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Introduction

In this paper we study the moduli space A, @ [F, of polarized abelian varieties

of dimension g in positive characteristic. We construct a stratification of this

space. The strata are indexed by isomorphism classes of group schemes killed
by p; a polarized abelian variety (X, A) has its moduli point in a certain stratum

if X[p] belongs to the isomorphism class given by a certain discrete invariant.
We define these invariants by a numerical property of a filtration of N = X|[p].

Passing from one stratum to a stratum in its boundary feels like “degenerating
the p-structure”. The fact that these strata are all quasi-affine allows us to keep

going in this process until we arrive at the unique zero-dimensional stratum,

the superspecial locus. One can formulate this idea by saying that the ordinary



locus has several “boundaries”, one where the abelian variety degenerates, one
where the p-structure “becomes more special” (and an analogous idea for all
non-zero-dimensional strata). This phenomenon, non-present in this form in
characteristic zero, but available and powerful in positive characteristic, is ex-
pected to have many applications.

We feel that the strata S, and the closed subsets they define inside A, 1 ®
F, merit further study, see [11], where another description for our strata is given
and where the cycle classes of the closures of the strata are computed. This is
a natural way of producing Chow classes, or cohomology classes on A, 1 which
have a geometric interpretation when going over to characteristic p. It 1s clear
that these classes depend (on ¢ but also) on the characteristic p chosen. Further
study might show how useful they are.

Remark. A polarization A : X — X! on an abelian variety X induces a
homomorphism ¢ : N — N? on N := X[p]. The morphism X is symmetric
with respect to the duality X — X! and ( is anti-symmetric with respect
to the duality N — NP. Going back from ¢ to some A, and following these
and their relation under deformation theory is possible, and in fact easy, if the
characteristic of the base field is # 2. However, in case of p = 2, then +{ = —(
on N = X|2], and in general, there are (anti-)symmetric morphisms N — N
which do not come from a polarization. This causes technical complications.
Sections 9 and 12 can be simplified considerably under the extra assumption
p > 2; we have chosen to treat all cases uniformly. For a proof of (9.4) in case
p > 2, see Moonen, [33]. For a proof of (12.5) in case p > 2, see Wedhorn, [61].

Sections 2 and 4 follow closely the classification in [27]; as we need also
a description of the form on X[p] obtained from a principal polarization on X
we describe “standard types” in Section 9; this gives a classification of group
schemes annihilated by p with an alternating form on their Dieudonné modules
over an algebraically closed field.

A short survey of the paper. The basic idea of the paper is: over an algebraically
closed field there are only a finite number of finite group schemes annihilated
by p of a given rank. Clearly this gives subsets of 4 by considering for every
abelian variety X the group scheme X[p]. We prove, using an adaptation of an
idea by Raynaud, that these strata are quasi-affine: Sections 1 — 4.

Using a principal polarization on X we can make this more precise, and
study these strata also at the boundary, Sections b — 6.

There 1s exactly one stratum of dimension one. This is contained in the
supersingular locus; purely algebraic arguments show that the closure of this
stratum 1s connected: Sections 7 — 8.

Then we study in which way strata fit together. To this end we use defor-
mation theory, in the disguise of “displays”, see (15.6); we study how we can
move inside a stratum, how we can move transversally out of a stratum, and



we show that strata fit together as is required in a stratification: Sections 10
— 12. In order to be able to describe these deformations we show that every
“polarized BT” over an algebraically closed field can be put in standard form,
see Section 9; this proves the number of strata is finite.

Logical order in some arguments in this paper:

e an idea by Raynaud, generalized to our strata, proves that these strata
in A* are quasi-affine, see (6.5); using boundary behavior of strata, see
(6.3), this shows that positive dimensional strata in A contain in their
closure points of another stratum;

e using standard types we show that the boundary of a stratum is a union
of lower dimensional strata, see (9.4) and (12.5);

e in Section 8 we describe the unique one-dimensional stratum and in Sec-
tion 7 we show it is connected; hence all positive dimensional strata are
connected.

Remark. These methods use techniques in positive characteristic. One of the
corollaries of the main result of this paper is: Let k be a field, fir a positive
integer n not divisible by char(k) and consider the moduli space Ay1, @k of
principally polarized abelian varieties of dimension g with a symplectic level-n-
structure defined over a field containing k; this space s irreducible.

This result is well-known: for fields of characteristic zero this is classical.
For fields of positive characteristic this was proved by C.-L. Chai and by G.
Faltings around 1985. Their proof followed the same line as set out by Zariski-
Grothendieck-Deligne-Mumford for the moduli space of algebraic curves: first
prove the result in characteristic zero, then construct “good” compactifications
of moduli spaces in all characteristics, i.e. “over” Spec(Z); then conclude by
Zariski’s connectedness theorem that the compactified moduli scheme in pos-
itive characteristic is connected, and derive the result. In this paper we prove
the irreducibility of Ay 1, ® k for fields of positive characteristic, and hence
it also shows the irreducibility in characteristic zero; as all constructions are
algebraic (also the construction of the minimal compactification A* is), this
gives an algebraic proof of this fact.

The research for this paper started as joint work with Torsten Ekedahl. In an early stage
we had an idea how to apply the “Raynaud trick” to non-ordinary strata; this is described
in Section 4. The construction of L, as in Section 7, and the proof it is connected is due to
Ekedahl. Several technical details still had to be supplied; in particular the definition of the
stratification, and methods like “standard types” became clear much later. Finally we decided
that this author would publish the results. - I thank Torsten Ekedahl for sharing his ideas

with me; the first idea of the paper is joint work, but I take full responsibility for correctness



of the final result. - I apologize to several authors, who used already this structure, e.g. see

[2], see [61], and [13], for the delay in publication of this paper.
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Notations. We fix a prime number p. All base fields, all base schemes will be
in characteristic p. All group schemes considered will be commutative. Polar-
izations on abelian varieties are supposed to be principal polarizations starting
from Section 5.

For n € Zsq we consider the ring Z[(,, 1/n], where (, is a choice of a primitive
n-th root of unity. If p is a prime number and n € Z~ not divisible by p, we
write F, , for the smallest field containing F, and containing (a fixed choice
of) a primitive n-th root of unity. We write A, 4, — Spec(Z[(s, 1/n]) for
the moduli scheme of abelian varieties with a polarization of degree d? and
a symplectic level-n-structure. When p and n are chosen, typically, we write

A=Ag1n @Fpn.

1 Results

For every elementary sequence ¢, see (5.6), there is a locally closed subset
S CA=Ay1n @I, . The unique zero-dimensional stratum ¥ := Syg ... o}
is closed. A point [(X,A)] is in X iff it is superspecial, i.e. for an algebraically
closed field &k, we have X ® k£ =2 E9, where E is a supersingular elliptic curve.
The set ®, of all elementary sequences of length ¢ has cardinality #(®,) = 29.

(1.1) Theorem. The unique one-dimensional stratum S{y.. o1} equals L,
and its Zariski closure is

L = (S{Oy...yoyl})c’
where LY C L are as constructed in (7.1). The closed curve L C A is connected.
(1.2) Theorem. Every stratum S, C A is non-empty and is quasi-affine (i.e.

dense-open in an affine scheme). For every elementary sequence ¢ all compo-
nents of S, have the same dimension and we have:

dim(Sp) = ol = 3 (i)



(1.3) Theorem. The disjoint union
A = || S
»

is a finite stratification: the boundary 04(S,) == (5,)° — S, is the union of all
strata meeting that boundary,

0a(S,) = I_I Ser, the union taken over V (S,)°N Sy # 0;
o’

c c

i.e. either S, does not meet (S,)°, or it is contained in (S,)°.

For every ¢ € ®, with ¢ not superspecial, and every irreducible component
S C Sy, there exists an irreducible component L' C L contained in S°. Hence,
every stratum S, with ¢ # {0, ---,0}, i.e. which is not the superspecial locus,
has the property that (S,)° is connected.

(1.4) Corollary (Faltings, Chai). Let k be an algebraically closed field, and
let n € Zwq, such that char(k) does not divide n. The moduli space Ag1, ® k
18 irreducible.

(1.5) Corollary. Consider Vy_1 C Ag1n @ Fypn, the locus of the non-
ordinary principally polarized abelian varieties. Suppose g > 1. This locus s
geometrically irreducible.

(1.6) “Polarized BT truncated group schemes”. For a complete clas-
sification of all (N, <,>) = (X, A)[p], where N = X|[p] over an algebraically
closed field k, see Section 9.

(1.7) For a complete classification of all principally polarized abelian varieties
(X, A) in characteristic p with a(X) = g — 1, see Section 8.

2 Filtrations on finite group schemes

In this section we define the canonical filtration on certain finite group schemes.
We derive some elementary properties.

(2.1) All base schemes in this paper will be in characteristic p. All finite
group schemes considered will be commutative. If we consider N — S| a group
scheme over a base, it is supposed to be finite and flat over 5.

We write F': N — N®) for the Frobenius homomorphism and V : N®) —
N for the Verschiebung homomorphism. All finite group schemes considered in
this section will be annihilated by p.



For a group scheme N — S, commutative and finite and flat over S, we will
write N[F] := Ker(F : N — N®) we write V(N) = Im(V : N®) — N), if
these exist as finite flat group schemes over S; if this is the case we say that
N/S is a Barsotti-Tate truncated level one group scheme if it is annihilated by

p, e [p]ny =0, and
Im(V : N®) 5 N)=Ker(F: N = N®) Im(F: N = NPy =Ker(V : NP = N).

Such a group scheme will be called a BTj.

Suppose T'C N a subgroup scheme. We will write F~1(T) C N for the
finite flat subgroup scheme (if it exists as a finite flat group scheme over S)
which is the pull back by F : N — N®) of 7) ¢ N ()

(2.2) Construction: the canonical filtration. We suppose N is a BT
over a field K D IF,. We construct a filtration:

0=NyC---CN,=V(N)C---CN; =N;

here
N, = H:=V(N)= N[F],

and 0 < r < s are integers. The construction is as follows: in the first step on
considers all images V?(N); this gives a filtration of N; in the second step we
take all F=J(N"), j € Zso, for every N’ in the previous filtration; then we go
on by induction: in all odd numbered steps we take all Vi(N’), for all N’ in
the previous filtration; in all even numbered steps we take all F_j(N’). Each
step gives a filtration which is a refinement of the previous one. Note that odd
numbered steps add at most new steps in the filtration of 0 C H, and even
numbered steps add at most new steps in the filtration of H C N. After a finite
number of steps the process stabilizes, in fact after at most 2(¢ — 1) steps if
rk(N) = p?; the filtration reached will be called the canonical filtration of N.

Let E be the set of all finite words in the symbols V and F~!. The set of
subgroup schemes {W(N) | W &€ E} is the canonical filtration of N.

Note that we performed construction of the canonical filtration for a BT,
over a field. For a group scheme over an arbitrary base the canonical filtration
need not exist (steps might produce non-flat group schemes). We will come
back to this.

(2.3) Notation. A BT, over a field K has a canonical filtration, and we
derive a triple 7(N) = 7 = {v, f, p}, where:

p:{oa"'as}_)ZZOa v:{0,~~~,3}—>{0,~~~,r}, f:{oa"'as}_){r""as}a
are defined by:



The triple {v, f, p} will be called the canonical type of N; it will be denoted
by 7(N). We describe some properties. We write I' = T'y; = {0,---,s — 1}. We
define 7, = 7: ' = T by:

v(i+1) >0 = (@) :=v(); vi+1)=v() = n(@) = f(i).

We write B; = N;41/N; for every i € T'. Note that the maps v and f are
monotone, i. e. v(¢ + 1) > v(i) and f(i + 1) > f(i) for all ¢.

(2.4) Lemma. Let N be a BT over a field K, and let {v, f, p} be its canon-
weal type. Then:
(i) the maps v : {0,---,s} — {0,---,r} and f : {0,--- s} = {r,---,s} are
surjective; the map m : T' — T is bijective.
(ii)
v(i+ 1) >v(i) < f(i+1)=f(i); in this case V : pr) — B
1s an 1somorphism;
(iii)
v(i+ 1) =v(i) < f(i+1) > f(i); 1n this case F : Br) — BP

15 an isomorphism;
(iv)
fli)+v(i) =s+1.

Remark. Consider the set E of all finite words in the letter V and F~!. For
w € EF and a BT; over a field as above we consider the rank of w(N). The
group scheme N determines a function £ — Z by w — rk(w(N)); we write

this function as indexed set {rk(w(N)) | w € E}; if these functions are equal
for N1 and Na, then 7(Ny) = 7(Na).

(2.5) Notation: Cycles. The bijection 7 splits up I' into cycles, orbits under
the group generated by «:

Fr=r,u---uly,.

For an element ¢ € I' we say n € Z~g is the order if n is the smallest positive
number such that 77 (é) = ¢, i.e. if ¢ € T'y then n = #(T%).

Proof of (2.4). In the canonical filtration every 0 C N; C H = V(N) is
the image under V of a group scheme in the filtration (this is the way these



N; are constructed; hence v : {0,---,s} — {0,---,7} is surjective. The same
arguments for H C N; C N show that f is surjective. We show that 7 : T — T
is injective; indeed, suppose 7(i1) = 7(é2) < r;then m(iy) = v(iy) = b= v(iz) =
7(i2); as v is monotone, the fact v(i;+1) > v(i1) = b = v(i2) < v(i2+1) implies
i1 = iy (there is precisely one ¢ at which v(¢) jumps from b to b+ 1); note that
n(é) > r implies v(i + 1) = w(¢); if w(éi1) = 7w(é2) > r the same arguments
involving f show that ¢; = ¢»; this proves that 7 : I' = I" is bijective.

As 7 1s bijective, we obtain the cycle structure on I' as indicated above.
Claim. For every i € I' we have tk(B;) > rk(Bg(;)). For every i € I' the ho-
(r)

i
(Ni+1/Ni)(p) Is injective. this proves the claim.
Following the elements in a cycle under 7, we see that

I'k(BZ') > I'k(BW(i)) > 2> I'k(Bﬂn(i)) = I'k(BZ').

momorphism V' : B;" — Ny41)/ Ny is surjective, and F' @ Nyp1y/Nyay —

We conclude that v(i + 1) > v(¢) implies that
Vi B 25 Nygn/Noy = Bogy
is an isomorphism. This shows that (Ker(V) N N;41) C N;; hence we conclude

that v(i + 1) > v(?) = f(i + 1) = f(4).
In the same way we show that f(¢ 4 1) > f(¢) implies that

F': Ny /Nyy = Byiy = B
is an isomorphism and that v(i + 1) = v(¢).

Clearly f(0) + v(0) =+ 0; by (ii) and (iii) the last claim follows. This
concludes the proof of Lemma (2.4). a

(2.6) Corollary. Let i € T, and let n € Zsq be the order of i under .
The maps in (ii) and the inverses of the maps in (ii) above give a (canonical)
1somorphism

n

B 2 B,

K3

O

(2.7) Definition. A triple 7 = {v, f,p} is a canonical type if 0 < r < s are
integers, v, f and p are maps as in (2.3), such that:

o p:{0,---, s} = Zxq is strict monotone with p(0) = 0,

e the maps v and f are monotone and surjective, with
v(i+1) >v(i) = f(i+1) = f(@), v(i+1) =v() = FE+1) > f(i);
this defines a permutation w of T := {0,---,s — 1};



e p(i+1)—p(&) =p(r(i + 1)) — p(r(?)) for everyieT.

We have seen that a BTy over a field defines a canonical type. Conversely:

(2.8) Remark. For every canonical type, there exists a BT; over a field
(even over F,) having this canonical type. We will not use this; this simple
observation can be easily proved with methods indicated later.

Methods of this section can be easily derived from [27]. In Section 5 we will
give more details on filtrations, and we give a classification of symmetric BT,
group schemes. All these methods will be easy, and in fact almost equivalent
to [27]. Then, in Section 9 we will classify “polarized BT, truncated group
schemes”; this will be the backbone of the deformation theory in later sections.

(2.9) Remark. In the case of symmetric BT;’s we will study the possible
canonical types more in detail in Section 5.

Cycles studied in this section in T' will be called (V, F~1)-cycles, in con-
trast with “(V, L)-cycles” studied later.

3 Strata: the canonical stratification of the
moduli space of abelian varieties

(3.1) Lemma. Let h : My — My be a homomorphism of finite flat group
schemes over a noetherian scheme S; let R be a positive integer. Consider all
points s € S such that Im(h, : My, — M ;) has rank equal to R. These points
give a locally closed set S(R) C S; this is a locally closed, reduced subscheme,
and Im(h : My — M3)|s(r)C Ma|sry exists as a finite flat group scheme.

Let h : My — M be a flat surjective homomorphism of finite flat group
schemes over a noetherian scheme S, and let Ny C Ms be a flat subgroup
scheme; let R be a positive integer. Consider all points s € S such that
h=1((N2)s) has rank equal to R. These points give a locally closed set T(R) C S;
this is a locally closed, reduced subscheme, and h_l(N2)|T(R)C Mi|pry evists
as a finite flat group scheme.

Proof. The rank of the fibers of the finite group scheme Ker(h : My — Ma)
is upper-semicontinuous. Hence S(R) C S is locally closed. Over this scheme
Ker(h)|s(ry is finite with geometric fibers of constant rank; hence it is flat by
[4], Lemma (1.13) on page 240. Hence the quotient Mi|s(r) /Ker(h)|s(r) exists
as finite, flat group scheme, see [14], page 212-17, Th. 7.2; this is a closed sub-
scheme of M2|5(R), the image of h|5(R). The same arguments show the second
part of the claim. a

Notation. Let 7 be a canonical type, and let N — S be a BTy over S. We



denote by D;(S) the set, considered as reduced subscheme, of points s € S
such that the fiber N; has canonical type 7(N;) = 7.

(3.2) Proposition. Let T be given, and let N — S be a BT1. Then
D-(S)C S

1s locally closed.

Let a canonical type T be given, and let N — T be a BT, with T reduced,

such that for every s € T we have T(N;) = 7, i.e. “the type in the fibers of
N — T s constant”. Then the canonical filtration of NJ/T exists, i.e. there
exist finite flat subgroup schemes N; C N — S, which are obtained by the
construction of the canonical filtration, and which in every fiber Ns give the
canonical filtration.
Proof. As we have seen, 7(N;) is determined by the set {rk(N) | w € W}. It
suffices to consider only words of length at most 2¢(¢ — 1), where ¢ = rk(NV).
Consider the collection of all such words; for a given type 7 fix the ranks of the
images of each word belonging to the given type 7. Start with S = Sy. Suppose
b € Z~y, suppose we work over a base Sp_1, and suppose that all words of
length at most b — 1 have “images” which are flat group schemes over Sp_;
of the given ranks. The set S, C Sp_1 is the reduced locally closed subscheme
where the image of every word of length & has a given rank (determined by
7). This exists: use the previous lemma. Repeating this argument for all words
and all ranks we have obtained from 7 we obtain a locally closed set Soq(4—1) in
the base where all “images” have constant ranks, and give flat group schemes.
This is the set we are looking for.

If 7(—) is constant on T', in each step of the proof of the previous lemma we
obtain subgroup scheme of constant rank in N, hence flat subgroup schemes by
[4], Lemma (1.13) on page 240. This shows that the construction of the canon-
ical filtration under the condition 7(—) is constant on 7' produces a filtration
by flat subgroup schemes, and the proposition is proved. a

Obviously the canonical filtration on a group scheme over an arbitrary base
does not exist if the type changes.

(3.3) Notation. Let 7 be a canonical type. For a fixed n € Z ¢ consider the
moduli space

A=Ay @Fpn =Ua Agan @Fpn.
We write

D, =D, (A)C A

for the locally closed reduced subscheme consisting of moduli points s € A,
where s comes over some field from an abelian variety X, such that 7(X;[p]) =
7. This is a locally closed closed subset. Note that the rank of X;[p] equals 2g.
Note that only a finite number of canonical types exist for a given rank.

10



(3.4) Definition. We have obtained a finite disjoint union into locally closed
subsets:
A = || D,

This is called the canonical stratification of A’. In some papers this is called
the EO-stratification, or the Oort stratification.

(3.5) Remark. We study some properties of this stratification on A’. Then,
in order to describe more precise results we will restrict later to the case of

A= Ag,l,n @ Fp,na

the moduli space of principally polarized abelian varieties in characteristic p.

4 The Raynaud trick on A, @ F,

(4.1) Theorem. For cvery canonical type T every trreducible component of
the stratum D, C A :=Ug Ay 4, @, , is a quasi-affine subscheme.

