9], 2.3.2, says that for any family G — S of
p-divisible groups (in characteristic p) and for any Newton Polygon v there is a unique closed
set W C S containing all points s at which the fiber has a Newton Polygon equal to or lying
above v:

seW < NG < 7.

This set will be denoted by
W, =2W(G —95)CS.

In case of symmetric Newton Polygons we write
Wy (Ag @ F,) =W,

for the Newton Polygon stratum given in the moduli space of polarized abelian varieties
in characteristic p. We will study this mainly inside A := A, @ F,, the moduli space of
principally polarized abelian varieties in characteristic p.

(1.2) In “Purity” we obtained, see [8], Th. 4.1:
If in a family of p-divisible groups (say, over an irreducible scheme) the Newton Polygon
jumps, then it already jumps in codimension one.

(1.3) For a commutative group scheme G over a field K (in characteristic p), we write
a(G) for the dimension of the L-vector space Hom(a,, G1), where L O K is any perfect field
containing K.

Note that there exist examples in which

dimg (Hom (o, G)) < dimg(Hom (o, G1)).

However, if a(G) = 1, then dimg (Hom(e,, ) = 1 = dimy, (Hom (e, G1)).
Note that Hom(a,,G) # 0 iff the local-local part of G is non-trivial, i.e. iff G is not
ordinary. Hence if we write a(G) < 1 we intend to say: either G is ordinary, or a(G) = 1.

(1.4) We recall one of the results obtained by the method of “Purity” as described in [§],
Corollary 5.12:

Let Gy be an absolutely simple p-divisible group over a field K of characteristic p. Then there
exists a deformation G, with N'(G,) = N (Gy) and o(G,) < 1.

(1.5) We recall one of the results obtained by the method of “Cayley-Hamilton” as described
n [18], Theorem 3.2; from that we see, using the notation as in (2.10):

Let Gy be a p-divisible group over an algebraically closed field k D F, with a(Go) < 1. In
D := Def(Xy) there exists a coordinate system {t; | j € {$(p)} and an isomorphism D =2

Spf(k[[t; | 7 € O(p)]]) such that for any v = N (Xo) we have
W, (D) =Spi(R,), with Ry :=k[[t;[j € COIII=Klt; |7 € G/t 15 € ()

Corollary. Let Gy be a p-divisible group over a field K with a(Gy) < 1. In Def(Gy) every
Newton Polygon v > N (Gl) is realized.



In fact, in Def(Gg) the NP-strata are closed subsets, and we have seen that the finite union of
strata belonging to all NP strictly above « is properly contained in the stratum given by ~.
[ ]

For symmetric Newton Polygons we have analogous statements with
Def(Go, Ao) = Spf(K[[t; | 5 € A(p)])),

using the notation as in (4.1).

(1.6) Displays. Given a Dieudonné module M of a p-divisible group, and a W-base for the
W-free module, the map F': M — M is given by a matrix, called a display. Mumford showed
that deformations of certain p-divisible groups can be given by writing out a display over a
more general base ring. What we need is contained in [19], [20]; also see [14], [15]. Below we
construct deformations of local-local p-divisible groups. We shall write out the display, and
use several times (without further mention) that this defines a deformation, see [19], Chapter
3, in particular his Corollary 3.16. Deformations of polarized formal p-divisible groups can be
described with the help of displays, see [15], Section 1.

Notations and results as described in [18] and in [8] will be used below.
We write K for an arbitrary field in characteristic p, and k for an algebraically closed field.

2 Deformations of p-divisible groups

(2.1) Theorem (conjectured by Grothendieck, Montreal 1970). Let K be a field of char-
acteristic p, and let Gy be a p-divisible group over K. We write N'(Go) =: 8 for its Newton

Polygon. Suppose given a Newton Polygon ~ “below” [, i.e. 3 < ~. Then there exists a
deformation G, of Gy such that N'(G,) = .

Deformations of p-divisible groups. For p-divisible groups there exists a solution to the univer-
sal deformation problem in equi-characteristic: given G over a field K, there exists a formal
p-divisible group G — Spf(A) which is universal for this problem, and A =2 K[[t1,---,t4.]]. As
finite group schemes are “algebraizable”, the same holds for certain limits, and this results in
a “universal family” denoted by G — Spec(A), see [7], 2.4.4. We use the passage from formal
p-divisible groups over Spf(A) to p-divisible groups over Spec(A) without further comments.

We say that #H,, is a deformation of Gy, if there exists a complete local domain B of charac-
teristic p with residue class field K and fields of quotients Q(B),

Q(B) D B— K and a p-divisible group H — Spec(B)

with special fiber H @ K = Gy and generic fiber H @ Q(B) = H,,.

Reduction of the problem. Inside D := Spec(A), the base of the universal deformation space
of Gy, for a given Newton Polygon v there is a closed V., C D carrying all p-divisible groups
with Newton Polygon equal or “above” =, see [10], 2.3.2. In order to prove Theorem (2.1) we
have to show that there is an irreducible component of V, with generic point parameterizing
a p-divisible group having Newton Polygon exactly equal to v. Hence it suffices to show (2.1)



in case K = k, an algebraically closed field, and in case GGy is a local-local p-divisible group.
From now on we make these assumptions, and we write h for the height of G, and d for its
dimension, and h = d+ c.

(2.2) Filtered groups. Consider a p-divisible group G over an algebraically closed field k.
Suppose its Newton Polygon 3 = N (Gp) has m + 1 points with integral coordinates

HBN(ZXZL)=m+ 1

then there exist simple groups Z;, with 1 < ¢ < m, corresponding with the slopes between
integral points in v (we arrange these slopes in some order), and an isogeny >, Z; — Go. We
define a filtration '
0=GVc-.callc...cal=aq,

by taking the image 4

Sz — GY <.

i<y
Such a filtration has the following property:

e The successive quotients Géi)/Géi_l), with 0 < ¢ < m are simple p-divisible groups.

This is called a mazimal filtration of Gp. We will consider deformations of filtered groups.

Remark. We could have taken the filtration for example such that the successive quotients
have non-decreasing slopes; however we do not need such a condition for our construction
below.

