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Introduction

In this paper we study the moduli space Ag � Fp of polarized abelian varieties
of dimension g in positive characteristic� We construct a strati�cation of this
space� The strata are indexed by isomorphism classes of group schemes killed
by p� a polarized abelian variety �X��� has its moduli point in a certain stratum
if X�p� belongs to the isomorphism class given by a certain discrete invariant�
We de�ne these invariants by a numerical property of a �ltration of N � X�p��

Passing from one stratum to a stratum in its boundary feels like �degenerating
the p�structure�� The fact that these strata are all quasi�a�ne allows us to keep
going in this process until we arrive at the unique zero�dimensional stratum	
the superspecial locus� One can formulate this idea by saying that the ordinary
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locus has several �boundaries�	 one where the abelian variety degenerates	 one
where the p�structure �becomes more special� �and an analogous idea for all
non�zero�dimensional strata�� This phenomenon	 non�present in this form in
characteristic zero	 but available and powerful in positive characteristic	 is ex�
pected to have many applications�

We feel that the strata S� and the closed subsets they de�ne inside Ag���
Fp merit further study	 see ����	 where another description for our strata is given
and where the cycle classes of the closures of the strata are computed� This is
a natural way of producing Chow classes	 or cohomology classes on Ag�� which
have a geometric interpretation when going over to characteristic p� It is clear
that these classes depend �on � but also� on the characteristic p chosen� Further
study might show how useful they are�

Remark� A polarization � � X � Xt on an abelian variety X induces a
homomorphism � � N � ND on N �� X�p�� The morphism � is symmetric
with respect to the duality X �� Xt	 and � is anti�symmetric with respect
to the duality N �� ND� Going back from � to some �	 and following these
and their relation under deformation theory is possible	 and in fact easy	 if the
characteristic of the base �eld is �� �� However	 in case of p � �	 then �� � ��
on N � X���	 and in general	 there are �anti��symmetric morphisms N � ND

which do not come from a polarization� This causes technical complications�
Sections  and �� can be simpli�ed considerably under the extra assumption
p � �� we have chosen to treat all cases uniformly� For a proof of ���� in case
p � �	 see Moonen	 ����� For a proof of ������ in case p � �	 see Wedhorn	 �����

Sections � and � follow closely the classi�cation in ��
�� as we need also
a description of the form on X�p� obtained from a principal polarization on X
we describe �standard types� in Section � this gives a classi�cation of group
schemes annihilated by p with an alternating form on their Dieudonn�e modules
over an algebraically closed �eld�

A short survey of the paper� The basic idea of the paper is� over an algebraically
closed �eld there are only a �nite number of �nite group schemes annihilated
by p of a given rank� Clearly this gives subsets of A by considering for every
abelian variety X the group scheme X�p�� We prove	 using an adaptation of an
idea by Raynaud	 that these strata are quasi�a�ne� Sections � � ��

Using a principal polarization on X we can make this more precise	 and
study these strata also at the boundary	 Sections � � ��

There is exactly one stratum of dimension one� This is contained in the
supersingular locus� purely algebraic arguments show that the closure of this
stratum is connected� Sections 
 � ��

Then we study in which way strata �t together� To this end we use defor�
mation theory	 in the disguise of �displays�	 see ������� we study how we can
move inside a stratum	 how we can move transversally out of a stratum	 and
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we show that strata �t together as is required in a strati�cation� Sections ��
� ��� In order to be able to describe these deformations we show that every
�polarized BT�� over an algebraically closed �eld can be put in standard form	
see Section � this proves the number of strata is �nite�

Logical order in some arguments in this paper�

� an idea by Raynaud	 generalized to our strata	 proves that these strata
in A� are quasi�a�ne	 see ������ using boundary behavior of strata	 see
�����	 this shows that positive dimensional strata in A contain in their
closure points of another stratum�

� using standard types we show that the boundary of a stratum is a union
of lower dimensional strata	 see ���� and �������

� in Section � we describe the unique one�dimensional stratum and in Sec�
tion 
 we show it is connected� hence all positive dimensional strata are
connected�

Remark� These methods use techniques in positive characteristic� One of the
corollaries of the main result of this paper is� Let k be a �eld� �x a positive
integer n not divisible by char�k� and consider the moduli space Ag���n � k of
principally polarized abelian varieties of dimension g with a symplectic level�n�
structure de�ned over a �eld containing k� this space is irreducible�

This result is well�known� for �elds of characteristic zero this is classical�
For �elds of positive characteristic this was proved by C��L� Chai and by G�
Faltings around ���� Their proof followed the same line as set out by Zariski�
Grothendieck�Deligne�Mumford for the moduli space of algebraic curves� �rst
prove the result in characteristic zero	 then construct �good� compacti�cations
of moduli spaces in all characteristics	 i�e� �over� Spec�Z�� then conclude by
Zariski�s connectedness theorem that the compacti�ed moduli scheme in pos�
itive characteristic is connected	 and derive the result� In this paper we prove
the irreducibility of Ag���n � k for �elds of positive characteristic	 and hence
it also shows the irreducibility in characteristic zero� as all constructions are
algebraic �also the construction of the minimal compacti�cation A� is�	 this
gives an algebraic proof of this fact�

The research for this paper started as joint work with Torsten Ekedahl� In an early stage

we had an idea how to apply the �Raynaud trick� to non�ordinary strata� this is described

in Section �� The construction of L� as in Section �� and the proof it is connected is due to

Ekedahl� Several technical details still had to be supplied� in particular the de�nition of the

strati�cation� andmethods like �standard types� became clear much later� Finally we decided

that this author would publish the results� � I thank Torsten Ekedahl for sharing his ideas

with me� the �rst idea of the paper is joint work� but I take full responsibility for correctness
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of the �nal result� � I apologize to several authors� who used already this structure� e�g� see

	
�� see 	��� and 	��� for the delay in publication of this paper�

Acknowledgments� I thank Johan de Jong� who made a suggestion which simpli�ed the orig�

inal de�nition of the strati�cation� I am grateful to Ben Moonen who spotted a mistake in

an earlier version� who had an essential suggestion in one of our many stimulating discus�

sions� and who contributed in writing down results in Section �� I thank Fabrizio Andreatta

for useful suggestions� I thank Ching�Li Chai� Eyal Goren� Ke�Zheng Li� and the referee for

helpful critical remarks�

Notations�We �x a prime number p� All base �elds	 all base schemes will be
in characteristic p� All group schemes considered will be commutative� Polar�
izations on abelian varieties are supposed to be principal polarizations starting
from Section ��

For n �Z�� we consider the ringZ��n� ��n�	 where �n is a choice of a primitive
n�th root of unity� If p is a prime number and n �Z�� not divisible by p	 we
write Fp�n for the smallest �eld containing Fp and containing �a �xed choice
of� a primitive n�th root of unity� We write Ag�d�n � Spec�Z��n� ��n�� for
the moduli scheme of abelian varieties with a polarization of degree d� and
a symplectic level�n�structure� When p and n are chosen	 typically	 we write
A � Ag���n � Fp�n�

� Results

For every elementary sequence �	 see �����	 there is a locally closed subset
S� � A � Ag���n � Fp�n� The unique zero�dimensional stratum � �� Sf�������g
is closed� A point ��X���� is in � i� it is superspecial	 i�e� for an algebraically
closed �eld k	 we have X � k �� Eg 	 where E is a supersingular elliptic curve�
The set �g of all elementary sequences of length g has cardinality ���g� � �g�

����� Theorem� The unique one�dimensional stratum Sf���������g equals L
��

and its Zariski closure is

L � �Sf���������g�
c�

where L� � L are as constructed in �
���� The closed curve L � A is connected�

����� Theorem� Every stratum S� � A is non�empty and is quasi�a�ne �i�e�
dense�open in an a�ne scheme�� For every elementary sequence � all compo�
nents of S� have the same dimension and we have�

dim�S�� � j�j ��

i�gX
i��

��i��
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����� Theorem� The disjoint union

A �
G
�

S�

is a �nite strati�cation� the boundary �A�S�� �� �S��
c� S� is the union of all

strata meeting that boundary�

�A�S�� �
G
��

S�� � the union taken over 	 �S��
c 
 S�� �� ��

i�e� either S�� does not meet �S��c	 or it is contained in �S��c�
For every � � �� with � not superspecial� and every irreducible component

S � S�� there exists an irreducible component L� � L contained in Sc� Hence�
every stratum S� with � �� f�� � � � � �g� i�e� which is not the superspecial locus�
has the property that �S��c is connected�

����� Corollary �Faltings	 Chai�� Let k be an algebraically closed �eld� and
let n �Z��� such that char�k� does not divide n� The moduli space Ag���n � k
is irreducible�

����� Corollary� Consider Vg�� � Ag���n � Fp�n� the locus of the non�
ordinary principally polarized abelian varieties� Suppose g � �� This locus is
geometrically irreducible�

����� 	Polarized BT� truncated group schemes
� For a complete clas�
si�cation of all �N����� � �X����p�	 where N � X�p� over an algebraically
closed �eld k	 see Section �

����� For a complete classi�cation of all principally polarized abelian varieties
�X��� in characteristic p with a�X� � g � �	 see Section ��

� Filtrations on �nite group schemes

In this section we de�ne the canonical �ltration on certain �nite group schemes�
We derive some elementary properties�

����� All base schemes in this paper will be in characteristic p� All �nite
group schemes considered will be commutative� If we consider N � S	 a group
scheme over a base	 it is supposed to be �nite and  at over S�

We write F � N � N �p� for the Frobenius homomorphismand V � N �p� �
N for the Verschiebung homomorphism� All �nite group schemes considered in
this section will be annihilated by p�
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For a group scheme N � S	 commutative and �nite and  at over S	 we will
write N �F � �� Ker�F � N � N �p��	 we write V �N � � Im�V � N �p� � N �	 if
these exist as �nite  at group schemes over S� if this is the case we say that
N�S is a Barsotti�Tate truncated level one group scheme if it is annihilated by
p	 i�e� �p�N � �� and

Im�V � N �p� � N � � Ker�F � N � N �p��� Im�F � N � N �p�� � Ker�V � N �p� � N ��

Such a group scheme will be called a BT��
Suppose T � N a subgroup scheme� We will write F���T � � N for the

�nite  at subgroup scheme �if it exists as a �nite  at group scheme over S�
which is the pull back by F � N � N �p� of T �p� � N �p�

����� Construction� the canonical ltration� We suppose N is a BT�

over a �eld K  Fp � We construct a �ltration�

� � N� � � � � � Nr � V �N � � � � � � Ns � N �

here
Nr � H �� V �N � � N �F ��

and � � r � s are integers� The construction is as follows� in the �rst step on
considers all images V i�N �� this gives a �ltration of N � in the second step we
take all F�j�N ��	 j �Z��	 for every N � in the previous �ltration� then we go
on by induction� in all odd numbered steps we take all V i�N ��	 for all N � in
the previous �ltration� in all even numbered steps we take all F�j�N ��� Each
step gives a �ltration which is a re�nement of the previous one� Note that odd
numbered steps add at most new steps in the �ltration of � � H	 and even
numbered steps add at most new steps in the �ltration of H � N � After a �nite
number of steps the process stabilizes	 in fact after at most ��q � �� steps if
rk�N � � pq� the �ltration reached will be called the canonical �ltration of N �

Let E be the set of all �nite words in the symbols V and F��� The set of
subgroup schemes fW �N � jW � Eg is the canonical �ltration of N �

Note that we performed construction of the canonical �ltration for a BT�

over a �eld� For a group scheme over an arbitrary base the canonical �ltration
need not exist �steps might produce non� at group schemes�� We will come
back to this�

����� Notation� A BT� over a �eld K has a canonical �ltration	 and we
derive a triple 	 �N � � 	 � fv� f� 
g	 where�


 � f�� � � � � sg �Z��� v � f�� � � � � sg � f�� � � � � rg� f � f�� � � � � sg � fr� � � � � sg�

are de�ned by�

rk�Ni� � p��i�� V �Ni� � Nv�i�� F���Ni� � Nf�i��
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The triple fv� f� 
g will be called the canonical type of N � it will be denoted
by 	 �N �� We describe some properties� We write ! � !s � f�� � � � � s� �g� We
de�ne �� � � � !� ! by�

v�i � �� � v�i�� ��i� �� v�i�� v�i � �� � v�i� � ��i� �� f�i��

We write Bi � Ni���Ni for every i � !� Note that the maps v and f are
monotone	 i� e� v�i � �� � v�i� and f�i � �� � f�i� for all i�

����� Lemma� Let N be a BT� over a �eld K� and let fv� f� 
g be its canon�
ical type� Then�
�i� the maps v � f�� � � � � sg � f�� � � � � rg and f � f�� � � � � sg � fr� � � � � sg are
surjective� the map � � !� ! is bijective�
�ii�

v�i � �� � v�i� �� f�i � �� � f�i�� in this case V � B
�p�
i

�
�� B��i�

is an isomorphism�
�iii�

v�i � �� � v�i� �� f�i � �� � f�i�� in this case F � B��i�
�
�� B

�p�
i

is an isomorphism�
�iv�

f�i� � v�i� � s � i�

Remark� Consider the set E of all �nite words in the letter V and F��� For
w � E and a BT� over a �eld as above we consider the rank of w�N �� The
group scheme N determines a function E � Zby w �� rk�w�N ��� we write
this function as indexed set frk�w�N �� j w � Eg� if these functions are equal
for N� and N�	 then 	 �N�� � 	 �N���

����� Notation� Cycles� The bijection � splits up ! into cycles	 orbits under
the group generated by ��

! � !� t � � � t !m�

For an element i � ! we say n �Z�� is the order if n is the smallest positive
number such that �n�i� � i	 i�e� if i � !b then n � ��!b��

Proof of ������ In the canonical �ltration every � � Ni � H � V �N � is
the image under V of a group scheme in the �ltration �this is the way these






Ni are constructed� hence v � f�� � � � � sg � f�� � � � � rg is surjective� The same
arguments for H � Ni � N show that f is surjective� We show that � � !� !
is injective� indeed	 suppose ��i�� � ��i�� � r� then ��i�� � v�i�� � b � v�i�� �
��i��� as v is monotone	 the fact v�i���� � v�i�� � b � v�i�� � v�i���� implies
i� � i� �there is precisely one i at which v�i� jumps from b to b� ��� note that
��i� � r implies v�i � �� � v�i�� if ��i�� � ��i�� � r the same arguments
involving f show that i� � i�� this proves that � � !� ! is bijective�

As � is bijective	 we obtain the cycle structure on ! as indicated above�
Claim� For every i � ! we have rk�Bi� � rk�B��i��� For every i � ! the ho�

momorphism V � B�p�
i � Nv�i����Nv�i� is surjective	 and F � Nf�i����Nf�i� �

�Ni���Ni��p� is injective� this proves the claim�
Following the elements in a cycle under �	 we see that

rk�Bi� � rk�B��i�� � � � � � rk�B�n �i�� � rk�Bi��

We conclude that v�i � �� � v�i� implies that

V � B
�p�
i

�
�� Nv�i����Nv�i� � Bv�i�

is an isomorphism� This shows that �Ker�V � 
Ni��� � Ni� hence we conclude
that v�i � �� � v�i� � f�i � �� � f�i��

In the same way we show that f�i � �� � f�i� implies that

F � Nf�i����Nf�i� � Bf�i�
�
�� B

�p�
i

is an isomorphism and that v�i � �� � v�i��
Clearly f��� � v��� � r � �� by �ii� and �iii� the last claim follows� This

concludes the proof of Lemma ������ �

����� Corollary� Let i � !� and let n � Z�� be the order of i under ��
The maps in �ii� and the inverses of the maps in �ii� above give a �canonical�
isomorphism

B
�pn�
i

�
�� Bi�

�

����� Denition� A triple 	 � fv� f� 
g is a canonical type if � � r � s are
integers� v� f and 
 are maps as in ���	�� such that�

� 
 � f�� � � � � sg �Z�� is strict monotone with 
��� � �	

� the maps v and f are monotone and surjective� with

v�i��� � v�i� �� f�i��� � f�i�� v�i��� � v�i� �� f�i��� � f�i��

this de�nes a permutation � of ! �� f�� � � � � s� �g�

�



� 
�i � �� � 
�i� � 
���i � ��� � 
���i�� for every i � !�

We have seen that a BT� over a �eld de�nes a canonical type� Conversely�

����� Remark� For every canonical type	 there exists a BT� over a �eld
�even over Fp� having this canonical type� We will not use this� this simple
observation can be easily proved with methods indicated later�

Methods of this section can be easily derived from ��
�� In Section � we will
give more details on �ltrations	 and we give a classi�cation of symmetric BT�

group schemes� All these methods will be easy	 and in fact almost equivalent
to ��
�� Then	 in Section  we will classify �polarized BT� truncated group
schemes�� this will be the backbone of the deformation theory in later sections�

����� Remark� In the case of symmetric BT��s we will study the possible
canonical types more in detail in Section ��

Cycles studied in this section in ! will be called �V� F����cycles	 in con�
trast with ��V����cycles� studied later�

� Strata� the canonical strati�cation of the

moduli space of abelian varieties

����� Lemma� Let h � M� � M� be a homomorphism of �nite 
at group
schemes over a noetherian scheme S� let R be a positive integer� Consider all
points s � S such that Im�hs �M��s �M��s� has rank equal to R� These points
give a locally closed set S�R� � S� this is a locally closed� reduced subscheme�
and Im�h �M� �M��jS�R��M�jS�R� exists as a �nite 
at group scheme�

Let h � M� � M� be a 
at surjective homomorphism of �nite 
at group
schemes over a noetherian scheme S� and let N� � M� be a 
at subgroup
scheme� let R be a positive integer� Consider all points s � S such that
h����N��s� has rank equal to R� These points give a locally closed set T �R� � S�
this is a locally closed� reduced subscheme� and h���N��jT �R�� M�jT �R� exists
as a �nite 
at group scheme�
Proof� The rank of the �bers of the �nite group scheme Ker�h � M� � M��
is upper�semicontinuous� Hence S�R� � S is locally closed� Over this scheme
Ker�h�jS�R� is �nite with geometric �bers of constant rank� hence it is  at by
���	 Lemma ������ on page ���� Hence the quotientM�jS�R� �Ker�h�jS�R� exists
as �nite	  at group scheme	 see ����	 page �����
	 Th� 
��� this is a closed sub�
scheme of M�jS�R�	 the image of hjS�R�� The same arguments show the second
part of the claim� �

Notation� Let 	 be a canonical type	 and let N � S be a BT� over S� We





denote by D� �S� the set	 considered as reduced subscheme	 of points s � S
such that the �ber Ns has canonical type 	 �Ns� � 	 �

����� Proposition� Let 	 be given� and let N � S be a BT�� Then

D� �S� � S

is locally closed�
Let a canonical type 	 be given� and let N � T be a BT�� with T reduced�

such that for every s � T we have 	 �Ns� � 	 � i�e� �the type in the �bers of
N � T is constant�� Then the canonical �ltration of N�T exists� i�e� there
exist �nite 
at subgroup schemes Ni � N � S� which are obtained by the
construction of the canonical �ltration� and which in every �ber Ns give the
canonical �ltration�
Proof� As we have seen	 	 �Ns� is determined by the set frk�N � j w � Wg� It
su�ces to consider only words of length at most �q�q � ��	 where q � rk�N ��
Consider the collection of all such words� for a given type 	 �x the ranks of the
images of each word belonging to the given type 	 � Start with S � S�� Suppose
b � Z��	 suppose we work over a base Sb��	 and suppose that all words of
length at most b � � have �images� which are  at group schemes over Sb��

of the given ranks� The set Sb � Sb�� is the reduced locally closed subscheme
where the image of every word of length b has a given rank �determined by
	 �� This exists� use the previous lemma� Repeating this argument for all words
and all ranks we have obtained from 	 we obtain a locally closed set S�q�q��� in
the base where all �images� have constant ranks	 and give  at group schemes�
This is the set we are looking for�

If 	 ��� is constant on T 	 in each step of the proof of the previous lemmawe
obtain subgroup scheme of constant rank in N 	 hence  at subgroup schemes by
���	 Lemma ������ on page ���� This shows that the construction of the canon�
ical �ltration under the condition 	 ��� is constant on T produces a �ltration
by  at subgroup schemes	 and the proposition is proved� �

Obviously the canonical �ltration on a group scheme over an arbitrary base
does not exist if the type changes�

����� Notation� Let 	 be a canonical type� For a �xed n �Z�� consider the
moduli space

A� �� Ag���n � Fp�n � �d Ag�d�n � Fp�n�

We write
D� �� D� �A

�� � A�

for the locally closed reduced subscheme consisting of moduli points s � A�	
where s comes over some �eld from an abelian varietyXs	 such that 	 �Xs�p�� �
	 � This is a locally closed closed subset� Note that the rank of Xs�p� equals �g�
Note that only a �nite number of canonical types exist for a given rank�

��



����� Denition�We have obtained a �nite disjoint union into locally closed
subsets�

A� �
G
�

D� �

This is called the canonical strati�cation of A�� In some papers this is called
the EO�strati�cation	 or the Oort strati�cation�

����� Remark� We study some properties of this strati�cation on A�� Then	
in order to describe more precise results we will restrict later to the case of

A � Ag���n � Fp�n�

the moduli space of principally polarized abelian varieties in characteristic p�

� The Raynaud trick on Ag � Fp

����� Theorem� For every canonical type 	 every irreducible component of
the stratum D� � A� �� �d Ag�d�n � Fp�n is a quasi�a�ne subscheme�
Proof� It su�ces to show this in case of arbitrary high level structure� Hence
we suppose A� � �dAg�d�n � Fp�n	 with n �Z�� not divisible by p� We choose
a component T � D� � A��

We are going to show that the theorem follows from ampleness of the
determinant line bundle associated with the sheaf of invariant di�erential forms
on the �universal semi�abelian scheme�	 as proved by Moret�Bailly	 see ����	
also see ����	 combined with the properties we proved on cycles in the p�kernel
constructed by the canonical �ltration	 see ������

Let X � A� be the universal abelian scheme� We write tX�A� for the
tangential sheaf of X � A� along the zero�section	 and we write �X�A� for its
determinant line bundle of its dual�

�X�A� � Det�tdualX�A�� � Det�"X�A���

see ����	 page �� and page ��
�

Claims� �� Under these conditions� the line bundle �X�T on T is a torsion
line bundle�
�� From this it follows that T is quasi�ane�
By ����	 Chap� IX	 and ����	 I�� and V��	 Th� ���	 we conclude that �jT is ample�
if we assume ��� it is also torsion� hence T is quasi�a�ne� This proves� ��� �
����

We show that ��� is true� We write N �� X �p� jT � By ����� we see that the
canonical �ltration fNi j � � i � sg by �nite  at subgroup schemes of N

��



exists� We have�

� � N� � N� � � � � � Nr � N �F � � V �N ��

we see that all tangential sheaves

tN��T � � � � � tNr�T � tX�T

are well�de�ned	 of constant rank� We write Li �� Det�tNi���T�tNi�T �	 for
� � i � r	 and we are going to show that these are torsion line bundles� By
����� we know that if i � ! has order n�i� � n � � under � � ! � !	 then for
Bi �� Ni���Ni we have

�Bi�
�pn� �� Bi� hence �Li�

pn �� Li�

this shows that Det�Li�p
n�� � �� We conclude that Det�tX�T � � Det�L�� �

� � ��Det�Lr� is torsion� hence its inverse �jT is torsion� This shows ���	 and it
�nishes the proof of Theorem ����� �

����� Remark� A special case of this proposition is due to Raynaud� if S is
irreducible and complete	 in characteristic p	 and X � S is a family of ordinary
abelian varieties �i�e� all �bers have maximal p�rank�	 then the natural map
S � Ag � Fp is constant	 i�e� the family X � S is isotrivial	 cf� ����	 Th� �	
page ��	 cf� ����	 XI��	 page ��
� This beautiful idea by Raynaud stimulated us
to look for some of the basic notions as exposed in this paper�

The example of p�rank equal to f � g � � is worked out in ����	 ���� that
case can be seen as a motivating example illustrating the proof of the �Raynaud
trick� in the general setting	 as given above�

In the case of a family of ordinary abelian varieties the tangent bundle can
be trivialized by a �nite covering	 because �p is rigid�� that was the original
idea by Raynaud� In case of lower p�rank	 the fact that �p does not admit a
canonical base seems to spoil the case� however then we consider the p�kernel
X �p�	 �go up and down� by V and by F�� we prove that the determinant of
the tangent bundle is torsion	 as is done above�

From now on abelian varieties considered will be principally polarized�

� Filtrations on �nite symmetric group

schemes

In this section we consider symmetric BT��s	 and we describe and characterize
�ltrations on such �nite group schemes�

Finite group schemes will be considered	 usually over a �eld	 sometimes
��nite and  at� over a more general base� We will write N for a �nite �commu�
tative� group scheme� All �nite group schemes considered in this section will
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be annihilated by p� when over an arbitrary base we suppose the group scheme
is �nite and  at over that base� In all cases we assume that we work with a
BT��

����� Denition�We say that � is a symmetry on a �nite group scheme N
if

� � N
�
�� ND

is an isomorphism onto its Cartier dual group scheme� A �nite group scheme
which admits a symmetry is called a symmetric �nite group scheme�
Remark� Later we will be more precise whether this symmetry has extra
properties �like being alternating or anti�symmetric��

For commutative group schemes we have

�FN � N � N �p��D � �VND � N �p�D � ND�p� � ND��

as V commutes with base change we derive

��VN � VND ���p� � �FN �
D ���p��

Notation� Suppose � � N � ND is a symmetry	 and i � T �� N is a �nite
subgroup scheme� we write�

���T � � ��T � �� Ker�N
�
�� ND iD

�� TD��

Earlier we have considered the set E of all ��nite� words in the symbols V and
F��� For a BT� group scheme N over a �eld the �ltration fW �N � j W � Eg
was called the canonical �ltration�

Consider the set e of all ��nite� words in the symbols V and��We consider
the set of �nite subgroup schemes fw�N � j w � eg of N �

����� Lemma� Let N be a �nite group scheme over a �eld K� Assume this
is a BT�� Assume there is a symmetry � � N

�
�� ND on N � Then the following

properties hold�
�� ����T �� � T �
�� ��V �N �� � V �N ��
	� the set fw�N � j w � eg is a �nite �ltration on N �
�� ��V �T �� � F�����T �� for every subgroup scheme T � N �
�� fw�N � j w � eg � fW �N � jW � Eg�
Remark� The last property shows that the canonical �ltration does not depend
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on a particular choice of the symmetry�
Proof� �� The �rst property follows by dualizing

��T �� N
�
�� ND � TD�

�� The second follows from� ��V �N �� � Ker�F � � V �N ��
�� Note that ��N � � �� hence for every word of the form w � w�����V i��� we
have w�N � � w��N �� Hence we need only consider words ending with a positive
power of V � The set fV i�N � j i �Z��g is a �ltration of V �N � which stabilizes
after a �nite number of steps� The set f��V i�N �� j i �Z��g is a �ltration of
V �N � � N � Hence f�V j ���V i��N � j i� j �Z��g is a �ltration	 etc�� we carry on
by induction on the number of letters in the words in consideration� this shows
that we obtain a �ltration� because N is a �nite group scheme	 this is a �nite
�ltration�
�� This follows because

�F � N � N �p��D � �V � �N �p��D � �ND��p� � ND��

�� As we have seen	 we need only consider words w ending with V 	 and the
same for words W � If w � V � e	 then also w � E� If w � w����V 	 then
w�N � � �w��V ��N �� Suppose w ends in V �� note that if i� j �Z�� then

�V i���V j����T � � �V i�F�j��T ��

We write either w � w��V b �in case � appears an even number of times in w�	
or w � w��V a���V b �in the odd case�	 where a �Z��	 and b �Z��	 and where
w� is a �nite product of factors of the form V i���V j ��� in the second case	 note
that

w�N � � �w��V a���V b��N � � �w��V a�F b���V ��N ��

hence in both cases there exists a word W � E such that w�N � � W �N ��
Hence

fw�N � j w � eg � fW �N � jW � Eg�

Conversely	 considering all V i�F�j	 with i � �	 in a wordW ending on V shows
the opposite inclusion� This ends the proof of the lemma� �

����� Denition� Let �N� �� be a symmetric BT� over a base S� We say that

� � N� � � � � � Ni � � � � � Nr � H � V N � N �F � � � � � � N�r � N

is a good �ltration if the following conditions are satis�ed�

�� Each Nj � S is a  at subgroup scheme	 Ni �� Ni���

�� For every � � j � �r duality gives an equality

��Nj� � N�r�j �
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�� For every � � j � �r	 the image Im�V � N
�p�
j � N � exists as a �nite

 at group scheme over S	 and it equals one of the group schemes in the
�ltration	 and

�� for every � � i � r	 the group scheme Ni is such an image�

We say that a good �ltration is a �nal �ltration if moreover its length equals
�g with p�g �� rk�N�S��

� � N� � � � � � Ng � V �N � � � � � � N�g � N

by �nite	  at group schemes over S	 such that�

�� the rank of Ni over S equals pi�

����� Proposition� Let N be a symmetric BT� over a �eld� Its canonical
�ltration	 as constructed in Section �	 is a good �ltration�
Proof� In Lemma ����� we have seen that the canonical �ltration constructed
with the help of V and F�� is the same as the one constructed with V and ��
Hence the canonical �ltration is stable under �� hence it satis�es ���� Conditions
��� and ��� follow by construction� �

We see that the canonical �ltration �if it exists� is the �minimal good �ltration�
and a �nal �ltration �if it exists� a �maximal good �ltration��

����� Proposition� Suppose that N is a symmetric BT� over a base S � Fp
with a good �ltration

� � N� � � � � � Ni � � � � � Nr � H � � � � � N�r � N

on it� For every j with � � j � �r we write ��j� for the integer with the property

Im�V � N
�p�
j � N � � N��j��

�� For every � � j � �r the inverse image of N
�p�
j under F � N � N �p� equals

F���N
�p�
j � � N�r����r�j��

�� For every � � j � �r there is an exact sequence

� � N�r����r�j����N�r����r�j�
F
�� N

�p�
j���N

�p�
j

V
�� N��j����N��j� � ��

	� For every � � j � �r

��j� � ��j � �� �� ���r� j� � ���r � j � �� � ��
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�� If � � j � �r and ��j� � ��j � ��� then ��j� � � � ��j � ��� and

V � N
�p�
j���G

�p�
j

�
�� N��j����N��j��

Proof� From

V �N �p�
�r�j� � N���r�j�

we deduce

F �N�r����r�j�� � N
�p�
j �

Hence all arrows as claimed in the proposition exist� In order to show the
statements it su�ces to show these for every �ber Ns � Spec�K� � S	 where
K is a perfect �eld� We write A � D �Ns � for its Dieudonn�e module�

�� In order to show V���A�p�
j � � A�r����r�j� we observe�

x � V���A�p�
j ��� V�x� � A

�p�
j ��

�� 	y � A�r�j� � Vx� y �� ��� 	y � A�r�j � � x�Fy �� ���

�� 	z � F�A
�p�
�r�j� � A���r�j�� � x� z �� ��� x � ��A���r�j�� � A�r����r�j��

�� The sequence as in ��� exists	 surjectivity on the right follows from the
de�nition of � in a good �ltration	 and injectivity on the left follows from ����

In order to show exactness in the middle	 we choose x � A
�p�
j�� such that

Fx � A��j� � F�N
�p�
j ��

Let y � A
�p�
j with Fx � Fy� Then F�x � y� � �	 hence there exists z with

Vz � x � y � A
�p�
j��� By ��� this implies z � A�r����r�j���� As Vz and x are

congruent mod Aj this proves exactness in the middle�
�� For any index j � �r we have ��j��� � ��j�� �� If ��j� � ��j��� then by
��� we conclude ���r� j� � ���r � j � �� � �� Note that ���r� � r� Hence by
the previous argument	 it is excluded that for any j we have ��j� � ��j � ��
�and ���r� j� � ���r� j � ��� This proves ����
�� This follows from ��� and ���� �

����� Denition� Final types and elementary sequences� A �nal se�
quence is a map � � f�� � � � � �gg � Z�� with ���� � �	 and ���g� � g	 such
that

��i� � ��i � �� � ��i� � �� � � i � �g�

and

��i� � � � ��i � ���� ���g � �� � ���g � i � ���
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Note that this implies�

���g � i� � ��i� � g � i�

An elementary sequence is a map � � f�� � � � � gg �Z�� with ���� � � and

��i� � ��i � �� � ��i� � �� � � i � g�

A symmetric canonical type is a canonical type as in ����� with s � �r and the
extra conditions

f�j� � �r � v��r � j�� 	� � j � r�

and

�j � ��� 
�j� � 
��r � j� � 
��r � j � ��� 	� � j � r�

Note that in a symmetric canonical type we have f�j� � �r � v��r � j� �
r � j � v�j� hence v��r � j� � v�j� � r � j for all j� If N is a symmetric BT�

over a �eld	 its canonical �ltration	 given by V and F��	 de�nes a canonical
type	 and this is symmetric�

We could de�ne a good type as a pair of maps � � f�� � � � � �rg � f�� � � � � rg	
and 
 � f�� � � � � �r��g �Z�� satisfying obvious rules generalizing the de�nition
of a symmetric canonical type� Here f is given by f�j� � �r � ���r � j�� We
will not need this de�nition�

The set of all �nal sequences for given value of g is denoted by # � #g� The set
of all elementary sequences for given value of g is denoted by � � �g� Clearly
���g� � �g �in each step the sequence � either jumps by one	 or does not
jump��

We de�ne a partial ordering on � by�

�� � �
def
�� ��i�� � ��i� 	i � g�

Observe that any maximally totally ordered subset in � has length equal to
g�g � �����

We de�ne a �dimension function� j�j � ��Zon �	 by�

j�j ��

i�gX
i��

��i��

Note that for a �nal sequence we have ���g � i� � ��i� � g � i for � � i � g�
we call this �symmetry�� A �nal sequence � de�nes an elementary sequence �
by ��i� �� ��i�	 	 � � i � g� we call this �truncation� of the �nal sequence�
Conversely	 an elementary sequence � de�nes a �nal sequence � by� ��i� �
��i� � ���g � i� � g � i for � � i � g� this is inverse to the �truncation�
process�
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Combinatorial constructions� Suppose given a symmetric canonical type
	 � fv� f� 
g� We associate to this a �nal sequence and an elementary sequence
� � stretch�	 � by �stretching�� suppose f����� ����� � � � � ��
�i��g is de�ned	
for � � i� then de�ne f����� ����� � � � � ��
�i � ���g by ��
�i�� � ��
�i� � �� �
� � � � ��
�i� ��� if v�i � �� � v�i�� f����� ����� � � � � ��
�i� ���g by ��
�i�� �
��
�i���� � � � � � ��
�i���� if v�i��� � v�i�� clearly this procedure produces
an elementary sequence�

Suppose given a �nal type� Single out those indices which can be reached
by starting with �g and applying j � ��j� and i� �g� i as many times until
no further indices appear �this we call the canonical construction�� then delete
all numbers not appearing	 and construct a canonical type 	 from these data
in the obvious way�

Remark� We shall see that for a �polarized BT�� over an algebraically closed
�eld the canonical �ltration can be re�ned to a �nal �ltration	 see ����� The
�nal type associated to a canonical type by stretching is the the type of any
�nal �ltration associated with the canonical �ltration� A re�nement from a
canonical �ltration to a �nal �ltration is not unique in general� However the
�nal type and the elementary type are uniquely determined by the canonical
type	 and are the ones obtained by stretching and truncation�

����� Lemma� Suppose given g �Z��� There is a natural bijection of sets�
�CT� all symmetric canonical types 	 � fv� f� 
g with 
��r� � �g�
�FT� all �nal sequences � � #g �
�ES� all elementary sequences � � �g�

where �CT� � � is given by stretching� and #� � is given by truncation�
Proof� It is clear that stretching indeed produces an element in �� From an
elementary sequence � we de�ne a �nal sequence by �symmetry�� this map
�� # is left an right inverse to truncation� Given a �nal sequence �or a �nal
�ltration� we produce a canonical type �or a canonical �ltration� by applying
the construction of the canonical type �or construction of the canonical �ltra�
tion�� It is straightforward that all maps involved are bijective �and in fact
inverse to each other where applicable�� �

����� Notation� Let N be a symmetric BT� over a �eld� its canonical type
de�nes an elementary sequence� this will be denoted by ES�N � � �� For an
abelian variety X over a �eld	 which admits a principal polarization� the iso�
morphism X

�
�� Xt	 using the duality theorem	 see ����	 ���	 shows that

X�p� �� Xt�p� �� X�p�D	 and it follows that N � X�p� is symmetric� we write
ES�X� �� ES�X�p�� � ��

����� Cycles� Suppose given a canonical type �or a canonical �ltration on a
BT� over a base�� We have de�ned a �V� F����cycle in Section �lt for a canonical
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type by

! � f�� � � � � �r� �g� � � !� !

and we obtain a disjoint union

! � !� t � � � t !m

of �V� F����cycles�
Suppose we have a symmetric canonical type� We generate an equivalence

relation	 the �V����relation	 by iterating�

��j� � ��j � �� �� j � � � ��j � ��

and

j � � � �r� j � ��

Explanation� in a canonical �ltration	 we declare the steps	 where

V � N �p�
j �N

�p�
j�� � N��j��N��j���

is an isomorphism	 to be equivalent steps	 and we declare dual steps under �
to be equivalent�

Remark� We can achieve the �V� F����equivalence and the �V����equivalence
as follows� Connect vertices in ! by ordered edges V and F ���� and by un�
ordered edges �� Deleting the ��edges gives the �V� F����equivalence and the
�V� F����cycles� Deleting the F �����edges gives the �V����equivalence and the
�V����cycles� We easily see that a �V����equivalence class consists of a graph
which contains exactly one cycle and in each vertex j in the cycle�
�� Either in the cycle an edge � ends in j	 and an edge V starts� no V ends in
j�
�� Or an edge V ends	 an edge V starts in j	 and there is an edge � attached
to j	 not included in the cycle�
�� Or an edge V ends in j	 an edge � is attached to j	 no V starts in j� the
cycle passing through j reads�

� � �
V
�� j

�
�� �r � j � �

V
�� � � � �

only in the second case there is is an edge attached to j not contained in the
cycle ��a loose edge���

We study the relation between the �V� F����equivalence relation and the
�V����equivalence relation�
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������ Lemma and denition� Suppose given a symmetric canonical type
	 � Let ! � !� t � � � t !m be the disjoint union of �V� F����cycles� Then�

�i� The operation � � ! � ! respects the disjoint union into �V� F����
cycles�
Suppose !� � !i for some index i� then

�ii� odd either ��!�� � !�� in this case ��!�� is an even number� in this
case there is precisely one �V����cycle in !� and !� is a �V����equivalence class�
this �V����cycle in !� contains an odd number of symbols �� this will be called
an odd cycle� in this case the length of the �V����cycle is this odd number plus
��!�����

�iii� even or ��!�� � !�� �� !�� in this case ��!� � !��� is a �V����
equivalence class� in this case the �V����cycle in !� � !�� contains an even
number of symbols �� this will be called an even cycle�
Proof� By construction we have ��� � ���� This proves �i��

Suppose !� � !i � ��!�� for some index i� Let j � !�� Then ��j� �
��!�� � !�� Let w be the shortest word in V and F�� with w�j� � ��j�� Then
w���j�� � j	 where w is the word obtained from w by replacing V by F��

and F�� by V � Hence ��!�� is even� In the circular graph !� every vertex is
connected to its next either by V or by F��	 and for opposite vertices one is
V 	 and the opposite is F��� From this combinatorial picture we see� deleting
all edges named F�� in !� we obtain a connected graph	 it contains exactly
one cycle containing an odd number of symbols �	 and it contains all symbols
V in w and in w� This proves �ii��

Suppose !� � !i �� ��!�� � !�� for some index i� Let w be the shortest
word in V and F�� needed to go through !� once� Then w is the shortest word
needed to go through !�� once� Every vertex of !� is connected to a unique
vertex in !�� by �� every V �edge in !� corresponds to a unique F���edge in !���
This proves that the �V����equivalence class of any element in !� � !�� equals
!� � !��	 and it shows that there is precisely one �V����cycle� this cycle has an
even number of symbols � in the cycle� This �nishes the proof of the lemma�
�

������ Notation� Let � be an elementary sequence	 with associated canon�
ical type 	 � We write C��� � D� ��� We write

S� �� D� �A� � A �� Ag���n � Fp�n�

see �����	 for the locally closed subset where the elementary sequence is constant
and equal to ��

� Strata at the boundary� strata in A�g�� � Fp

����� The elementary sequence of a semi�abelian variety� For the
de�nition of a semi�abelian scheme X � S we refer to ����	 Def� ��� on page ��
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In particular	 every geometric �ber Xs is an extension over an abelian variety
with kernel Ts �� �Gm �	 for some non�negative integer ��

For a semi�abelian variety X over a �eld K of characteristic p we de�ne
its p�rank f � f�X� by�

Hom�p� X � k� �� �Z�p�f�

where k is an algebraically closed �eld containing K� Note that if X is an
abelian variety	 then ��X�p��k�� � pf�X��

Let X be a semi�abelian variety over a �eld K� suppose that L � X is
the maximal connected linear subgroup� we write Y � X�L� We de�ne the
elementary sequence ES�X� � � � �g as follows� We consider G �� X�p�� This
�nite group has a �ltration � � L�F � � G� � X�F � � X�p�� then G��k �� �p�	 	
where � �� dim�L� andX�p��G�

�� Y �p�� We have a canonical �ltration on Y �p��
this de�nes an elementary sequence � �� ES�Y � � �g�	 � We de�ne � � ES�X�
by� ��i� � i for all � � i � � and ��i� � ��i� � � for all � � i � g� in this way
ES�X� is de�ned�

� � f�� � � � � �� � � � � ��i� � �� � � �g�

Here is another way of de�ning this sequence� Consider	 as in �����	 the set E
of all ��nite� words in the symbols V and F��� The set of such words de�nes
on N � X�p� a set of �nite subgroup schemes fW �N � j W � Eg� this is a
�ltration� to this we associate a �canonical �ltration� of N 	 a canonical type	
and by truncation an elementary sequence� This is the one de�ned earlier in case
� � �	 i�e� X is an abelian variety� it coincides with the elementary sequence
just de�ned in all cases�

Suppose that X��L� � Y� and X��L� � Y� are semi�abelian varieties
with Y� �� Y�� Then ES�X�� � ES�X��� this follows from the construction�

By A� we denote the minimal compacti�cation of A � Ag���n � Fp�n	 see
����	 Chap� V	 in particular see pp� ���	 ���	 Theorem ��� and Theorem ����
Note that a geometric point of x� � A� de�nes an abelian variety Y �with a
principal polarization	 with some level structure�� hence the point x� de�nes
an elementary sequence �by the data Y and g�� Let A � A� be a toroidal
compacti�cation	 let x be a geometric point of A	 and x �� x�� The elementary
sequence de�ned by x only depends on x� � A�� Essential feature� ES�X� only
depends on Y � X�L	 and on X�F � we can give a �ltration �see below��

Let � be an elementary sequence� We write T� � A� for the set of points s � A�

with elementary sequence equal to ��

����� Proposition� The set T� � A� is locally closed�
Proof� Let � � A � A� be a toroidal compacti�cation and T �� � A be the set

of points x � A with elementary sequence equal to �� Then ����T�� � T ���

moreover � is a proper morphism� Hence it su�ces to prove that T �� � A is
locally closed�
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It su�ces to prove the proposition locally on A� For points s � T� 
A �
T ��
A � S� � A this has already been proved� Let s � T ��
��A� � A�A� We
use results about �Mumford�s uniformization theorem�	 and about �Raynaud
extensions�	 see ����	 in particular pp� ��$��	 pp� ��� � ��� and pp� ��$����
By these theories there exist the following data�

� a complete local normal domain R	 a semi�abelian scheme X � S ��
Spec�R� with generic �ber X
 which is an abelian variety with a principal
polarization �
	 and a �Kodaira�Spencer� morphism f � Spec�R� � A
de�ned by this family such that the closed point � � Spec�R� maps to
f��� � s and such that R�� OA�s is injective�

� an exact sequence �� L� Z � Y � � of group schemes over S	 where
Z � S is a semi�abelian scheme	 where Y � S is an abelian scheme	 with
a principal polarization �� on Y � S	 and there exists an isomorphism
L �� �Gm �	 � S �actually there is more structure here involved	 which
however we do not need��

� these are related by the fact that the formal semi�abelian schemes derived
from these two set of data are isomorphic� X� ��Spf�R� Z� and the

isomorphism transforms the principal polarization induced by � into the
abelian part of X� with ��� on Y� � Y �S f�g�

Suppose � � �g and � � �g�	 are as above� Using ����	 III�
	 we see that
the set of points T � f���T ��� � S equals C��Y � S�� by Proposition �����
this is locally closed in S� By assumption we have � � T � By R �� OA�s and

s � T� 
 ��A� we conclude that T �� � A is closed at s� This �nishes the proof�
�

����� Proposition� Let � � �g� Let Z be an irreducible component of S� �
C��A�� and let Z� be the closure of Z � A�� Suppose there is an elementary
sequence �� � �g with Z� 
 T�� �� �� Then the Zariski closure Zc of Z � A
meets S�� �

Zc 
 S�� �� ��

Let �� � �� and let W be an irreducible component of T�� � Then

W 
 A �� ��

In particular� every irreducible component of T� meets A� and intersects this
interior into a component of S��
Proof� The second and the third statement follow from the �rst�

As in the proof of the previous proposition it su�ces to prove this result
for a toroidal compacti�cation � � A � A��

Let s � Z 
 ��A� and s � T ��� � Using results on toroidal compacti��
cations and on �Mumford�s uniformization theorem�	 and about �Raynaud
extensions�	 we conclude that we have the following data�
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� a noetherian complete domainR	 which is complete for an ideal I � R	 we
write S � Spec�R�	 and S� � Spec�R��	 we write S� for the completion
of S along S� by the ideal I	 a semi�abelian scheme X � S	 with generic
�ber X
 which is an abelian variety with a principal polarization �
 	 and
a �Kodaira�Spencer� morphism f � Spec�R� � A de�ned by this family
such that the closed point � � Spec�R� maps to f��� � s	 such that
R �� OA�s	 and a morphism � � S � A� obtained as the composition
S � Ag�	���n � Fp�n �� A� � ��A� � A�� N�B� if � � �	 we will see that
the morphism � in general does not factor f �

� an exact sequence �� L� Z � Y � � of group schemes over S	 where
Z � S is a semi�abelian scheme	 where Y � S is an abelian scheme	 with
a principal polarization �� on Y � S	 and there exists an isomorphism
L �� �Gm �	 � S	 such that the �Kodaira�Spencer� morphism given by
�Y� ���� S de�nes � � S �A�

� these are related by the fact that the formal semi�abelian schemes de�
rived from these two set of data are isomorphic� X� ��S� Z�	 and the
isomorphism transforms the principal polarization on the generic �ber of
X into �� on Y � S�

From this the proposition follows� consider Z �A
f
� S	 and the �ber product

P of this diagram� there exists an irreducible component U � C��S� � S such
that its closure Z�� � U c � �C��S��c � S is an irreducible component of
P containing � � S� Let � be as before� We see that ��Z��� � ���C��S��c� �
�C��A���c � A�	 the last closures taken inA�� We see that there exists a complete
discrete valuation ring %	 with ! � Spec�%� and a morphism h � ! � S such
that h�!� � Z�� 
 ����s� and f�h�!�� �� ��A�� The generic point a � !
has the property ��h�a�� � s � T ��� � because h�!� � ����s� we conclude
that ES�Xh�a�� � ES�X�� � ��� Moreover h�a� is in the closure of U 	 hence

f�h�a�� � Z� Hence Z 
 S�� �� �� �

����� Proposition� Let S be an irreducible� reduced� normal� noetherian
scheme over Fp� and let X � S be a semi�abelian scheme� with generic �ber an
abelian variety with a principal polarization� Suppose all �bers have the same
elementary sequence � � �g� i�e� the moduli map S � A� maps S into T��
Consider X�p� � S� There exists a �ltration � � U � M � X�p� with �nite
group schemes U and M 
at over S� such that U � S is of multiplicative type
over S in every �ber� and such that for every point s � S� the �ber Ns ��Ms�Us
is of local�local type� and every �ber X�p�s�Ms is �etale�local� The group schemes
U � S and M � S are 
at over S� The �nite group scheme M�U �� N � S is

at over S� and it is symmetric� it admits a canonical �ltration and it satis�es
the properties for the canonical �ltration as described in Corollary ������
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Remark� In general	 the rank of X�p�s�Ms is not constant on S�
Proof� The �nite group schemes U andM de�ned by the properties mentioned
have constant rank �all geometric �bers have the same rank� because of the fact
that the elementary sequence is constant on S� Moreover note that for every
j �Z�� the �nite group scheme X�F j�� S is  at	 and U � M � X�FN � are
closed subgroup schemes	 hence �nite	 over S for large N �e�g� N � g�� As the
elementary sequence of X � S is constant on S	 we conclude that the �nite
group schemes U � S and M � S have constant rank	 and hence these are
 at by ���	 Lemma ���� on page ���� The principal polarization on the generic
�ber extends to a symmetry on N � M�U 	 e�g� use ����	 Proposition I���
� The
rest of the proof is as in Section �	 especially as in the proof of ������ �

����� Theorem� For every � � �g the stratum T� � A� is quasi�a�ne�
Proof� It su�ces to show this in case of arbitrary high level structure� Hence
we suppose A� � A�g���n � Fp�n	 with n �Z�� not divisible by p� It su�ces to
show that every irreducible component V � T� � A� is quasi�a�ne� We choose
such a component V � Note that we know that V meets the interior of A�	 see
������ We proceed as in the proof of ������

By results in ����	 V��	 there exist an irreducible	 normal	 reduced scheme S �
Spec�Fp�	 a semi�abelian scheme X � S	 a principal polarization on its generic
�ber which is an abelian variety	 and a symplectic level�n�structure	 such that
the moduli morphism S � A� de�ned by these data factors through V 	 and
such that f � S � V is proper and surjective� We write tX�S for the tangential
sheaf of X � S along the zero�section	 and we write �X�S for the determinant
line bundle of the dual of tX�S 	 see ����	 page ��
� We know	 see ����	 V����	
that the moduli morphism S �A� is de�ned by the line bundle �X�S �

Claims� �� Under these conditions� the line bundle �X�S on S is a torsion
line bundle�
�� From this it follows that V is quasi�ane�
Indeed	 suppose ��� is proven and let us see that the result is established�
consider the Stein factorization S � V � � V 	 as in EGA II	 ������ then f � �
S � V � is proper with connected �bers	 and V � � V is �nite� By EGA III	
����� we know that f ���OS � �� OV � � Because V � � V is �nite	 assuming ���	 it
follows that f���X�S� is torsion on V � Using ����	 Chap� IX	 and ����	 V��	 Th�
���	 we conclude that �jV is ample and torsion� hence V is quasi�a�ne� This
proves ��� � ����

We show that ��� is true� Let � be the canonical type associated with �	 say
� � ��� 
�� We write f � f���	 i�e� the largest index with ��f� � f 	 e�g� f � �
if ���� � �	 and f � 
��� if ���� � �� We write U � � if f � �	 and we
write U � G� if f � �� We use Proposition ����	 we use that the elementary
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sequence on X � S is constant	 we use ���	 Lemma ���� on page ���	 and we
conclude that we have �nite  at subgroup schemes

� � G� � G� � U � G� � � � � � Gr � G�F � � V �G�p���

where G��S S
� �� �p�f �S� for some �nite cover S� � S	 and where the other

steps in the �ltration come from the canonical �ltration onM�U � N 	 with the
notation as in ����� Note that the partial quotients Gi�Gi�� are annihilated by
F and by V for � � i � r �in the terminology of ���	 ���	 these are ��groups��
We see that all tangential sheaves

tG��S � � � � � tGr�S � tX�S

are well�de�ned	 of constant rank� We write Li �� Det�tGi�S�tGi���S�	 for � �
i � r	 and we are going to show that these are torsion line bundles�

This is clear for the �rst step in the �ltration� over S� as above the pull�
back of L� is trivial	 hence its norm is trivial	 which shows that �L��degree�S

��S� �
��

Consider one of the other steps Gj�Gj�� with j � �� We apply Corollary
������ In case

�Gj�Gj���
�pn� �

�� Gj�Gj��

we get

�Lj�
pn � �Lj��

in this case this shows the class to be torsion �note that n � ���
We conclude that Det�tX�S� � Det�L�� � � � � � Det�Lr� is torsion� hence

its inverse �X�S is torsion� This shows ���	 and it �nishes the proof of Theorem
������ �

	 Connecting the superspecial locus inside the

supersingular locus

In this section we construct a complete algebraic curve L � A	 with � � L�
We write Lo � L��� We show that Lo � Sf��������g	 and in Section � we show
equality� An essential tool in the rest of the paper will be the property that L
is connected	 see Proposition �
���� Actually	 the curve L is contained in the
supersingular locus of A and the proof of �
��� uses pure algebra� The basic
idea of this section is due to T� Ekedahl� The present form of this section is
mainly due to Ben Moonen who helped with most details in this section�

In case g � � we will write L � A and Lo � L��� In this section we consider
abelian varieties of dimension g � ��
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����� Construction of L� Let k be an algebraically closed �eld of character�
istic p� Choose a point x � ��k�� let �X�� �� be the corresponding principally
polarized abelian variety with symplectic level�n�structure�

For the construction of the locus L we are interested in coverings f �Y � X
such that

�i� Ker�f� �� �p	

�ii� Y is superspecial	

�iii� Ker�f�� �� �p � �p�

Coverings f satisfying �i� correspond �by duality� to subgroup schemes of X
isomorphic to �p� Such subgroup schemes are parameterized by the projective
space P

�
Lie�X�

�
�� Pg��� One can show	 see ����	 pp� ���$��	 ����	 Prop� ���	

that the coverings f satisfying �i� and �ii� are in bijection with Pg���Fp� �	 and
that the coverings satisfying �i���iii� correspond to those vectors in Pg���Fp� �	
�very good directions�	 which are isotropic with respect to a certain hermitian
form�

Given a covering f � Y � X satisfying �i���iii�	 write t for the tan�
gent space of Ker�f��� this is a ��dimensional k�vector space� A point
s � P�t� �� P� corresponds uniquely to a subgroup scheme �p �� N �
Ns � Ker�f�� � Y �p�	 and conversely every such subgroup scheme gives
a point in P�t�� Moreover every such subgroup scheme is totally isotropic
for the pairing induced on Ker�f��� it follows from condition �iii� that for
every such N 	 the polarization f� descends to a principal polarization s
on the quotient Xs �� Y�Ns� Further	 as we have natural isomorphisms
Xs�n�

�
� Y �n�

�
� X�n�	 the symplectic level�n�structure � of �X�� in�

duces a symplectic level�n�structure �s of �Xs� s�� Taking s to be the point
corresponding to Ker�f� � Ker�f�� gives �Xs� s� �s� � �X�� ���

In total	 the choice of x � ��k� and the covering f gives rise to a non�
constant morphism P�

k
�� P�t� �� Ak � Ag���n � k� the image is denoted by

L�f�� We de�ne Lk � Ak to be the reduced closed subscheme which is the union
of the images of all morphisms thus obtained �varying x and f�	 Lk � �f L

�f��
One can show that the closed subscheme Lk is de�ned over Fp	 i�e�	 there is a
closed subscheme L � Ag���n such that Lk � L � k�

We indicate a di�erent construction of L	 and we derive some properties� We
write H �� G��� for the formal p�divisible group of dimension one and height
�� For a supersingular elliptic curve E over k we have E�p�� ��k H � k�

����� Lemma� A homomorphism f � Y � X as above can be constructed
by a choice X�p�� �� H� � Hg�� such that  is in block form � � ���g���
correspondingly Y �p�� �� H� �Hg�� and

Ker�f���� � H� � H� �Hg���

��



We have � � L � �Sf���������g�
c�

Proof� For the superspecial Y we have Y �p�� �� Hg� By ���	 ��� we see that
the polarization f��� on Y gives a quasi�polarization on Y �p�� �� Hg �� M��
M� � � � � �Mg�� in block�form with M�

�� H�	 with Ker�f���� � M�
�� H�

and Mj
�� H for � � j � g � �� This proves the �rst claim�

Suppose s � P�t�	 with Xs �� Y�Ns� Choose coordinates on P�t��� P� by
M�

�� H�� We know that a�Xs� � � i� s �� P��Fp� �� suppose this is the case�
then Xs�p� �� N �� N��N��� � ��Ng�� with rk�N�� � p� and ES�N�� � f�� �g
and for � � j � g�� we have rk�Nj� � p� and ES�Nj� � f�g� Direct veri�cation
shows that in this case ES�Xs� � f�� � � � � �� �g� As we see that � � L	 all
components of L have dimension one	 and Lo �� L�� � Sf���������g the second
claim follows� �

Conclusion� Every component L�f� � Lk as in �
��� can be given by choosing
��X��� � ��k�	 by choosing an isomorphismX�p�� �� Hg on which  is in diag�
onal form diag��� � � � � ��	 see ���	 ���	 by choosing two factors�Hg � H��Hg��	
and by performing a construction of type ����	 pp� ���$���	 on �H�� diag��� ����

Remark� The fact that Sf�������g � � �
�
Sf���������g

�c
is a special case of �������

����� Proposition� The locus L � A is ��dimensional and connected�

����� Remark� In Section � we shall show that in fact L � �Sf���������g�
c� In

this section we shall prove the proposition as stated here� For this we need a
number of preparations about hermitian forms	 which will be given in �
��� �
�
����� The proof of �
��� is given in �
���� below�

����� Let R be a ring equipped with an �anti��involution r �� ry� Let M be a
�nitely generated projective right R�module� By a hermitian form on M �with
respect to the involution y� we mean a bi�additive map

��M �M �� R

such that

�a� � is sesquilinear	 meaning that ��m�r��m�r�� � ry� � ��m��m�� � r� for
all r�	 r� � R and m�	 m� �M �

�b� ��m��m� � ��m�m��y for all m	 m� �M �

We say that a form � as above is skew�hermitian if it satis�es �a� and�

�b�� ��m��m� � ���m�m��y for all m	 m� �M �

�




The dualM	 �� HomR�M�R� ofM has a natural structure of a left R�module�
Let M y �� M	 as an additive group	 and give it the structure of a right R�
module by fr �� ry � f � A form � satisfying �a� gives rise to a homomorphism
M � M y by m �� ��m���� If this map is an isomorphism we say that � is
perfect�

By a hermitian space over R we mean a pair �M��� consisting of a pro�
jective right R�module of �nite type equipped with a perfect hermitian form ��

����� Let P be a �eld� Write A �� Ay � Trd�A� � A for the canonical
involution on the algebra M��P � of �� � matrices over P � Consider V� �� P �

with its natural structure of a right M��P ��module� Up to a scalar in P
 there
is a unique perfect skew�hermitian form on V� with respect to y	 namely the
form #��V� � V� ��M��P � given by

#�

�
�x� y�� �x�� y��

�
�

�
yx� yy�

�xx� �xy�

�
�

Let �V��#�� be a symplectic space over P 	 by which we mean a �nite
dimensional P �vector space V� with a non�degenerate alternating bilinear form
#��V� � V� �� P � The dimension of V� is even	 say dimP �V�� � �g� Then
V �� V� �P V� becomes a free right M��P ��module of rank g via the action
of M��P � on V�	 and the tensor product #� �P #� is a perfect hermitian form
on M� �P M��

Morita equivalence tells us that every hermitian space �V�#� of rank g
over M��P � �with respect to the canonical involution� is isometric to such a
tensor product	 see ����	 I�� In particular	 since any two symplectic spaces of
the same dimension over P are isometric	 also all hermitian spaces of the same
rank over M��P � are isometric �also see� ���	 Section ���

����� Let D be a quaternion algebra over Q� Write d �� dy for its canonical
involution� Fix a positive integer g� Let �V�#� be a hermitian space of rank g
over D� Then

G �� AutD�V�#�

is a linear algebraic group over Q� It is immediate from what was explained
in ����� that if Q � L is a �eld extension which splits D then G �QL ��
Sp�g�L� In particular	 G is absolutely simple and simply connected� Assume
that DR�� D�QR is non�split� Write #Rfor the R�bilinear extension of # to a
hermitian form on VR� De�ne q�VR� Rby q�v� � #R�v� v�� note that it follows
from �b� in �
��� that indeed #R�v� v� � R� DR� Then q is a quadratic form
on VR� The signature of # is de�ned to be sign�#� �� sign�q���� Two hermitian
spaces �V�#� and �V ��#�� over D are isometric if and only if dim�V � � dim�V �
and sign�#� � sign�#��	 see for instance ����	 Chapter ��	 x�� We say that # is
positive de�nite if q is� this is equivalent to sign�#� � g�
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����� With �D� y� as in �
�
�	 �x a hermitian space �V�#� of rank g over D�
Let R � D be an order� note that R is stable under the involution y� Let �M���
be a hermitian space of rank g over R such that there exists an isometry

�� �MQ� �Q�
�
� �V�#� �

Then ��M � � V is an R�lattice in V on which # induces a perfect hermitian
form� we shall refer to such lattices as perfect hermitian R�lattices in V � Note
that R is a hereditary ring� hence every R�lattice M � V is projective	 and if
#jM is perfect then �M�#jM � is a hermitian space�

Let n be a positive integer� Let us write Hn for the standard hermitian
form on �R�nR�g	 i�e�	 the form given by

Hn

�
�x�� � � � � xg�� �y�� � � � � yg�

�
� xy�y� � � � �� xygyg �

If �M��� is a hermitian space of rank g over R then by a level�n�marking of
�M��� we shall mean an isometry

�� �M�nM� &��
�
�

�
�R�nR�g�Hn

�
�

where we write &� for the hermitian form on M�nM induced by ��

����� Lemma� Let R be an order in a quaternion algebra D over Q� Let p
be a prime number� n a positive integer prime to p� Let g be an integer � ��
and �x a hermitian space �V�#� of rank g over D �with respect to the canonical
involution on D��

Let �M�� ��� ��� and �M�� ��� ��� be hermitian spaces of rank g over R
equipped with level�n�markings� Assume that �Mj�Q� �j�Q� is isometric to �V�#��
for j � �� �� Then there exist isometries

�j� �Mj�Q� �j�Q�
�
� �V�#�

such that ���M�� 
 ���M�� has a p�power index in both ���M�� and ���M���
and such that via the isomorphismM��nM�

�
� M��nM� induced by �

��
� ���

the level�n�markings �� and �� correspond�

Note that if �� and �� satisfy the �rst condition then indeed ���
� ��� induces

an isomorphismM��nM�
�
� M��nM��

Proof�As above	 writeG �� AutD�V�#�� We claim thatG�Qp� is non�compact�
this is equivalent to saying that V � Qp has an isotropic vector with respect
to #� If D �QQp

�� M��Qp� then the discussion in �
��� shows that GQp is
split	 and the claim is clear� Next suppose that Dp �� D�QQp is the �unique�
quaternion algebra over Qp� Because g � � there exist two non�zero vectors
v�	 v� � V � Qp with #�v�� v�� � �� Now we use that the reduced norm map
D

p � Q


p is surjective� using this it easily follows that some linear combination
v�d� � v�d� is isotropic�

�



Write 'Z�p� ��
Q

��pZ	 where the product runs over all prime numbers �

di�erent from p� Write A �p�f � 'Z�p� �ZQ for the ring of �nite ad(eles of Q
without component at p� As G�Qp� is non�compact and G is absolutely simple
and simply connected	 we can apply strong approximation	 see for example ���	
Th� 
��� on p� ��
	 or see ����	 see ����� This tells us that the diagonal image

of G�Q� in G�A �p�f � is dense in the ad(elic topology�

For j � �� �	 write 'M
�p�
j �� Mj �Z'Z�p�� Choose isometries

�j � �Mj�Q� �j�Q�
�
� �V�#�� Write

)�j � 'M
�p�
j �	Z�p� A

�p�
f

�
� V �QA

�p�
f

for the A �p�f �linear extension of �j � Consider the set ! of all elements � � G�A �p�f �
such that

�� � )���
�
'M
�p�
�

�
� )��

�
'M
�p�
�

�
inside V � A �p�f � For � � !	 write t� � �M��nM��

�
� �M��nM�� for the iso�

morphism induced by )���
� � �� � )���� Let !� � ! be the subset of all � which

are compatible with the given level�n�markings	 i�e�	

!� �� fg � ! j �� � �� � t�g �

Then !� is a non�empty open subset of G
�
A �p�f

�
� Hence it follows from strong

approximation that there exists an element g � G�Q� which maps into ! under

the diagonal embedding G�Q� �� G
�
A �p�f

�
� Then �� �� g � �� and �� �� �� are

isometries with the required property� �

������ Keep the notations of �
��� Assume that D is inert at p� There is a
unique ��sided prime ideal p � R above p	 which is in fact a maximal ideal �both
left and right�� The assumption that D is inert at p implies that k�p� �� R�p
is a �eld with p� elements	 see ����	 Th� ���� and Th� ������ The involution y
on R induces the unique non�trivial automorphism Frobk�p� of k�p��

Given an R�submodule L � V 	 write

*L �� fv � V j #�v� y� � R for all y � Lg �

In particular	 if M � V is an R�lattice then M � *M if and only if # induces a
perfect form on M �

������ Lemma Let M and M � be perfect hermitian R�lattices in V such that
M
M � has p�power index in both M and M �� Assume that p � R is a principal
ideal� Then there exist perfect hermitian R�lattices

M � L�� L�� � � � � Lm � M �

��



such that Lj��Lj 
Lj��� �� k�p� �� Lj����Lj 
Lj��� as R�modules for � � j �
m�

Proof�Write N ��M 
M �� We claim that lengthR�M�N � � lengthR�M
��N ��

To see this	 note that HomR�M�N�R� � � and that Ext�R�M�R� � �� Hence
we obtain an exact sequence

��M y �� N y �� Ext�R�M�N�R�� � �

Now M�N �� R�pd� � � � � � R�pdr as an R�module	 in which case
lengthR�M�N � � d� � � � � � dr� But if p � ��� then we easily �nd that
Ext�R�R�p

d� R� �� R�pd� Hence *N� *M � *N�M �� N y�M y has the same length
as M�N � Doing the same with M � instead of M we �nd that

lengthR� *N�N � � lengthR�M�N �� � lengthR�M
��N �� �

which proves our claim�
We prove the lemma by induction on lengthR�M�N �� By what we have

just shown	 lengthR�M�N � � � corresponds to the case M � M �� Note that
M �M � � *N � On *N�N we have a hermitian form

�� *N�N � *N�N �� D�R

induced by #� The subspaces M�N and M ��N are maximal isotropic with
respect to ��

Let T � M�N be an R�submodule with M�T �� k�p�� Let T� be the
orthogonal complement of T with respect to �	 set T � �� T�
 �M ��N �	 and let

S �� T � T � � *N�N �

An easy calculation shows that S is maximal isotropic for �� Hence the pre�
image L � *N of S is a perfect hermitian lattice in V � Now note that	 by
construction	

lengthR
�
L��L 
M ��

�
� lengthR�T � � lengthR�M�N � �

Hence we can take L� � L and proceed by induction� �

������ Let k be an algebraically closed �eld of characteristic p� Fix a super�
singular elliptic curve E over k� Then E has a unique principal polarization	
which we call �� The endomorphism algebra End��E� is the quaternion alge�
bra Qp�� over Q which is inert exactly at p and �� The endomorphism ring
R �� End�E� is a maximal order of this quaternion algebra� The Rosati invo�
lution r �� ry on End��E� associated to � �or to any other polarization� is the
principal involution	 i�e�	 ry � Trd�r� � r�

��



Let X be a superspecial abelian variety of dimension g � � over k� This
means that X is isomorphic to Eg as an abelian variety� Write

M �� Hom�E�X��

which has a natural structure of a free right R�module of rank g� We have a
canonical isomorphismM �R E �� X�

Note that Et has a natural structure of a right R�module� Similar to
the de�nition of M y in �����	 let us write Ey for the elliptic curve Et with
it structure of a left R�module given by Pr �� ry � P � Then Xt is naturally
isomorphic to M y �R Ey�

������ Remark� For any abelian variety X over k	 we can form the right
R�module Hom�E�X�� Conversely	 for any right R�module N of �nite type	
N �R E is a supersingular abelian variety� to see this	 take a �nite presenta�
tion of N � we shall see that in this case X is superspecial� We have natural
homomorphisms

�� Hom�E�X� �R X �� X and ��N �� Hom�E�N �R E� �

In order to understand these functors Hom�E��� and � �R E	 the following
two observations are useful�

�i� Given an abelian variety X over k	 there exists a superspecial abelian
variety S��X� and a homomorphism
�S��X� � X with the following universal
property� if Y is a superspecial abelian variety	 any homomorphism f �Y � X
factors through 
	 see ���	 ���� Further	 
 is an isogeny if and only if X is
supersingular�

�ii� The class number of Qp�� equals �� This means that for a maximal
order R as above	 every torsion�free right R�module of �nite type is free	 see
��
��

Combining these two remarks	 we �nd that Hom�E�X� �
Hom

�
E� S��X�

�
	 so that Hom�E�X� �R X �� S��X�	 and � is just the

isogeny 
� In the other direction	 if N is a right R�module of �nite type	 con�
sider the natural map ��N � N � �� N�Tors�N �� Then N�RE

�
� N ��RE�

We have Hom�E�N �RE� �� N �	 and via this isomorphism � is just the map ��

������ Lemma�Choose notation as in �
����� in particularX is superspecial�
There is a natural bijection

n
symmetric isomorphisms

X
�
� Xt

o
�
�

n
perfect hermitian

forms on M

o
���

which restricts to a bijection

n
principal polarizations

X
�
� Xt

o
�
�

n
positive de�nite perfect
hermitian forms on M

o
�

��



Proof� Given a homomorphism �X � Xt	 let � � �� be the hermitian form
on M given by

��h� h�� �
�
E

h�
�� X

�
�� Xt ht

�� Et ���

�� E
�
�

In the opposite direction	 given a hermitian form � on M 	 consider the associ�
ated homomorphism )��M �M y	 and de�ne  � ��X � Xt by

� � )� � ��X � M �R E �� Xt � M y �R Ey �

One checks that  �� �� and � �� � are inverse to each other	 and
that a perfect form � correspond to an isomorphism � This gives the �rst
bijection� Under this bijection the principal polarizations correspond to the
positive de�nite perfect hermitian forms� this follows from what is explained in
��
�	 x ��	 Application III�

������ We keep the notations introduced in �
����� Let � be a prime number
di�erent from p� Write R �� R�ZZ� then there exists an isomorphism R

��
M��Z��

The canonical pairing

e�TE � TE
y ��Z���

has the property that e�r�� ��� � e��� ry��� for all r � R	 � � TE and �� �
TE

y� Using this	 one can show that there exists a unique bi�additive form

)eE �TE � TE
y �� R���

such that

eE��� �
�� � Trd

�
)eE��� �

��
�
� and ���

)eE�r��� r��
�� � r� � )eE ��� �

�� � ry� ���

for all � � TE and �� � TE
y	 and r�	 r� � R�

Next we remark that the canonical �evaluation� pairing ev�M�M y �� R
has the property that

ev�mr��m
�r�� � ry� � ev�m�m�� � r� � ���

We have canonical isomorphisms TX �� M �R TE and TX
t �� M y �R

TE
y� Taking these as identi�cations	 the canonical pairing eX �TX�TX

y ��
Z��� is given by

eX �m � ��m� � ��� � Trd
�
ev�m�m�� � )eE��� �

��
�
� ���

��



Let us note here that the form

�
�m� ��� �m�� ���

�
�� ev�m�m�� � )eE��� �

��

does not descend to a well�de�ned form on TX � TX
t� However	 using �����

together with the fact that Trd is a trace form �so Trd���� � Trd����� we �nd
that the right hand side of ��� is well�de�ned on TX � TX

t�

������ Let a be a positive integer	 and let n �� �a� Recall that we write Hn for
the standard hermitian pairing on �R�nR�g� Assume given a primitiven�th root
of unity in k	 via which we identify Z�nZand Z�nZ��� � n�k�� Using what
was explained in �
����	 we �nd that the Weil pairing e�n�E�n��E�n���Z�nZ
lifts to a pairing

)e�n�E�n�� E�n� �� R�nR�

Consider the pairing

��
�
�R�nR�g �R E�n�

�
�
�
�R�nR�g �R E�n�

�
��Z�nZ

given by �
�
�x � P �� �x� � P ��

�
� Trd

�
Hn�x� x�� � )e�n�P� P

��
�
� One checks that

this is a well�de�ned symplectic pairing� In other words	 if �n is the standard
symplectic pairing on �Z�nZ��g then there exists an isometry

�
�R�nR�g �R E�n�� �

� �
�

�
�Z�nZ��g��n

�
�

More generally	 if n is an arbitrary positive integer prime to p then we �nd
that there exist isometries as above by writing n � �a�� � � ��arr and applying the
preceding to each of the factors �aii �

������ Lemma Let n be a positive integer� not divisible by p� Assume cho�
sen a primitive n�th root of unity in k� Fix an isometry as in ������� Let 
be a principal polarization of X which� as in ������� corresponds to a perfect
hermitian form � on M � Then there is a natural bijection

�
symplectic level�n
structures on �X���

�
�
�

�
level�n�markings

of �M���

�
���

Proof� For simplicity	 let us assume that n is a power of a prime number ��
�The general case is easily reduced to this�� Suppose given a level�n�marking of
�M���� Using what was explained in �
���� we �nd that the induced isomor�
phism

X�n� � �M�nM ��R E�n�
�
� �R�nR�g �R E�n�

gives an isometry

�
X�n�� e�n

� �
�

�
�R�nR�g �R E�n�� �

�
�

��



where � is as in �
����� Composing with the �xed isometry �
���� this gives a
symplectic level�n�structure of �X��� This de�nes the map in �
��
��

By an easy �integral� variant of �
��� we see that Aut
�
�R�nR�g�Hn

�
��

Sp�g�Z�nZ�� In particular	 both sides of �
��
���� are principal homogeneous
under Sp�g�Z�nZ�� Further	 one easily sees that the map �
��
���� just de�ned
is compatible with these structures of homogeneous spaces� Hence our map is
a bijection� �

������ Proof of Proposition �
���� Let x and x� be points of ��k�	 cor�
responding to triples �X�� �� and �X�� �� ���	 respectively� By Lemma �
��
we can embed the corresponding R�modules M �� Hom�E�X� and M � ��
Hom�E�X�� as perfect hermitianR�lattices in �V�#� in such a way thatM
M �

has p�power index in both M andM � and that the given level�n�markings ofM
and M � agree� As p � R is a principal ideal	 see �ii� of Remark �
����	 we can
apply Lemma �
����� This gives us perfect hermitian lattices

M � L�� L�� � � � � Lm � M �

with Lj��Lj 
Lj��� �� k�p� �� Lj����Lj 
Lj���� Fix j � f�� � � � �m��g� Write
N �� Lj 
 Lj��	 and consider the homomorphisms

Xj �� Lj �R E
f
�� Y �� N �R E

h
�� Xj�� � Lj�� �R E

induced by the inclusions N �� Lj and N �� Lj��	 respectively� Via the corre�
spondence �
����	 we have principal polarizations j on Xj and j�� on Xj���
these satisfy f�j � h�j��� The given level�n�markings of M and M � induce
level�n�markings on each of the lattices Lj � we write �j for the corresponding
symplectic level�n�structure of �Xj � j��

We are done if we show that f is a covering satisfying conditions �i���iii�
of �
���� Indeed	 by symmetry the same then holds for h	 and we conclude that
�Xj � j� �j� and �Xj��� j��� �j��� lie on the same irreducible component of
the locus L	 as constructed in �
����

By construction	 f is an isogeny of superspecial abelian varieties	 and
deg�f� is a p�power� �It is easily seen that f induces an isomorphism
TY

�
� TXj for all primes � �� p�� Further	 f is minimal	 in the sense that

it does not admit a non�trivial factorization� Hence Ker�f� �� �p� This implies
that Ker�f�j� is either isomorphic to �p � �p	 or it is a non�trivial extension
of �p by �p� But in the latter case Ker�f�� has a unique subgroup scheme of
rank p	 so that necessarily Ker�f� � Ker�h�� This is in contradiction with our
construction�

��
����

��




 Abelian varieties with a � g � �

In this section we work over an algebraically closed �eld k  Fp� We consider
principally polarized abelian varieties and principally quasi�polarized p�divisible
groups� We study strata de�ned by an elementary sequence � with ��g� � ��
These describe abelian varieties of dimension g with a��� � a�X� � g � ��
Results of this section are rather elementary once you know the Dieudonn�e�
Manin classi�cation� we do not use results of the previous sections� We use a
result in ���	 and we use some notations as explained in ���� For the notation
Gm�n we refer to �������

����� For every pair m�n �Z�� of coprime integers there exists a p�divisible
group Hm�n	 de�ned over Fp 	 isogenous with Gm�n	 which is characterized by
the fact that its endomorphism ring over an algebraically closed �eld is maximal
within the isogeny class� see ���	 Section �� This p�divisible group can be de�ned
by the Dieudonn�e module given by the semimodule �����	 in the notation as
explained in ���� If m � � and n � � there exist p�divisible groups isogenous
with Gm�n not isomorphic with Hm�n�

We know that a�Hm�n� � min�m�n� �as is easy to see form the de�ning
semi�module� However this property is in general not su�cient to characterize
Hm�n within its isogeny class	 but in the cases used in this section it will be
the case �see the lemma below�� One can feel the object Hm�n as the �unique�
�minimal� one in the isogeny class of Gm�n	 and groups with a�G� � � as the
most general ones� this can be made precise	 see ���	 Section �	 especially see
���
��

����� If G is a formal group isogenous with Gm�n then

a�G� � m� a�G� � n�

Moreover we know that the maximum a�G� � min�m�n� is achieved within this
isogeny class�

See ����	 page II������	 see �����
A proof is not di�cult� e�g� using notation as introduced in ��� we see�

let G � Gm�n over an algebraically closed �eld	 and let A � Type�G� be the
semi�module associated with G� Consider

An�m� A � n� A� � Z�Z�m�

This map is injective� Hence

��An�m �A � n�A�� � a�A� � a�G� � m�

The same holds for the natural mapping to Z�n� This proves the desired in�
equality� As moreover a�Hm�n� � min�m�n� we are done� �

��



Remark� If the isogeny type of a p�divisible group G is given	 consider �an
isogeny factor�	 i�e� the image of someGm�n appearing in the isogeny type under
an isogeny into G� In general these �isogeny factors� are not direct summands	
and it is usually di�cult to decide which member of the isogeny class of Gm�n

appears in this way� However in the situation studied in this section all these
questions turn out to have a unique and simple answer�

In this paper we use V �U to denote the complement of U in V � however
in the proof above we use V nU for this notion	 in order to avoid confusion with
subtraction�

����� Theorem� Let X be an abelian variety of dimension g over an alge�
braically closed �eld of characteristic p which admits a principal polarization�
Suppose ES�X� � � with ��g� � �� i�e� a�X� � g � �� Then�

�I� either there exists an integer b with � � b � � g��
� � and an isomorphism

X�p�� �� Hb���b

M
�g � �b� ���G���

M
Hb�b���

and in this case

� � ��� � � � � ��

g�bz �� �
�� � � �� � �� j�j � g � b�

�II� or there exists an integer r with � � r � � g� �� there exists an isogeny X �
Eg� where E is a supersingular elliptic curve �i�e� X is supersingular�	
and

� � ��� � � � � ��

rz �� �
�� � � �� � �� j�j � r

�and the structure of X�p�� will be explained in the proof�� Note that for all
b as in �I� and all r as in �II� we have g � b � r and � � r � � g��

� � � g � b� the
value of j�j determines in which case we are�

As a corollary of this theorem and its proof we deduce�

����� Corollary� Let X be an abelian variety with

ES�X� � � �� ��� � � � � �� ���

Then X is as described in the construction �
���� In particular

Lo � S������������ L � S����������� �� �
�
S�����������

�c
�

From the theorem we conclude that S����������� � L� hence the corollary follows
from �
��� and the previous theorem� ������ � �����

�




The proof of this theorem will be given in various steps� In the �rst step we
analyze the isogeny type of X�p���

First step� Suppose a�X� � g � �� From ����� it follow that we are in one of
the following cases�

�I��� either f�X� � �� we claim� in this case

X�p�� �� G��� � �g � ���G��� � G����

and we conclude ���� � �� hence � � ��� � � � � ��� this is case I���

�I�b� or f�X� � � and there exists an integer b with � � b � � g��
� � and an

isogeny

X�p�� � Gb���b

M
��g � �b� ���G���

M
Gb�b���

we shall analyze this case�

�II� or
X�p�� � g�G����

we shall describe all supersingular cases with a�X� � g � ��

Indeed	 the fact that a�X� � g� � limits the possibilities of the formal isogeny
types to the cases as indicated� If f�X� � � and a�X� � g � � we see �note
that the base �eld is algebraically closed� that X�p�� �� G��� � G��� � G with
a�G� � dim�G�� This proves the �rst statement� The remaining possibilities
have been listed� �

����� Lemma� Let b �Z��� let G be a p�divisible group over an algebraically
closed �eld with G � Gb���b� and a�G� � b� then G �� Hb���b�
Proof� The case b � � is well�known� we suppose b � �� In ��� we have seen
that to every G � Gb���b we can attach a semi�module A � Type�G� � Z�
This is a subset of Zbounded from below	 and stable under �m � ��b � ��
and �n � �b� let t � A be the smallest element�

We show that �under all conditions mentioned� from a�A� � b it follows
that A � �t���� in fact	 let C � An��b�A����b����A��	 hence ��C� � a�A��
if there exist x� y �Zsuch that t � x� �� � � � � t� y � � �� A	 then

����j�t� x� � � j��b� ��� t� y � b� � � j�b�� 
C� � y � x� ��

we see that such gaps in �t� t�B���
A do not appear if a�A� � b� we conclude
that A � �t���� This implies G �� Hb���b	 which proves the lemma� �

����� Remark� Let m�n � Zwith m � n � � � n � �� The semi�module
A � f�g � ����� has a�A� � n� We see that in this case there exists G �� Gm�n

with a�G� � n � min�m�n� and G ��� Hm�n�

��



����� Second step� Lemma� Let G be a p�divisible group over an alge�
braically closed �eld� which admits a principal polarization� such that G �
Hb���b � �g � �b� ���G��� �Hb�b�� and a�G� � g � �� Then

G �� Hb���b

M
��g � �b� ���G���

M
Hb�b���

and we have

ES�G� � � � ��� � � � � �� �� � � ���� j�j � g � b�

Proof� Let I� S� J � G be the images of the three factors under an isogeny
Hb���b � ��g � �b � ���G��� � Hb�b�� � G� We are going to use that in the
isogeny classes of I� S� J there is a unique �up to isomorphism� group with
maximal a�number� We claim� a�I� � b � a�J� and a�S� � �g � �b � � and
hence I �� Hb���b	 and S �� ��g � �b � ���G���	 and J �� Hb�b��� for a p�
divisible group Y over a perfect �eld we write ��Y � � Y for the smallest
subgroup scheme containing all �p � Y �denoted by A�Y � in ���	 ���	 but we
have used that notation already for a di�erent purpose�� The exact sequence
��I� � Y � Y����I�� together with the fact that a�Y � and a�Y����I��� are
�maximal� show that a�I� � b� analogous statements for S and for J � these
imply the existence of the isomorphisms indicated	 hence the claim� Next we
show that the natural map I � S � J � I � S � J � G is an isomorphism� We
show this for S � J � S � J � because the a�numbers are �maximal� we see
that

�� ��S�� ��S � J�� ���S � J��S�� �

is exact� it follows that the

Ker�S � J � S � J� 
 ��S � J� � ��

which proves S � J �� S � J � An analogous statement holds for I � S and for
I � J � From these the result follows� �

����� Remark� We see cases where a p�divisible group G is determined up
to isomorphism by G�p�� the case f�G� � dim�G�	 the case a�G� � dim�G�	 and
the case as in �I� of the theorem� However in general G�p� does not determine
G� We have a general conjecture which illustrates what should be �im�possible	
see ����
�	 and �������

����� Third step� Suppose we are in the situation as in �II�	 i�e� X is a
supersingular abelian variety with a principal polarization with a�X� � g � ��
We use the description of the locus Sg���a � g � �� as given in ���	 Section
	 in particular in ����� and ������ From that description we see that in this

�



case there exists an integer r with � � r � � g� �	 an isomorphism �p�X� ��
�g � �r��G��� � G	 and an exact sequence

�� ��p�
r � ��r��G��� � G� ��

with a�G� � �r � �� We assume the integer r is chosen to be the minimal
one allowing this structure� The polarization in that case gives a form on the
Dieudonn�e�module	 with � ei�F�ei� � non�zero for � � i � �g � �r � and
� e�g��j� e�g��j�� � non�zero for r � j � �� An explicit computation shows
that in this case � � ��� � � � � �� �� � � ���� j�j � r� This ends the proof of the
theorem� ������

� Standard types

In this section we attach to every elementary sequence � a �nite group scheme
N� plus a non�degenerate alternating pairing �������st on A� �� D �N� �
such that the pair �N�� ���� is de�ned over Fp 	 and such that ES�N�� � ��

Then we show that a �polarized BT� truncated group scheme� over an
algebraically closed �eld k is isomorphic �over k� with the standard type given
by its elementary sequence� This result will be used in ������	 where we use
that two polarized BT� group schemes over an algebraically closed �eld with
equal elementary sequences are isomorphic�

Remark� It might seem strange that we de�ne ��� on the Dieudonn�e module
�and not on the group scheme itself�� If we would avoid characteristic �	 in fact
we could work with anti�symmetric morphisms on group schemes	 prove the
results we want to achieve	 and develop a mechanism which works over any
base in characteristic p �� �� However in characteristic � � we do not see how
this simpli�cation can be carried out with success� We have chosen for a uni�ed
treatment applicable in all characteristics� For a further discussion we refer to
Section ���

I do not know how to characterize the fact that ���� A � A � K is
alternating on A �� D �N � in terms of the related symmetric � � N � ND in
chase the characteristic of the perfect base �eld K equals p � ��

Reminder� D �V � N �p� � N � � �F � A�p� � A�� The constructions involving V
and F�� on N we �nd back as construction involvingF and V�� on A � D �N ��

Remark� We use in this paper the following notation	 also see Section ���
let �X��� be a principally polarized abelian variety over a perfect �eld K of
characteristic p� write N �� X�p�	 with Dieudonn�e module A � D �N �� the
polarization induces a symmetry on N 	 and it de�nes a pairing ���� A�A�
K� We write �N����� �� �X����p� for this �polarized BT� truncated group
scheme��

��



Remark� In what follows we use a classi�cation of a BT� over an algebraically
closed �eld found by Kraft	 see ��
�	 and rediscovered independently much later
by the present author� That structure is not very di�cult to describe� However
the classi�cation of �polarized BT� truncated group schemes� turns out to be
more involved	 as will be seen below�

����� Construction� Suppose given an elementary sequence

f����� � � � � ��g�g � � � �� ���� � ��

and let � be the related �nal sequence�

��i� � ��i� for � � i � g� and ��g � i� � ��i� � g � i for � � i � g�

Consider the set of indices where the ��sequence jumps�

� � m� � m� � � � � � mg � �g�

this is the set of all integer i such that ��i � �� � ��i�� We denote by

� � ng � ng�� � � � � � n� � �g

the complimentary set	 i�e� the set of indices where the ��sequence does not
jump� Note that�

mi � ni � �g � � for � � i � g�

For convenience we write m� � �� �g � � � mg��� ng�� � �� n� � �g � ��

Given � � � we are going to construct a covariant Dieudonn�e�module A� with
a non�degenerate alternating pairing over Fp � The related group scheme with
pairing will be a polarized BT�	 which will be denoted by �N�� ����� It will
be called the standard type given by ��

We construct A � A� as the vector space of dimension �g over Fp gener�
ated by a base fZ�� � � � � Z�gg� We write

Zmi
� Xi and Zni � Yi for � � i � g�

note that the numbering of the Yi is decreasing	 and the numbering of the Xi

is increasing in fZj j jg� We de�ne

F � A� A by F�Xi� �� Zi� F�Yi� � � for � � i � g�

We de�ne the alternating pairing by

� Xi� Yj �� �i�j� � Xi� Xj �� �� � Yi� Yj �� � for � � i� j � g�

Note that these determine the action of V� in fact V �M �M is given by

V�Zi� � �� V�Z�g�i��� � �Yi for � � i � g�
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where V�Z�g�i��� � �Yi if Z�g�i�� � fYg� � � � � Y�g and V�Z�g�i��� � �Yi if
Z�g�i�� � fX�� � � � � Xgg�

It follows that F �V and ��� are connected by the rules they should
satisfy�

� F�a�� b ��� a�V�b� � for all a� b � A�

note that the base �eld is Fp� hence the Dieudonn�e modules are over the ring
Fp �F �V�	 which is commutative in this case� Note that

Im�F� � Fp �Z� � � � � � Fp �Zg � Ker�V��

and

Ker�F� � Fp �Yg � � � � � Fp �Y� � Im�V��

We denote by �N�� ���st� the associated group scheme with this non�
degenerate pairing on A� � D �Na � � �Fp �Zi	 all de�ned over Fp� From the
formulas just derived we see that this is a �polarized BT� of rank p�g de�ned
over Fp�	 see below� Moreover we see that the submodules Ai � �j�i

j��Fp �Zj
de�ne a �nal �ltration on N � N�	 and we see that the �nal type of this �nal
�ltration equals ��

����� Denition� Let K be a perfect �eld� We say that �N���� is a polarized
BT� truncated group scheme	 or� a polarized BT�	 de�ned over K	 if N is a
BT� over K	 with Dieudonn�e module A �� D �N � and ���� A � A � K is an
alternating	 non�degenerate pairing such that � Fx� y ��� x�Vy �p for all
x� y � A�

����� Conclusion� For every elementary sequence � � � we have con�
structed a polarized BT� �N�� ���� de�ned over Fp with �covariant� Dieudonn�e
module �A�� ����� with a �nal �ltration given by a symplectic Fp�base
fYg� � � � � Y�� X�� � � � � Xgg such that Yi � Ker�F� for every i and such that every
base element under F is either mapped to zero or to a base vector� and such
that ES�N�� � �� It will be called the standard type de�ned by �� The base
fZ�� � � � � Z�gg � fYg � � � � � Y�� X�� � � � � Xgg will be called a standard base for
A�� In case confusion is possible	 we will write ���st for the �standard pairing�

on the �standard module� A�� A �nal �ltration is given by Ai � �j�i
j��Fp �Zj �

����� Theorem� Suppose k is an algebraically closed �eld of characteristic p�
Let �N� �� �� be a polarized BT� of rank p�g de�ned over k� Suppose � � ES�N �
is the elementary sequence determined by N � Then

�N� �� �� �� �N�� ���st� �Fp k�

Remark� This isomorphism is not unique in general�
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As Ben Moonen shows	 see ����	 a di�erent	 easier proof of this theorem can
be given in case the characteristic of the base �eld is not equal to two� We
could not generalize that proof to include the case char�k� � p � �� Below I
give a proof which covers all cases uniformly� It seems desirable to simplify the
methods of this section�

Strategy of the proof�We study on the one hand all pairings on A � D �N �
such that a given �F �V��base is in standard form on the associated grade
module� on the other hand we study all transformations changing a �F �V��
base into another such base� We show that the group of these transformations
acts transitively on the set of all such pairings	 see ������ In order to carry out
this programme we study the combinatorics related with the values of a pairing
on base vectors	 and the combinatorics related to the coe�cients needed in such
transformations�

The proof of the theorem will be given in several steps�

����� Let �X��� be a principally polarized abelian variety� Then N �� X�p� is
a symmetric BT�� In fact	 more is true� The pairing onX�p�� is symmetric	 and
this implies that the map � � X�p� �� N � ND is anti�symmetric	 see Section
�� for more details� However more is true� if �X��� is an abelian variety over
a perfect �eld K  Fp � the symmetry � � N � ND obtained de�nes a pairing
���� A� A� K on A �� D �N � which is alternating�
Indeed	 the pairing on D �X �p� � with values in the characteristic zero domain
W��K� is symmetric	 and the result follows �for details	 see ��������

����� Proposition� Let k be an algebraically closed �eld� Let �N����� be a
polarized BT� truncated group scheme de�ned over k� and let � � N � ND be
the symmetry de�ned by ���� The canonical �ltration on N can be re�ned to
a �nal �ltration of �N� ���
Remark� For a given �N����� the number of �nal �ltrations on �N����� is
�nite� We will give a reformulation of this proposition �in a special case� in
������
Proof�We consider steps in the canonical �ltration of A �� D �N �� In ������ we
have constructed �F ����cycles in the set of partial quotients in the Dieudonn�e
module of the canonical �ltration� such a cycle consists of vertices	 each is a
quotient in the canonical �ltration of the Dieudonn�e module	 edges of the cycle
are given by bijective mapsF or �	 and if F and F are consecutive edges	 there
is a �loose edge� �� We construct a re�nement to a �nal �ltration for each of
the cycles separately� Let P be one of the k�vectorspaces P � D �Nj �Nj��� as
in ������� Using a �F ����cycle in A according to ���	 we see that composition
of the maps F and isomorphism � give a linear mapping

f � �P �pd���D
�� �
�� P �
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here d is the number of steps involving F 	 and � is the parity of the number of
steps involving �� Note that d � �� Note that in the same cycle the values d
and � are the same for all edges in a cycle� We distinguish two cases�
�even�� suppose the number of edges named � in the loop of the cycle is even�
in this case the parity of � is even	 i�e�

f � �P �pd��
�
�� P �

�odd�� suppose the number of edges � in the loop of the cycle is odd� in this
case the parity of � is odd�

Suppose we are in the case of an �even� cycle� This is case �iii� of Lemma
������� We use the �Jordan reduction� for the map f as exposed in ����	 or in
���	 pp� ��� � ���	 ����	 page ��� Hence there exists a k�base P � k�e��� � ��k�ec
such that f�ei� � ei� We transport this base through every step of the cycle	
pushing is forward by F 	 or going to the dual base under �� As � is even
we come back with the same ordered base� This de�nes in every step of the
�ltration connected with the cycle a �ltration by steps of dimension one� these
are related under F or dual under � whenever applicable� This gives a �nal
�ltration for all quotients in the cycle studied	 hence a �nal �ltration for N� 	
the direct sum of all Nj���Nj for all quotients appearing in this cycle�

Suppose we are in the case of an �odd� cycle� This is case �ii� of Lemma �������
Let us consider one odd �F ����cycle �� As we have seen this is constructed from
a word w in F and V��	 describing the combinatorics of the related �F �V����
cycle on A	 i�e� the word in V and F�� in the �V� F����cycle on N � As � is odd	
the word w is self�dual	 the number jwj of letters is even� we write jwj � �m�
Let P � P� be one of the subquotients of D �N � appearing in �� consider
P�� P�� � � � � P�m��� Pm � P 	 the subquotients appearing in the �F �V����cycle�
consider gi � P � P� � Pi	 which is obtained by going clockwise i steps through
the �F �V����cycle given by w	 with the related maps	 using either F or V���
it is a �i�linear map� We write g � g�m � P� � P � P � P�m� We see that this
is a ��m�linear endomorphism of the vector space P � Let us write c �� dimkP �

We use the �Jordan reduction� for the map g as exposed in ����	 or in
���	 pp���� � ���	 ����	 page ��� This shows� de�ne F �� Fp�m � there exists a
F�base P �� F�e� � � � � � F�ec	 and g � P � P such that g�ei� � ei	 and such
that �P� g� �Fk �� �P� g�� From now on we work with vector spaces over F	 in
particular we write gi�P� � Pi�

We write � �� Fm	 i�e� the map x �� xp
m

when restricted to F we have
� � Gal�F�Fpm �� Let us write gm �� h � P� � P � Q � Pm	 and analogously
H � P � P� We de�ne

� � P � P � F by ��x� y� �� x� hy � �
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Remark that g � P � P is ��linear over k	 hence g � P � P is linear over F�
hence every base change over F leaves g in diagonal���form�

Note that � is�
�� non�degenerate	
�� linear in the �rst variable	
�� ��linear in the second variable	 and
�� ��x� y� � ���y� x�� for all x� y � P 	 i�e� �� is hermitian with respect

to ���
Form this last equality we see that for all x� y � P we have ��x� y� � ��x� y�����
this shows that � factors as � � P � P�

�� for all x� y � P we have ��x� y� � F�
Choose an element a � F� such that b� � �b	 i�e� an element such that bp

m�� �
��� We are going to show that we can choose a F�base P � F�f� � � � � � F�fc
such that on this F�base the form � is anti�diagonal with b on every anti�
diagonal place� i�e� such that ��fi� fj� � b��j�c�i�� �Kronecker�delta� for every
� � i� j � c� let us call this the standard anti�diagonal form over F�

Suppose we have proven that � can be put standard anti�diagonal form
over F� then we are done with this step� the image of the base ffj j � �
j � cg under gi gives an ordered base for Pi	 for � � i � �m� note that the
matrix of g on this F�base equals �� thus for every Pi we obtain a �ltration
by subvectorspaces with relative quotients of dimension one	 and the �ltrations
are carried into each other under F respectively V� the equality � x� z �
F�y� ��� V�x�� y �� shows this gives a �nal �ltration on all subquotients in
A� 	 compatible with ��

We are going to use methods exposed in ����	 ���� Over F the form � can be
put in standard anti�diagonal form� let us write P � P�FF� indeed	 if dimP �
�	 there is an isotropic vector x � P � we can write P � k�x�k�z� �k�x�k�z��

with ��x� z� �� �	 and we proceed by induction� Moreover the discriminant of
this bilinear form is in

F��NF�Fpm�F
�� � f�g�

Let us write Ufor the group of linear transformations of P respecting the data
��� � ��� above� this is a connected linear group� By ����	 page ��� the set
of isometry classes of forms isometric with � is given by H��F�U�� by ����	
page �� we know this cohomology set is trivial� this shows there exists a
transformation in U�F� transforming � into the standard anti�diagonal form
over F� We have seen that this is enough to construct a �nal re�nement� This
ends the construction of a �nal re�nement for N� in the case of an odd cycle
��

Performing the constructions described above for every cycle	 we re�ne the
original �ltration to a good �ltration with relative steps of dimension one	 i�e�
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to a �nal �ltration� This proves Proposition ����� �

We start with the proof of Theorem �����

����� First step� As k is perfect we can write N � Nloc�et � Nloc�loc �
Net�loc � N ��Nloc�loc � Because k is algebraically closed	 Nloc�et

�� �p�k�f 	 and
Net�loc

�� ��Z�p�k�f 	 and we choose a standard base for N � � Nloc�et � Net�loc�
Note that ES��G����� starts as follows� f�� �� � � � � f� f� � � �g� It su�ces to choose
a standard base for �Mloc�loc � ����� From now on we suppose that N is purely
local�local	 and hence F and V act nilpotently on A�

����� We �x some notation	 and we recall a result from ��
�� In this section
a word will be a �nite sequence of the letters F and V� A word will be used in
a cyclic way	 i� e� putting the �rst letter as last we will consider the two words
as the same� A word is called simple if it is not periodic of period larger than
one� We only consider words in which both V and F appear� The number of
letters in a words will be called the length of the word	 indicated by jwj�

For a word w we construct	 as in ��
�	 a �nite group scheme Zw with
Dieudonn�e module Bw � D �Zw � over Fp � If w � L� � � �Ld we choose z�� � � � � zd
plus the convention zd�� � z�� if Li � F we write F�zi� � zi�� and V�zi��� �
�� if Li � V we write V�zi��� � zi and F�zi� � � �the maps F are written
�clockwise� and V �anti�clockwise��� This de�nes the structure of a Dieudonn�e
module on Bw �� �i Fp �zi over Fp �F �V��

Structure theorem �see ��
�	 Section ��� Let k  Fp be an algebraically closed
�eld� Let N be a BT� over k� Then there exists a �nite set of mutually di�erent
simple words wi� and integers ni �Z�� such that

N ��
M
i

� Zwi
�ni �

This will be called a decomposition into isotypic summands� note that the
decomposition as in right hand side above is uniquely determined by N 	 but
the isomorphism is far from unique�

Moreover� If w and w� are di�erent simple words� a homomorphism Nw �
Nw� has non�zero kernel and non�zero cokernel�

From a word w we construct its dual wD by replacing F in w by V in wD

and by replacing V by F � a word w is called symmetric if w � wD �equality in
the cyclic way�� Note that �Nw�

D � NwD �a canonical isomorphism over Fp��

����� Second step� Lemma� Let k be an algebraically closed �eld� an let
�N����� a a polarized BT� over k� i�e� N is a BT� truncated group scheme�
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with Dieudonn�e module A � D �N �� and ��� is a non�degenerate� bilinear�
alternating form on A satisfying � x�F�z� ��� V�x�� z �� � Then there exist
symmetric simple symmetric words wi� integers ni� and pairs of non�symmetric
words vj � vDj and integers mj and pairings such that

�N����� ��
M
i

� Zwi
� ���i�

ni �
M
j

	
Zvj � ZvD

j
� ���j


mi

�

Proof� Suppose we write N � M � P in such a way that M and P are sums
of isotypic summands of N and such a that for a non�symmetric word vj the
summands Zvj and ZvD

j
both appear either in M or in P � The pairing gives a

morphism �
� �
� �

�
� � � M � P �� �M � P �D�

Because ��� was supposed to be non�degenerate	 � is an isomorphism� because
of the assumptions on the decomposition N � M � P we see that � is an
isomorphism �and � as well�� We de�ne � �� ��������� we de�ne P � � �� �
��P � N � we see that on N � M � P � the form is in diagonal shape� As ���
is alternating on D�M �	 it is alternating on the summands D �M � and D �P ���
Induction on the number of isotypic summands in N �nishes the proof� �

Remark� The lemma just proved is strictly speaking not necessary in the proof
below	 but it simpli�es considerably the notation in the last steps of our proof�

������ In order to apply the structure theorem for BT��s to �standard types�
we are going to change notation a little bit� The group schemes Zw appearing
in the classi�cation by Kraft we are going to replace by group schemes Cw	
more suited to our purpose �and over an algebraically closed �eld the same
up to isomorphism�� Let w be a �simple	 cyclic� word as above� We de�ne a
BT� Ew and its Dieudonn�e module Cw � D �Ew � almost analogous as before�
if w � L� � � �Ld we choose z�� � � � � zd plus the convention zd�� � z�� we write
fz�� � � � � zdg � fx�� � � � � xb� y�� � � � � ycg with the convention that �the y�s are
images under V�	 i�e� if Lj � V	 then zj will be baptized y	 and otherwise x�
we de�ne Cw �� �i Fp�zi� If Li � F we write F�zi� � zi�� and V�zi��� � �� if
Li � V we write V�zi��� � �zi and F�zi� � �� in fact we write V�zi��� � �zi
if zi�� � fy�� � � � � ycg	 and V�zi��� � �zi if zi�� � fx�� � � � � xbg �in short�
F � x �� x�F � x �� y�V � y �� �y�V � x �� �y�� This constructs the structure
of a Dieudonn�e module on Cw over Fp�F �V�� hence we have constructed a BT�

Ew�
For a word w we de�ne a�w� to be the number of pairs FV in the word�

Third step� Lemma� Let k be an algebraically closed �eld� let w be a word�
Then Zw � k �� Ew � k�
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Proof� Suppose D �Zw � � �iFp �z�i and D �Ew � � Cw � �iFp �zi� Let jwj � d
and a�w� � a� Consider z�i �� z�i�� by F 	 if Li � F or by V�� if Li � V�

composition of these maps gives z�� �� z��	 and b�z�� �� b�
d

�z�� for every b � k�

The same process yields z� �� ����a�z�� in Cw� Choose b � k with b�
d

� ����a�
We de�ne a k�linear map

D �Cw � � k � D �Zw �� k by z�i �� �i�zi�

where �� � b and	 inductively	 �i�� � ��i if Li � F 	 and V��i���zi��� � �i�zi
if Li � V� This yields �d�� � b�

d

�����a� Hence the k�linear maps commute
with the actions of F and V	 hence we have constructed a Dieudonn�e module
isomorphism D �Cw � � k � D �Zw �� k� This proves the lemma� �

Using the structure theorem	 and the two lemmas just proved	 in order to prove
���� it su�ces to show this for isotypic summands�

������ Suppose k is an algebraically closed �eld of characteristic p� Let
�N� �� �� be a polarized BT� of rank p�g de�ned over k� Suppose either N �
��Ev �EvD�� k�n� where v is a simple� non�symmetric word� and n �Z�� or
N � �Ew � k�n� where w is a simple symmetric word and n � Z��� Suppose
� � ES�N �� Then

�N� �� �� �� �N�� ���st� �Fp k�

For the rest of the section we keep notations as in ������

We write A � D �N �� A k�base for a Dieudonn�e module over k�F �V� will be
called a �F �V��base if it equals fz�� � � � � zdg � fx�� � � � � xb� y�� � � � � ycg with the
conventions as in the de�nition of Cw	 in particular �V � x �� �y�� in the
situation to be studied we will have d � �m and b � m � c� By the structure
theorem and by the lemma in ����� we have a �F �V��base for A� On A we have
the form �� �� We say that that a base for A is in standard form �with respect
to �� �� if it is a �F �V��base	 and if the form �� � is the standard symplectic form
on that base� We study all possible �F �V��bases for A and we show there is at
least one which is a standard base for �� ��

We will write zi � zj i� i � j	 i�e� the base vectors in zi are in a strictly
lower piece of the canonical strati�cation

������ Suppose we are in case N � ��Ev�EvD��k�
n as in ������ Then a�N �

is even	 and we refer to this case as the even case� We shall write jvj�jvDj � �m
Suppose w is a simple symmetric word� then a�w� is odd� this can be seen

as follows� choose a permutation in such a way that w starts with F and ends
with V� From the fact that w is simple and symmetric it follows that jwj is
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even	 say � �m	 and that Li �� Li�m� hence the �rst m letters are in the form
F � � �F and the last m are V � � �V� we see that the number of times that FV
appears in w is odd� The case N � �Ew � k�n as in ����� is called the odd
case� here we have a�N � � a�w��n�

On A we have the canonical �ltration

� � � � � � A�j� � � � � � A�

We call �jA
�j��A�j��� the associated graded of A� Note that the canonical

�ltration has exactly jvj � jvDj	 respectively jwj steps� Note that the vectors
in zi are in A�j� i� i � j� The notions of even and odd just explained are the
same as the ones used in Section ��

������ Fourth step� Lemma� We use the notations introduced
above� in particular as in ������ There exists a base fz�� � � � � z�gg �
fx�� � � � � xg� y�� � � � � ygg which is a �F �V��base for A� which de�nes a �nal
�ltration� and which is in standard form on the associated graded module for
the given pairing �� ��
Proof�We start with a �F �V��base for A as given in the structure theorem in
��
� plus the lemma in ������ The linear substitutions on P as in Proposition
���� can be carried over to the whole �F �V��base	 and we see that we can
derive a new �F �V��base for A which is in standard form on the associated
graded module� �

From now on we are allowing only substitutions �choices of another base�	 which
leave the residue classes of the base vectors in the associated graded invariant�
i�e� a new base vector Z�i will be of the form Zi�+ with + � A�j��� if Zi � A�j�

and Zi �� A�j����

������ We study the canonical �ltration of N as in ������ We denote by
zj � xi� yi the steps in this �ltration	 as well as the ordered sets of n base vectors
in this step of the �ltration �the ones which give non�zero residue classes in
that step of the associated graded�� As we work with �F �V��bases	 it is clear
what is meant by a notation like F�xi� � zi� it maps the ordered set of base
vectors encoded by xi to the analogous ordered set of base vectors given by zi�
by V�xi� � yj we mean combinatorially that V is bijective on these steps in

the canonical �ltration of A	 and that for base vectors xi � fx
���
i � � � � � x

�n�
i g	

analogously for yj	 we have that V�x
�t�
i � � �y

�t�
j � When we write �zi� zj � we

mean a n�n�matrix given by the pairings on the pairs of vectors in these sets�
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������ Sets of base vectors as assembled in the canonical �ltration on A in
consideration will be distributed in � subsets� We write

TX � fxi j xi �� FAg

�and remember	 no base vector in xi is VA�	 and

BX � fxi j xi � FAg� X � TX � BX�

�where T stand for Top and B stands for Bottom�� Further

UY � fyi j yi �� FAg and LY � fyi j yi � FAg� Y � UY � LY

�Upper and Lower�� Note that for a�w� � a	 respectively a�v� � a�vD� � a we
have TX � fx�� � � � � xg�a��g and LY � fya� � � � � y�g� Note that a Top�X�vector
is not an image of any base vector	 and a Lower�Y�vector is an image under
F and under V� All other base vectors are an image either under F �when in
BX�	 or under V �when in UY�� Every base vector is an image under a power
of F or a power of V of a � Top�X�vector�

For every index j	 with � � j � a we have uniquely determined indices
��j�� ��j�	 with � � ��j�� ��j� � g � a � � �they correspond to Top�X�
coordinates� and positive integers f�j�� v�j� such that for base vectors we have�

Ff�j� � x��j� ��� yj � Vv�j� � x
�j� ��� �yj � yj � LY ��j��

Note that for every i � g � a � � there exist j and j� such that ��j� � i and
��j�� � i�

Claim� A base fz�� � � � � z�gg � fx�� � � � � xg� y�� � � � � ygg is a �F �V��base for A
i� and only if� the Top�X�base vectors satisfy ��j� for all � � j � a and all base
vectors are obtained as a F
�image or a V
�image of a Top�X�base vector�
The proof of this claim follows directly from the de�nition of a �F �V��base�
Again	 note that zj stands for an ordered sequence of n elements� equations
should be understood in that sense�

������ We study all possible alternating pairings on A	 and we are interested
to have a base on which the pairings �zi� zj� are in standard form� We are con�
sidering the following combinatorics� Consider the set , � �f�� � � � � �mg���� �
�f�� � � � � �mg � f�� � � � � �mg���Z��� of unordered pairs �zi� zj�� We will de�
�ne ,� � ,	 the subset of �zero�classes�	 and an equivalence relation on
, respecting ,� � ,	 and we consider ���elements�� To this end we write�
�p� q � V�r�� � �F�p�� r� if Fp �� � �� Vr	 and � is the equivalence relation
generated by the steps in this partial ordering� We write �p� q � V�r�� � ,�

if F�p� � �� we write �F�p�� r� � ,� if V�r� � �� we write �zi� zj� � ,� if
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i � j � �m� we denote by ,� the set of all classes equivalent with any of the
previously mentioned zero classes� in particular we see that �V�p��V�r�� � ,�

and �F�p��F�r�� � ,�� note that A�i� and A�j� pair to zero if i � j � �m	
hence�
Observation� If �� � is an alternating pairing on A� and �zi� zj� � ,� then
�zi� zj� � �� This follows from �p� q � V�r��� � �F�p�� r��
Observation� Suppose we have non�zero classes �zi� zj� � �p� q�� Then either
zi � X and zj � Y or conversely� Indeed	 we can only �move on� if at least one
of the elements is in the image of V	 and as the element is non�zero	 the other
is not in the image of V�

An element of the form �xj� yj� is called a ��element�
Observation� If �� � is a non�degenerate alternating pairing which is in standard
form on the associated graded� then �xj� yj � � � �i�e� the diagonal matrix of
size n� n� 	j� �

Basic observation� If in , we have equivalent pairs �p� q� � �r� s� then �p� q� �
�� �r� s� � ��

Claim� �i� All ��elements form one equivalence class�
�ii� Let f�� � � � � � �eg � , be a longest chain of non�zero� non�� equivalent
elements� �j � �z�j � z

��
j �� then z�� does not occur in ��� � � � � �e �i�e� there are no

�cyclic� equivalence classes in the case of non�zero and non���classes��
�iii� Let f�� � � � � � �eg � , be a longest chain of non�zero and non�� equiva�
lent elements� Then �� � �xi� zj� with xi � TX and zj � TX �UY�
�iv� Let � � � � ���,� ,��� �� be the number of equivalence classes of non�
zero elements� Consider A with a �F �V��base for A� The set Q of alternating
non�degenerate pairings on A which are in standard form on the associated
graded equals k��n

� �� Q �and the bijection will be indicated in the proof��
Proof� �i� In the situation ����� all ��elements form a single equivalence class�
consider separately the symmetric word w or the pair of words v and vD� �

�ii� Suppose there would exist a cyclic equivalence class which consists of
non�zero and non�� elements� In case of w there would be an integer q	 say
� � q � �m	 such that Li �� Li�q for all i� As w is simple this can only happen
if q � m� The case v and vD follows in the same way �because v is simple and
non�symmetric�� �

�iii� There is an element �before� �p� q� if one of the p� q is an image under
F � So the left end �p� q� of a non�zero	 non�� equivalence class has elements not
in the image of F 	 not both in the image of V� �

�iv� Let �x���� z����� � � � � �x���� z���� be the left�ends of the non�zero and
non�� equivalence classes� Any �� � as in �iv� de�nes n�n�matricesM�� � � � �M� �

kn
�

by �x�j�� z�j�� �� Mj� for this choice we take once and for all an ordering for
each pair �x�j�� z�j��� Conversely	 given such matrices	 we de�ne �xi� yi� � �	 and
�x�j�� z�j�� � Mj � this de�nes all pairings between base�vectors	 and we check
that this gives a �� � as in �iv�� This �nishes the proof of the claim� �
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We write ,� �� , �,� � ,� for the set of non�zero and non���elements�
Conclusion� The evaluation mapQ� k��n

�
	 given by computing �� � on left ends

of equivalence classes in ,�	 is bijective� We will consider the set Q as A ��n
�

�k�
and treat it as a variety over k�

������ We consider the group S of all k�linear transformations of A which
are Dieudonn�e module isomorphisms	 and which map a given �F �V��base to
a �F �V��base� It acts on the set Q of non�degenerate alternating forms on A
�by conjugation�� S �Q � Q� this will be considered as the action of a linear
group over k onto a variety over k �identifying a linear group over k with the
group of its k�rational points	 etc��� We are going to prove that the orbit of
every element of Q under S is the whole of Q �and hence we can change �� � into
���st�� We see that in general the stabilizer of an element of Q is non�trivial�
We give the proof by considering an algebraic subvariety L � S containing the
identity of this algebraic group	 and showing that the di�erential of the action
parameterized by L maps surjectively onto the tangent space at �� � � Q�
Remark� The dimension of S in general is much larger that the dimension of
Q	 but that information is not of much help	 because in general the stabilizer
in S of an element of Q is non�trivial�

������ Description of S and of L� We introduce �variables� �s�j and �s�t	
each is a n� n�matrix �indices will be speci�ed below�� Given A as above with
a �F �V��base we write�

x�s � xs �
X
j�s

�s�j �xj �
X
yt�xs

�s�t�yt� 	xs � TX �����

these are subject to the relations ��j� as explained in ������ we write ��� for
the set ��j� 	j� We de�ne vectors z�i by� taking all images under powers of F
and powers of V	 and deleting the ones which are zero� The new base vectors in
the sequel will be denoted by f
�zi�g once all �s�j and �s�t satisfying ��� �and
perhaps several conditions��

Claim� The substitutions given by ���� subject to ��� form a group which are
all substitution which are the identity on the associated graded� and which map
the given �F �V��base for A to a �F �V��base� This de�nes a group scheme� �

Remark� In fact	 this group scheme in general is non�reduced� This will play
no role later in our considerations� We are going to de�ne a subvariety L � S
by imposing extra conditions on the variables�

������ For a set zj of base vectors we de�ne d�zj� � z�m���j � note that
d�xi� � yi and d�yi� � xi� We consider the set % of ordered pairs �zi-zj�	 such
that zj � zi�

% � f�zi-zj� � �f�� � � � � �mg�� j zj � zig�
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We write %� � f�z-d�z��g	 and we call elements of this set ���elements�� We
de�ne

D � %� , by D�zi-zj� �� �zi� d�zj���

We write %� �� D���,���
Claim� The map %� %� � ,� ,� is ����surjective�
In fact	 �z�� z��� is the image of �z�� d�z���� if d�z��� � z� respectively of �z��� d�z���
if d�z�� � z��� hence D � % � , is surjective� On % � %� the map �z�-z��� ��
�d�z���-d�z��� is �xed point free with quotient ,� ,�� �

On % we de�ne an equivalence relation	 indicated by �� we write �z�-z��� �
�Fz�-Fz��� if Fz� �� � �� Fz��� we write �Vz�-Vz��� � �z�-z��� if Vz� �� � ��
Vz��� a partial ordering	 and the equivalence relation given by this is the one
generated by iterating these de�nitions�

Claim� We have�

�z�-z��� � �u�-u��� �� D�z�-z��� � D�u�-u����

In fact	 d�z��� � �V�d�Fz���	 hence �z�-z��� � �Fz�-Fz��� implies
�z��V�d�Fz��� � �Fz�� d�Fz����	 and conversely� An analogous statement with
�Vz�-Vz��� � �z�-z��� proves the claim� �

We number the ��equivalence classes E�� � � � � E� � , � ,� � ,�� We de�ne
variables T�� � � � � T�	 each is a n � n�matrix of variables	 and we are going to
de�ne a morphism

Spec�k�T�� � � � � T���� S�

the image of this maps will be a closed	 reduced subvariety L � S� we study
the action

L �Q � Q�

Note that for every ��equivalence class E � ,� there are exactly two disjoint
��equivalence classes E�� E�� � %� such that

D � E�
�
�� E� D � E��

�
�� E�

We consider an ��equivalence class E � ,� ,�� There are three possibilities�

��� The class contains �xi� yi� for some index i� In this case there is only one
��equivalence class	 it contains all �xj� yj�� This is what we called the
��equivalence�class�

��� The left end of E equals �xs� xt� with xs� xt � TX� In this case E consists
of one element� E � f�xs� xt�g�
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��� The left end of E equals �xs� z� with z � UY�

For zero classes we de�ne�

D�xs-z� � ,� �� �s�j � �� if z � xj� respectively �s�t � �� if z � yt �L���

Suppose we are in case ���� Then D�xs-yt� � �xs� xt� � D�xt-ys�� Assume
that t � s �otherwise interchange�� then ys � yt � xs� We write�

xs � TX� yt � ys �� �t�s � � �L���

This condition will remove certain ambiguities� If Ei � E � f�xs� xt�g �
fxs�i�� xt�i�g with xs� xt � TX and xt � xs	 hence ys � yt � xs	 we de�ne�

Ti �� �s�i��t�i� � �s�t �L���

Suppose we are in case ���� We write �x� z� � E � ,� for its left end� hence
x � TX	 and z � UY� Note that d�z� � x and d�x� � z hence D�x-d�z�� �
�x� z� � D�z-d�x��� We choose the notation for E�� E�� mapping onto E in such
a way that �x-d�z� � E� and �z-d�x�� � E���

If E � Ei with left end �xs�i�� zu�i�� we de�ne

�s�i��j � Ti� if d�zu�i�� � xj respectively �s�t � Ti� if d�zu�i�� � yt �L���

we follow the ordered set E�i	 and we de�ne �s�j � �T pc

i respectively �s�t �

�T pc

i with the appropriate sign	 and with the power of p according to the
number of steps c in E�i that is �xs-xj� � E�i respectively �xs-yt� � E�i from
the left end side of E�i�

All elements appearing in E�� give rise to variables which we equate to
zero�

�xs-xj� � E�� �� �s�j � �� �xs-yt� � E�� �� �s�t � � �L���

The relations ���	 �L��	 �L��	 �L��	 �L�� and �L�� de�ne the value of all �s�j
and �s�t introduced in ������ under these conditions we have de�ned

Spec�k�T�� � � � � T��
�
�� L � S�

We see that indeed this de�nes a closed subvariety of S�
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������ Fifth step� Proposition� Equating all variables Ti to zero gives
� � L � S� the identity transformation� Choose any �� � � Q as in ������ The
action L � Q � Q at �� � gives a morphism L � L��� �� The di�erential of the
action L�Q � Q at �� � is a surjective linear map tL�� � tQ����� It follows that
the orbit of �� � under the action S � Q � Q equals S��� � � Q�
Proof� We write I � �Ti j i� � k�T�� � � � � T�� �� k�T � for the ideal generated
by these variables� We compute the action of Spec�k�T ��I�� on Q� Let us write
	i � Ti mod I�� We see that all elements �s�t and �s�t not de�ned by a left end
are in I��
Claim� Under the action of Spec�k�T ��I�� on Q the matrices Mj � �z�j� z

��
j �

are transformed into Mj � �	j � in fact	 let us write f
�zi�g as in ������ then
we compute 
�Mj � �
�z�j�� 
�z