Proof. It suffices to show this in case of arbitrary high level structure. Hence
we suppose A’ = UgAy 4 @F, ,, with n € Z>3 not divisible by p. We choose
a component 7' C D, C A’. -

We are going to show that the theorem follows from ampleness of the
determinant line bundle associated with the sheaf of invariant differential forms
on the “universal semi-abelian scheme”, as proved by Moret-Bailly, see [35],
also see [10], combined with the properties we proved on cycles in the p-kernel
constructed by the canonical filtration, see (2.4).

Let & — A’ be the universal abelian scheme. We write ty, 4/ for the
tangential sheaf of X' — A’ along the zero-section, and we write wy, 4/ for its
determinant line bundle of its dual:

wyyar = Det(ty'y/) = Det(Qxjar),

see [10], page 24 and page 137.

Claims. 1) Under these conditions, the line bundle wy /p on T is a torsion
line bundle.

2) From this it follows that T is quasi-affine.

By [35], Chap. IX, and [10], 1.5 and V.2, Th. 2.3, we conclude that w|p is ample;
if we assume (1) it is also torsion; hence T' is quasi-affine. This proves: (1) =

(2).

We show that (1) is true. We write N := X[p]|r. By (3.2) we see that the
canonical filtration {N; | 0 < ¢ < s} by finite flat subgroup schemes of N

11



exists. We have:
0=NyCN, C---CN, =N[F]=V(N);
we see that all tangential sheaves

tyyr C - Cwyr = tayr

are well-defined, of constant rank. We write £; := Det(tn,,,/r/tn,;/7), for
0 <1 < r, and we are going to show that these are torsion line bundles. By
(2.4) we know that if ¢ € T has order n(i) = n > 0 under 7 : ' — T', then for
B; := N;+1/N; we have

(Bi)(pn) >~ B;: hence (Ei)pn =Ly

this shows that Det(£;)?" =" = 1. We conclude that Det(ty;r) = Det(Ly) @
-+~ ® Det(L,) is torsion; hence its inverse w|rp is torsion. This shows (1), and it
finishes the proof of Theorem (4.1) a

(4.2) Remark. A special case of this proposition is due to Raynaud: if S is
irreducible and complete, in characteristic p, and X' — S is a family of ordinary
abelian varieties (i.e. all fibers have maximal p-rank), then the natural map
S — Ay @ F, is constant, i.e. the family X — S is isotrivial, cf. [60], Th. 5,
page 62, cf. [35], XI.5, page 237. This beautiful idea by Raynaud stimulated us
to look for some of the basic notions as exposed in this paper.

The example of p-rank equal to f = g — 1 is worked out in [45], 6.2; that
case can be seen as a motivating example illustrating the proof of the “Raynaud
trick” in the general setting, as given above.

In the case of a family of ordinary abelian varieties the tangent bundle can
be trivialized by a finite covering, because “u, is rigid”; that was the original
idea by Raynaud. In case of lower p-rank, the fact that o, does not admit a
canonical base seems to spoil the case; however then we consider the p-kernel
X[p], “go up and down” by V and by F~! we prove that the determinant of
the tangent bundle is torsion, as is done above.

From now on abelian varieties considered will be principally polarized.

5 Filtrations on finite symmetric group
schemes

In this section we consider symmetric BT1’s, and we describe and characterize
filtrations on such finite group schemes.

Finite group schemes will be considered, usually over a field, sometimes
(finite and flat) over a more general base. We will write N for a finite (commu-
tative) group scheme. All finite group schemes considered in this section will

12



be annihilated by p; when over an arbitrary base we suppose the group scheme
is finite and flat over that base. In all cases we assume that we work with a
BT;.

(5.1) Definition. We say that ¢ is a symmelry on a finite group scheme N
if

C: N NP

is an isomorphism onto its Cartier dual group scheme. A finite group scheme
which admits a symmetry is called a symmetric finite group scheme.
Remark. Later we will be more precise whether this symmetry has extra
properties (like being alternating or anti-symmetric).

For commutative group schemes we have
(Fy : N =5 NPHYD = (v . NPIP = yPB) 5 NPy,
as V commutes with base change we derive

CVn = Vo (@) = (FN)DC(”).

Notation. Suppose ¢ : N — N is a symmetry, and i : T — N is a finite
subgroup scheme; we write:

L(T) = L(T) := Ker(N -5 NP 22y 7D
(1) = L(T) := Ker(N — — T7).

Earlier we have considered the set E of all (finite) words in the symbols V' and
F~1. For a BT; group scheme N over a field the filtration {W(N) | W € E}
was called the canonical filtration.

Consider the set e of all (finite) words in the symbols V and L. We consider
the set of finite subgroup schemes {w(N) | w € e} of N.

(5.2) Lemma. Let N be a finite group scheme over a field K. Assume this
is a BT|. Assume there is a symmetry ( : N =3 NP on N . Then the following
properties hold:

1) L(L(T)=1T;

2) L(V(N) = V(N);

3) the set {w(N) | w € e} is a finite filtration on N;

4) L(V(T)) = F~Y(L(T)) for every subgroup scheme T' C N;

5y {w(N) |weet={W(N)|WeE}

Remark. The last property shows that the canonical filtration does not depend
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on a particular choice of the symmetry.
Proof. 1) The first property follows by dualizing

L(T) —» N -5 NP 5 1P

2) The second follows from: L(V(N)) = Ker(F) = V(N).

3) Note that L(N) = 0; hence for every word of the form w = w’-(L-V?. 1) we
have w(N) = w'(N). Hence we need only consider words ending with a positive
power of V. The set {VI(N)|i € Zsq} is a filtration of V(N) which stabilizes
after a finite number of steps. The set { L(V!(N)) | i € Zso} is a filtration of
V(N) C N. Hence {(VI-L.V!)(N) |i,j € Z>o} is a filtration, etc.: we carry on
by induction on the number of letters in the words in consideration; this shows
that we obtain a filtration; because N is a finite group scheme, this is a finite
filtration.

4) This follows because

(F:N = NP — (v . (NP = (ND)®) 5 NPy,

5) As we have seen, we need only consider words w ending with V', and the

same for words W. If w = V € e, then also w € E. If w = w'- L.V, then

w(N) = (w'-V)(N). Suppose w ends in V?; note that if 7, j € Z > then
(VELVIL)N(T) = (V.- F~I)(T).

We write either w = w’-V? (in case L appears an even number of times in w),
or w=1w"V*L1.V® (in the odd case), where a € Z+¢, and b € Z+1, and where
w’ is a finite product of factors of the form V. L-V7.L; in the second case, note
that

w(N) = (w' -V LV (N) = (v -V F~LV)(N);

hence in both cases there exists a word W € FE such that w(N) = W(N).
Hence

{w(N) |wee} C{W(N)|WeE}.

Conversely, considering all V- F~J with i > 0, in a word W ending on V shows
the opposite inclusion. This ends the proof of the lemma. a

(5.3) Definition. Let (N, () be a symmetric BT, over a base S. We say that
0=NyC---CN;C---CN,=H=VN=N[F]C---CNy =N

is a good filtration if the following conditions are satisfied:

1) Each N; — S is a flat subgroup scheme, N; # N;iq.

2) For every 0 < j < 2r duality gives an equality

L(Nj) = Nopj.
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3) For every 0 < j < 2r, the image Im(V : N;p) — N) exists as a finite
flat group scheme over S, and it equals one of the group schemes in the
filtration, and

4) for every 0 < i < r, the group scheme Nj is such an image.

We say that a good filtration is a final filtration if moreover its length equals
2g with p?9 :=1k(N/5):

0=NyC---CNy=V(N)C---CNyy=N
by finite, flat group schemes over S, such that:

5) the rank of N; over S equals p'.

(5.4) Proposition. Let N be a symmetric BTy over a field. Its canonical
filtration, as constructed in Section 2, is a good filtration.

Proof. In Lemma (5.2) we have seen that the canonical filtration constructed
with the help of V and F~1! is the same as the one constructed with V and L.
Hence the canonical filtration is stable under L; hence it satisfies (2). Conditions
(3) and (4) follow by construction. a

We see that the canonical filtration (if it exists) is the “minimal good filtration”
and a final filtration (if it exists) a “maximal good filtration”.

(5.5) Proposition. Suppose that N is a symmetric BT over a base S — T,
with a good filtration

OZNOCH.CNZ.CH.CNT:HCH.CNZT:N
on it. For every j with 0 < j < 2r we write v(j) for the integer with the property
Im(V : N = N) = N, ;).
1) For every 0 < j < 2r the inverse image of N;p) under F : N — N®) equals
F_l(N(p)) = N27‘—l/(27‘—j)'

2) For every 0 < j < 2r there is an exact sequence

F 14
0 — N27‘—l/(27‘—j—1)/N27‘—l/(27‘—j) — N](f-)l/N](p) — NV(j-l-l)/NV(j) — 0.

3) For every 0 < j < 2r

Vi) =v(i+1) = v@r-j)=v@r—j- 1)+ 1.
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4)If0<j<2randv(j)<v(i+1), thenv(j)+1=v(j+1), and
VENELGT S NoGan/Nog).

Proof. From
V(Nz(f)—j) C  Nyzr—j)

we deduce

F(N27‘—l/(27‘—j)) C N](p)

Hence all arrows as claimed in the proposition exist. In order to show the
statements it suffices to show these for every fiber Ny — Spec(K) C S, where
K is a perfect field. We write A = I(N;) for its Dieudonné module.

1) In order to show V_l(A‘g»p)) = Asp_y(2r—j) We observe:
eV iAY) = V() € AY =

= Vy e Ay, < Ve,y>=0<&=Vyeds_;, <z, Fy>=0+=

= Vre FAL ) = Aoy, <,2>=0 =2 € L(Ayar—j) = Asrp(ar—j)

2) The sequence as in (2) exists, surjectivity on the right follows from the
definition of v in a good filtration, and injectivity on the left follows from (1).

In order to show exactness in the middle, we choose # € A§Q1 such that

Fr e Au(j) = f(N](p))

Let y € A;p) with Fo = Fy. Then F(x — y) = 0, hence there exists z with

Ve=zx—yE€ A;Zjl_)l. By (1) this implies z € Agp_p(2,—j—1). As Vz and z are
congruent mod A; this proves exactness in the middle.

3) For any index j < 2r we have v(j +1) < v(j)+ 1. If v(j) = v(j + 1) then by
(2) we conclude v(2r — j) = v(2r — j — 1) + 1. Note that v(2r) = r. Hence by
the previous argument, it is excluded that for any j we have v(j) < v(j + 1)
and v(2r — j) < v(2r — j — 1). This proves (3).

4) This follows from (2) and (3). a

(5.6) Definition: Final types and elementary sequences. A final se-
quence is a map ¢ : {1,---,2¢9} — Z>o with ¥(0) = 0, and ¢(2¢) = g, such
that -

B) < B+ <P +1, 0<i<y,

and

PE)+1=9(i+1) —=v(2-1) =22 —i-1).
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Note that this implies:
V(29 — i) = (i) +g—1.
An elementary sequence is a map ¢ : {1,---, g} = Z>o with ©(0) = 0 and
pi) <p(i+1) <p(@)+1, 0<i<y.

A symmetric canonical type is a canonical type as in (2.3) with s = 2r and the
extra conditions
fU)=2r—v(2r—j), YO<j<r,

and

p(i+1) = p() =p2r—j)—p2r—j—1), VO<j<r
Note that in a symmetric canonical type we have f(j) = 2r — v(2r — j) =
7+ j —v(j) hence v(2r — j) —v(j) = r — j for all j. If N is a symmetric BT,
over a field, its canonical filtration, given by V and F~!, defines a canonical
type, and this is symmetric.

We could define a good type as a pair of maps v : {0,---,2r} — {0, -- 7},
and p : {0, 2r—1} — Zsatisfying obvious rules generalizing the definition
of a symmetric canonical type. Here f is given by f(j) = 2r — v(2r — j). We
will not need this definition.

The set of all final sequences for given value of g is denoted by ¥ = W,. The set
of all elementary sequences for given value of g is denoted by ® = ®,. Clearly
#(®,) = 29 (in each step the sequence ¢ either jumps by one, or does not
jump).
We define a partial ordering on @ by:
/ def Y . .
¢ < = el <eli)  Vi<y

Observe that any maximally totally ordered subset in ® has length equal to

9(g +1)/2.
We define a “dimension function” |-| : ® — Z on ®, by:

eli= Y (i)

Note that for a final sequence we have (29 — i) — (i) = g —i for 0 < i < g;
we call this “symmetry”. A final sequence 1 defines an elementary sequence ¢
by () := ¥(i), ¥V 0 <i<g;we call this “truncation” of the final sequence.
Conversely, an elementary sequence ¢ defines a final sequence ¢ by: ¢(i) =
p(i) = ¥(2¢ — i) — g+ i for 0 < i < g; this is inverse to the “truncation”
process.
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Combinatorial constructions. Suppose given a symmetric canonical type
7 ={v, f, p}. We associate to this a final sequence and an elementary sequence
¢ = stretch(7) by ”stretching”: suppose {¢(0), (1), -, ¢(p(i))} is defined,
for 0 < i; then define {p(0), (1), -+, @(p(i + 1))} by @(p(i)) = ¢(p(i) + 1) =

= e(pli+ 1) ifo(i +1) = v(@); {p(0), 2(1), -, @(p(i + 1))} by @(p(i)) <
elp(i)+1) << pp(i+1)) if v(i+1) > v(i); clearly this procedure produces
an elementary sequence.

Suppose given a final type. Single out those indices which can be reached
by starting with 2¢ and applying j — ¢(j) and i — 2¢ — ¢ as many times until
no further indices appear (this we call the canonical construction); then delete
all numbers not appearing, and construct a canonical type 7 from these data
in the obvious way.

Remark. We shall see that for a “polarized BT,” over an algebraically closed
field the canonical filtration can be refined to a final filtration, see (9.6). The
final type associated to a canonical type by stretching is the the type of any
final filtration associated with the canonical filtration. A refinement from a
canonical filtration to a final filtration is not unique in general. However the
final type and the elementary type are uniquely determined by the canonical
type, and are the ones obtained by stretching and truncation.

(5.7) Lemma. Suppose given g € Z>o. There is a natural bijection of sets:

(CT) all symmetric canonical types T = {v, f, p} with p(2r) = 2g4,

(FT) all final sequences v € ¥,

(ES) all elementary sequences ¢ € O,
where (CT) — @ is given by stretching, and ¥ — & is given by truncation.
Proof. It is clear that stretching indeed produces an element in ®. From an
elementary sequence ¢ we define a final sequence by “symmetry”; this map
® — T is left an right inverse to truncation. Given a final sequence (or a final
filtration) we produce a canonical type (or a canonical filtration) by applying
the construction of the canonical type (or construction of the canonical filtra-
tion). Tt is straightforward that all maps involved are bijective (and in fact
inverse to each other where applicable). a

(5.8) Notation. Let N be a symmetric BT} over a field; its canonical type
defines an elementary sequence; this will be denoted by ES(N) € ®. For an
abelian variety X over a field, which admits a principal polarization; the iso-
morphism X - X' using the duality theorem, see [42], 19.1, shows that
X[p] = X'[p] = X[p]?, and it follows that N = X[p] is symmetric; we write
ES(X) := ES(X[p]) € ®.

(5.9) Cycles. Suppose given a canonical type (or a canonical filtration on a
BT; over a base). We have defined a (V, F'~!)-cycle in Section filt for a canonical
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type by
r={0,---,2r—1}, =:I'>T

and we obtain a disjoint union
Fr=ryu---ur,

of (V, F~1)-cycles.
Suppose we have a symmetric canonical type. We generate an equivalence
relation, the (V, L)-relation, by iterating:

v)>v(i=1) = Jj-1 ~ v(j=1)

and
j—1 ~ 2r—j5+1.

Explanation: in a canonical filtration, we declare the steps, where
VNP UNDL = NGy N1y

1s an isomorphism, to be equivalent steps, and we declare dual steps under L
to be equivalent.

Remark. We can achieve the (V, F'~1)-equivalence and the (V, L)-equivalence
as follows. Connect vertices in I' by ordered edges V and F(-1) and by un-
ordered edges L. Deleting the 1-edges gives the (V, F~!)-equivalence and the
(V, F=H-cycles. Deleting the F(~V-edges gives the (V, L)-equivalence and the
(V, L)-cycles. We easily see that a (V, L)-equivalence class consists of a graph
which contains exactly one cycle and in each vertex j in the cycle:

1) Either in the cycle an edge L ends in j, and an edge V starts; no V ends in
J.

2) Or an edge V ends, an edge V starts in j, and there is an edge L attached
to 7, not included in the cycle;

3) Or an edge V ends in j, an edge L is attached to j, no V starts in j; the
cycle passing through j reads:

i i1 Y

only in the second case there is is an edge attached to j not contained in the
cycle (“a loose edge”).

We study the relation between the (V, F~1)-equivalence relation and the
(V, L)—equivalence relation.
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(5.10) Lemma and definition. Suppose given a symmetric canonical type
7. Let T =Ty U--- UL, be the disjoint union of (V, F~1)-cycles. Then:

(i) The operation L : T — T respects the disjoint union into (V, F~1)-
cycles.

Suppose I'" = I'; for some index ¢; then

(i) odd either L(T') =TV, in this case #£(T') is an even number; in this
case there is precisely one (V, L)-cyele in T and T is a (V, L)-equivalence class;
this (V, L)-cycle in T' contains an odd number of symbols L; this will be called
an odd cycle; in this case the length of the (V, L)-cyele is this odd number plus
£()/2,

(iii) even or L(IV) = T # T'; in this case #(I" UT") is a (V, L)-
equivalence class; in this case the (V, L)-cycle in T/ UT" contains an even
number of symbols L ; this will be called an even cycle.

Proof. By construction we have 7- L = L.7. This proves (i).

Suppose T" = T; = L(T') for some index 7. Let j € T'. Then L(j) €
L(I") = T". Let w be the shortest word in V and F~! with w(j) = L(j). Then
w(L(j)) = j, where W is the word obtained from w by replacing V by F~!
and F~1 by V. Hence #(I") is even. In the circular graph I every vertex is
connected to its next either by V or by F~! and for opposite vertices one is
V, and the opposite is F'~'. From this combinatorial picture we see: deleting
all edges named F~' in I’ we obtain a connected graph, it contains exactly
one cycle containing an odd number of symbols L, and it contains all symbols
V in w and in w. This proves (ii).

Suppose I = T'; # L(I') = T for some index ¢. Let w be the shortest
word in V and F~! needed to go through I'" once. Then w is the shortest word
needed to go through I' once. Every vertex of I is connected to a unique
vertex in I'" by L; every V-edge in IV corresponds to a unique F~'-edge in I'".
This proves that the (V) L)-equivalence class of any element in TV UT” equals
I"UT”, and it shows that there is precisely one (V, L)-cycle; this cycle has an
even number of symbols L in the cycle. This finishes the proof of the lemma.
O

(5.11) Notation. Let ¢ be an elementary sequence, with associated canon-
ical type 7. We write Cy,() = D> (). We write

Sy 1= D, (A) C A= Agin ©Fpn,

see (3.3), for the locally closed subset where the elementary sequence is constant
and equal to ¢.

6 Strata at the boundary, strata in A;, @ F,

(6.1) The elementary sequence of a semi-abelian variety. For the
definition of a semi-abelian scheme X — S we refer to [10], Def. 2.3 on page 8.
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In particular, every geometric fiber X is an extension over an abelian variety
with kernel Ty = (G, )? for some non-negative integer 3.
For a semi-abelian variety X over a field K of characteristic p we define

its p-rank f = f(X) by:
Hom(jip, X © k) = (Z/p),

where k is an algebraically closed field containing K. Note that if X is an
abelian variety, then #(X[p](k)) = pfX).

Let X be a semi-abelian variety over a field K; suppose that L C X is
the maximal connected linear subgroup; we write Y = X/L. We define the
elementary sequence ES(X) = ¢ € &, as follows. We consider G := X[p]. This
finite group has a filtration 0 C L[F] = G1 C X[F] C X[p]; then G1®k = (u,)”,
where 3 := dim(L) and X[p]/G1 = Y [p]. We have a canonical filtration on Y[p];
this defines an elementary sequence 8 := ES(Y) € ®,_5. We define ¢ = ES(X)
by: ¢(i) =i for all 0 <i < and (i) = 0(i) + F for all 3 < i< g; in this way
ES(X) is defined:

o={1,, B, 006)+8 -}

Here is another way of defining this sequence. Consider, as in (2.2), the set £
of all (finite) words in the symbols V and F~!. The set of such words defines
on N = X[p] a set of finite subgroup schemes {W(N) | W € E}; this is a
filtration; to this we associate a “canonical filtration” of N, a canonical type,
and by truncation an elementary sequence. This is the one defined earlier in case
§ = 0,1.e. X is an abelian variety; it coincides with the elementary sequence
just defined in all cases.