(2.3) A base adapted to a filtration. Suppose given a maximal filtration of G over k as above.
We write d; for the dimension of Géi) and ¢; for the dimension of its dual. Let My = D(Gy)
be the covariant Dieudonné module. This has a filtration by ]D(Géi)) =: Méi) C Mém) = Mp.
We write W = W, (k). We say that {@1, -+, 24; y1, -+, ¥} C Mo is a base adapted to the
filtration if it is a W-base for My with y; € V My, and moreover z; € Méi) iff 7 < d; and
y; € MU iff j < ci.

Claim: Such a base exists. In fact, note that if H C G is a sub-p-divisible group, then
D(H) C D(() is a submodule such that the quotient has no W-torsion; hence it is a W-direct
summand. Using this, we conclude the existence of a W-base of the given form.

(2.4) Lemma. There exists a deformation {GW) | 0 < i < m} of filtered p-divisible groups
such that every sub-quotient

Y = gl jgl=1)

is an absolutely simple p-divisible group of constant slope, with a(,’)&gl)) <1 for all 0 <7 < m.
Proof. We show that this is a direct consequence of [8], Corollary (5.12). It suffices to
prove the lemma in case G is local-local. We describe deformations of p-divisible groups (in
equal characteristics), and in particular of filtered p-divisible groups with the help of displays.
Consider My = D(Gy) and a basis adapted to the filtration as above. We consider the display



of My, i.e. the matrix of the o-linear map F : My — My on this W-basis, can be given in

block form

A pB

c pD )’
and its display is

A B\ _ ([ (Aup) (Bay)
(2 5) (& ) reoner s
Here, for fixed @ = b = e = f = ¢ the four “diagonal” blocks give the display of the induced
display on YO(Z) = Gél)/Gél_l). As this is the display of a filtered group we have A,; = 0 for
a>b, -+ ,D.y=0fore> f.

All formal deformations of Gy are given by a d x ¢ matrix 7', with 1; ; = (¢; ;,0,- ), the
Teichmiiller lifts of the variables ¢; ;. According to the mumbers d;, and ¢; this matrix is
written in blockform 7" = (7,3 | 1 < a,b < m), and the universal deformation given by 7" is
the display

A4+TC B+TD
C D '

For every simple factor Yo(i) there is a matrix 7;; giving a deformation of Yo(i) to YT(i) with

generic fiber having the same Newton Polygon as YO(Z) and a-number equal to one: this is
precisely [8], Corollary (5.12). Using the matrix 7" in block form with these blocks as diagonal
elements, and 7; ; = 0 for all 7+ # 7 we achieve a deformation of filtered groups of the filtered
Gy which satisfies the requirements of the lemma. This finishes the proof. °

(2.5) Remark. In case we are in the polarized case, the base will be in slightly different
from the choice in the proof of (2.4); however it looked unnecessary to take already here
precautions needed in that case.

(2.6) We recall the notion of a display in normal form; in this paper we need only the
“modulo p version”, which is slightly different from the one considered in [18], 2.1. Let ¥ be
a local-local p-divisible group of dimension u and codimenison v over a field. Suppose Y is
given by a display. Here, a W-basis for the display is said to be in normal form if we have a
basis {@1, -, &y Y1, - Yot With F(z;) = ;41 for i < w and F(z,) = y; (i.e. the left hand
upper block has entries equal to one just below the diagonal, rest zero, and the left hand lower
block has one entry one in the right hand upper corner and rest zero). [Note that such a base
can exist only if a(Y) = 1.]

Suppose a filtration {Hél) | 0 <i < m} ofalocal-local Gy considered as above moreover has
the property that a(HéZ)/HéZ_l)) = 1. We say a base adapted to the filtration is in normal form

adapted to the filtration if the base can be induced on each of the subfactors ]D)(Héi)/Héi_l))
and if on each of these factors it is in normal form.

Claim. A display associated with a p-divisible group over a field K with a filtration with
the extra condition a(HéZ)/Hél_l)) =1 for all 1, allows the choice of a base in normal form
adapted to the filtration. Indeed, for N = D(Y') as above, with a(Y) = 1, there exists a vector
v =2y € N with F*"l2 ¢ VN + pN; this follows by methods of p-linear algebra; note that
the rank of the map induced by F on N/V N equals d — 1; note that this is the same of the



rank of the matrix on any base; then F*z ¢ pN; hence for this module N a base in normal
form exists. We can lift these, chosen for each of the relative factors, to a base in normal form

for D(Gl).

(2.7) Lemma. Suppose {Hél) | 0 < i < m} is a filtered local-local p-divisible group over
a field K, with a(HéZ)/Hél_l)) = 1. Then there exists a deformation {H) | 0 < i < m} of
filtered p-divisible groups such that H%i)/H%i_l) and Héi)/Héi_l) have the same slopes, and
such that a(?—l%m)) <1

Proof. It suffices to prove this lemma in case we work over an algebraically closed field k. We
use a base {xy1, -+, 24; y1,---,y.} for My = D(Gy) in normal form adapted to the filtration;
its existence was showed above. Next we choose the deformation matrix T'. As above, this is in
block form T = ( 7;; | 1 < ¢, j < m). We choose variables sy, - - -, 5,,_1, and their Teichmiiller
lifts S; = (54,0,--) € W(k[[s; | 1 < j < m —1]]); we define: 7, ; = 01if i + 1 # j; we define
Tii+1, With 1 < ¢ < m as the matrix consisting of zero elements, except in the left hand
upper corner, and there the element equals S;; ie. Ty, 41641 = Si, 1 <@ < m, and all
other elements in the matrix 7" are equal to zero ( we write dy = 0). This matrix 7" defines a
display; hence it defines a p-divisible group Hg — Spec(k[[s1,- -, Sm—1]]). By construction the
deformation respects the filtration; moreover it leaves the successive quotients undeformed;
hence the Newton Polygon of its generic fiber equals § := N(Gp). Next we compute the
Hasse-Witt matrix of the deformed group. This is given by the matrix (A4+7C') mod p. In A
we have diagonal blocks with zeros everywhere, except on the subdiagonal in the blocks, where
the elements are one (this is because we have chosen the base such that on partial quotients the
matrix is in normal form). The contribution of the deformation is changing (by the variables
s;) the right hand upper corner of the blocks in (A + T'C') mod p immediately above the
diagonal. Note that the element (A +7C')¢, 41,4, -1 is non-zero modulo p, for 1 <4 <m —1.
We claim: the rank of the Hasse-Witt matriz equals d — 1, i.e. a(H,;) = 1; in fact, in the
Hasse-Witt matrix of the display, delete the di-column and the (¢, +1)-th row; then permute
columns and rows in such a way that the elements 1 which were just below the diagonal in
the same order come on the diagonal, and then such that the elements Sy, ---,.5,,_1 in this
order are on the diagonal ; in the new matrix (modulo p), we have non-zero elements on the
diagonal, and zeros below the diagonal; hence its determinant is non-zero; hence the original
matrix has rank equal to d — 1, which proves the claim. This finishes the proof. °