Suppose that X1/L; = Y; and X5/Ly = Y5 are semi-abelian varieties
with Y1 2 V5. Then ES(X;) = ES(X?3); this follows from the construction.

By A* we denote the minimal compactification of A = Ay1, @ F, ,, see
[10], Chap. V, in particular see pp. 150, 152, Theorem 2.3 and Theorem 2.5.
Note that a geometric point of ' € A* defines an abelian variety ¥ (with a
principal polarization, with some level structure); hence the point 2’ defines
an elementary sequence (by the data Y and g). Let A — A* be a toroidal
compactification, let  be a geometric point of A, and 2 + z’. The elementary
sequence defined by # only depends on #’ € A*. Essential feature: ES(X) only
depends on Y = X/L, and on X[F] we can give a filtration (see below).

Let ¢ be an elementary sequence. We write 1, C A" for the set of points s € .A*
with elementary sequence equal to .

(6.2) Proposition. The set T, C A is locally closed. .
Proof. Let ¢ : A — A" be a toroidal compactification and 7, C A be the set

of points € A with elementary sequence equal to ¢. Then 1/)_1(T¢) = T;;

moreover ¥ 18 a proper morphism. Hence it suffices to prove that T; Cc Ais
locally closed.
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It suffices to prove the proposition locally on A. For points s € T,NA=
T,NA =S, C Athis has already been proved. Let s € T, NJ(A) = A—A. We
use results about “Mumford’s uniformization theorem”, and about “Raynaud
extensions”, see [10], in particular pp. 35/52, pp. 102 - 112 and pp. 149/150.
By these theories there exist the following data:

e a complete local normal domain R, a semi-abelian scheme X' — § :=
Spec(R) with generic fiber X, which is an abelian variety with a principal
polarization A,, and a “Kodaira-Spencer” morphism f : Spec(R) — A
defined by this family such that the closed point 0 € Spec(R) maps to
f(0) = s and such that R < O  1s injective;

e an exact sequence 0 =+ £ - Z — Y — 0 of group schemes over S, where
Z — S is a semi-abelian scheme, where }J — S is an abelian scheme, with
a principal polarization A’ on ) — S, and there exists an isomorphism
L = (Gy)? — S (actually there is more structure here involved, which
however we do not need);

e these are related by the fact that the formal semi-abelian schemes derived
from these two set of data are isomorphic: X" ESpf(R) Z" and the

isomorphism transforms the principal polarization induced by A into the
abelian part of Xy with Aj on Yo = Y xg {0}.

Suppose ¢ € ®, and # € P,_p are as above. Using [10], IIL.7, we see that
the set of points 7' = f~!(T}) C S equals C4(¥ — 5); by Proposition (3.2)
this 1s locally closed in S. By assumption we have 0 € T. By R Ozs and

s € T, N I(A) we conclude that T, C A is closed at s. This finishes the proof.
O

(6.3) Proposition. Let ¢ € ®,. Let Z be an irreducible component of S, =
Co(A), and let Z* be the closure of Z C A*. Suppose there is an elementary
sequence @' € ®4 with Z* N1, # 0. Then the Zariski closure Z¢ of Z C A
meets Sy :

Z¢ N Sp # 0.
Let o' € @, and let W be an irreducible component of T,r. Then

w n A # 0

In particular, every irreducible component of T, meets A, and intersects this
intertor into a component of S,.
Proof. The second and the third statement follow from the first.

As in the proof of the previous proposition it suffices to prove this result
for a toroidal compactification v : A — A*.

Let s € ZNJ(A) and s € 17,. Using results on toroidal compactifi-
cations and on “Mumford’s uniformization theorem”, and about “Raynaud
extensions”, we conclude that we have the following data:
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e anoetherian complete domain R, which is complete for an ideal I C R, we
write S = Spec(R), and Sy = Spec(Ry), we write S* for the completion
of S along Sy by the ideal I, a semi-abelian scheme A’ — S| with generic
fiber X, which is an abelian variety with a principal polarization A,, and
a “Kodaira-Spencer” morphism f : Spec(R) — A defined by this family
such that the closed point 0 € Spec(R) maps to f(0) = s, such that
R (’)zs, and a morphism 7 : S — A* obtained as the composition
S—=Ag—pin@F,, =t A CIA) C A*; NB.if 8 > 0, we will see that

the morphism 7 in general does not factor f;

e an exact sequence 0 =+ £ - Z — Y — 0 of group schemes over S, where
Z — S is a semi-abelian scheme, where }J — S is an abelian scheme, with
a principal polarization A’ on Y — S, and there exists an isomorphism
L = (Gp)? — S, such that the “Kodaira-Spencer” morphism given by
(Y, ) = S defines 7 : S — A;

e these are related by the fact that the formal semi-abelian schemes de-
rived from these two set of data are isomorphic: XY =5 Z" and the
isomorphism transforms the principal polarization on the generic fiber of
XintoXN onYy — S.

From this the proposition follows: consider Z — A L S, and the fiber product
P of this diagram; there exists an irreducible component U C C,(S) C S such
that its closure Z** = U°® C (C,(5))° C S is an irreducible component of
P containing 0 € S. Let 6 be as before. We see that «(Z**) C 7((C,(S))°) C
(Co(A"))e C A, the last closures taken in A’. We see that there exists a complete
discrete valuation ring A, with T' = Spec(A) and a morphism A : T — S such
that (') C Z** N w=Y(s) and f(A(T)) ¢ I(A). The generic point a € T
has the property w(h(a)) = s € T;,; because h(I') C m~1(s) we conclude
that ES(Xy,)) = ES(Xo) = ¢'. Moreover h(a) is in the closure of U, hence
f(h(a)) € Z. Hence ZN Sy # B ]

(6.4) Proposition. Let S be an irreducible, reduced, normal, noetherian
scheme over IF,, and let X — S be a semi-abelian scheme, with generic fiber an
abelian variety with a principal polarization. Suppose all fibers have the same
elementary sequence ¢ € O, i.e. the moduli map S — A* maps S into 1.
Consider X[p] — S. There exists a filtration 0 C U C M C X|[p] with finite
group schemes U and M flat over S, such that U — S s of multiplicative type
over S in every fiber, and such that for every point s € S, the fiber Ny := M, /U
is of local-local type, and every fiber X[pls/ M is étale-local. The group schemes
U— S and M — S are flat over S. The finite group scheme M/U =: N — S is
flat over S, and it is symmetric; it admits a canonical filtration and it satisfies
the properties for the canonical filtration as described in Corollary (2.6).
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Remark. In general, the rank of X|[p];/M; is not constant on S.

Proof. The finite group schemes U and M defined by the properties mentioned
have constant rank (all geometric fibers have the same rank) because of the fact
that the elementary sequence is constant on S. Moreover note that for every
j € Zso the finite group scheme X[FY] — S is flat, and U C M C X[F!] are
closed subgroup schemes, hence finite, over S for large N (e.g. N = g). As the
elementary sequence of X — S is constant on S, we conclude that the finite
group schemes U — S and M — S have constant rank, and hence these are
flat by [4], Lemma 1.13 on page 240. The principal polarization on the generic
fiber extends to a symmetry on N = M/U, e.g. use [10], Proposition 1.2.7. The
rest of the proof is as in Section 2, especially as in the proof of (2.6). a

(6.5) Theorem. For every ¢ € ¥, the stratum T, C A* is quasi-affine.

Proof. It suffices to show this in case of arbitrary high level structure. Hence
we suppose A* = A7, @ T, ,, with n € Z>3 not divisible by p. It suffices to
show that every irreducible component V' C 7T, C A* is quasi-affine. We choose
such a component V. Note that we know that IV meets the interior of A%, see

(6.3). We proceed as in the proof of (4.1).

By results in [10], V.2, there exist an irreducible, normal, reduced scheme S —
Spec(F, ), a semi-abelian scheme X — S, a principal polarization on its generic
fiber which 1s an abelian variety, and a symplectic level-n-structure, such that
the moduli morphism S — A* defined by these data factors through V', and
such that f: S — V is proper and surjective. We write ty,s for the tangential
sheaf of ' — S along the zero-section, and we write wy,s for the determinant
line bundle of the dual of ty,s, see [10], page 137. We know, see [10], V.2.5,
that the moduli morphism S — A* is defined by the line bundle wy 5.

Claims. 1) Under these conditions, the line bundle wy s on S is a torsion
line bundle.

2) From this it follows that V' is quasi-affine.

Indeed, suppose (1) is proven and let us see that the result is established:;
consider the Stein factorization S — V' — V, as in EGA II, 1.3.1; then f’ :
S — V' is proper with connected fibers, and V' — V is finite. By EGA 1III,
4.3.1 we know that f[(Og) = Oy/. Because V' — V is finite, assuming (1), it
follows that f.(wx/s) is torsion on V. Using [35], Chap. IX, and [10], V.2, Th.
2.3, we conclude that w|y is ample and torsion; hence V is quasi-affine. This
proves (1) = (2).

We show that (1) is true. Let v be the canonical type associated with ¢, say
v = (v, p). We write f = f(v), i.e. the largest index with ¢(f) = f,eg. f=0
if v(1) = 0, and f = p(1) if v(1) = 1. We write U = 0 if f = 0, and we
write U = Gy if f > 0. We use Proposition (5.9), we use that the elementary
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sequence on X' — S is constant, we use [4], Lemma 1.13 on page 240, and we
conclude that we have finite flat subgroup schemes

0=GyCG1=UCGyC---CG, =G[F]=V(Gp)]),

where G xg S’ = (up)f x S’ for some finite cover S — S, and where the other
steps in the filtration come from the canonical filtration on M/U = N, with the
notation as in (5.9). Note that the partial quotients GG;/G;_1 are annihilated by
F and by V for 1 < i <7 (in the terminology of [29], 2.4, these are a-groups).
We see that all tangential sheaves

tg,)s C - Ctg.ys =ty/s

are well-defined, of constant rank. We write £; := Det(tg,/s/tq,_,/s), for 0 <
¢ < r, and we are going to show that these are torsion line bundles.

This is clear for the first step in the filtration: over S’ as above the pull-
back of £; is trivial, hence its norm is trivial, which shows that (El)degr“(sl/s) =
1.

Consider one of the other steps G;/G;_1 with j > 1. We apply Corollary
(2.6). In case

(G;/G;—)®) = Gy/Gi

we get
(L))" = (L5);
in this case this shows the class to be torsion (note that n > 0).
We conclude that Det(ty,s) = Det(£L1) @ - - @ Det(L,) is torsion; hence

its inverse wy s is torsion. This shows (1), and it finishes the proof of Theorem

(6.5). ]

7 Connecting the superspecial locus inside the
supersingular locus

In this section we construct a complete algebraic curve L C A, with ¥ C L.
We write L° = L — . We show that L° C Syg,...0,1}, and in Section 8 we show
equality. An essential tool in the rest of the paper will be the property that L
is connected, see Proposition (7.3). Actually, the curve L is contained in the
supersingular locus of A and the proof of (7.3) uses pure algebra. The basic
idea of this section i1s due to T. Ekedahl. The present form of this section 1is
mainly due to Ben Moonen who helped with most details in this section.

In case ¢ = 1 we will write L = A and L° = L — ¥. In this section we consider
abelian varieties of dimension g > 2.
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(7.1) Construction of L. Let k be an algebraically closed field of character-
istic p. Choose a point @ € X(k); let (X, s, n) be the corresponding principally
polarized abelian variety with symplectic level-n-structure.

For the construction of the locus L we are interested in coverings f: Y — X
such that

(1) Ker(f) = ayp,
(i1) Y is superspecial,
(i) Ker(f u) = ap X ap.

Coverings f satisfying (i) correspond (by duality) to subgroup schemes of X
isomorphic to a,. Such subgroup schemes are parameterized by the projective
space ]P(Lie(X)) =~ P9~1 One can show, see [34], pp. 138/139, [21], Prop. 5.2,
that the coverings f satisfying (i) and (ii) are in bijection with P9~!(F,2), and
that the coverings satisfying (i)—(iii) correspond to those vectors in P9=1(TF,z),

“very good directions”, which are isotropic with respect to a certain hermié)ian
form.

Given a covering f : Y — X satisfying (i)-(iii), write t for the tan-
gent space of Ker(f*u); this is a 2-dimensional k-vector space. A point
s € P(t) = P! corresponds uniquely to a subgroup scheme o, = N =
Ns; C Ker(f"pu) C Yp], and conversely every such subgroup scheme gives
a point in P(t). Moreover every such subgroup scheme is totally isotropic
for the pairing induced on Ker(f*u); it follows from condition (iii) that for
every such N, the polarization f*pu descends to a principal polarization g
on the quotient X; := Y/N,. Further, as we have natural isomorphisms
Xs[n] < Y[n] = Xln], the symplectic level-n-structure 5 of (X, p) in-
duces a symplectic level-n-structure n, of (X, ps). Taking s to be the point
corresponding to Ker(f) C Ker(f*u) gives (X, pts, 1) = (X, i1, 1).

In total, the choice of # € X(k) and the covering f gives rise to a non-
constant morphism P} = P(t) — Ax = A1, @ k; the image is denoted by
L) We define L, C Ay, to be the reduced closed subscheme which is the union
of the images of all morphisms thus obtained (varying « and f), Ly = Uy LW,
Omne can show that the closed subscheme Lj is defined over I,, i.e., there is a
closed subscheme L C Ay 1, such that Ly = L ® k.

We indicate a different construction of L, and we derive some properties. We
write f{ := (11 for the formal p-divisible group of dimension one and height
2. For a supersingular elliptic curve E over k we have F[p>] =, H @ k.

(7.2) Lemma. A homomorphism f :Y — X as above can be constructed
by a choice X[p™] = H? & H9=? such that p is in block form ps & (p1)972,
correspondingly Y [p™] = H?> @ H9~? and

Ker(f*(n)) C H* C H* @ HI™2.
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We have ¥ C L C (S{o,...01})¢
Proof. For the superspecial Y we have Y[p™] = HY. By [29], 6.1 we see that
the polarization f*(u) on Y gives a quasi-polarization on Y [p*™°] = H? = M, &
My @ - & My_y in block-form with M; = H? with Ker(f*(p)) C My = H?
and M; = H for 2 < j < g — 1. This proves the first claim.

Suppose s € P(t), with X := Y/N,. Choose coordinates on P(t) = P! by
M, = H?. We know that a(X,) = 1 iff s ¢ P!(F,2); suppose this is the case;
then X,[p] := N 2 Ny@&No&- & Ny_q withrk(Ny) = p* and ES(Ny) = {0,1}
and for 2 < j < g—1 we have rk(N;) = p? and ES(N;) = {0}. Direct verification
shows that in this case ES(X;) = {0,...,0,1}. As we see that ¥ C L, all
components of L have dimension one, and L° := [ —X C Syg,... 0,1} the second
claim follows. ad

Conclusion. Every component L) € L as in (7.1) can be given by choosing
[(X, )] € Z(k), by choosing an isomorphism X [p™] = HY on which y is in diag-
onal form diag(}, - - -, A), see [29], 6.1, by choosing two factors: HY = H?*@H9I~2,
and by performing a construction of type [34], pp. 138/138, on (H?, diag(), \)).

Remark. The fact that Spy .0y =X C (S{oy...yoyl})c is a special case of (11.1).

(7.3) Proposition. The locus L C A is I-dimensional and connected.

(7.4) Remark. In Section 8 we shall show that in fact L = (S, 0,1})¢. In
this section we shall prove the proposition as stated here. For this we need a
number of preparations about hermitian forms, which will be given in (7.5) -

(7.11). The proof of (7.3) is given in (7.18) below.

(7.5) Let R be a ring equipped with an (anti-)involution r + rT. Let M be a
finitely generated projective right R-module. By a hermitian form on M (with
respect to the involution {) we mean a bi-additive map

v:Mx M —R
such that

(a) ¢ is sesquilinear, meaning that ¢ (myry, mars) = r{ ~p(my, ma) - rq for

all i, ro € R and my, ms € M,
(b) w(m',m) = (m,m')T for all m, m’ € M.
We say that a form ¢ as above is skew-hermitian if it satisfies (a) and:

(b%) ¢(m',m) = —(m, m’)T for all m, m’ € M.
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The dual MY := Homg(M, R) of M has a natural structure of a left R-module.
Let MT := MV as an additive group, and give it the structure of a right R-
module by fr:=r!.f. A form ¢ satisfying (a) gives rise to a homomorphism
M — M1 by m + ¥(m,—). If this map is an isomorphism we say that 1 is
perfect.

By a hermitian space over R we mean a pair (M, ) consisting of a pro-
jective right R-module of finite type equipped with a perfect hermitian form .

(7.6) Let P be a field. Write A ~ AT = Trd(A) — A for the canonical
involution on the algebra M (P) of 2 x 2 matrices over P. Consider V; := P?
with its natural structure of a right Ms(P)-module. Up to a scalar in P> there
is a unique perfect skew-hermitian form on V; with respect to 7, namely the
form ¥y: V) x Vi — Ma(P) given by

Uy ((2,y), (¢, y)) = (_yx// " ) '

zxx' —xy

Let (Va,¥s3) be a symplectic space over P, by which we mean a finite
dimensional P-vector space Va with a non-degenerate alternating bilinear form
Uy: Vs x Vo — P. The dimension of V4 is even, say dimp(V2) = 2¢. Then
V = V1 ®@p Vo becomes a free right Ms(P)-module of rank ¢ via the action
of My(P) on Vi, and the tensor product ¥; @p ¥, is a perfect hermitian form
on M1 @p Ms.

Morita equivalence tells us that every hermitian space (V,¥) of rank ¢
over Ms(P) (with respect to the canonical involution) is isometric to such a
tensor product, see [25], 1.9. In particular, since any two symplectic spaces of
the same dimension over P are isometric, also all hermitian spaces of the same
rank over M, (P) are isometric (also see: [8], Section 3).

(7.7) Let D be a quaternion algebra over ). Write d + d! for its canonical
involution. Fix a positive integer g. Let (V, ¥) be a hermitian space of rank ¢
over D. Then

G = Autp(V,¥)

is a linear algebraic group over Q. It is immediate from what was explained
in (4.4) that if @ C L is a field extension which splits D then G ®¢ L =
Spyg 1~ In particular, G 1s absolutely simple and simply connected. Assume
that Dg := D®gR is non-split. Write g for the R-bilinear extension of ¥ to a
hermitian form on Vg. Define ¢: Vg — R by ¢(v) = ¥g(v, v); note that it follows
from (b) in (7.5) that indeed ¥g(v,v) € R C Dg. Then ¢ is a quadratic form
on Vg. The signature of ¥ is defined to be sign(¥) :=sign(¢q)/4. Two hermitian
spaces (V, ¥) and (V' ¥') over D are isometric if and only if dim(V') = dim(V)
and sign(¥) = sign(¥’'), see for instance [53], Chapter 10, §1. We say that ¥ is
positive definite if ¢ is; this is equivalent to sign(¥) = g.
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(7.8) With (D,7) as in (7.7), fix a hermitian space (V, ¥) of rank g over D.
Let R C D be an order; note that R is stable under the involution 1. Let (M, )
be a hermitian space of rank g over R such that there exists an isometry

a: (Mg, bg) 5 (V,W).

Then a(M) C V is an R-lattice in V on which ¥ induces a perfect hermitian
form; we shall refer to such lattices as perfect hermitian R-lattices in V. Note
that R is a hereditary ring; hence every R-lattice M C V 1s projective, and if
W,y is perfect then (M, ¥ ) is a hermitian space.

Let n be a positive integer. Let us write H,, for the standard hermitian
form on (R/nR)Y, i.e., the form given by

Hn((xl,...,xg),(yl,...,yg)) :x{y1—|—~~~—|—x;y9.

If (M, ) is a hermitian space of rank g over R then by a level-n-marking of
(M, ) we shall mean an isometry

~

e (M/nM,¢) = ((R/nR)?, Hy),

where we write ¢ for the hermitian form on M/nM induced by .

(7.9) Lemma. Let R be an order in a quaternion algebra D over Q). Let p
be a prime number, n a posilive inleger prime to p. Let g be an integer > 2,
and fiz a hermitian space (V, ) of rank g over D (with respect to the canonical
involution on D).

Let (My,41,m) and (Ma, 2, m2) be hermitian spaces of rank g over R
equipped with level-n-markings. Assume that (M; o, ;) ts isometric to (V, ),
for j =1, 2. Then there exist isometries

aj: (Mg, vi0) — (V,9)

such that oy (M) Naz(Ms) has a p-power index in both ay(My) and aq(Ms),
and such that via the isomorphism My /nM; = Ms/nMs induced by az_loal
the level-n-markings m, and 12 correspond.

Note that if a; and ay satisfy the first condition then indeed az_l o o1 Induces
an isomorphism Mj /nM; = Ms/nM,.

Proof. As above, write G := Autp (V, ¥). We claim that G(Q,) is non-compact;
this is equivalent to saying that V ©® (@, has an isotropic vector with respect
to W. If D ®g Q, = M2(Q,) then the discussion in (7.6) shows that G, is
split, and the claim is clear. Next suppose that D, := D ®q Q, is the (unique)
quaternion algebra over (Q,. Because g > 2 there exist two non-zero vectors
v1, v2 € V@ Qp with ¥(vy,v2) = 0. Now we use that the reduced norm map
D — Q) is surjective; using this it easily follows that some linear combination
v1dy + vods 18 isotropic.
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Write Z() .= Hl;ép Z¢, where the product runs over all prime numbers /£

different from p. Write Agtp) = 7P @, @ for the ring of finite adeéles of Q@
without component at p. As G(Q,) is non-compact and G is absolutely simple
and simply connected, we can apply strong approximation, see for example [49],
Th. 7.12 on p. 427, or see [24], see [51]. This tells us that the diagonal image

of G(Q) in G(A;p)) is dense in the adélic topology.
For j = 1,2, write M](p) = M; Qg 7). Choose isometries
Bi: (Mg, i0) = (V,¥). Write

Bj: M](p) ®Z(p) A‘Stp) :> Vv ®@ Agtp)

for the Agtp) -linear extension of 3;. Consider the set I' of all elements v &€ G(A;p))
such that R R o

(70 ) (M) = 5 (0”)
nside V' @ Agtp). For v € T, write ¢y: (M1/nM;) 5 (Ms/nMs,) for the iso-
morphism induced by 52_1 o(yo 51) Let I" C T be the subset of all v which
are compatible with the given level-n-markings, i.e.,

I"={g €T [m=moty}.

Then T is a non-empty open subset of G(A(p)). Hence it follows from strong
approximation that there exists an element g € G(Q) which maps into I under

the diagonal embedding G(Q) — G(A;p)). Then ay := go B and ay := B9 are

isometries with the required property. a

(7.10) Keep the notations of (7.9). Assume that D is inert at p. There is a
unique 2-sided prime ideal p C R above p, which is in fact a maximalideal (both
left and right). The assumption that D is inert at p implies that k(p) := R/p
is a field with p? elements, see [52], Th. 22.4 and Th. 22.14. The involution {
on R induces the unique non-trivial automorphism Froby ) of k().

Given an R-submodule L C V, write

L:={veV|¥(vy) € Rforallye L}.

In particular, if M C V is an R-lattice then M = M if and only if ¥ induces a
perfect form on M.

(7.11) Lemma Let M and M’ be perfect hermitian R-lattices in'V such that
MM’ has p-power index in both M and M’. Assume that p C R is a principal
tdeal. Then there exist perfect hermitian R-lattices

M:LOaLla"'aLm:M/
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such that L /(L; N Ljy1) 2 k(p) = Liy1/(L; N Ljt1) as R-modules for 0 < j <
m.

Proof. Write N := M N M’. We claim that lengthy(M/N) = lengthz (M'/N).
To see this, note that Homp(M/N, R) = 0 and that Exty (M, R) = 0. Hence
we obtain an exact sequence

0— M' — N' — Extr(M/N,R) =0

Now M/N = R/ph™ @ - @ R/p% as an R-module, in which case
lengthr(M/N) = dy + --- 4+ d,. But if p = () then we easily find that
Exth(R/p?, R) = R/p%. Hence N/M = N/M = N'/M?' has the same length
as M/N. Doing the same with M’ instead of M we find that

length, (N /N) = length (M /N)? = length (M'/N)?,

which proves our claim.

We prove the lemma by induction on lengthy(M/N). By what we have
Just shown, lengthy(M/N) = 0 corresponds to the case M = M’. Note that
M 4+ M’ = N.On N/N we have a hermitian form

x:N/N x N/N — D/R

induced by W. The subspaces M/N and M’/N are maximal isotropic with
respect to y.

Let T C M/N be an R-submodule with M/T =
orthogonal complement of T" with respect to y, set 7" :=

k(p). Let T+ be the
TLA(M'/N), and let

S:=T+T CN/N.

An easy calculation shows that .S is maximal isotropic for x. Hence the pre-
image L. C N of S is a perfect hermitian lattice in V. Now note that, by
construction,

lengthp (L/(L N M')) = lengthgz(T') < lengthp(M/N).

Hence we can take Ly = L and proceed by induction. a

(7.12) Let k be an algebraically closed field of characteristic p. Fix a super-
singular elliptic curve E over k. Then F has a unique principal polarization,
which we call A. The endomorphism algebra EndO(E) is the quaternion alge-
bra Q)p oo over Q which is inert exactly at p and co. The endomorphism ring
R := End(F) is a maximal order of this quaternion algebra. The Rosati invo-
lution 7 — rt on End®(F) associated to A (or to any other polarization) is the
principal involution, i.e., T = Trd(r) — 7.
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Let X be a superspecial abelian variety of dimension g > 2 over k. This
means that X is isomorphic to E9 as an abelian variety. Write

M :=Hom(E, X),

which has a natural structure of a free right R-module of rank g. We have a
canonical isomorphism M ®p F = X.

Note that E' has a natural structure of a right R-module. Similar to
the definition of MT in (4.3), let us write ET for the elliptic curve E? with
it structure of a left R-module given by Pr := T . P. Then X' is naturally
isomorphic to MT @ ET.

(7.13) Remark. For any abelian variety X over k, we can form the right
R-module Hom(F, X). Conversely, for any right R-module N of finite type,
N ®pg E is a supersingular abelian variety; to see this, take a finite presenta-
tion of N; we shall see that in this case X is superspecial. We have natural
homomorphisms

a:Hom(E, X)9p X — X and G:N — Hom(E,N ®@gr E).

In order to understand these functors Hom(E, —) and — ®g F, the following
two observations are useful.

(i) Given an abelian variety X over k, there exists a superspecial abelian
variety S?(X) and a homomorphism p: S°(X) — X with the following universal
property: if Y 1s a superspecial abelian variety, any homomorphism f: Y — X
factors through p, see [29], 1.8. Further, p is an isogeny if and only if X is
supersingular.

(i) The class number of @) o equals 1. This means that for a maximal
order R as above, every torsion-free right R-module of finite type is free, see
[57].

Combining these two remarks, we find that Hom(E, X) =
Hom(E,SO(X)), so that Hom(F, X) @g X = S°X), and « is just the
isogeny p. In the other direction, if N is a right R-module of finite type, con-
sider the natural map m: N — N’ := N/Tors(N). Then Nogp E = N'@grkFE.
We have Hom(FE, N ®@g F) = N, and via this isomorphism £ is just the map .

(7.14) Lemma. Choose notation as in (7.12); in particular X is superspecial.
There 1s a natural bijection

{symmetric isomorphisms} ~ perfect hermitian (1)

X 5 X forms on M
which restricts to a bijection

principal polarizations} ~ {positive definite perfect

X 5 xt hermitian forms on M J
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Proof. Given a homomorphism p: X — X?, let ¢ = ), be the hermitian form
on M given by

wih by = (B 25 x 5 xt 2 gt 2 gy
In the opposite direction, given a hermitian form 1 on M, consider the associ-
ated homomorphism ¢: M — M7, and define u = py: X = X by
py =0 ONX=MopE— X' =M og ET.

Omne checks that p +— v, and @) — puy are inverse to each other, and
that a perfect form 1 correspond to an isomorphism g. This gives the first
bijection. Under this bijection the principal polarizations correspond to the
positive definite perfect hermitian forms: this follows from what is explained in
[37], § 21, Application IIT.

(7.15) We keep the notations introduced in (7.12). Let £ be a prime number
different from p. Write R; := R ®y Zy; then there exists an isomorphism R, =2
M3 (Zy).

The canonical pairing
eo: TLE x TyET — Z,(1)

has the property that e,(ré, &) = e (&, r1¢) for all r € R, € € T)F and ¢ €
T, 1. Using this, one can show that there exists a unique bi-additive form

ép:TVE x TyEY — Ry(1)
such that
eE(g’gl) = Trd<€E(€a€/)> ) and (1)
Ep(mé, me) =r - Ep(£, &) -7l (2)

for all € € TyF and & € TyET, and r{, ry € R.
Next we remark that the canonical “evaluation” pairing ev: M x MT — R
has the property that

ev(mry, m'ry) = rg cev(im,m’) -7y . (3)

We have canonical isomorphisms T;X = M ®p TpF and T; X' = MT Qg
T,Et. Taking these as identifications, the canonical pairing ex: 7, X x Xt —
Z4(1) is given by

ex(m@&m @¢) :Trd(ev(m,m/) ~€E(€,€/)) . (4)
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Let us note here that the form

((m,€), (m',€)) = ev(m,m') - ég(€,€)

does not descend to a well-defined form on TpX x 17, X*. However, using (1-3)
together with the fact that Trd is a trace form (so Trd(af) = Trd(Ba)) we find
that the right hand side of (4) is well-defined on T, X x T; X*.

(7.16) Let a be a positive integer, and let n := £%. Recall that we write H,, for
the standard hermitian pairing on (R/nR)Y. Assume given a primitive n-th root
of unity in k, via which we identify Z/nZ and Z /nZ(1) = p, (k). Using what
was explained in (7.15), we find that the Weil pairing e)\: E[n] x E[n] — Z/nZ
lifts to a pairing

&): E[n] x E[n] — R/nR.

n

Consider the pairing
0: (R/nR)? @g E[n]) x (R/nR)? @r E[n]) — Z/nZ

given by 9((1‘ ® P),(¢' ® P’)) = Trd(Hn(x,x’) “ex (P, P’)). One checks that
this is a well-defined symplectic pairing. In other words, if ®,, is the standard
symplectic pairing on (Z/nZ)?? then there exists an isometry

(R/nR)? @r E[n],0) = ((Z/nZ)*,®,).

More generally, if n is an arbitrary positive integer prime to p then we find
that there exist isometries as above by writing n = ¢* - - - £%7 and applying the
preceding to each of the factors £;°.

(7.17) Lemma Let n be a positive integer, not divisible by p. Assume cho-
sen a primitive n-th root of unity in k. Fiz an isometry as in (7.16). Let p
be a principal polarization of X which, as in (7.14), corresponds to a perfect
hermatian form i on M. Then there s a natural bijection

{ symplectic level-n } ~ {level—n—markings}

structures on (X, A) of (M, ) (1)

Proof. For simplicity, let us assume that n is a power of a prime number £.
(The general case is easily reduced to this.) Suppose given a level-n-marking of
(M, ). Using what was explained in (7.15) we find that the induced isomor-
phism

X[n] = (M/nM)®gr Eln] = (R/nR)? @g E[n]

gives an isometry

(X[n],en) = ((R/nR)? ©r En],0),
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where # is as in (7.16). Composing with the fixed isometry (7.16) this gives a
symplectic level-n-structure of (X, y). This defines the map in (7.17).

By an easy “integral” variant of (7.6) we see that Aut((R/nR)g, Hn) =
Spay(Z/nZ). In particular, both sides of (7.17)(1) are principal homogeneous
under Sp, (Z/nZ). Further, one easily sees that the map (7.17)(1) just defined
is compatible with these structures of homogeneous spaces. Hence our map is
a bijection. a

(7.18) Proof of Proposition (7.3). Let z and z’ be points of X(k), cor-
responding to triples (X, u,n) and (X', 4/, 1), respectively. By Lemma (7.9)
we can embed the corresponding R-modules M := Hom(E,X) and M’ :=
Hom(FE, X') as perfect hermitian R-lattices in (V, ¥) in such a way that A NA’
has p-power index in both M and M’ and that the given level-n-markings of M
and M’ agree. As p C R is a principal ideal, see (ii) of Remark (7.13), we can
apply Lemma (7.11). This gives us perfect hermitian lattices

M=1~Ly,L,....,Lpy=M'

with Lj/(Lj ﬂLj_H) = k(p) = Lj_|_1/(Lj ﬂLj_H). Fix j € {0,...,m—1}. Write
N = L; N L;41, and consider the homomorphisms

X;=LjorE < Y=Norl L X=LiOrE

induced by the inclusions N < L; and N < L;,1, respectively. Via the corre-
spondence (7.14), we have principal polarizations y; on X; and pj41 on Xj4q;
these satisfy f*u; = h*pj41. The given level-n-markings of M and M’ induce
level-n-markings on each of the lattices L;; we write n; for the corresponding
symplectic level-n-structure of (X, i ).

We are done if we show that f is a covering satisfying conditions (i)-(iii)
of (7.1). Indeed, by symmetry the same then holds for &, and we conclude that
(X, p15,n;) and (Xj41, fti41,15+1) lie on the same irreducible component of
the locus L, as constructed in (7.1).

By construction, f is an isogeny of superspecial abelian varieties, and
deg(f) is a p-power. (It is easily seen that f induces an isomorphism
Yy 5 Ty X; for all primes £ # p.) Further, f is minimal, in the sense that
it does not admit a non-trivial factorization. Hence Ker(f) 2 «,. This implies
that Ker(f* ;) is either isomorphic to «, X ap, or it is a non-trivial extension
of ap by ap. But in the latter case Ker(f*p) has a unique subgroup scheme of
rank p, so that necessarily Ker(f) = Ker(h). This is in contradiction with our
construction.

0(7.18)
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8 Abelian varieties with a = g — 1

In this section we work over an algebraically closed field & D [F,. We consider
principally polarized abelian varieties and principally quasi-polarized p-divisible
groups. We study strata defined by an elementary sequence ¢ with ¢(g) = 1.
These describe abelian varieties of dimension g with a(y) = a(X) = g — 1.
Results of this section are rather elementary once you know the Dieudonné-
Manin classification; we do not use results of the previous sections. We use a
result in [29], and we use some notations as explained in [19]. For the notation
G n we refer to (15.5).

(8.1) For every pair m,n € Z»q of coprime integers there exists a p-divisible
group Hy, n, defined over Iy, is?)genous with Gy, p, Which is characterized by
the fact that its endomorphism ring over an algebraically closed field is maximal
within the isogeny class; see [19], Section 5. This p-divisible group can be defined
by the Dieudonné module given by the semimodule [0, >0), in the notation as
explained in [19]. If m > 1 and n > 1 there exist p-divisible groups isogenous
with G, not isomorphic with H,, .

We know that a(H,, ,) = min(m, n) (as is easy to see form the defining
semi-module. However this property is in general not sufficient to characterize
Hp, n within its isogeny class, but in the cases used in this section it will be
the case (see the lemmma below). One can feel the object H,, , as the (unique)
“minimal” one in the isogeny class of Gy, 5, and groups with a(G) < 1 as the
most general ones; this can be made precise, see [19], Section 5, especially see

(5.7).
(8.2) IfG is a formal group isogenous with G, », then
a(G)<m, a(G)<n.

Moreover we know that the mazimum a(G) = min(m, n) is achieved within this
1sogeny class.

See [42], page I1.15-10, see [50].

A proof is not difficult; e.g. using notation as introduced in [19] we see:
let G ~ Gy, n, over an algebraically closed field, and let A = Type(G) be the
semi-module associated with . Consider

A(m+Aun+A) - Z->Z/m.
This map is injective. Hence
#A\(m+ AUn+ A)) =a(4) = o(G) < m.

The same holds for the natural mapping to Z/n. This proves the desired in-
equality. As moreover a(H,, ,) = min(m, n) we are done. a
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Remark. If the isogeny type of a p-divisible group G is given, consider “an
isogeny factor”, i.e. the image of some G, ,, appearing in the isogeny type under
an isogeny into GG. In general these “isogeny factors” are not direct summands,
and it is usually difficult to decide which member of the isogeny class of G, p,
appears in this way. However in the situation studied in this section all these
questions turn out to have a unique and simple answer.

In this paper we use V — U to denote the complement of U in V'; however
in the proof above we use V\U for this notion, in order to avoid confusion with
subtraction.

(8.3) Theorem. Let X be an abelian variety of dimension g over an alge-
braically closed field of characteristic p which admits a principal polarization.
Suppose ES(X) = ¢ with ¢(g9) =1, i.e. a(X) =g — 1. Then:

(I) either there exists an integer b with 0 < b < [g;—l] and an tsomorphism
X[p™] = Hypp P (9-20-1)Giy @ Hopsr,

and in this case

—_——
QDZ(O,'”,O,L"',l), |¢|:g_ba

(II) or there exists an integer r with 0 < r < [§], there exists an isogeny X ~
E9, where E is a supersingular elliptic curve (i.e. X is supersingular),
and

@:(0,"',0,1,"',1), |S0|:r
(and the structure of X[p>] will be explained in the proof). Note that for all

b as in (I) and all r as in (IT) we have g —b > r and 0 < r < [£5%] < g — b; the
value of || determines in which case we are.

As a corollary of this theorem and its proof we deduce:

(8.4) Corollary. Let X be an abelian varielty with
ES(X) =¢:=(0,---,0,1).
Then X is as described in the construction (7.1). In particular
L° =S, 01y L=50.-01UZ= (S0 01)

From the theorem we conclude that Sy ... 0,1y C L; hence the corollary follows
from (7.2) and the previous theorem. 0(8.3) = (8.4)
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The proof of this theorem will be given in various steps. In the first step we
analyze the isogeny type of X[p].

First step. Suppose a(X) = ¢ — 1. From (8.2) it follow that we are in one of
the following cases:

(I.0) either f(X) = 1; we claim: in this case
Xp™] =2 Gio @ (g—-1)-Gi1 @ Gop,
and we conclude p(1) = 1; hence ¢ = (1, -, 1), this is case 1.0;

(Ib) or f(X) = 0 and there exists an integer b with 0 < b < [23*] and an
1s09€NY

X[p™] ~ Goyip @ (29 —2b—1)-G11 @ G b+1;
we shall analyze this case;

(IT) or
X[p™] ~ 9-G11;

we shall describe all supersingular cases with a(X) =g — 1.

Indeed, the fact that a(X) = g — 1 limits the possibilities of the formal isogeny
types to the cases as indicated. If f(X) = 1 and a(X) = g — 1 we see (note
that the base field is algebraically closed) that X[p™] = G1,0® Go1 ¢ G with
a(G) = dim(G). This proves the first statement. The remaining possibilities
have been listed. ad

(8.5) Lemma. Let b € Z>g, let G be a p-divisible group over an algebraically
closed field with G ~ Gb+1,b_, and a(G) =b; then G = Hyyqp.
Proof. The case b = 0 is well-known; we suppose b > 0. In [19] we have seen
that to every G ~ Gpi1p we can attach a semi-module A = Type(G) C Z.
This is a subset of Z bounded from below, and stable under +m = +(b + 1)
and +n = +b; let £ € A be the smallest element.

We show that (under all conditions mentioned) from a(A) = b it follows
that A = [t, 00);in fact, let C'= A\((b+A)U((b+1)+ A)), hence #(C) = a(A);
if there exist #,y € Zsuch that t + 2+ 1,---, 1 +y—1¢& A, then

#(Ult+ e+ 1450+ D), t+y+b-14+j))NC)<y—z -1

we see that such gaps in [t,t4+ B—1]N A do not appear if a(A) = b; we conclude
that A = [t,00). This implies G 2 Hpyq 3, which proves the lemma. a

(8.6) Remark. Let m,n € Z with m > n+ 1 > n > 1. The semi-module
A ={0}U[2,00] has a(A) = n. We see that in this case there exists G = G,
with a(G) = n = min(m, n) and G % Hp, 5.
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(8.7) Second step. Lemma. Let G be a p-divisible group over an alge-
braically closed field, which admaits a principal polarization, such that G ~
Hyp158(9—2b—1)G11® Hypy1 and a(G) = g — 1. Then

G = Hb-|—1,b @ (2g—2b—1)~G171 @ Hb,b+1,

and we have

Proof. Let I,S,J C G be the images of the three factors under an isogeny
Hyy1 P (29 — 26— 1)-G11 @ Hppp1 — G. We are going to use that in the
isogeny classes of I,5,.J there is a unique (up to isomorphism) group with
maximal a-number. We claim: a(I) = b = a(J) and a(S) = 29 — 2b — 1 and
hence I & Hpiqp, and S = (29 — 20 — 1)-G11, and J =2 Hppqq; for a p-
divisible group Y over a perfect field we write a(Y) C YV for the smallest
subgroup scheme containing all a, C Y (denoted by A(Y') in [29], 1.5, but we
have used that notation already for a different purpose). The exact sequence
all) CY = Y/(a(l)) together with the fact that a(Y) and a(Y/(«(1))) are
“maximal” show that a(I) = b; analogous statements for S and for J; these
imply the existence of the isomorphisms indicated, hence the claim. Next we
show that the natural map I & S® J — I+ 5+ J = G is an 1somorphism. We
show this for S & J — S 4+ J; because the a-numbers are “maximal” we see
that
0= a(S)—2alS+J)—2al((S+J)/S) =0

is exact; it follows that the
Ker(SeJ—->S+J)na(Se J)=0,

which proves S ¢ J = S+ J. An analogous statement holds for 7 4+ S and for
I + J. From these the result follows. ad

(8.8) Remark. We see cases where a p-divisible group G is determined up
to isomorphism by G[p]: the case f(G) = dim(G), the case a(G) = dim(G), and
the case as in (I) of the theorem. However in general G[p] does not determine
(i. We have a general conjecture which illustrates what should be (im)possible,

see (14.7), and (14.8).