(2.8) Proposition. Suppose Gy is a p-divisible group over a field K. There is a deformation
G, of G such that a(G,) < 1 and N (Go) = N(G,).

Proof. We show that this follows, using (2.4) and (2.7). Indeed, as we have seen above it
suffices to start with a local-local p-divisible group Gy. By (2.4) there is a deformation to
a filtered group H with successive quotients having each ¢ = 1. We choose an irreducible
component of this: over S; = Spec(A41) C Spec(A4), with Ry = A/, there is a filtered group
with successive quotients having all generically ¢ = 1, and having the same Newton polygons
as in the special fiber. Write L1 = QQ(A;) for its field of fractions; the generic fiber G@ 4 Ly is a
filtered group, with the same Newton polygon 3, with successive quotients having all a-number
equal to one. We consider the universal deformation space of the filtered group G @ Li. By
(2.4) there is a deformation with constant Newton Polygon having a-number equal to one in
the generic fiber; this implies there exists an integral complete local domain Ry — Ly, with

Q(Rz2) = Ly and a deformation # — Ry of G @ Ly with a(#,) =1 and N (H,) = . Consider



the ring I'y

Rl — L1
T T
Fl — R2

of all elements in Ry mapping into R;. The display defining H — R is a lift of the display
of G ® Ry, hence we conclude that it is defined by a matrix with elements in I'y. This proves

(2.8). °

(2.9) Proof of (2.1). We show that this follows, using (2.8) and [18]. Indeed, by (2.8) we
have a deformation of Gy, keeping the Newton Polygon constant, and achieving a(G)) < 1
for the generic fiber over L = K (7). Using the corollary in (1.5) we conclude that G, over L
admits a deformation to a fiber having Newton Polygon equal to v = N (G,) = N (Gp). As
in the previous proof we conclude that this shows that in Def(G) the Newton Polygon + is
realized. This finishes the proof of (2.1). o

(2.10) We use the following notation: we fix integers h > d > 0, and we write ¢ := h—d. We
consider Newton Polygons ending at (h, ¢). For a point (z,y) € Z X Z we write (x,y) < v for
the property “the point (z,y) is on or above the Newton Polygon +”. For a Newton Polygon
0 we write:

OWB)={(z,y) €ZxZL|y<ec, y<z, (x,y)=<p},

and we define
dim () := #(¢(8))-

Note that for the “ordinary” Newton Polygon p := d-(1,0)+¢-(0, 1) the set of points & = $(p)
is a parallelogram; this explains our notation. Note that #({(p)) = d-c.

(2.11) Theorem. Suppose given a p-divisible group Gy over a field K. Let v be a Newton
Polygon with v = N (Gy) =: 8. Consider the closed formal subset W.,(D(Gy)) =: V., C D(G).
The dimension of every component of V., equals dim(y) = #({(v)); generically on such a
closed set the Newton Polygon is vv; on V, the a-number generically is at most one. (In fact
on V, the a-number generically is equal to one iff v # p :=d-(1,0) 4+ (0, 1).)

Proof. It suffices to prove the theorem in case Gy is defined over an algebraically closed
field k. In (2.8) we have seen that every p-divisible group can be deformed to one with the
same Newton Polygon, and having a-number at most one; as in the proof of (2.8) “transitivity
of methods” shows that every irreducible component of V3 has at its generic point these
properties. In [18] we find a description of the deformation theory of p-divisible groups with
a < 1, see (1.5). Hence we know that deforming p-divisible groups with @ = 1 every Newton
Polygon below 3 can be achieved. In [18] the dimension of the locus V. (¢ = 1) C Def(Gy) is
computed to be purely equal to (). We see that the theorem follows from (2.8) and [18]. e



3 Deformations of principally quasi-polarized formal groups
and of principally polarized abelian varieties

(3.1) Theorem (the principally polarized variant of the conjecture by Grothendieck, Mon-
treal 1970). Let K be a field of characteristic p, and let (G, Ao) be a principally quasi-polarized
p-divisible group over K. We write N'(Gy) = 8 for its Newton Polygon. Suppose given a sym-
metric Newton Polygon v “below” (3, i.e. B < . Then there exists a deformation (G, ) of
(Go, Ao) such that N(G,) = .

(3.2) Corollary. Let K be a field of characteristic p, and let (Xo, Ao) be a principally
polarized abelian variety over K. We write N'(Xo) = (3 for its Newton Polygon. Suppose
given a symmelric Newton Polygon v “below” (3, i.e. 3 < ~. Then there exists a deformation
(X, A) of (Glo, Ag) such that N(X,) = .

Proof. The existence of a formal polarized abelian scheme as wanted follows from (3.1) using
the Serre-Tate theorem on the equivalence between formal deformations of polarized abelian
schemes and the corresponding quasi-polarized p-divisible groups, see [9], Th. 1.2.1. By the
Chow-Grothendieck algebraization method for polarized formal schemes (“formal GAGA”),
see [4], III1.5.4, it follows that we obtain an actual abelian scheme. Its Newton Polygon can
be read off from its p-divisible group. Hence we see that (3.2) follows from (3.1). o

In order to give a proof of (3.1) at first we make the reduction to the case that (Go, Ao)
is defined over an algebraically closed field, and that Gy is of local-local type (for polarized
formal groups this is the same as saying that it is a local p-divisible group): if we assume
the theorem proved for this special case; then it follows in general. From now on we Gy is
a local p-divisible group with a principal quasi-polarization over an algebraically closed field;
we write h for the height of G, and d for its dimension; then h = 2d, and Gj is a local-local
p-divisible group.