(8.9) Third step. Suppose we are in the situation as in (IT), i.e. X is a
supersingular abelian variety with a principal polarization with a(X) =g — 1.
We use the description of the locus S;_1(a > g — 1) as given in [29], Section
9, in particular in (9.10) and (9.11). From that description we see that in this
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case there exists an integer r with 0 < 7 < [{], an isomorphism &,(X)
(9 — 2r)-G11 ¢ G, and an exact sequence

0= () = (2r)-G11 — G =0,

with a(G) = 2r — 1. We assume the integer r is chosen to be the minimal
one allowing this structure. The polarization in that case gives a form on the
Dieudonné-module, with < e;, F(e;) > non-zero for 1 < i < 29 — 2r > and
< €24-2j,€2g—2541 > non-zero for r > j > 1. An explicit computation shows
that in this case ¢ = (0,---,0,1,---1), || = r. This ends the proof of the
theorem. 0(8.3)

9 Standard types

In this section we attach to every elementary sequence ¢ a finite group scheme
N, plus a non-degenerate alternating pairing <, >=<, >4 on A, = D(N,)
such that the pair (N, <, >) is defined over F,, and such that ES(N,) = ¢.

Then we show that a “polarized BT; truncated group scheme” over an
algebraically closed field k is isomorphic (over k) with the standard type given
by its elementary sequence. This result will be used in (12.5), where we use
that two polarized BT; group schemes over an algebraically closed field with
equal elementary sequences are isomorphic.

Remark. It might seem strange that we define <, > on the Dieudonné module
(and not on the group scheme itself). If we would avoid characteristic 2, in fact
we could work with anti-symmetric morphisms on group schemes, prove the
results we want to achieve, and develop a mechanism which works over any
base in characteristic p # 2. However in characteristic = 2 we do not see how
this simplification can be carried out with success. We have chosen for a unified
treatment applicable in all characteristics. For a further discussion we refer to
Section 12.

I do not know how to characterize the fact that <, >: A x A — K is
alternating on A := D(N) in terms of the related symmetric ¢ : N — NP in
chase the characteristic of the perfect base field K equals p = 2.

Reminder: D(V : N®) — N) = (F : AP) — A). The constructions involving V
and F~! on N we find back as construction involving F and V=1 on A = I(N).

Remark. We use in this paper the following notation, also see Section 12:
let (X, A) be a principally polarized abelian variety over a perfect field K of
characteristic p; write N := X|[p], with Dieudonné module A = D(N); the
polarization induces a symmetry on N, and it defines a pairing <, >: A x A —
K. We write (N, <,>) =: (X, A)[p] for this “polarized BT; truncated group
scheme”.
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Remark. In what follows we use a classification of a BT over an algebraically
closed field found by Kraft, see [27], and rediscovered independently much later
by the present author. That structure is not very difficult to describe. However
the classification of “polarized BT, truncated group schemes” turns out to be
more involved, as will be seen below.

(9.1) Construction. Suppose given an elementary sequence
{o(l), - plg)} =pe® »(0)=0,
and let ¢ be the related final sequence:
(i) =p(i) for 0<i<yg, and W(g—i)=¢()+g—i for 0<i<y.
Consider the set of indices where the i-sequence jumps:
1<my <my <o <my < 2g;
this is the set of all integer ¢ such that (i — 1) < ¢(¢). We denote by
1<ng<ng_1 <---<ny <2

the complimentary set, 1.e. the set of indices where the i-sequence does not
jump. Note that:
m;+n;=2¢9+1 for 0<i<yg.

For convenience we write mg =0, 29 +1=mg41, ng41 =0, ng =29+ 1.

Given ¢ € ® we are going to construct a covariant Dieudonné-module A, with
a non-degenerate alternating pairing over IF,. The related group scheme with
pairing will be a polarized BT;, which will be denoted by (N,,<,>). It will
be called the standard type given by .

We construct A = A, as the vector space of dimension 2¢ over I, gener-
ated by a base {Z1,- -+, Zag}. We write

Im, =X; and Z,, =Y, for 1<i1<y;

note that the numbering of the Y; is decreasing, and the numbering of the X;
is increasing in {Z; | j}. We define

F:A—=A by F(Xy)=27Z; FY;)=0 for 0<i<yg.
We define the alternating pairing by
<Xy Yy >=4i;, <Xi,X;>=0, <Y;)Y;>=0 for 0<4,5<yg.
Note that these determine the action of V; in fact V : M — M is given by

V(Z) =0, V(Zagois) = %Yi for 0<i<y,
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where V(ZZg—i+1) = +4Y; if ZZg—i+1 S {Yg, .. ',Yl} and V(ZZg—i+1) = -Y; 1if
Z29—i+1 € {Xl’ o "Xg}'
It follows that F,V and <,> are connected by the rules they should
satisfy:
< Fla),b >=<a,V(b) > forall a,be A;

note that the base field is IF,; hence the Dieudonné modules are over the ring
F,[F, V], which is commutative in this case. Note that

Im(F)=F,-Z, & - & F,-Z, = Ker(V),

and

Ker(F) =F,-Y, & & F,-Y; = Im(V).

We denote by (N,,<,>s) the associated group scheme with this non-
degenerate pairing on A, = D(N,) = &F,-Z;, all defined over F,. From the
formulas just derived we see that this is a “polarized BT of rank ng defined
over [F,”, see below. Moreover we see that the submodules A; = @;Z}szj
define a final filtration on N = N, and we see that the final type of this final
filtration equals ¢.

(9.2) Definition. Let K be a perfect field. We say that (N, <>) is a polarized
BT, truncated group scheme, or: a polarized BT, defined over K, if N is a
BT; over K, with Dieudonné module A := (V) and <,>: A x A = K is an
alternating, non-degenerate pairing such that < Fz,y >=< z,Vy >F for all
x,y € A.

(9.3) Conclusion. For every elementary sequence ¢ € ® we have con-
structed a polarized BTy (N, <,>) defined overF, with (covariant) Dieudonné
module (Ay, <,>), with a final filtration given by a symplectic F,-base
Yy, -, Y1, X5, -+, Xy} such that Y; € Ker(F) for every i and such that every
base element under F is either mapped to zero or to a base vector, and such
that ES(N,) = ¢. It will be called the standard type defined by ¢. The base
{21, -, Zog} = {Yy, -+, Y1, X0, -+, Xy} will be called a standard base for
A, . In case confusion is possible, we will write <, >¢; for the “standard pairing”

on the “standard module” A,. A final filtration is given by A; = @;ZFP ;.

(9.4) Theorem. Suppose k is an algebraically closed field of characteristic p.

Let (N,[,]) be a polarized BTy of rank p*9 defined over k. Suppose ¢ = ES(N)
1s the elementary sequence determined by N. Then

N[ = (th,<,>st) T, k.

Remark. This isomorphism is not unique in general.
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As Ben Moonen shows, see [33], a different, easier proof of this theorem can
be given in case the characteristic of the base field is not equal to two. We
could not generalize that proof to include the case char(k) = p = 2. Below I
give a proof which covers all cases uniformly. It seems desirable to simplify the
methods of this section.

Strategy of the proof. We study on the one hand all pairings on A = (V)
such that a given (F,V)-base is in standard form on the associated grade
module; on the other hand we study all transformations changing a (F,V)-
base into another such base. We show that the group of these transformations
acts transitively on the set of all such pairings, see (9.20). In order to carry out
this programme we study the combinatorics related with the values of a pairing
on base vectors, and the combinatorics related to the coefficients needed in such
transformations.
The proof of the theorem will be given in several steps.

(9.5) Let (X, A) be a principally polarized abelian variety. Then N := X[p] is
a symmetric BT;. In fact, more is true. The pairing on X[p™] is symmetric, and
this implies that the map ¢ : X[p] = N — NP is anti-symmetric, see Section
12 for more details. However more is true: if (X, A) is an abelian variety over
a perfect field K D IFp, the symmetry ¢ : N — NP obtained defines a pairing
<, > Ax A= K on A=:(N) which is alternating.

Indeed, the pairing on (X [p®°] with values in the characteristic zero domain
Weo (K) is symmetric, and the result follows (for details, see (12.2)).

(9.6) Proposition. Let k be an algebraically closed field. Let (N, <,>) be a
polarized BTy truncated group scheme defined over k, and let ( : N — NP be
the symmetry defined by <,>. The canonical filtration on N can be refined to
a final filtration of (N, ().

Remark. For a given (N, <, >) the number of final filtrations on (N, <, >) is
finite. We will give a reformulation of this proposition (in a special case) in
(9.13).

Proof. We consider steps in the canonical filtration of A := D(N). In (5.10) we
have constructed (F, L)-cycles in the set of partial quotients in the Dieudonné
module of the canonical filtration; such a cycle consists of vertices, each is a
quotient in the canonical filtration of the Dieudonné module, edges of the cycle
are given by bijective maps F or L, and if F and F are consecutive edges, there
i1s a “loose edge” L. We construct a refinement to a final filtration for each of
the cycles separately. Let P be one of the k-vectorspaces P = D(N; /N;_1) as
in (5.10). Using a (F, L)-cycle in A according to <, >, we see that composition
of the maps F and isomorphism L give a linear mapping



here d is the number of steps involving F, and € is the parity of the number of
steps involving L. Note that d > 0. Note that in the same cycle the values d
and € are the same for all edges in a cycle. We distinguish two cases:

(even): suppose the number of edges named L in the loop of the cycle is even;
in this case the parity of ¢ is even, i.e.

Fi (PP 2 P

(odd): suppose the number of edges L in the loop of the cycle is odd; in this
case the parity of € is odd.

Suppose we are in the case of an (even) cycle. This is case (iii) of Lemma
(5.10). We use the “Jordan reduction” for the map f as exposed in [16], or in
[6], pp- 232 - 234, [56], page 38. Hence there exists a k-base P = k-e1 @ - D k-e.
such that f(e;) = e;. We transport this base through every step of the cycle,
pushing is forward by F, or going to the dual base under L. As € is even
we come back with the same ordered base. This defines in every step of the
filtration connected with the cycle a filtration by steps of dimension one; these
are related under F or dual under L whenever applicable. This gives a final
filtration for all quotients in the cycle studied, hence a final filtration for N,
the direct sum of all N;4q/N; for all quotients appearing in this cycle.

Suppose we are in the case of an (odd) cycle. This is case (ii) of Lemma (5.10).
Let us consider one odd (F, L)-cycle y. As we have seen this is constructed from
a word w in F and V™1, describing the combinatorics of the related (F,V~1)-
cycle on A, i.e. the word in V and F'=! in the (V, F~!)-cycle on N. As v is odd,
the word w is self-dual, the number |w]| of letters is even; we write |w| = 2m.
Let P = Py be one of the subquotients of I(N) appearing in 7; consider
Py, P1,-++, Paym_1, Py = P, the subquotients appearing in the (F,V~1)-cycle;
consider g; : P = Py — P;, which is obtained by going clockwise ¢ steps through
the (F,V~1)-cycle given by w, with the related maps, using either F or V~!;
it is a o’-linear map. We write ¢ = gam : Py = P — P = Ps,,,. We see that this
is a 0?™-linear endomorphism of the vector space P. Let us write ¢ := dimy, P.

We use the “Jordan reduction” for the map g as exposed in [16], or in
(6], pp.232 - 234, [56], page 38. This shows: define ' := F,2m; there exists a
F-base P :=TF-e; ® --- P Fe., and g : P — P such that g(e;) = e;, and such
that (P,g) ®r k = (P, g). From now on we work with vector spaces over T, in
particular we write g;(P) = P;.

We write ¢ := F™, i.e. the map & — 2" when restricted to F we have
¢ € Gal(F/Fpm ). Let us write g, =: h: Py = P = @ = P,,, and analogously
H : P — P. We define

Yp:PxP—oTF by ¢z,y)=<zhy>.
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Remark that ¢ : P — P is «linear over k, hence g : P — P is linear over [F;
hence every base change over IF leaves ¢ in diagonal-1-form.

Note that ¢ is:

1) non-degenerate,

2) linear in the first variable,

3) ¢-linear in the second variable, and

4) P(x,y) = —¢(y,x)" for all z,y € P, i.e. “¢ is hermitian with respect
to ¢”.

Form this last equality we see that for all #,y € P we have ¢(z,y) = ¢(z, y)"*;
this shows that v factors as ¢ : P — P:

5) for all #,y € P we have ¢(z,y) € .

Choose an element a € F* such that b* = —b, i.e. an element such that *" ~* =
—1. We are going to show that we can choose a F-base P = F-f; & --- B F-f.
such that on this F-base the form i s anti-diagonal with b on every anti-
diagonal place, i.e. such that (f;, f;) = b-0; c—iy1 (Kronecker-delta) for every
0 <14,7 <e¢;let us call this the standard anti-diagonal form over F.

Suppose we have proven that ¢ can be put standard anti-diagonal form
over F; then we are done with this step: the image of the base {f; | 1 <
J < ¢} under g; gives an ordered base for P;, for 1 < ¢ < 2m; note that the
matrix of ¢ on this [F-base equals 1; thus for every P; we obtain a filtration
by subvectorspaces with relative quotients of dimension one, and the filtrations
are carried into each other under F respectively V; the equality < z,z =
Fly) >=< V(x),y > shows this gives a final filtration on all subquotients in
A, compatible with L.

We are going to use methods exposed in [26], 29.19. Over I the form v can be
put in standard anti-diagonal form; let us write P = P @y F; indeed, if dimP >
1, there is an isotropic vector @ € P; we can write P = k-x @ k-2 ® (k-x D k-2)*
with ¢(x,2) # 0, and we proceed by induction. Moreover the discriminant of
this bilinear form is in

F* /Ny yp, . (F°) = {1}.

Let us write U for the group of linear transformations of P respecting the data
(1) ~ (4) above; this is a connected linear group. By [26], page 403 the set
of isometry classes of forms isometric with ¢ is given by H!(FF,U); by [55],
page 139 we know this cohomology set is trivial; this shows there exists a
transformation in U(IF) transforming ¢ into the standard anti-diagonal form
over [F. We have seen that this is enough to construct a final refinement. This
ends the construction of a final refinement for NV, in the case of an odd cycle

-

Performing the constructions described above for every cycle, we refine the
original filtration to a good filtration with relative steps of dimension one, i.e.
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to a final filtration. This proves Proposition (9.6). a
We start with the proof of Theorem (9.4).

(9.7) First step. As k is perfect we can write N = Nigc et D Niocjioc P
Nettoe = N' @ Nioe,toc - Because k is algebraically closed, Ny et & (ppyk)f, and
Net o & ((Z/p)x)?, and we choose a standard base for N’ = Nise,et ® Net oc-
Note that ES((G, <, >) starts as follows: {1,2,---, f, f, - - -}. Tt suffices to choose
a standard base for (Mjsc ioc, <, >). From now on we suppose that N is purely
local-local, and hence F and V act nilpotently on A.

(9.8) We fix some notation, and we recall a result from [27]. In this section
a word will be a finite sequence of the letters F and V. A word will be used in
a cyclic way, 1. e. putting the first letter as last we will consider the two words
as the same. A word is called simple if it is not periodic of period larger than
one. We only consider words in which both V and F appear. The number of
letters in a words will be called the length of the word, indicated by |w].

For a word w we construct, as in [27], a finite group scheme Z,, with
Dieudonné module By, = I(Z, ) over F,. If w= Ly --- Ly we choose z1,---, 24
plus the convention zgy1 = #1; if Ly = F we write F(z;) = 241 and V(z41) =
0; if Ly =V we write V(zi41) = 2z and F(z) = 0 (the maps F are written
“clockwise” and V “anti-clockwise”). This defines the structure of a Dieudonné
module on By, :=&; I,z over F,[F,V].

Structure theorem (see [27], Section 5): Let k D T, be an algebraically closed
field. Let N be a BTy over k. Then there exists a finite set of mutually different
stmple words w;, and wntegers n; € Z~o such that

N = P (Zu)"

7

This will be called a decomposition into isotypic summands; note that the
decomposition as in right hand side above is uniquely determined by N, but
the 1somorphism is far from unique.

Moreover: If w and v’ are different simple words, a homomorphism N, —
Ny has non-zero kernel and non-zero cokernel.

From a word w we construct its dual w? by replacing F in w by V in w
and by replacing V by F; a word w is called symmetric if w = w? (equality in
the cyclic way). Note that (N, )Y = Ny (a canonical isomorphism over IF, ).

D

(9.9) Second step: Lemma. Let k be an algebraically closed field, an let
(N,<,>) a a polarized BT over k; i.e. N is a BTy truncated group scheme,
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with Dieudonné module A = D(N), and <,> is a non-degenerate, bilinear,
alternating form on A satisfying < x, F(z) >=< V(x),z >7. Then there exist
symmetric simple symmetric words w;, integers n;, and pairs of non-symmetric
words v;, v]D and integers m; and pairings such that

(N, <> = P (Zu.<>)" & P (ZU@Z¢u<>Q .
J

7

Proof. Suppose we write N = M @& P in such a way that M and P are sums

of isotypic summands of NV and such a that for a non-symmetric word v; the

summands 7, and Z,p both appear either in M or in P. The pairing gives a
7

morphism

(?Z):(:M@P—HM@HQ

Because <, > was supposed to be non-degenerate, { is an isomorphism; because
of the assumptions on the decomposition N = M @ P we see that § is an
isomorphism (and e as well). We define ¢ := 371.(—v); we define P’ = (1 +
¢)P C N; we see that on N = M & P’ the form is in diagonal shape. As <, >
is alternating on (M), it is alternating on the summands T(M) and I(P’).
Induction on the number of isotypic summands in N finishes the proof. a

Remark. The lemma just proved is strictly speaking not necessary in the proof
below, but it simplifies considerably the notation in the last steps of our proof.

(9.10) In order to apply the structure theorem for BT;’s to “standard types”
we are going to change notation a little bit. The group schemes 7, appearing
in the classification by Kraft we are going to replace by group schemes C),
more suited to our purpose (and over an algebraically closed field the same
up to isomorphism). Let w be a (simple, cyclic) word as above. We define a
BT; E, and its Dieudonné module C, = D(F, ) almost analogous as before:
if w=Ly---Lg we choose 21, -, zq plus the convention z441 = z1; we write
{z1,-,24} = {1, -, @6, y1, -, Yo} with the convention that “the y’s are
images under V", i.e. if L; = V, then z; will be baptized y, and otherwise z;
we define Cyy 1= @; Fp-2;. If Lj = F we write F(z;) = 2zi41 and V(zi41) = 0; if
L; =V we write V(z;41) = % and F(z) = 0; in fact we write V(z;41) = +2
if zi41 € {y1, -y}, and V(ziy1) = —z if 241 € {21, -+, 25} (in short:
Frieme,Fre—yViy—+y, Ve — —y). This constructs the structure
of a Dieundonné module on C,, over F,[F, V]; hence we have constructed a BT,
By

For a word w we define a(w) to be the number of pairs FV in the word.

Third step: Lemma. Let k be an algebraically closed field, let w be a word.
Then Z, @ k=2 FE, @ k.
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Proof. Suppose D(Zy) = &, z; and D(Ey ) = Cy = &) -z Let |w| = d
and a(w) = a. Consider z; — z{,, by F,if L; = F or by Vv-Lif L =V,
composition of these maps gives z{ — 2z}, and b-z] — badwi for every b € k.
The same process yields z; — (=1)%-z] in Cy. Choose b € k with b = (=1)*.
We define a k-linear map

D(Cy) @k = D(Z) @k by 2= Bz,

where 31 = b and, inductively, f;41 = 87 if Ly = F, and V(Bi41-2i41) = Fi -z
if L; = V. This yields 8441 = bgd~(—1)a. Hence the k-linear maps commute
with the actions of F and V, hence we have constructed a Dieudonné module

isomorphism I(Cy ) ® k = D(Zy ) ® k. This proves the lemma. a

Using the structure theorem, and the two lemmas just proved, in order to prove
(9.4) it suffices to show this for isotypic summands:

(9.11) Suppose k is an algebraically closed field of characteristic p. Let
(N,[,]) be a polarized BTy of rank p*9 defined over k. Suppose either N =
((Ey ® E,p) @ k)™, where v is a simple, non-symmetric word, and n € Zisg or
N = (Fy @ k)", where w is a simple symmetric word and n € Zq. Suppose
¢ = ES(N). Then

(N LD = (N, < >st) @r, k-

For the rest of the section we keep notations as in (9.11).

We write A = ID(N). A k-base for a Dieudonné module over k[F, V] will be
called a (F,V)-base if it equals {z1, -+, zg} = {21, -+, s, ¥1, - - -, Yc } With the
conventions as in the definition of (', in particular “}V :  — —y”; in the
situation to be studied we will have d = 2m and b = m = ¢. By the structure
theorem and by the lemmain (9.10) we have a (F,V)-base for A. On A we have
the form [,]. We say that that a base for A is in standard form (with respect
to [,]) if it is a (F,V)-base, and if the form [,] is the standard symplectic form
on that base. We study all possible (F,V)-bases for A and we show there is at
least one which is a standard base for [,].

We will write z; < z; iff + < j, i.e. the base vectors in z; are in a strictly
lower piece of the canonical stratification

(9.12) Suppose we are in case N = ((Ey @ FE,p)®k)™ asin (9.11). Then a(N)
is even, and we refer to this case as the even case. We shall write |v|+[v?| = 2m

Suppose w is a simple symmetric word; then a(w) is odd, this can be seen
as follows; choose a permutation in such a way that w starts with F and ends
with V. From the fact that w is simple and symmetric it follows that |w]| is
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even, say = 2m, and that L; # L;1,; hence the first m letters are in the form
F .- F and the last m are V---V; we see that the number of times that 7V
appears in w is odd. The case N = (E, ® k)™ as in (9.11) is called the odd

case; here we have a(N) = a(w)n.

On A we have the canonical filtration
Oc...cA(j) C.--CA.

We call @jA(j)/A(j_l) the associated graded of A. Note that the canonical
filtration has exactly |v| + |[v”|, respectively |w| steps. Note that the vectors
in z are in AW iff < j. The notions of even and odd just explained are the
same as the ones used in Section 2.

(9.13) Fourth step: Lemma. We use the notations introduced
above, in particular as in (9.11). There exists a base {z1, - zag} =
{e1, -, 29,01, -, Yg} which s a (F,V)-base for A, which defines a final
filtration, and which is in standard form on the associated graded module for
the given pairing [,].

Proof. We start with a (F,V)-base for A as given in the structure theorem in
(9.7) plus the lemmain (9.10). The linear substitutions on P as in Proposition
(9.6) can be carried over to the whole (F,V)-base, and we see that we can
derive a new (F,V)-base for A which is in standard form on the associated
graded module. ad

From now on we are allowing only substitutions (choices of another base), which
leave the residue classes of the base vectors in the associated graded invariant;
i.e. a new base vector Z! will be of the form Z;4+7 with ? € AU it 7. e Al
and Z; ¢ AU-D),

(9.14) We study the canonical filtration of N as in (9.11). We denote by
2, i, y; the steps in this filtration, as well as the ordered sets of n base vectors
in this step of the filtration (the ones which give non-zero residue classes in
that step of the associated graded). As we work with (F,V)-bases, it is clear
what is meant by a notation like F(x;) = z;: it maps the ordered set of base
vectors encoded by z; to the analogous ordered set of base vectors given by z;;
by V(z;) = y; we mean combinatorially that V is bijective on these steps in

(")}

the canonical filtration of A, and that for base vectors z; = {l‘l(»l), ez

analogously for y;, we have that V(xl(»t)) = —y;t). When we write [z, z;] we

mean a n X n-matrix given by the pairings on the pairs of vectors in these sets.
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(9.15) Sets of base vectors as assembled in the canonical filtration on A in
consideration will be distributed in 4 subsets. We write

TX ={z; |z; ¢ FA}
(and remember, no base vector in z; is VA), and
BX = {z; | z; € FA}, X =TXUBX,
(where T stand for Top and B stands for Bottom). Further
UY ={y; |yi ¢ FA}Y and LY ={y; |y € FA}, Y=UYULY

(Upper and Lower). Note that for a(w) = a, respectively a(v) + a(v?) = a we
have TX = {1, -, 2g—qt41} and LY = {ya, - -, y1}. Note that a Top-X-vector
is not an image of any base vector, and a Lower-Y-vector is an image under
F and under V. All other base vectors are an image either under F (when in
BX), or under V (when in UY). Every base vector is an image under a power
of F or a power of V of a & Top-X-vector.

For every index j, with 1 < j < @ we have uniquely determined indices
£G), 1), with T < £(j), () < g —a-+ 1 (they correspond to Top-X-
coordinates) and positive integers f(j), v(j) such that for base vectors we have:

FiG) . Te() — Yy yeld) . Tp(i) > —Yis y; € LY (#5).

Note that for every i < g — a + 1 there exist j and j/ such that £(j) = ¢ and
n(5") = i.

Claim. A base {z1, -+, 220} = {21, -, 29,01, -, Yg} ts a (F,V)-base for A
iff and only if: the Top-X-base vectors satisfy (x;) for all 1 < j < a and all base
vectors are obtained as a F’-image or a V' -image of a Top-X-base vector.
The proof of this claim follows directly from the definition of a (F,V)-base.
Again, note that z; stands for an ordered sequence of n elements; equations
should be understood in that sense.

(9.16) Westudy all possible alternating pairings on A, and we are interested
to have a base on which the pairings [z, z;] are in standard form. We are con-
sidering the following combinatorics. Consider the set IT = ({1, ---,2m})®) =
({1,---,2m} x {1,---,2m})/(Z/2) of unordered pairs (z;,z;). We will de-
fine Iy C 1II, the subset of “zero-classes”, and an equivalence relation on
IT respecting Il C II, and we consider ”1-elements”. To this end we write:
(p,qg = V(r)) < (F(p),r) if Fp #0 # Vr, and ~ is the equivalence relation
generated by the steps in this partial ordering. We write (p,q¢ = V(r)) € Il
it F(p) = 0; we write (F(p),r) € Iy if V(r) = 0; we write (z,2;) € Iy if
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t+ 7 < 2m; we denote by Iy the set of all classes equivalent with any of the
previously mentioned zero classes; in particular we see that (V(p),V(r)) € Iy
and (F(p), F(r)) € My; note that AW and AY) pair to zero if i + j < 2m,
hence:
Observation. If [,] is an alternating pairing on A, and (z;,2;) € Iy then
[#i, z;] = 0. This follows from [p, ¢ = V()] = [F(p), r].
Observation. Suppose we have non-zero classes (z;,z;) < (p,q). Then either
zi € X and z; €'Y or conversely. Indeed, we can only “move on” if at least one
of the elements is in the image of V| and as the element is non-zero, the other
is not in the image of V.

An element of the form (z;,y;) is called a 1-element.
Observation. If[,] is a non-degenerate alternating pairing which is in standard
form on the associated graded, then [z;,y;] = 1 (i.e. the diagonal matrix of
size n x n) Vj. a
Basic observation. If in I we have equivalent pairs (p,q) ~ (r,s) then [p,q] =
0<[r,s]=0.

Claim. (i) All I-elements form one equivalence class.
(i) Let {my < --- < m} CTI be a longest chain of non-zero, non-1 equivalent
elements, m; = (z},z); then 21 does not occur in ma, - - -, me (i.e. there are no
“cyclic” equivalence classes in the case of non-zero and non-1-classes).
(iii) Let {my < --- < m} CII be a longest chain of non-zero and non-1 equiva-
lent elements. Then m = (2;, z;) with ¢; € TX and z; € TXUUY.
(iv) Let § + 1 = #((I1 = Ty)/ ~) be the number of equivalence classes of non-
zero elements. Consider A with a (F,V)-base for A. The set Q of alternating
non-degenerate pairings on A which are wn standard form on the associated
graded equals k=0 (and the bijection will be indicated in the proof).
Proof. (i) In the situation (9.11) all 1-elements form a single equivalence class:
consider separately the symmetric word w or the pair of words v and v”. O
(i) Suppose there would exist a cyclic equivalence class which consists of
non-zero and non-1 elements. In case of w there would be an integer ¢, say
0 < ¢ < 2m, such that L; # Li4, for all . As w is simple this can only happen
if ¢ = m. The case v and v? follows in the same way (because v is simple and
non-symmetric). a
(iii) There is an element “before” (p, ¢) if one of the p, ¢ is an image under
F. So the left end (p, q) of a non-zero, non-1 equivalence class has elements not

in the image of F, not both in the image of V. ad
(iv) Let (), 20y .. (209 209)) be the left-ends of the non-zero and
non-1 equivalence classes. Any [,] as in (iv) defines n x n-matrices My, ---, Ms €

kn by [a:(j), z(j)] =: Mj; for this choice we take once and for all an ordering for
each pair (2(), 2(1)). Conversely, given such matrices, we define [#;, 3] = 1, and
[a:(j), z(j)] = M;; this defines all pairings between base-vectors, and we check
that this gives a [,] as in (iv). This finishes the proof of the claim. O
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We write II° := II — Ty — II; for the set of non-zero and non-1-elements.
Conclusion: The evaluation map @ — k’é'”2, given by computing [, ] on left ends
of equivalence classes in IV, is bijective. We will consider the set Q as Aé'”2(k)
and treat it as a variety over k.

(9.17) We consider the group § of all &-linear transformations of A which
are Dieudonné module isomorphisms, and which map a given (F,V)-base to
a (F,V)-base. It acts on the set @ of non-degenerate alternating forms on A
(by conjugation): § x @ — @Q; this will be considered as the action of a linear
group over k onto a variety over k (identifying a linear group over k with the
group of its k-rational points, etc.). We are going to prove that the orbit of
every element of @ under § is the whole of @ (and hence we can change [,] into
<, >st). We see that in general the stabilizer of an element of Q is non-trivial.
We give the proof by considering an algebraic subvariety L C § containing the
identity of this algebraic group, and showing that the differential of the action
parameterized by L maps surjectively onto the tangent space at [,] € Q.
Remark: The dimension of & in general is much larger that the dimension of
@, but that information is not of much help, because in general the stabilizer
in S of an element of @ 1s non-trivial.

(9.18) Description of & and of L. We introduce “variables” §, ; and =, .,
each is a n x n-matrix (indices will be specified below). Given A as above with
a (F,V)-base we write:

=z + Zﬁs,j'l‘j + Z Vst Yt Ve, € TX (x%);
j<s Y1 <Ts

these are subject to the relations (*;) as explained in (9.15); we write () for
the set (*;) Vj. We define vectors z; by: taking all images under powers of F
and powers of V| and deleting the ones which are zero. The new base vectors in
the sequel will be denoted by {p(z;)} once all 3 ; and =, ; satisfying () (and
perhaps several conditions).

Claim. The substitutions given by (xx) subject to (x) form a group which are
all substitution which are the identity on the associated graded, and which map
the given (F,V)-base for A to a (F,V)-base. This defines a group scheme. O
Remark. In fact, this group scheme in general is non-reduced. This will play
no role later in our considerations. We are going to define a subvariety L C S
by imposing extra conditions on the variables.

(9.19) For a set z; of base vectors we define d(z;) = z2m41—;; note that
d(x;) = y; and d(y;) = x;. We consider the set A of ordered pairs (z;&2;), such
that z; < z:

A= {(ZZ&Z]) € ({L ’ "an})z | zj < ZZ}
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We write Ay = {(z&d(#))}, and we call elements of this set “l-elements”. We
define
D:A—=T by D(zkz;):=(z,d(z;)).

We write Ag := D™1(Ip).

Claim. The map A — Ay — 11 — I1y s 2-1-surjective.

In fact, (z/, 2") is the image of (2, d(2")) if d(2") < 2’ respectively of (2", d(2'))
if d(z') < 2”; hence D : A — TI is surjective. On A — Ay the map (2'&z") —
(d(2"")&d(z")) is fixed point free with quotient IT — TI;. a

On A we define an equivalence relation, indicated by as; we write (2'&z") <
(FZ&F=") if Fo! #£0 #£ Fz'5 we write (V2/&V2") < (Z'&2") if V' #£0 #
Vz"; a partial ordering, and the equivalence relation given by this is the one
generated by iterating these definitions.

Claim. We have:

(&) < (W&u") <— D(&2") < D(u'&u”).

In fact, d(z") = FV(d(Fz"), hence (Z&z") < (FZ/&Fz") implies
(Z",\V(A(FZ") < (Fz',d(Fz")), and conversely. An analogous statement with
(V2'&Vz") < (2'&=") proves the claim. O

We number the ~-equivalence classes Fy,---, Fs C II — Il — II;. We define
variables 77, -+, Ts, each is a n x n-matrix of variables, and we are going to
define a morphism

Spec(k[Ty, -+, T5]) = S;

the image of this maps will be a closed, reduced subvariety L C §; we study
the action

L xQ— Q.

Note that for every ~-equivalence class £ C II° there are exactly two disjoint
rs-equivalence classes B, B C A® such that

D:E > E D:E' 5 E.

We consider an ~-equivalence class £ C Il — IIy. There are three possibilities:

(1) The class contains (z;,y;) for some index ¢. In this case there is only one
~-equivalence class, it contains all (z;,y;). This is what we called the
l-equivalence-class.

(2) The left end of E equals (x5, #;) with 2, 2 € TX. In this case F consists
of one element: E = {(z;,z:)}.
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(3) The left end of E equals (x5, z) with z € UY.

For zero classes we define:

D(z,&z) €lly, = B,; =0, if 2z = x;, respectively v,, =0, if 2 =y (L0).

Suppose we are in case (2). Then D(z,&y:) = (25, 2:) = D(x:&y,). Assume
that ¢t < s (otherwise interchange); then y; < y: < 5. We write:

s € TXa Y < Ys — Yt = 0 (Ll)

This condition will remove certain ambiguities. If F; = F = {(zs,2)} =
{®s(), Te(sy} with x5, 2z, € TX and x, < x, hence y, < y; < x,, we define:

Ty = Ys(i) e (1) = Vst (L2).

Suppose we are in case (3). We write (z,2) € E C I1° for its left end; hence
z € TX, and z € UY. Note that d(z) < # and d(z) < z hence D(z&d(z)) =
(z,z) = D(z&d(x)). We choose the notation for £, E’ mapping onto F in such
a way that (z&d(z) € ' and (z&d(z)) € E".

If = E; with left end (x4, 24 (;)) we define

Bsiy,; = Ti, if d(zyy) = ®; vespectively vy, = Ti, if d(zu)) = we (L3);

we follow the ordered set Ej, and we define g3, ; = :I:Tipc respectively v, ; =

:I:Tipc with the appropriate sign, and with the power of p according to the
number of steps ¢ in E} that is (z,&x;) € E! respectively (z,&y:) € E! from
the left end side of E.

All elements appearing in E’ give rise to variables which we equate to
zero:

(vs&x;) € B = B, ; =0, (z&y) EE' = v, =0 (L4).

The relations (x), (L0), (L1), (L2), (L3) and (L4) define the value of all 3, ;
and ¥, ¢ introduced in (9.18); under these conditions we have defined

Spec(k[Ty, -, T5) = L C 8.

We see that indeed this defines a closed subvariety of S.
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(9.20) Fifth step: Proposition. FEquating all variables T; to zero gives
1 € L C S8, the identity transformation. Choose any [,] € Q as in (9.11). The
action L x @ — Q at [,] gives a morphism L — L-[,]. The differential of the
action L x @ — Q at [,] is a surjective linear map tr, 1 — tg 1. It follows that
the orbit of [,] under the action S x Q@ — Q equals S-[,] = Q.

Proof. We write I = (T; | i) C k[Ty,---,Ts] =: k[T] for the ideal generated
by these variables. We compute the action of Spec(k[T]/I?) on Q. Let us write
7; = T; mod I?. We see that all elements B+ and 7, ¢ not defined by a left end
are in I2.

Claim. Under the action of Spec(k[T]/I?) on Q the matrices M; = [z}, 2]
are transformed into M; + £7;; in fact, let us write {p(z;)} as in (9.15); then
we compute p-M; = [p(2}), p(z])]; in case (2), using (L0) and (L2) and using
I? = 0 this gives:

lo(zs), p(e)] = [xs+Ti~yt+Z Bs iz + Z YsuYu, Cet0-ys+- -] = [z, 2]+
Jj<s Yu<Ts,uFtt

in case (3), if (z,2) € E; is the left end, using (L3) and (L4) and I* = 0 in
case (z,z) = (z,,y;) we obtain:

[p(x),p(z)] = [l‘s +Tlxj + Z ﬁs,u'xu + Z Vs.tYt,  Yj+ O-ys + - ']a
U< s, utj Y1 <Ts

respectively if (z, z) = (x5, #¢) we obtain:
=[zs+ T+, 2+ 0y +-- ]

This proves the claim.

Hence it proves that tz 1 — tg [] is surjective. Hence for every [,] € Q the
set L-[,] C Q is dense. We know that @Q is irreducible. This proves that S acts
transitively on Q. O

In the basic observation in (9.16) we see that pairings between base vectors
(non dual ones) are zero iff these parings are zero on all left ends of equivalence
classes. The previous proposition shows that, starting from (9.11) there is a
transformation {z; — 2% | #;, € TX} = p € S(k) such that p-[,] = [p(), p()]
is zero on left ends of non-1-~-equivalence classes. Hence p-[,] =<, >¢. This
proves the claim as in (9.11). By what has been said and proven in the first
three steps, this proves Theorem (9.4). a

(9.21) Remark. By [59], Proposition 2.4.14 we know that every orbit of a
unipotent group Sreq acting on an affine variety @ is closed; hence we see that
in the proof of (9.20) it suffices to compute the tangent action of L at <, >
in order to prove that every [,] is in the orbit 8- < >g.
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(9.22) Remark. Suppose a final filtration on a polarized BTy truncated
group scheme is given. We note there are in general many choices for a standard
base matching this filtration. here is one example. Choose indices ¢ and j with
n; < my; then n; = 294+ 1—m; < 29+ 1 —n; = m;; we choose some 3 in the
base field k, we change X; to X = X; + Y} and X to X} = X; + 8-V, and
we leave all other base vectors the same. Clearly the new set is a standard base
matching the same filtration. Examples of a different nature are easy to give,
as we have seen in the proof above: in general there are many isomorphisms on
A, which by conjugation do not change <, >¢;.

10 Moving in a stratum

In this section we fix an elementary sequence ¢ € ®, and we prove:

(10.1) Proposition. Every component of S, has dimension at least | ¢ |.
Later we will show in fact that:

dim(Se) =[ ¢ | -

Let @ € S, (k), where k is an algebraically closed field. We are going to study
deformation theory around [(Xo, Ag)] = 2o € A, especially a part which “stays
inside 5,,”. We use notations introduced earlier, especially we use a standard
base for I((Xo, Ao)[p]) as described in Section 9. We write ¢ for the final
sequence associated with ¢, and we suppose we have chosen, see (9.6), a final
filtration

AoCA1C"'CAg:f(A)C"'CAzg:A:]D(NO).

The standard base {Zy,---, Z,} = {X1, -, Xy, Yy, -+, Y1} for A is lifted to a
symplectic base {X{,---, X, Y/, -, Y]} for M = D(Xo[p™]) such that Y/ €
F(M).

We use the integers {ng,---,n1} and {mq,---,my} as introduced in Section 9.
We write

I,=I={ng, - ,ng_q_1} and Jo=J={m, -, my_g};

this corresponds with the Y, respectively X;, contained in A, = F(A), where
a=a(Xy) = a(p) = g—¢(g). We introduce variables ¢, ,, some of which are put
to zero, some of which are considered as variables, and in this way we are going
to construct a ring R,,. To this end we take subset D, C {1,---, g} x{1,---, ¢}
defined as follows:

(J) it consists of all (u,v) such that v > v > a and

(I) it consists of all (v, v) such that 1 <v < a and mg_yt1 < Ng_yy1.
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(10.2) Observation.