(3.3) Analogous to the definitions as in (2.2) we consider a filtration related to (Go, A), a
principally quasi-polarized filtered formal group over an algebraically closed field.
Suppose the number of points with integral coordinates on the Newton Polygon § = NV (G)
is m-+ 1:
HBN(ZXZ)=m+1.

We write s for the number of 1 1-factors in the isogeny type of Gp; i.e. the number of slopes
equal to 1/2 is 2s; we speak of the even case, respectively the odd case, in case s is even,
respectively odd; we write s = 2¢, respectively s = 2t + 1. We write m = 2n 4+ s. A mazimal
symplectic filtration of a principally quasi-polarized p-divisible group (G, A) is a filtration

=GV c...calc...ca =q,

e such that Géi)/Géi_l) is simple for every 0 < ¢ < m, such that

e moreover Ay : Gog — (Go)t induces an isomorphism on the subquotients
e (e e

for every 0 < ¢ < (m+1)/2.



Let us explain the last condition. Note that an exact sequence of p-divisible groups
0-X —>Y —>7=Y/X—->0

vields an exact sequence
07— Y — X' =0

The last condition in the definition of a (maximal) symplectic filtration says that for 0 < ¢ <
(m 4+ 1)/2 we have a natural commutative diagram:

Go & G @%ﬁ‘””/ag‘”) o Qﬁ?/GS‘”)

Ao 422 1=
(=
G (Gém—i-l-l))t - (Gém—i-l—l)/Géi—l))t

Hu

Gém—H—l)/Géi—l) o (Gém—i—l—l)/Gém—i)) ‘

Such diagrams follow if the composite map Gél_l) — Go — (Go)t — (Gém_l-l_l))t is zero for
every 0 <1 < (m+1)/2.

Note that in the “odd case”, i.e. m is odd, there is a “middle” step in the filtration, and
it is required to be self dual; in case m is even, there is no middle step, and we need only
consider ¢ < m/2.

The conditions necessary for a filtration to be maximal and symplectic can also be ex-
pressed on the Dieudonné module D(Go) = My. One has to assume that Nél) C My has a
torsion-free quotient, in order to obtain Géz) C Go. The property of being symplectic can be
expressed with the help of the bilinear, non-degenerate, skew pairing on My induced by the
principal quasi-polarization.

In this way we see: if X C Gy is a p-divisible subgroup, and Ag is a principal quasi-
polarization, such that (X — Go — (Go)! — X?) = 0, then there exists a unique X+ C Gy
such that Ao induces a principal quasi-polarization on X+/X.

(3.4) We recall a lemma which was proved in [11], 6.1. Over F,> we consider two series of
quasi-polarized supersingular p-divisible groups.

I. (S,7), r€Zsy S=G,, deg(r,)= P,

II, (T7 Vr)7 re ZZO T= (G171)27 deg(l/,,) = p27"

These are defined as follows. On the Dieudonné modules we take in the first case:
M=WaxgW-Fz, Fe=Vz, ec W —pW, ¢ =—¢, <z, Fx>=p e
In the second case:
M=WaxadW-FeaWyadsW-Fy, Fx=Vz, Fy=Vy,

and
<z,zy>=9p, <z, Fr>=0=<y, Fy>=<uz,Fy>=<y, Fz>.
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With these notations: For every supersingular quasi-polarized p-divisible group (H,<) over an
algebraically closed field k there is an isomorphism:

(Hys) = P (Hjs),

where each of the summands (H;,s;) is of type (I) or of type (II), with some degree for the
quasi-polarization.

Remark. Suppose (9, 7,) is of type (I.) and w is an integer, with w > r. Then there is an
isogeny 1 : .S — S such that (S, ¢*1.) 2 (9, 1,).

(3.5) Lemma. Given a principally quasi-polarized p-divisible group (Go, Ao) over an alge-
braically closed field k, there exvists a mazimal symplectic filtration ({Gél) |0 <7< m}, ).
Proof. A maximal symplectic filtration which will be constructed in the proof will depend on
choices: the subgroups appearing in the first half of the filtration and their order will depend
on the choice which factors in the isogeny type are chosen to appear on which place. We shall
prove the lemma for local-local p-divisible groups (and, if necessary, one can insert later the
local-étale factors and their duals).

The lemma will be proved by induction on the height of Gg. So we assume that for all
principally polarized p-divisible groups of smaller height the lemma has been established.

In the induction step we write (Y, A) for the pair (G, A) in the lemma. We choose a direct
sum of simple p-divisible groups H, an isogeny ¢ : H — Y and we construct ¢ := ¢*(}),
arriving at a quasi-polarized p-divisible group (H,<). We choose this isogeny ¢ in such a way
that on all supersingular factors of type (I) the degree of the induced quasi-polarization is
equal to some fixed number p?"; by the remark above this choice can be made.

We perform the induction step by choosing choosing a simple direct summand D S
such that the induced map

(slp: D — H = H' = D" =0.

After we make such a choice, we define (X CY) =1Im(y¢) = (¢(X)=D C H)). We conclude
that
(X =V 5y XY =0

we see that in this case A induces a principal quasi-polarization on X+/X, and we carry on
by induction.

As for the choice of D C Y as above there are in general four basically different choices
possible.
3) In case Y admits a simple factor of slope not equal to 1/2, we can choose for D C H such
a factor. In this case Hom (D, D?) = 0, and we are done.
2) In case (H,<) contains a supersingular direct summand 7" of Type (II), we choose D C H
such that D(D) = W-2 @ W-Fa C D(T') C D(Y'), using the notation explained above. This is
a totally isotropic subspace, and a choice X C Y as desired follows.
1) Suppose (H,<) contains at least two direct summands of Type (I) (by construction with
quasi-polarizations of the same degree)

WegW-FeaW-feaW-Ff=NCD(H),
with < e, Fe >= p"-e =< f,Ff >, etc. We choose £ € W (k) with £-£7 = —1; note that
502 = & in this case z := e + &-f generates a Dieudonné submodule N' = W-2 @ W-Fz C N
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which is isotropic for the form induced by ¢; it is the Dieudonné module N’ = D(D) of a
p-divisible group D C H of height 2, and its image X C Y satisfies the condition (X — Y —
Y*' — X*) = 0. In this case a choice for the induction step can be made.