#(D,) =l |.
Indeed, ZjeJ ©(j) equals the number of pairs in (J) above, and } ;.; (i)
equals the number of pairs in (I) above. a

We define
Ry = k[[tuy | (u,v) € D or (v,u) € D]]/(tuw — tuu).

Note that if (u, v) in (T) above then it is not in (J), and (v, u) is not in (J). Note
that the Krull dimension of this ring equals | ¢ |. We write Tty ») € Weo (Ry)
for the Teichmiiller lift of ¢, , € R, and we write T'= (T, , | 1 < u,v < v) for
the corresponding matrix.

The display of M on the symplectic W-base {X{,---, X/, Y/, --- Y/} for M we

EREE
denote by
A B
(¢ 5)

(with apologies that we use the symbol A with two different meanings; we
expect there will be no confusion). With the matrix (7) defined above we
obtain a display

A+TC B+TD
C D ’

This defines a quasi-polarized p-divisible group over Spec(R,) deforming
(Xo[p®], Ao); hence by the theorem of Serre and Tate, see [30], [22], [32] , we
obtain a principally polarized abelian scheme (X(T) \) — Spec(Ry); we write
[(XT) \)] = 2 € A(R,) for the corresponding point.

(10.3) Claim. We have [(XT) \)] =z € S,(R,y).
In fact, if ¢(m;) = n;, then

FO(x}) = Z Tjg-s+1:Xg_jy1 +Y.
The variables coming from (J) above show up only multiplied by a factor p.
These two fact show that this bases induces a filtration on A) on which the

elementary sequence ¢ is realized, say over a perfect closure of the field of
fractions of R,. This proves the claim. a

Hence we have constructed zq € Spec(R,) C S,. By the observation above
this proves the proposition. a
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11 Moving out of a stratum

In this section we consider elementary sequences ¢ and ¢’ such that
p<¢ and|pl+l=[¢"|.
This means there is an index b with 0 < b < ¢ and
o)) =¢'(i) for i#£b 0<i<g, and @(b)+1=¢'(b).
Note that this is only possible when ¢(b — 1) = ¢(b) < (b + 1).

(11.1) Proposition. Under these conditions
Ser C (9p)°.

Proof. Tt suffices to prove the case that ¢(1) = 0, which we suppose from
now on. As in the previous section we write: [(Xg, Ag)] = #o € S, C A and
{21, Zog} ={X1, -+, Xg,Yy, -+, Y1}, a standard basis for A is lifted to a
symplectic base {X{,---, X, Y/, -, Y]} for M = D(Xo[p™]) such that Y/ €
F(M). Note that ¢(b—1) = ¢(b) < ¥(b+1); hence 7 is one of the base vectors
Ye,in fact Z, = Y, with y = g—b+¢(b); moreover Zp is one of the base vectors
Xo,infact Zp11 = X, with 2 = ¢(b+1). On the module A we have F(X;) = Y.
We define u = g+ 1 — @b+ 1), and v = b+ 1 — o(b); we write t,, = ¢, a
variable over k, and ¢, , = ¢, and we put all other ¢; ; = 0; the Teichmuller
lift we denote by @ € W, (k[[¢]]) (and all others equal to 0), thus obtaining a
matrix 7. From this we obtain a deformation (X X) = Spec(k[[q]]).
Claim. For the generic fiber, we have ES(X;T),/\) =
Observe that Y, € F(A), hence y > ¢ —a+ 1, hence v < a. In the deformation
we see that T, ,, is multiplied by a factor p. We conclude that:

FIN(X}) =Y, +T-X,, and

FIONZ;) = F(Z;) for all i £ my, ie. Zi £ Xp.
Let K be a perfect field containing k[[q]], write (X, \) = (X X), and let us
show that ES(X,\) = ¢’

In case 1 < b < ¢ the old standard base is

1210, 2o, Yy, Xo, Zoga, - g, Xy, Yo, Zgbi1, -+, Zag )

We choose a new base for the module on which the display is defined by choosing
{Zla Ty Zb—la Yy+Tan Yya Zb-I—Za T Zg—b—Za TXy‘i'Yxa Yxa Zg—b-l—la R Z2g}~
This ordered set defines a filtration; with the o-linear map given by F(T) (Xp) =

Yy +T-X,, etc. as above, we obtain a final filtration with elementary sequence
/

@

In case b = g, we have # = g — a + 1 = y; the old standard base is
{21, +,2v-1,Yy, Xo, Zoya, - -+, Zog}, and on the new base given by the ordered
set {21, -, Zp—1,Yy+T-Xe,Yy, Zoyo, - -, Zag} we obtain a final filtration with
elementary sequence ’. This proves the claim, and it finishes the proof of the
proposition. a
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(11.2) Corollary. For every ¢ € ® we have:
dim(S,) = |¢|.
In fact, if (g(g + 1)/2)— | ¢ |= ¢, there is a sequence

p=p0 2 ©»1 F - 3 pe=1{l,,g}

By the previous corollary this shows that every component of S, has dimen-
sion at most | ¢ |. By the main result of the proceeding section the opposite
inequality holds, and we are done. a

Remark. It seems strange that we obtain a regular deformation space starting
at a point in the boundary of S,/, although we know that in general a stratum
i1s “very singular” at its boundary. However note that we consider deformations
respecting a final filtration. For example, if we start in a point of X, and and
we want to move into the interior of L, there are many ways of doing that. But
what we proved, implies that giving a final filtration for the closed fiber, this
singles out a “direction of deformation” into L.

12 Transport of structure along the boundary
of a stratum

In this section we prove that the boundary of a stratum S, is a union of (lower
dimensional) strata. We use Lemma (12.4), and give the proof in Proposition
(12.5). In (12.1) we explain some notation. The results (12.2) and (12.3) will
not be used in the sequel; these are included in order to explain the complexity
of the situation; we expect that (12.3) can be of independent interest. The main
result of this section is not difficult if we work over fields of characteristic p > 2;
in such a case an anti-symmetric pairing on N gives an alternating pairing on
A :=T(N); in that case a proof of Proposition (12.5) is not so difficult. We have
chosen to include also the case p = 2 in the general proof, leaving simplifications
in other cases to the reader, but indicating how biextensions can be brought
in.

(12.1) Polarizations and biextensions.
(AV) Let (X, A) = S be a polarized abelian scheme. By [54], 1.4 on page 224,
we know:

Biext! (X1, X2; Gy ) — Hom(X1, X»)
(we will write X3 = X = X3, numbering the copies of X involved in order to
keep track what is what). The polarization is an isogeny A : X — X*. We know
that A is symmetric in the sense that

(AX1—>X§) = (/\t Z(Xz)tt:XQ%Xi);
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here we write X' = X meaning we have a canonical, functorial isomorphism,
which is denoted by
kx t X = X%

for abelian schemes, and for p-divisible groups.

(Biext) Let N — S be a finite flat group scheme. By [54], 1.1.4 and 3.3.2 , see
page 258, we know that

Ext(Ny, NP) =5 Biext! (N1, No; Gy ).

We write € — FE for the extension and the biextension corresponding under
this canonical identification. If (X, A) is as above, and ¢ is a positive integer,
N = X[q], we write (X, A)|n for the restriction of the biextension defined by
(X.2)

| N : Biextl(Xl,Xz; G ) — Biextl(Nl, No; Gp).

Suppose P and @) are BT ;. We say that
() 0-Q—->T—>P—=0

is a 2-extension if @ = T[pland [p] : T = Im([p] : T — T) = T/T[p] = P under
the natural identifications. We say that ¢ is anti-symmetric if P = —¢; we

intend to say: the exact sequence ¢ defines
(?y 0= PP TP 5 QP S0

dualizing again we obtain ¢?P; for finite flat group schemes we have a duality
isomorphism
tp P pbp

(denoted by x in [42], 1.2-2, but we use a different symbol because we have used
already & for abelian schemes); we intend to say:

()" (€77) = = (1)« (e).

We write Ext(Nl,NzD;Gm)(z’a) for the set of 2-extension which are anti-
symmetric.

(Pairings) Let K D T, be a perfect field, and let N be a finite group scheme
over K. We consider <,>: A x A — W, a pairing on the Dieudonné module
A:=D(N). If (X, A) is as above, and N := X[p], we write (X, A)[p] = (N, <, >)
for the pairing induced by A on A = D(A).

Note the different notations. If (X, A) is a polarized abelian scheme, and N :=
X[p], we write (N, E) = (X, A) | v for the pair obtained by the restriction of
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the biextension, and we write (X, A)[p] = (N, <,>) for the pair obtained by
restricting the polarization morphism to N.

Between these concepts there are some relations. Most of these are well-known,
and we list them for convenience.

(12.2) Lemma (1) Let (X, A) be a polarized abelian scheme. Let ¢ be a pos-
itive integer, and N := X[q]. The restriction of A € Biext' (X1, X2; Gy,) gives
a symmetric bieztension E € Biext(Ny, Na; Gy, ), corresponding with an anti-
symmetric extension ¢ € Ext'(Ny, NP).

(2) If moreover ¢ = p, and the polarization X is principal, the related extension
€ 15 an anti-symmetric 2-extension:

Ay = ¢ €Ext(Ny, NP; G, )29,

(3) Let K DT, be a perfect field, and N := X[p]. A principal polarization re-
stricts to a non-degenerate pairing (X, A)[p] = (N,<,>) on A := I(N) which
s alternating.

(4) An anti-symmetric 2-extension on a BTy over a perfect field restricts to a
non-degenerate, alternating pairing (N, <,>) on A :=D(N).

(5) Let k D T, be an algebraically closed field. The restriction map from
Ext(Ny, NP; G, )39 to the set of pairs (N, <,>) of BTy group schemes with a
non-degenerate alternating pairing on its Dieudonné module is surjective. [Re-
mark: in general this surjection is far from being injective.]

Proof. (1). This follows basically from [40], Coroll. (1.3.), pp. 69/70. In fact,
if ¢ : X = Y is an isogeny of abelian schemes, the duality theorem gives a
canonical identification

v:Ker(y') =5 (Ker(v))?.

The last diagram in the corollary cited reads: —v-«ny = v-(kx | ). This proves
(1).

(2). The extension is obtained as ¢ = (N; — NP)*((X[p?]/ X [p]) = X[p]).
Hence it is a 2-extension. This proves (2).

(3) and (4). The pairing on A := I(N), where N = X[p] in (3) can be defined

as follows: consider a 2-extension
0= NP —T— N, —0.

Then multiplication by p on each member of this exact sequence, and applying
the snake lemma we obtain an isomorphism N; — N&’; this is the pairing we
are looking for. Let us make it explicit in terms of Dieudonné modules. Let
B := I(T). This is a free module over Wy = Wo,(k)/(p?). The isomorphism
T — TP, anti-symmetric by (2), is written out by a non-degenerate, anti-
symmetric pairing [,] : B x B — Ws, and the pairing <, > on A obtained form
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the extension can be described as: for x € A;,y € Ao, we choose ' € B such
that 2’ mod AL = z; note that AD C B; with these notations:

<,y >= (pr)(y),
and using B = BY by [] and (AY — B)? = BP — A,) we can rewrite this as
<r,y>= p~[l‘/, y/]

We remark that —1 # +1 € W;. As the pairing [,] is anti-symmetric this
implies that for every z € B, with z ¢ pB we have [z,z] = —[z, 2], hence
p[z,z] = 0. We obtain < z, 2 >= p-[#',2'] = 0 for every @ € A. This proves (3)
and (4).

Remark. We do not have (in case the characteristic of the base field equals two)
a characterization of those pairings on N = X'[p] which come from a principal
polarization on X" only in terms of group schemes, not using D(V).

(12.3) Construction. Given a pair (N,<,>) of a BT, with a non-
degenerate alternating pairing on A = I(N) over k, we construct a p-divisible
group G, and a principal quasi-polarization A on G such that the restriction
(G,X : G = GY[p] gives (N,¢ : N = Glp] — NP = G'[p]). - From this it
clearly follows that the restriction map in (5) is surjective. One could indicate
the polarized p-divisible group obtained below by something like Can(¢g). Note
that in general Can(ES(G, A)) 2 (G, A).

Indeed, we use the structure theorem of standard types as in Section
9. Hence we can choose a basis {X1,---,X,,¥7,---,Y,} with the proper-
ties specified above. We choose M = @W X & @ WY/, and we con-
struct the structure of a Dieudonné module on this. We analyze the con-
struction (9.1). We denote the base vectors in the standard type describing
A=D(N) by {Z1, -, Z2g} ={X1, -+, Y;}. We have seen that {Z1,---,Z,} =
{X1,, Xgoa, Yy, -, Yg—ay1} is a k-base for F(A) = A[V], and every of
these base vectors is an image under F of one of the base vectors, in fact
F(X;) = Z;. We have also seen that each of the elements of {Z,,---, Z5,} =
Yyoa, -, Y1, Xg a41, -+, Xy} is mapped under V onto either —Y; or onto
+Y;. For every 1 < i < g the image F(X;) = Z; € A = M/pM is defined, and
we require F(X]) = Z; € M. For every g < i < 2g the image V(7;) = Z; is
defined, and we require V(Z]) = Z;.

If 1 <i<aand X; = F(Xj), we require V(X]) = p-X;.

If g>i>g—aandV;=7F(X;) we require V(Y/) = p-X;.
In this way we have defined V for all base vectors Z/.

Ifa>j>1andY; =V(Y;) we require F(Y/) = p-Y].

Ifa>j>1and —Y; = V(X;) we require F(Y/) = —p-X.
In this way we have defined the image under F and under V of every base
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vector (and every image is either + a base vector, or p times + a base vector).
We extend the map F in a o-linear way and V in a 7-linear way on M, where
7 = o~ '. Direct verification shows that this defines the structure of a Dieudonné
module of a p-divisible group with a symplectic W-base {Z! | 1 <i < 2g}. By
construction, modulo p, this gives back the standard type which is k-isomorphic
with A with its symplectic form; this ends the construction.

Hence the proof of the lemma is complete. 0(12.2)

(12.4) Lemma. Let K be a perfect field. Let (N1,{1) and (N3, (2) be finite
group schemes with an anti-symmetric symmetry over K. Let A; := D(N;)
be their Dieudonné modules. Let f : Ay — As be a W-linear, bijective map,
where W = Weo (K). Suppose that f commutes with Frobenius and with the
symmetries, i.e. the diagrams

()
AP L 4P A s ooap
Fl VF o and  f) b
/ ¢2 D
A1 — A2 A2 — A2

are commutative. Then [ is an isomorphism of Dieudonné modules, hence

(N1,¢1) = (N2, Co).

Proof. On A; and on As we have the Verschiebung, V : A; — Al(p). We have
to show that f also commutes with these maps in order to conclude that f is
an an isomorphism of Dieudonné modules. We show this by pushing F with
the help of the {; onto the duals, and then by duality transforming F on the
duals into V on the A;.

At first we show:

(APP 5 A 5 AP) = [P L FfOP = (APP - AP AP,
We should draw a large diagram, and chasing leads to:
(AT = Ay = APP — AD = AD) = (JP-F(f D)) =
= PGP f0) = PG (- F) =
1P G (f-F) = o F = PP )

hence

(FP-F) = (F-f0P)  APP — AP

We use:
(APP Ly APYD = (APP = Al X 4y = AP
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under the identification ¢ : A; — APP. This proves that f “commutes” with
V), and the lemma is proved. a

We show that the boundary of a stratum is a union of (lower dimensional)
strata:

(12.5) Proposition. Let ¢ € & be an elementary sequence, let [(Xo, Ao)] =
0€ (S,)°, and let [(Y;, 1ts)] = s € A such that ES(Xo, Ao) = ES(Ys, pts). Then
s € (Sy)°. This implies:

SN ((Sp))#0 = Sy C(5,)°

Proof. It suffices to show this under the extra condition that Xy[p] is a local-
local group scheme, i.e. ¢'(1) = 0. We suppose k is an algebraically closed field,
with (X, Ao) € A(k), over which (Y5, i) is also defined. As 0 € (S,)° we can
choose a complete local domain R of characteristic p, with residue class field %,
and an abelian scheme (X, A) = A = Spec(R) such that (X, A\)®rk = (X0, Ao)
and for the generic point n € A we have ES(X,, A;) = ¢. As ES(Xo, Ag) =
¢ = ES(Y;, its), using (9.4), (1), we can choose an isomorphism (which we will
write as an identification):

(Xo, Ao)[p] = (No, Co) = (Ys, ps)[p)-

Let {Z;} be a symplectic W-base for My := D(Xg[p™]) such that
Zgt1, -, 4ag € VM. On this basis the matrix of F on My is given by the
display
A B q A+TC B+TD
(& 5) = (70 757)

is the display of the deformation (Xg,Ag) C (X, A), where T € Mat(g x
g, Weo (R)) is a symmetric matrix. We choose a symplectic basis for I(Y; [p*]
such that this modulo p coincides with {7; mod p} on I(Xy[p]) = D(Ng) =

(Y, [p]). We write
(0 4)

for the display on this basis on D(Y; [p™]). Note that
Amodp 0\ ([ amodp 0
Cmodp 0 /) \ emodp 0 )°
We define a deformation of (Y;[p®], tts), and hence by the theorem of Serre

and Tate, a deformation (Y, ) of (Y5, ps), by the display

a+Te b4+Td
c d ’
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We claim: ES(Y;, ptn) = . Indeed, let K be a perfect field containing Q(R).
We see that F on D(X,,)[p] @ K is given by the same display

(A+TC)modp 0\ [ (a+T¢)modp 0
C mod p 0 )~ ¢ mod p 0

as the one giving F on D(Y;)[p] @ K, and the pairings on these finite group
schemes coincide under this identification. Hence the conditions of the previous
lemma are fulfilled, and we conclude that (X,, A)[p|@ K = (Y, u)[p]@ K. Hence
ES(X,, A,) = ES(Y), itn) = ¢, and the proof of the proposition is concluded. O

We expect that a proof of the previous proposition can be given by local de-
formation theory, by using [17], and giving an interpretation of the image of
biextension on finite group schemes to a certain set of anti-symmetric pairings
over arbitrary base schemes. This was our original approach, which works in
characteristic p > 2, also see [61]. We have not carried out this programme for
p=2.

(12.6) Remark. It seems plausible (using the notations in the previous
proof) that (X, A)[p] = (V,u)lp] — A. However, in general there is no
(Y, ) = A extending (Y, ps) such that (X, A) | xy and (Y, ) | n are isomor-
phic over A where X[p] = N = Y[p]; in other terms: the finite group scheme
with the symmetry (N,¢) can be included in a new (Y, u) D (Vs, pts), but in
general the finite group scheme with biextension (N, E) does not admit such a
construction.

13 Proof of the results

The set of superspecial points ¥ C A is a finite set of points. It is clear that
ES(X)=g¢g <= «a(X)=g <= X is superspecial,

i.e. there is a supersingular elliptic curve F and an isomorphism X ® k = EY.

(13.1) In Section 7 we have seen the construction of L, in (7.3) we have
proved that L is connected. In Section 8 we have proved that L = (Syo,... 0,1})°.
0O Theorem (1.1)

(13.2) In Section 11 we have seen how to produce new abelian varieties with
an elementary sequence ¢’ (see the notation in that section). Hence it follows
by induction from the superspecial locus that every elementary sequence does
appear, i.e. for every ¢ € ® the locus S, is non-empty. Using Section 10 and
Section 11, in particular (11.2) it follows that dim(S,) =| ¢ |.

O Theorem (1.2).
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(13.3) In (12.5) we have proved that a locus S, either does not meet (5,)°
or is contained in (S,)°: this is the first claim in Theorem (1.3).

Let ¢ € @, with ¢ # {0,---,0}, 1.e. S, # X. By (6.5) we know that every
irreducible component 17" C 7T, C A* is quasi-afline; because its dimension
is positive, this implies that its boundary 94+ (T) # #. By (6.3) we conclude
that d4.(7T) N A is non-empty; hence we see that every irreducible component
S C S, 1s not complete. Moreover using (12.5) this proves that every irreducible
component S C S, has a non-empty boundary in A, which is of codimension
one by (4.1), and we see it is a union of components of lower dimensional
strata. Hence by induction we see that every component of S, contains in its
boundary a component of the (unique) zero-dimensional stratum Syg...013;
hence by (8.4) we know that 9(S) contains an irreducible component of L.
Hence if ¢ # {0,---,0}, i.e. S, # X, then (S,)° is connected.

O Theorem (1.3)

Remark. Instead of using (6.5) in the proof of (1.3), we can use (6.3), induction
on ¢, and (12.5).