0) Suppose that (H,<) satisfies none of the possibilities in the previously considered three
cases. Then either Y = 0 = H, and we are done. Or Y is supersingular of height 2; in this
case it is of Type (lg), and it is filtered by 0 C Y, which is of the form wanted in the lemma.
Hence induction finishes the proof of (3.5). o

(3.6) Definition. A symplectic base adapted to a symplectic filtration. Suppose given a
principally quasi-polarized p-divisible group (G, A) over an algebraically closed field k. We
write M := D(Gy). Suppose {Géi) | 0 <7< m}is asymplectic filtration as in (3.3). Suppose
Y = Géi)/Géi_l) has dimension d; and codimension ¢;. Note that in this case d; = ¢;—j41-
Let us write D; := dy + - - -+ d;, i.e. this is the dimension of Géi).

We say that {zy, -, 24; y1,---,yq} is a symplectic base adapted to this symplectic filtra-
tion if '

1y D YD t1s s Yd € Mi = D(GY))

is a W-basis for M := D(Gy) (note this definition, in the symplectic case, is slightly different
from (2.3)), and if it is symplectic i.e. < z;,y; >=1, 0 < ¢ < h, and all other products
between base vectors are zero. We say moreover this base adapted to a filtration is in normal

form if it is in normal form modulo p, in the sense of (2.6), i.e. normal modulo p on all simple
subfactors.

(3.7) Lemma. Suppose given a principally polarized p-divisible group (G, ) over an al-
gebraically closed field k, with a mazimal symplectic filtration {X; | 0 < i < m}. We write
D(G) =M, and {N; =D(X;) | 0 < i< m} for its filtered Dieudonné module.

(a) There exists symplectic base adapted to this symplectic filtration.

(b) If moreover a(X;/X;,_1) = 1, for all 0 < i < m, there exists a normal symplectic base
adapted to this symplectic filtration.

Proof. In case the number m of steps in the filtration is even we change slightly the notation;
in that case we introduce an extra trivial step in the middle. In case m is odd, we do not
change the filtration. In both cases we obtain m = 2n 4 2t + 1. We achieve a filtration

OZN()CNlC"'CNnC"'CNn+tCNn+t+1C“‘CNn+2t+1C“‘CNm.

On this module there is an alternating non-degenerate bilinear form, denoted by < —, — >;
we have NZ»J‘ = N,—i. We will choose the base on M inductively by considering P; =
Notitij+1/Npte—;. Note that the paring on M induces a pairing with the same properties on
each P;, 0 < j < n+t. Induction starts at j = 0: if Fy = 0 (the case the original filtration had
an even number of steps) we are done; if Fy # 0, then X, ¢y;41/ X544 = G 1, the module
Py has rank 2, and the choice of a symplectic base in normal form is easy: Fop = W-e@® W-Fe.

Induction hypothesis: On P; for 0 < j < n+1t there exits a symplectic base adapted to the
filtration, in normal form in case (b). Induction step: We are going to construct the same

for Pj41.

In order to simplify, we choose a different notation, which will only be used in the induction
step. We fix j as before, and write P := P;, and ) := P;4;. We assume we have already a
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basis {BY,---, BY; b{,---,b7} in the required form for P. We write N = Nyyy—;/Npys—j1 C
Q@ = Nygeyjr2/Nogi—j—1, and N C Q; note that N+ = Ny jpy 11,

0OCNCNtcq@Q and NY/N=P

. We choose a basis {Ay, -, Ay; a1,--+,a,} for N C Q, and a basis {C7,---,Cl; -+, ¢l
for Q/N+; these are chosen such that the duality N " (Q/N+)" agrees with the choices
made, and in case (b), such that these bases are in normal form; these choices follow in
case (a) from the structure of the problem: compare the various possibilities in the proof
of (3.5); in case (b) we consider the finite length Dieudonné modules U := N/p-N and
W = (Q/N*%)/p-(Q/N*1); these are in perfect duality; both are generated by one element, as
Dieudonné modules, in case (b); a generator A(lo) for U not in FU 4+ VU has the property

that F“(A(lo)) generates V'U; using this we choose dual bases for U and W in normal form;
then we lift these to the required bases for N and NP = /N+. By these preparations we
have chosen bases:
for N: {A;,--- Ay ay,--,a,}, N CQ,
for P {Bilv"'vBél/; blllv"'v 21/}7 P:NL/Nv
for Q/NJ_: {01/7"'701///; C/1/7"'7CZ7

which satisfy the conditions for being symplectic on P and on N & (Q/N*), and being normal
in (b) as explained:

Aja; € N C Nt C Q
\J \J

B!, b e Nt/N C Q/N
1

e Q/N*.

[

Note that () is a successive extension with three quotients as given above. In order to perform
the induction step, we lift the given bases for the three (sub)quotients to a W-base
{A17"'7Au; B177B£l7 017701//7 C/17"'7CL; b17"'7bd; a17"'7av}

for @, using Q — Q/N — Q/N+ and N+ — N1 /N, such that this base respects the filtration,
and such that the last u+d+v base vectors are in V). We are going to show it can be changed
into a symplectic base adapted to the filtration (which will be normal by the choices already
made in case of (b)). Note that the following inner products already satisfy the conditions in
the condition of being symplectic: < A, — >, <a,— >, < B' B > < BV >;by this we
mean that < A;, z >= 0 for all vectors in the given base, unless z = ¢/, in which case it equals
one, etc. We are going to change some of the base vectors, such that the base still is adapted
to the filtration, that it becomes symplectic (and the condition of being normal will remain
unchanged).
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Compute: < B}, C% >= f§;;, and < Bj, ¢} >= v, ;; write B; := B} — > (8;j-a; + 7ij-A;).
After this step all products of the form < B;, — > satisfy the conditions required.

Compute: < CF,C% >= & ;, and < Cf, ¢} >=6; j +;; (here §; ; is the Kronecker delta)
and < CZ/, b; >= (; ;; write C; := C;—Zj (&7]"(1]‘ + 82'7]‘-14]‘) _Z]‘ Gi,;-Bj. Compute < C;», C; >=
pni; and < ¢.b; >= p-6; ;; write ¢; = ¢} — Z]‘ 0, F-VA; — Z]‘ 0¢7j-F-VB§. In this way
we obtain a base for () which satisfies the requirements: it is symplectic, it is adapted to the
filtration in the sense of (3.3), and in case (b) it is in normal form. This ends the induction

step. Performing all steps we find a base for M satisfying the conditions of the lemma. °

(3.8) Lemma. Start with data and the notation as in (3.3). There exists a deformation
({g(“ | 0 < i< m},A) of quasi-polarized filtered p-divisible groups such that all slopes of

v .= gl /gli-»

are constant, and a(Yn(Z)) <1 forall0 < e < m.

Proof. We adapt the proof of (2.4) with small changes. It suffices to prove the lemma in case
we have a local-local p-divisible group. We choose a symplectic base {zy, -, @p; Y1, -, Yyn}
for D(Gg) adapted to the filtration as constructed in the previous lemma. The display matrix
is written in block form and the blocks A;;, B;i po—i, Cri—i iy Dp—i m—i describe the display of
Ny = ]D)(Gg)/GéZH)); here the choice of the base is slightly different form the one made in
(2.4), as we have to adapt to the polarized case. By [8], Corollary (5.15) we can choose 7; »,—;
(for 0 < i < (m+1)/2) which deforms Gél)/Gél_l) keeping the Newton polygon constant, and
achieving ¢ = 1. In case Gél)/Gél_l) is supersingular of height 2, we already have a = 1, and
we choose 7;,,,_; = 0 We complete the matrix 7" in a symmetric way; this means that the
block 7,,,_;; is obtained from 7;,,_; (for 1 <7 < n) by symmetry in the main diagonal of T'.
All block matrices T; ; outside the anti-diagonal are required to be zero. Hence T is defined,

and the deformation G, thus obtained satisfies the requirements of the lemma. This proves
Lemma (3.8). .

(3.9) Lemma. Suppose ({Hél) | 0 < i< m},A) is a local principally quasi-polarized filtered
p-divisible local group over an algebraically closed field k, with all a(HéZ)/HéZ_l)) = 1. Then
there exists a deformation {H(i) | 0 < i < m} of filtered p-divisible groups with the same
slopes, such that a(?—l%m)) =1.

Proof. We adapt the proof of (2.7) with small changes. We reduce to the local-local case.
For the case of the Dieudonné module of principally quasi-polarized formal p-divisible groups
we choose a symplectic base in normal form adapted to the symplectic filtration. We study
deformations displays on this base. We choose variables s, 59, -+, 5,1, with s; = s,,,_; and
their Teichmiiller lifts S; € W(k[[s; | 1 < ¢ < m — 1]]/(---8; = Sm—;---)); we define the
block matrix 7; ,,—; with S;, 1 <4 < m, in the left hand upper corner; we define 7, ; = 0 if
j # m —i (i.e. equal to zero if not in the upper-antidiagonal). The display matrix in block
form T'= (r;; | 1 < ¢,j < m) defines a deformation 7, which satisfies the requirements of

(3.9). °

(3.10) Corollary. Let (Go, Ao) be a principally quasi-polarized p-divisible group over a field
K, and let & be a symmetric Newton polygon, & = N (Gy). There is a deformation (G, \,) of
(Go, Ao) such that £ = N(G,) and a(G,) < 1.
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Proof of (3.1) and of (3.10). From (3.8) and (3.9) we conclude that a principally quasi-
polarized p-divisible group (Go, Ag) defined over a field K can be deformed to a principally
quasi-polarized p-divisible group G, with the same Newton Polygon and with a(G;) = 1: use
the universal deformation space of (Gg, Ag). For this (over some field) it follows from [18] that
it can be deformed to the situation where the generic fiber has a given Newton Polygon, see
(1.5). Hence using the same methods as in the proof of (2.8) we see that Theorem (3.1) and
Corollary (3.10) follow from (3.8), (3.9) and [18]. o

(3.11) Corollary. Let (Xo, Ao) be a principally polarized abelian variety over a field K and
let & be a symmetric Newton polygon, & = N (Gy). There is a deformation (G, A,) of (Go, Ao)
such that £ = N (G,) and a(G) < 1.

Proof. This follows from (3.10) and [18], using Serre-Tate and Chow-Grothendieck. In fact,
the p-divisible group Xo[p™] plus principal polarization can be deformed as in (3.10). The
rest follows as in the proof of (3.2). o

(3.12) Here is an easy example which might explain the esssence of what we are doing.
Consider a supersingular elliptic curve E, with its unique principal polarization, and let Xy =
FE x F be equiped with the “diagonal” principal polarization Ag. Study deformations which
stay inside the supersingular locus. In this case this is still not so difficult. The display of the
universal deformation over Spf(k[[s,t, u]]) gives a Hasse-Witt matrix equal to

s t
H = ( ! ) |
For abelian surfaces being supersingular amounts to having p-rank equal to zero. Hence the
supersingular locus here is given by H - H®) = 0. One easily solves the four equations thus
obtained. Choose { € W with (?-( = —1, and consider all deformations given by s = (-t
and u = (71t over Spf(k[[t]]). Clearly there are p+ 1 of such choices; these are exactly the
components of the local deformation space of the supersingular locus in the deformation space
of principally polarized abelian surfaces. We can also argue as follows (and obtain the same
result). We see that (Xg, Ag) admits exactly p+ 1 maximal symplectic filtrations; each of these

defines a regular supersingular deformation space (keeping the filtration); in this way we find
back the p + 1 branches of the local supersingular moduli space at (Xg, Ag).