As A= (S{1,2,.... 1), we know by Theorem (1.3) that it is connected. Moreover
for n > 3 it is non-singular. Hence Ay 1 », @ IF,, ,, 1s geometrically irreducible for
every g and every n (not divisible by p). O Corollary (1.4)

(13.4) Tt suffices to show (1.5) in case we moreover assume n > 3. We note
that the locus V,_1 C A of non-ordinary polarized abelian varieties equals
Vy—1 = (Sf0,1,2,.-..9—1})¢. Let us work over an algebraically closed field k. Every
component of this closed locus contains at least one irreducible component of
L, and it contains at least one point of X.

Let [(Xo = E9,A)] = 2 € £ C V,_1. By [29], 6.1 we can put a prin-
cipal polarization on E?Y in diagonal form. We write out the display of the
universal deformation of (Xy = E9,A) on this basis. The Hasse-Witt matrix
of Xg is zero, and we see that a formal neighborhood of # in A is given by
SPE(KT: 5 | 1< i, < gl)/(Ti; — T;)); moreover

Vyg—1 @ k at z is given by Det(T; ;) = 0.

Claim. This equation is given by a non-zero, irreducible polynomial. This we
prove by induction on g. For g = 1 this is clear. Let T'= T ,, and write

Det(T} ;|1 <i,j<g)=:Dy=A-T+B,

where A = D,_; and B are polynomials in the other variables. The polynomial
A 1s non-zero, and for ¢ > 1 it is irreducible by the induction assumption. For
g > 1 we substitute T ; = 1 forall j <g—1,and Ty_1 , =T, ,-1 =1, and all
other variables = 0; this gives B — 1 and A — 0; because A is irreducible we
see that A and B are coprime. Hence AT + B is irreducible.
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Thus we see that V,_; ® k is locally irreducible at all x € 3. Hence for
every irreducible component L' C Ly, there is exactly one component of V,_1 @k
containing L’. Hence there is precisely one component of V,_1 @ k having non-
empty intersection with Lj;. By what has been said before this implies that
Vg—1 is geometrically irreducible. O Corollary (1.5)

14 Some questions

(14.1) We have seen that some strata are reducible (like X, like L, say for
large p). Some strata are irreducible (like A, like V; for ¢ > 1). What can be
said in general? We expect:
Conjecture. Let ¢ € & such that S, is not contained in the supersingular
locus. Then we expect that (S,)° is geometrically irreducible.

This is in agreement with the examples just mentioned; it was proved in
certain cases by Van der Geer, see [11], Theorem (9.9): take ¢ = {1,2,---,9 —
a,---,¢g—a}, with a < g.

(14.2) In (4.1) we have seen that T,, C A* is a quasi-affine set, and the same
for S,. We expect that I, is affine subscheme of A* for every . We expect
that there exists ¢ such that S, C A s not affine.

(14.3) Given two elementary sequences ¢, ¢’ € ® we have defined the relation
¢ <@ by ¢ (1) < p(i) for all i. We define

o Co &S, c(S,)°

It follows from (11.1) that ¢’ < ¢ = ¢ C . It is not so difficult to give
examples that the converse does not hold:

Example. We choose ¢, p € &7, and deformation which shows that

¢ Cp, while ¢ 4.

We choose ¢’ = {0,0,1,1,2,2,2}, hence ¢ ={0,0,1,1,2,2,2;3,4,4,55,6,7};
we choose ¢ = {0,0,0,1,2,3,3}, hence ¢ = {0,0,0,1,2,3,3;4,4,4,4,5,6,7};
clearly ¢’ £ ¢; we prove that ¢’ C . The standard type for ¢’ has a Dieudonné
module with basis:

Y7, X1,Ys, X0, Y5, Ya; X3, Xu, Yo, X5, Y1, Xg, Xr}.

We write out a display, where T, 5 = T' = T5 4, and all other other variables are
put to zero. Explicitly, on the basis given above, we have F : X5 — Ya+T X, =:
7, and all other images under F of base vectors are the same as before: under
F, all Y; are mapped to zero, and we have X7 +— Y3 and X5 — Z — T7-Y5, and
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X — Xo— Ys and X4 — Y5 and X3 — X7 — Y7. Over the field of fractions
k((T)) we choose a basis by:

Y2, Ye, Vs, X1, Xo, &3=2=YH'X4, 1a=Ys; &4=X3, n3=(1/T)Ys, Y5, Y1, X5, X6, X7};

this puts the generic fiber of the deformed module in standard form, with
elementary sequence ¢). O

We note that ¢’ is canonical, and it belongs to the cycles
{FVV,VFF, FYFFVFVV};, the final sequence belonging to ¢ is not
canonical; it belongs to the cycles {FVV; VFF; (FFVV)?}; we have seen that
¢' C . However, consider the cycles {FVFFVFVV} and {(FFVV)?}; these
define @, 8 € ¥4, and they correspond with elementary sequences {0,1,1,1}
and {0,0,1,2}; hence, although ¢’ C ¢, ”subtracting equal parts”, gives
FCpand @ DpN

We see: in general
pCe Pe=<y

Question. Is there an easy algorithm, using the combinatorics of sequences,
describing the relation ¢ C ¢'?

(14.4) On A we have defined a stratification A = U, S,. For every sym-
metric Newton polygon 3 there is a stratum Ws C A; this is the (closed) set of
points where the Newton polygon is either equal or above [3; we write Wg for
the locally closed set of points where the Newton polygon is equal to 3; we have
A=Upg Wg; for this structure, see [47]. Both stratifications are reasonably well
understood by now. However intersections are not so easy to understand. For
example, I have some information, but no proven complete results, which tell
us exactly which elementary sequences appear on the set Wg.

(14.5) Even more difficult is the question to describe intersections of all NP-
strata, and of all EO-strata with the Torellilocus j(My) =7, C (7)) =: Ty C
A; in these case I have no reasonable conjecture to offer. Here is an example:
Question. Does every symmetric Newton polygon appear on Ty ?

It is known that even for large values of g there are supersingular curves
of genus g, contrary what might be thought after dimension considerations, see
[12]. T expect the answer to this question to be negative for large g, but I have
no reasonable theory, no method, no examples to support this expectation.

I do not know which elementary sequences appear on 7.

Also I have no idea to describe the intersection of 7, with either of the
two foliations of Wg which will be described in [48].
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(14.6) Remark. Suppose that the answer to the question in (14.5) is neg-
ative, i.e. suppose there exists a symmetric Newton polygon which does not
appear on the corresponding 7,. Then it follows that there exists an abelian
variety over ) which is not isogenous with a Jacobian; this would answer a
question asked by N. Katz (we expect a negative answer):

Question. Is every abelian variety over Q, or over E 1sogenous with a Ja-
cobian? Note that over C there exists for every g > 4 an abelian variety not
isogenous with a Jacobian.

(14.7) In general a p-divisible group G is nol determined by the structure
of its p-kernel G[p]. For example, Choose g = 3, and consider all principally
polarized abelian varieties (X, A) with f(X) = 0 and a(X) = 1. We have seen
that in such a case we have (X[p], <,>) = Nyg1,2}, in the notation of Section
9; but we know that the formal isogeny type of X[p™] can be either G2 1 &G »
or 3-G1 1. Moreover, even if the formal isogeny type is given, then within one
of these classes there are infinitely many mutually non-isomorphic possibilities.
Many more examples along these line can be given.

However there are cases in which the p-kernel does determine the p-
divisible group. For example, if f(X) is maximal (the ordinary case), or if a(X)
is maximal (the superspecial case): over an algebraically closed field there is a
unique isomorphism class for the p-divisible group having this p-kernel.

Also, in (8.3), case (I), we have seen other cases where the p-kernel deter-
mines the p-divisible group.

It would be nice to have a general criterion which tells us when it should be
true that the p-kernel of a p-divisible group already determines the structure of
the p-divisible group. To that end we formulate a conjecture, which includes the
cases recorded above. We hope you can soon consult [48] for a more extensive
discussion.

We work over an algebraically closed field k. Let 3 = > (m;, n;) be a symmetric
Newton polygon. We write H(m,n) for the “minimal” p-divisible group in
the isogeny class of Gy, n, see [19], (5.3), see (8.1) above. We write H(S) =
@ H(M;,n;). There is an (obvious) principal quasi-polarization g on H(f)
(note that § is symmetric). For “minimal isogeny types” we could hope the
following to be true:

(14.8) Conjecture. Suppose (G, ) is a p-divisible group with a principal
quasi-polarization over an algebraically closed field k; suppose that there exists
a symmetric Newton polygon 3 and an isomorphism

(GA) |ap= (H(B), 1) l(s)p);  then we expect: (G, N) = (H(S), p).
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(14.9) Remark. We have seen that every elementary sequence appears in
Ag1 @ F,. We have constructed for every symmetric canonical type 7 a non-
empty, locally closed subscheme D, C A" = A, ® F,; however we do not know
which finite group schemes N = X[p] appear on a given irreducible component
of A, ®F,, i.e. we do not know which strata D, for an arbitrary canonical type
T are non-empty, and how they appear in components of A’.

(14.10) The following is true: Let S be a complete, irreducible scheme over
Fp. Let G — S be a p-divisible group, such that any two geometric fibers of
Glp] — S are isomorphic; i.e. if s,t € S(k), with k = k, then there exists an
isomorphism G[p]s = G[pls; equivalently: over some finite covering 7' — S the
group scheme G[p]r is constant. Then it follows that any two geomelric fibers
of G — S are isomorphic.

We hope to publish a proof soon, and we expect to come back to this and
related questions. Note that in general G does not become constant over any
finite cover. Note that in general the conclusion does not hold if we delete the
condition “S is complete”.

15 Appendix. Some notations

(15.1) Throughout this paper all base schemes, and all base fields, will be in
characteristic p. Let X be an abelian variety over a field K. The p-rank of X,
denoted by f = f(X) is defined by:

X[pl(k) = (Z/p)’,

where k denotes the algebraic closed field containing K, and X[p] is the group
scheme Ker(xp : X — X). An abelian variety X of dimension ¢ such that
F(X) = g (i.e. the case where the p-rank is maximal) is called ordinary.

We fix a positive integer ¢, a prime number p and a positive integer n not
divisible by p, and we denote by

./4 = Ag,l,n ® Fp,na

the moduli space of principally polarized abelian varieties with a symplectic
level-n-structure in characteristic p.

Let G be a group scheme over a field K. We write a(() := dimyHom(a,, G1),
where L D K is a perfect field containing K. Here o, = G,[F], the kernel
of the Frobenius morphism on the additive linear group of dimension one;
this group scheme is defined over [F,, and we will consider this over any base
without further indicating over which base it is considered. An abelian variety
is ordinary iff a(X) = 0.
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Let E be an elliptic curve over a field K (of characteristic p). Then either
has a point of order exactly p over an algebraically closed field £ D K, and in
this case the elliptic curve F is ordinary, or

f(F) =0, and the curve is called supersingular.

In short: an elliptic curve is supersingular iff its p-rank is zero, iff a(EF) = 1.
We say that an abelian variety X is supersingular if 1t 1sogenous to a product
of supersingular elliptic curves over some extension field. It is superspecial if
it 1somorphic to a product of supersingular elliptic curves over some extension

field.

For a commutative group scheme G and ¢ € Z~( we denote by G[q] the kernel
of multiplication by ¢ on G. In this paper the p-kernel X[p] of abelian varieties
in consideration will play a central role. We write X[p®] for the union of the
finite group schemes X [p’] for all 1 < i; note that it contains the formal group
X of X and X = X[p] iff f(X) = 0.

(15.2) Here is a survey of some of the notions about supersingular and su-
perspecial abelian varieties:
Theorem /Definition: Let k be an algebraically closed field of characteristic
p, and let E be a supersingular elliptic curve over k. Let X be an abelian variety
of dimension g over a field K C k. Let g > 2.
a

)

X ~ B9 <= Xy ~ FY &L x s supersingular.

b) If Eq,- -, Eay are supersingular elliptic curves, then
By X X By 2 Egq X - x Fag.

c) A supersingular elliptic curve is superspecial;

X 2 B9 <= a(X) =dimX < X = EY &Lox s superspecial.

The first statement was proved in [43], Th. 4.2. Statement (b) is a theorem
by Deligne [58], Th. 3.5 on page 580, which uses a class number computation
by Eichler, cf. [7]; also see [41]. For proving (c), note that if X = E9, then
a(X) = dimX, and by [44] it follows that X is isomorphic with a product of
supersingular elliptic curves, X = Fy x --- x Iy; such a product is isomorphic
with E¢ by (b). For further information, see [29].

(15.3) Covariant Dieudonné modules (with apologies to the Contravar-
ianists.) Over a perfect field (of positive characteristic) finite group schemes
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and p-divisible groups can be classified by the theory of Dieudonné modules.
This can be done in a contravariant way as in [40], [31]. One can also use the
covariant theory. And it is not important which one we choose as long as we
work over a perfect field: these two theories are anti-equivalent.

However as soon as we are working over a more general base ring
(e.g. when studying deformation theory) things are different. For finite group
schemes the theory is much more difficult, but see [17], [18]. For formal groups
Cartier developed a theory of covariant Dieudonné modules which works well.
Later this was developed and used in the disguise of displays, invented by Mum-
ford, see [36], and see [38], [39], [63], [64]. Therefore, in all cases we shall
work with the covariant theory.

For a domain R of positive characteristic p we write W = W(R) = W (R)
for the ring of infinite Witt vectors. The “Frobenius” x — zP on R lifts to a
ring homomorphism o : W — W. From now on we use a perfect field K. In that
case o : W(K) — W(K) is an isomorphism. We write E for the ring “power
series” in the variables F' and V with coefficients in W with the relations
FV =p=VF and Fa = «°F and aV = Va? for a € W. Note that F is
commutative iff K = IF,.
Finite group schemes over a perfect field. Denote by A = Moc,loc,K the
category of finite group schemes over the perfect field K which are of local-local
type. Dieudonné module theory tells us:

There is a covariant equivalence: D between N and the category of E-modules
of finite length on which F' and V act nilpotently. This equivalence has the
following properties:

tk(N) =p' < {(D(N)) =t.
Moreover (with apologies...):
D(F :N = NPy = (V4 AP,
DV : NP 5 N) = (F : AP 5 4),

notation: the module A®) is the one obtained from A obtained by the base
change o. We have distinguished the action of Frobenius on group schemes,
denoted by F', and the action on Dieudonné modules given by Frobenius, which
we indicate by F. In the central part of this paper, we consider an abelian
variety X, we write N := X|[p], we write A := ID(N) for the Dieudonné module
of this p-kernel. We use the operation V on N, which corresponds with F on
A.

(15.4) Serre duality. For a p-divisible group G = ind.lim;_ . G; (over an
arbitrary base) we follow Serre in defining the dual p-divisible group:

G' = ind.lim,_., G?;
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here —P is the Cartier dual, and xp : G411 — G; dualizes to inclusions GZ»D C
Gﬁ_l which we use to define G*.

Note that the duality theorem on abelian schemes, see [42], Th. 19.1,
implies that for an abelian scheme X — S we have:

Xp<) o= X

(15.5) Classification by Dieudonné and Manin, notation. In [31] we
find a classification for isogeny classes of p-divisible groups over an algebraically
closed field k£ O IF,. For a pair of non-negative integers m, n € Zgq a p-divisible
group G, ,, is defined. We write G o = G, = G, [p™]. We write Gy for its
dual, which in fact is the “constant group scheme” Q,/Z,.

For m > 0 and n > 0 which are relatively prime positive integers we write
Gm,n for a formal group of dimension m, whose Serre dual has dimension n,
and which is “isosimple”. It 1s defined by:

DGrmn) = WIE VI/WIE VI-(E™ = V7).

Over F, already we have the isomorphism:
(Gm,n)t = Gn,m~

The Dieudonné - Manin classification theorem reads:
Let k D I, be an algebraically closed field. For a p-divisible group G over k,
of dimension d and height h, there exist pairs {(m;,n;) | 1 < i < s} and an

1s0geny:
G~ Z G(m,,n,), Zml = d, Z(ml + nz) = h.

The set of these pairs is called the formal isogeny type of G. In case G
X[p®], the p-divisible group of an abelian variety the formal isogeny type i
“symmetric” and we can change the notation above into:

w

< o0
X[p™] ~ [f(G10® Go) @ 5:G1 @ Z (Gmyni ® Gnymy),s

where f € Z>q, and s € Z>q, and the integers m;, and n; are pairwise coprime
with m; > ni_> 0. N

A formal isogeny type can be encoded via the notion of a Newton poly-
gon abbreviated NP: for a p-divisible group G of height & and dimension d a
Newton polygon is a polygon in R? (or in Q2 if you prefer that), starting at
(0,0), ending at (h, h — d), which is lower convex and which has break points
in Z*. The p-divisible group Gy, , gives the slope n/(n 4+ m) with multiplicity
n+m. A direct sum as above gives a Newton polygon by ordering the slopes in
increasing order. Note that the local-étale part gives all slopes equal to 0, the
local-local summands gives slopes strictly between 0 and 1, and the étale-local
part gives all slopes 1.
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(15.6) Displays. This tool invented by Mumford, see [36], developed in [38],
[39], and by Zink in various manuscripts, see [63], [64], [65]; this describes
deformation theory by giving the Frobenius mapping on what we would like
to consider as the “Dieudonné module of the deformed p-divisible group”. In
this paper we do not use the full strength of that method. What we need is
the following (for more details on the notations, see [46], 1.9 - 1.12). Suppose
Gy is a p-divisible group over a perfect field K O TF,, and let My = D(Gy)
be its covariant Dieudonné module. Let {X/,--- X, Y/ --- Y/} be a W-basis
for My, such that Yy, --- Y/ € V(M); here we write X/ etc. because in Section
9 the notation X;, and Y; has been used for elements of a standard base for

D(Go [p])-

Displays of a p-divisible group over a field. In this situation we define the
display of this p-divisible group over a field. The o-linear map ¥ : My — Mj can

be written out on the W-basis {e1 = X{,---,eq = X, eq41 =Y/, -, e44. =
Y/} as:

A

Fej = Zaijei lgjgd,
=1
' A
e; = V(Zaijei) d<j<h=c+d;
i=1

we say that we have written the module in displayed form. We shall write
. A B
(ai,j|1§1a]§h):<c D);

This matrix, denoted by (a), will be called the matrix of the display. Note that
in this case the o-linear map F' is given on this base by the matrix

A pB
C pD )’

A=(ai; [1<4,j<d), B=(a;|1<i<d<j<h),

where

C=(a;j |1<j<d<i<h)), D=(aij|d<i,j<h).

Where the display-matrix is symbolically denoted by (a), we write (pa) sym-
bolically for the associated F-matrix (it is clear what is meant as soon as d is
given).

Suppose R is a complete Noetherian local ring with perfect residue class field
K. We assume p-1 = 0 € R. Let ¢, ; be elements in the maximal ideal of R,
with 1 <r <d<s<h,and let

T s = (trs,0,---) € W(R)

)
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be their Teichmuller lifts. Write

Tigr1 - T
. . A4+TC pB+plD

: : C oD .

Tyar1 - Tun

)

We can ask whether this is the matrix of a display connected with a deformation
of Gy. In fact:

Let K be a perfect field, let R be a complete Noetherian local ring with residue
class field K, and let Gy be a formal p-divisible group over K. The formulas
above define a display over the ring W of Witt vectors over R (in the sense of
[64]). Hence these formulas define a deformation G — Spec(R) of Gy.

Remark. One can show that the deformation just given is the universal defor-
mation of Gy in equal characteristic p, by taking the elements ¢, ; as parameters,

R:=K[t,; |1 <r<d<s<h]].

Suppose moreover the p-divisible group Gy has a principal quasi-polarization
Ao and let the base {X{, -, Y/} be symplectic (in this case ¢ = h — d = d).
Then assume moreover that

tr,s = ts—d,r+d € Ra

the displayed form above defines a deformation (G, X) as quasi-polarized formal
p-divisible group of (G, Ag).

In this case we renumber the elements as z; ; = ¢; j1q, Withd =g =c=
h/2x; ; = ti j4+q, with d = ¢ = ¢ = h/2. In this case the formal power series
ring

Re=Kf[wi; [1<4,7 <gll/(zij— 2 [ 1<, < g)

defines the universal deformation space of (G, Ag).

This gives an explicit description of the deformation theory of local-local p-
divisible groups over complete local domains in characteristic p; also the defor-
mation theory of such groups with a principal quasi-polarization, and hence,
by the theorem of Serre and Tate, of principally polarized abelian varieties (the
theory can be applied to much more general situations, but we will not need
that here).
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