(3.13) Remark. Here is another example. Suppose (Gg, A) is a principally quasi-polarized
p-divisible group, such that Gy = H) @& H{j, say with a(H}) = 1 = a(H[), where H' is a
simple formal group with slope s, with 0 < s < 1/2. We can choose a deformation of the
filtered group 0 C H| C Gy, and arrive at a filtered p-divisible group 0 ¢ H' C X with a
principal quasi-polarization. However we can also arrive at 0 C H” C Y. This last case gives
an example of a filtered p-divisible group over a base, where the steps in the filtration have
decreasing slopes. It is easy to show that the p-divisible groups X and Y (over some common
base) are not isomorphic. This phenomenon deserves further study, especially in case of more
isogeny factors.

In case of a p-divisible group over a complete local base such that the Newton Polygon is
constant we find in [10], Th. 2.4.2 the existence of a filtration by isoclinic groups of increasing
slopes if certain conditions on Hodge polygons are satisfied. We see that such a filtration in
general does not exist.
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(3.14) We work this out in a special case. Suppose given H = G9; & G; 2 and a quasi-
polarization g on it with Ker(u) = G2 1[V]® G12[F] = (ap)*. We construct (G,\) — P! in
the usual way of “taking the quotient by a variable a;,”, i.e. above the point (z,y) € P! the
fiber (G, A)(z,y) = H/(2,y)(ap), and the polarization y descends to a principal polarization on
G(z,y)- Around the point 0 = (0, 1) we have a filtration (G, A), and every fiber of G’ has Newton
Polygon equal to (2, 1); on can show that the factor group does not come from a subgroup (and
here the filtration is by increasing slopes). Around the point co = (1,0) we have a filtration
G" C G; here the filtration is by decreasing slopes and around the point oo € P! no isoclinic
filtration with increasing slopes is possible.
Conversely, both local situations can be reconstructed by deformation of filtered groups.

(3.15) We have seen deformations obtained as deformations of filtered groups. However,
in general an isoclinic, non-constant G — B over an integral base need not be derived from
a deformation of a filtered group. A component of the Newton Polygon stratum locally at a
pont need not be given by a deformation of filtered groups.

In case Xo[p™] = (g1 & G2 the local deformation space of (Xo, A) keeping the New-
ton Polygon constant has two irreducible branches of dimension equal to 2. One can be
given by a filtered deformation (the one with the increasing slopes), the other does contain
a one-dimensional filtered deformation (the one with the decreasing slopes). Here we see an
example that we can move to the interior of a branch, but not reach the full branch by filtered
deformations. Here is another example:

Consider an irreducible component W C Ss 3 ,, of the supersingular locus (with some level
structure given by an integer n > 3 not divisible by p). This has a very singular point 2 € W
obtained by any flag type quotient (E° — F*/(a,)? — Xo) = (F : E?> — E?/E?[F]); this
is the pont described in [11], (9.4.16) on page 59. The universal family over W, locally at
does not come from the deformation of any maximal symplectic filtration of Xg; in fact, no
subspace on which the ¢ = 1 case on W is realized can be obtained by a filtered deformation.

4 Newton Polygon strata

We recall some notations. We fix g € Zq, and we write A = A, ; @ F, for the moduli space
of principally polarized abelian varieties in characteristic p.

For a symmetric Newton Polygon 3 belonging to g we write Wz C A for the subset of all
[(X,A)] € A with V(X)) < 3, which is a closed subset by [10], Th. 2.3.1 on page 143.

For an irreducible subset W C A we write N'(—, W C A) for the Newton Polygon of the
generic fiber, and a(—, W C A) for the a-number of the generic fiber above W.

(4.1) We fix an integer g. For every symmetric Newton Polygon & of height 2g we define:

A ={(z,y) €ZXZL|y<az<yg, (v,y) <&,
and we write
sdim (&) = #(A(€)).

For the ordinary symmetric Newton Polygon p = ¢-((1,0) 4+ (0,1)) indeed A = A(p) is a
triangle; this explains our notation. But you can rightfully complain that the “triangle” A(f)
in general is not a triangle.
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(4.2) Theorem, see [17]. Suppose given p, and g as as above. For every Newton Polygon
0 we have:

(a) For every irreducible component W of Wg := Wg(A) C Ay 1 @ F, we have
N=WcCcA) =5 and a(—, W CA) <1,

i.e. generically on W the Newton Polygon of X — W equals 3, and generically the
a-number is at most one.

(b) The dimension of every irreducible component W of Wy equals sdim () = #(A(5)).

This follows form (3.10) and [18]; compare with (2.9) and with (1.5) .

(4.3) Remark. In particular a supersingular principally polarized abelian variety can be
deformed (keeping polarization and Newton Polygon) to one with @ = 1. Hence we have a
new proof for [11], Theorem (4.9). In particular we obtain the dimension of the supersingular
locus, and the number of components of the supersingular locus, expressed as a class number.
The difference in methods between [11] and this paper is as follows. In [11] polarized flag
type quotients, and several variants were considered; with the correct definitions (especially
once having found the notion of "rigid” quotients) the fact that every component of the
supersingular locus generically has @ = 1 results; also the dimension of the supersingular locus
can be computed by methods of flag type quotients. In the proof in this paper we avoid such
considerations, but instead we consider deformations of filtered p-divisible groups; it works for
all Newton Polygons, and it shows that ¢ < 1 generically on Newton Polygon strata; for those
the method of Cayley Hamilton works, as in [18]; it gives a computation for the dimension of
the various strata. Of course, in both cases we obtain the same answer for the dimension of the
supersingular locus: dim(S,,1) = [¢%/4], as conjectured by Tadao Oda and the present author,
see [16], pp. 615/616. By the method of flag type quotients we obtain a global description of
every component of the supersingular locus, as to be found in [11].

(4.4) Remark. We have studied deformations of principally polarized abelian varieties.
However if we would consider deformations of abelian varieties with a non-separable polariza-
tion things are not as uniform as above. In case of polarized p-divisible groups, or polarized
abelian varieties, without supposing the polarization is principal, there are counterexamples
to the existence of deformations with given closed fiber, and expected Newton Polygon for
the generic fiber, see [18], Remark 6.8: there exist supersingular polarized abelian varieties
of dimension ¢ = 3, i.e. its Newton Polygon equals 3-(1, 1), which cannot be deformed to a
polarized abelian variety with Newton Polygon equal to (2,1) 4 (1,2). In the non-principally
polarized case dimensions of strata may be different from what we compute in the principally
polarized case. In [11], Section 12 some examples have been worked out. The phenomenon
that Hecke correspondences blow up and down is present for Newton Polygons which allow
a > 2. Also see (5.8).

5 Some questions and conjectures

(5.1) Forevery Newton Polygon  (and every ¢ and every p) we obtain Wg C A=A, @F,.
For 3 = o, the supersingular Newton Polygon, this locus has “many” components (for p >> 0;
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in fact this number is a class number, asymptotically going to co with p — o0).
Conjecture. Given p, g, and 3 # o we conjecture that the locus Wg is geometrically
irreducible.

(5.2) We consider complete subvarieties of moduli spaces. It is known that for any field K,
and any complete subvariety W C A, @ K, the dimension of W is at most (g(g +1)/2) — g¢.
We wonder is this maximum ever achieved? If yes, in which cases?

Conjecture. Let g > 3. Suppose W is a complete subvariety W C A = A, @ F, of
dimension equal to (¢(g+1)/2) — g (the maximal possible dimension for complete subvarieties
of this; see [3]). We expect that under these conditions W is equal to the locus Vi of principally
polarized abelian varieties with p-rank equal to zero. (This locus is complete and has the right
dimension.)

If this is true, probably we have a proof for:

(5.3) Conjecture. Let g > 3. Let W C A; @ C be a complete subvariety. We expect that
under these conditions:

dim(W) < (g(g+1)/2) — g.

Hecke orbits are dense in A, @C. Chai proved the same for Hecke orbits of ordinary polarized
abelian varieties in positive characteristic, see [1]. In his case only {-power isogenies need to
be considered for one prime { # p.

(5.4) Conjecture. Fiz a polarized abelian variety [(X, X)) = ¢ € A®F,. Choose any prime
number { # p. Consider the Hecke orbit of x admilting isogenies of degree equal to a product
of a power of { and of a succession of isogenies with kernel a,. We conjecture that this Hecke
orbit is everywhere dense in the Newton Polygon stratum Wg with § := N (X).

This will be studied in [2].

(5.5) As in the case of simple p-divisible groups, for any p-divisible group G there is a cat-
alogue for all groups isogenous with G. Probably there exists an irreducible one (constructed,
using the methods of Section 2). It could be useful to study that case.

(5.6) Conjecture; Foliations. We expect that the following facts to be true. For every
Newton polygon /3 there should exist integers i(3), ¢(8), € Z>o, and for every point [(X, \)] =
€ A= A®F, with N(X) = § there should exist a closed subset 2 € Z(2) =Zg(xz) C Wz C
A, and a locally closed subset z € C(z) = Cg(z) C Wg C A such that:

e dim(Z(z)) = ¢(#) and dim(C(x)) = ¢(5).

e For every geometric point [(Z,()] = z € C(x)(k) there is an isomorphism (Z[p™],() =
(X[p™], A). All irreducible components of the locally closed set C(z) contain x, and it is
the maximal closed set with this and the property just mentioned.

e Lor every geometric point [(Y, )] = y € Z(z) there is a Hecke-correspondence using only
iterates of a,-isogenies relating [(X, A)] and [(Y, p)]. All irreducible components of the

18



closed set Z(z) contain x, and it is the maximal closed set with this and the property
just mentioned.

e The dimensions are complementary: i(5) + ¢(f) = sdim(/), and locally at z their
intersection is zero dimensional.

o If moreover a(X) < 1, the (locally) closed sets Z(z) and C(z) are regular at z € A,
intersect transversally at z, and together their tangent spaces span the tangent space of
T € Wﬁ.

e Examples:
for the supersingular locus we have (o) = sdim (o) = [¢?/4] and c¢(o) = 0;
for the ordinary locus we have i(p) = 0, and ¢(p) = sdim(c) = (¢(g+ 1))/2;
for the case the p-rank equals one, i.e. §=g¢-(1,0) 4 (1,1) + ¢-(0,1) we have () = 0,
and c(8) = sdim(e) = ((g(g +1))/2) - 1.
We have: p-rank f(3) < g— 1iff () > 0.
We have: 8 # o iff ¢(5) > 0.

e There is an easy combinatorial argument by which the numbers i(3) and ¢(3) can be
read off from the Newton Polygon diagram of 5.

(5.7) In general G/[p] does not determine a p-divisible group . But in some cases it does.
Let 8 be a symmetric Newton Polygon. For a pair of relatively prime integers (m,n) we
have defined in [8], Section 5 a p-divisible group H,, ,; it is characterized by: H,, , ~ Gp, .,
and for an algebraically closed field £ O F,, the ring End(H,, ,, ® k) is a maximal order in
EndO(Gmm @ k). We define Hg to be the direct sum of all H,, , ranging over all slopes of 3.
We expect:
Conjecture. Suppose (G, A) is a principally quasi-polarized p divisible group over an alge-
braically closed field k, such that G[p] 2 Hgp]; then (?) we should conclude G = Hg.

Note that in the special cases § = p (the ordinary case), and § = ¢ (supersingular) this
conjecture is true; the conjectural statement above seems the natural generalization of this.
Special cases have been proved.

(5.8) Conjecture (Newton Polygon strata, the non-principally polarized case). Let £ be
a symmetric Newton Polygon and consider all possible polarized abelian varieties, where the
polarization need not be principal. This gives a stratum We (A, @ F,). Let f = f(§) be the
p-rank of £ i.e. this Newton polygon has exactly f slopes equal to zero. We expect: under
these conditions, there is an irreducible component

W C We(A, @F,) with dim(W) = ((g(g+1)/2) — (g9 — f),

i.e. we expect that there is a component of every Newton Polygon stratum which is a whole
component of its p-rank stratum.

If this is the case, we see that there are “many” pairs of polarized abelian variety (X, A) and
a Newton Polygon v > AN(X) such that there exist no deformation of (X, X) to a polarized
abelian variety with Newton Polygon equal to 7, namely consider 3 < v with g # ~ and

fB)=1().
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