��
j ��� in case ���	 using �L�� and �L�� and using

I� � � this gives�

�
�xs�� 
�xt�� � �xs�Ti�yt�
X
j�s

�s�j �xj �
X

yu�xs�u ��t

�s�u�yu� xt���ys�� � �� � �xs� xt���	i�

in case ���	 if �x� z� � Ei is the left end	 using �L�� and �L�� and I� � � in
case �x� z� � �xs� yj� we obtain�

�
�x�� 
�z�� � �xs � Ti�xj �
X

u�s�u��j

�s�u�xu �
X
yt�xs

�s�t�yt� yj � ��ys � � � ���

respectively if �x� z� � �xs� xt� we obtain�

� �xs � Ti�yt � � � � � xt � ��ys � � � ���

This proves the claim�
Hence it proves that tL�� � tQ���� is surjective� Hence for every �� � � Q the

set L��� � � Q is dense� We know that Q is irreducible� This proves that S acts
transitively on Q� �

In the basic observation in ����� we see that pairings between base vectors
�non dual ones� are zero i� these parings are zero on all left ends of equivalence
classes� The previous proposition shows that	 starting from ����� there is a
transformation fxs �� x�s j xs � TXg � 
 � S�k� such that 
��� � � �
��� 
���
is zero on left ends of non�����equivalence classes� Hence 
��� � ����st� This
proves the claim as in ������ By what has been said and proven in the �rst
three steps	 this proves Theorem ����� �

������ Remark� By ���	 Proposition ������ we know that every orbit of a
unipotent group Sred acting on an a�ne variety Q is closed� hence we see that
in the proof of ����� it su�ces to compute the tangent action of L at ���st

in order to prove that every �� � is in the orbit S� ���st�
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������ Remark� Suppose a �nal �ltration on a polarized BT� truncated
group scheme is given� We note there are in general many choices for a standard
base matching this �ltration� here is one example� Choose indices i and j with
nj � mi� then ni � �g � ��mi � �g � �� nj � mj � we choose some � in the
base �eld k	 we change Xi to X�

i � Xi � ��Yj and Xj to X�
j � Xj � ��Yi	 and

we leave all other base vectors the same� Clearly the new set is a standard base
matching the same �ltration� Examples of a di�erent nature are easy to give	
as we have seen in the proof above� in general there are many isomorphisms on
A� which by conjugation do not change ���st�

�� Moving in a stratum

In this section we �x an elementary sequence � � �	 and we prove�

������ Proposition� Every component of S� has dimension at least j � j�
Later we will show in fact that�

dim�S�� �j � j �

Let x � S��k�	 where k is an algebraically closed �eld� We are going to study
deformation theory around ��X�� ���� � x� � A	 especially a part which �stays
inside S��� We use notations introduced earlier	 especially we use a standard
base for D ��X� � ����p�� as described in Section � We write � for the �nal
sequence associated with �	 and we suppose we have chosen	 see ����	 a �nal
�ltration

A� � A� � � � � � Ag � F�A� � � � � � A�g � A � D �N���

The standard base fZ�� � � � � Zgg � fX�� � � � � Xg� Yg� � � � � Y�g for A is lifted to a
symplectic base fX�

�� � � � � X
�
g� Y

�
g � � � � � Y

�
�g for M � D �X� �p��� such that Y �i �

F�M ��

We use the integers fng� � � � � n�g and fm�� � � � �mgg as introduced in Section �
We write

I� � I � fng� � � � � ng�a��g and J� � J � fm�� � � � �mg�ag�

this corresponds with the Yj 	 respectively Xi	 contained in Ag � F�A�	 where
a � a�X�� � a��� � g���g�� We introduce variables tu�v	 some of which are put
to zero	 some of which are considered as variables	 and in this way we are going
to construct a ring R�� To this end we take subset D� � f�� � � � � gg�f�� � � � � gg
de�ned as follows�

�J� it consists of all �u� v� such that u � v � a and
�I� it consists of all �u� v� such that � � v � a and mg�u�� � ng�v���
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������ Observation�

��D�� �j � j �

Indeed	
P

j�J ��j� equals the number of pairs in �J� above	 and
P

i�I ��i�
equals the number of pairs in �I� above� �

We de�ne

R� � k��tu�v j �u� v� � D or �v� u� � D����tu�v � tv�u��

Note that if �u� v� in �I� above then it is not in �J�	 and �v� u� is not in �J�� Note
that the Krull dimension of this ring equals j � j� We write T�u�v� � W��R��
for the Teichm.uller lift of tu�v � R�	 and we write T � �Tu�v j � � u� v � v� for
the corresponding matrix�

The display ofM on the symplecticW �base fX�
�� � � � � X

�
g� Y

�
g � � � � � Y

�
�g for M we

denote by �
A B
C D

�

�with apologies that we use the symbol A with two di�erent meanings� we
expect there will be no confusion�� With the matrix �T � de�ned above we
obtain a display �

A � TC B � TD
C D

�
�

This de�nes a quasi�polarized p�divisible group over Spec�R�� deforming
�X��p��� ���� hence by the theorem of Serre and Tate	 see ����	 ����	 ���� 	 we
obtain a principally polarized abelian scheme �X�T �� ��� Spec�R��� we write
��X�T �� ��� � x � A�R�� for the corresponding point�

������ Claim� We have ��X�T �� ��� � x � S��R���
In fact	 if ��mi� � ns	 then

F �T ��X�
i� �

X
Tj�g�s���X

�
g�j�� � Y �s �

The variables coming from �J� above show up only multiplied by a factor p�
These two fact show that this bases induces a �ltration on A�T � on which the
elementary sequence � is realized	 say over a perfect closure of the �eld of
fractions of R�� This proves the claim� �

Hence we have constructed x� � Spec�R�� � S�� By the observation above
this proves the proposition� �

�




�� Moving out of a stratum

In this section we consider elementary sequences � and �� such that

� � �� and j � j �� �j �� j �

This means there is an index b with � � b � g and

��i� � ���i� for i �� b� � � i � g� and ��b� � � � ���b��

Note that this is only possible when ��b� �� � ��b� � ��b � ���

������ Proposition� Under these conditions

S�� � �S��
c�

Proof� It su�ces to prove the case that ���� � �	 which we suppose from
now on� As in the previous section we write� ��X�� ���� � x� � S� � A and
fZ�� � � � � Z�gg � fX�� � � � � Xg� Yg� � � � � Y�g	 a standard basis for A is lifted to a
symplectic base fX�

�� � � � � X
�
g� Y

�
g � � � � � Y

�
�g for M � D �X� �p��� such that Y �i �

F�M �� Note that ��b��� � ��b� � ��b���� hence Zb is one of the base vectors
Y
	 in fact Zb � Yy with y � g�b���b�� moreover Zb�� is one of the base vectors
X
	 in fact Zb�� � Xx with x � ��b���� On the moduleA we haveF�Xb� � Yy�
We de�ne u � g � � � ��b � ��	 and v � b � � � ��b�� we write tu�v � q	 a
variable over k	 and tv�u � q	 and we put all other ti�j � �� the Teichm.uller
lift we denote by Q � W��k��q��� �and all others equal to ��	 thus obtaining a
matrix T � From this we obtain a deformation �X�T �� ��� Spec�k��q����

Claim� For the generic �ber� we have ES�X�T �

 � �� � ���

Observe that Yy � F�A�	 hence y � g� a� �	 hence v � a� In the deformation
we see that Tv�u is multiplied by a factor p� We conclude that�

F �T ��Xb� � Yy � T �Xx� and
F �T ��Zi� � F�Zi� for all i �� mb	 i�e� Zi �� Xb�

Let K be a perfect �eld containing k��q��	 write �X��� � �X�T �� ��	 and let us
show that ES�X��� � ���

In case � � b � g the old standard base is

fZ�� � � � � Zb��� Yy� Xx� Zb��� � � � � Zg�b��� Xy� Yx� Zg�b��� � � � � Z�gg�

We choose a new base for the module on which the display is de�ned by choosing
fZ�� � � � � Zb��� Yy�T �Xx� Yy� Zb��� � � � � Zg�b��� TXy�Yx� Yx� Zg�b��� � � � � Z�gg�
This ordered set de�nes a �ltration� with the ��linear map given by F �T ��Xb� �
Yy � T �Xx� etc� as above	 we obtain a �nal �ltration with elementary sequence
���

In case b � g	 we have x � g � a � � � y� the old standard base is
fZ�� � � � � Zb��� Yy� Xx� Zb��� � � � � Z�gg	 and on the new base given by the ordered
set fZ�� � � � � Zb��� Yy�T �Xx� Yy� Zb��� � � � � Z�gg we obtain a �nal �ltration with
elementary sequence ��� This proves the claim	 and it �nishes the proof of the
proposition� �

��



������ Corollary� For every � � � we have�

dim�S�� � j � j �

In fact	 if �g�g � ������ j � j� c	 there is a sequence

� � �� � �� � � � � � �c � f�� � � � � gg�

By the previous corollary this shows that every component of S� has dimen�
sion at most j � j� By the main result of the proceeding section the opposite
inequality holds	 and we are done� �

Remark� It seems strange that we obtain a regular deformation space starting
at a point in the boundary of S�� 	 although we know that in general a stratum
is �very singular� at its boundary� However note that we consider deformations
respecting a �nal �ltration� For example	 if we start in a point of �	 and and
we want to move into the interior of L	 there are many ways of doing that� But
what we proved	 implies that giving a �nal �ltration for the closed �ber	 this
singles out a �direction of deformation� into L�

�� Transport of structure along the boundary

of a stratum

In this section we prove that the boundary of a stratum S� is a union of �lower
dimensional� strata� We use Lemma ������	 and give the proof in Proposition
������� In ������ we explain some notation� The results ������ and ������ will
not be used in the sequel� these are included in order to explain the complexity
of the situation� we expect that ������ can be of independent interest� The main
result of this section is not di�cult if we work over �elds of characteristic p � ��
in such a case an anti�symmetric pairing on N gives an alternating pairing on
A �� D �N �� in that case a proof of Proposition ������ is not so di�cult� We have
chosen to include also the case p � � in the general proof	 leaving simpli�cations
in other cases to the reader	 but indicating how biextensions can be brought
in�

������ Polarizations and biextensions�
�AV� Let �X � ��� S be a polarized abelian scheme� By ����	 ��� on page ���	
we know�

Biext��X�� X��Gm �
�
�� Hom�X�� X��

�we will write X� � X � X�	 numbering the copies of X involved in order to
keep track what is what�� The polarization is an isogeny � � X � Xt� We know
that � is symmetric in the sense that

�� � X� � Xt
�� � ��t � �X��

tt � X� � Xt
���

�



here we write Xtt � X meaning we have a canonical	 functorial isomorphism	
which is denoted by

�X � X
�
�� Xtt

for abelian schemes	 and for p�divisible groups�

�Biext� Let N � S be a �nite  at group scheme� By ����	 ����� and ����� 	 see
page ���	 we know that

Ext�N�� N
D
� �

�
�� Biext��N�� N��Gm ��

We write � �� E for the extension and the biextension corresponding under
this canonical identi�cation� If �X��� is as above	 and q is a positive integer	
N �� X�q�	 we write �X��� jN for the restriction of the biextension de�ned by
�X���

jN � Biext��X�� X��Gm � �� Biext��N�� N��Gm ��

Suppose P and Q are BT�� We say that

��� �� Q� T � P � �

is a ��extension if Q � T �p� and �p� � T � Im��p� � T � T � � T�T �p� � P under
the natural identi�cations� We say that � is anti�symmetric if �DD � ��� we
intend to say� the exact sequence � de�nes

��D� �� PD � TD � QD � ��

dualizing again we obtain �DD� for �nite  at group schemes we have a duality
isomorphism

�P � P
�
�� PDD

�denoted by � in ����	 I����	 but we use a di�erent symbol because we have used
already � for abelian schemes�� we intend to say�

��P �
���DD� � ���Q������

We write Ext�N�� N
D
� �Gm ����a� for the set of ��extension which are anti�

symmetric�

�Pairings� Let K  Fp be a perfect �eld	 and let N be a �nite group scheme
over K� We consider ���� A � A � W 	 a pairing on the Dieudonn�e module
A �� D �N �� If �X��� is as above	 and N �� X�p�	 we write �X����p� � �N�����
for the pairing induced by � on A � D �A��

Note the di�erent notations� If �X��� is a polarized abelian scheme	 and N ��
X�p�	 we write �N�E� � �X��� j N for the pair obtained by the restriction of

��



the biextension	 and we write �X����p� � �N����� for the pair obtained by
restricting the polarization morphism to N �

Between these concepts there are some relations� Most of these are well�known	
and we list them for convenience�

������ Lemma ��� Let �X��� be a polarized abelian scheme� Let q be a pos�
itive integer� and N �� X �q�� The restriction of � � Biext��X�� X��Gm � gives
a symmetric biextension E � Biext�N�� N��Gm �� corresponding with an anti�
symmetric extension � � Ext��N�� N

D
� ��

��� If moreover q � p� and the polarization � is principal� the related extension
� is an anti�symmetric ��extension�

� jN � � � Ext�N�� N
D
� �Gm ����a��

��� Let K  Fp be a perfect �eld� and N �� X�p�� A principal polarization re�
stricts to a non�degenerate pairing �X����p� � �N����� on A �� D �N � which
is alternating�
��� An anti�symmetric ��extension on a BT� over a perfect �eld restricts to a
non�degenerate� alternating pairing �N����� on A �� D �N ��
��� Let k  Fp be an algebraically closed �eld� The restriction map from
Ext�N�� N

D
� �Gm ����a� to the set of pairs �N����� of BT� group schemes with a

non�degenerate alternating pairing on its Dieudonn�e module is surjective� �Re�
mark� in general this surjection is far from being injective��
Proof� ���� This follows basically from ����	 Coroll� ������	 pp� �$
�� In fact	
if � � X � Y is an isogeny of abelian schemes	 the duality theorem gives a
canonical identi�cation

� � Ker��t�
�
�� �Ker����D �

The last diagram in the corollary cited reads� ����N � ����X jN�� This proves
����
���� The extension is obtained as � � �N� � ND

� ����X t�p���X t�p�� �� X t�p���
Hence it is a ��extension� This proves ����
��� and ���� The pairing on A �� D �N �	 where N � X�p� in ��� can be de�ned
as follows� consider a ��extension

�� ND
� �� T �� N� � ��

Then multiplication by p on each member of this exact sequence	 and applying
the snake lemma we obtain an isomorphism N� � ND

� � this is the pairing we
are looking for� Let us make it explicit in terms of Dieudonn�e modules� Let
B �� D �T �� This is a free module over W� � W��k���p��� The isomorphism
T � TD	 anti�symmetric by ���	 is written out by a non�degenerate	 anti�
symmetric pairing �� � � B �B �W�	 and the pairing ��� on A obtained form

��



the extension can be described as� for x � A�� y � A�	 we choose x
� � B such

that x� mod AD
� � x� note that AD

� � B� with these notations�

� x� y �� �px���y��

and using B �� BD by �� � and �AD
� � B�D � BB � A�� we can rewrite this as

� x� y �� p��x�� y���

We remark that �� �� �� � W�� As the pairing �� � is anti�symmetric this
implies that for every z � B	 with z �� pB we have �z� z� � ��z� z�	 hence
p��z� z� � �� We obtain � x� x �� p��x�� x�� � � for every x � A� This proves ���
and ����

Remark� We do not have �in case the characteristic of the base �eld equals two�
a characterization of those pairings on N � X �p� which come from a principal
polarization on X only in terms of group schemes	 not using D �N ��

������ Construction� Given a pair �N����� of a BT� with a non�
degenerate alternating pairing on A � D �N � over k� we construct a p�divisible
group G� and a principal quasi�polarization � on G such that the restriction
�G� � � G � Gt��p� gives �N� � � N � G�p� � ND � Gt�p��� � From this it
clearly follows that the restriction map in ��� is surjective� One could indicate
the polarized p�divisible group obtained below by something like Can���� Note
that in general Can�ES�G� ��� ��� �G� ���

Indeed	 we use the structure theorem of standard types as in Section
� Hence we can choose a basis fX�� � � � � Xg� Y�� � � � � Ygg with the proper�
ties speci�ed above� We choose M ��

L
W �X�

i �
L

W �Y �j 	 and we con�
struct the structure of a Dieudonn�e module on this� We analyze the con�
struction ����� We denote the base vectors in the standard type describing
A � D �N � by fZ�� � � � � Z�gg � fX�� � � � � Ygg� We have seen that fZ�� � � � � Zgg �
fX�� � � � � Xg�a� Yg� � � � � Yg�a��g is a k�base for F�A� � A�V�	 and every of
these base vectors is an image under F of one of the base vectors	 in fact
F�Xi� � Zi� We have also seen that each of the elements of fZg� � � � � Z�gg �
fYg�a� � � � � Y�� Xg�a��� � � � � Xgg is mapped under V onto either �Yi or onto
�Yi� For every � � i � g the image F�Xi� � Zj � A � M�pM is de�ned	 and
we require F�X �

i� � Z �j � M � For every g � i � �g the image V�Zi� � Zj is
de�ned	 and we require V�Z�i� � Z�j�

If � � i � a and Xi � F�Xj�	 we require V�X
�
i� � p�X�

j �
If g � i � g � a and Yi � F�Xj� we require V�Y �

i � � p�X�
j �

In this way we have de�ned V for all base vectors Z�i�
If a � j � � and Yi � V�Yj� we require F�Y

�
i � � p�Y �j �

If a � j � � and �Yi � V�Xj � we require F�Y �i � � �p�X�
j �

In this way we have de�ned the image under F and under V of every base

��



vector �and every image is either � a base vector	 or p times � a base vector��
We extend the map F in a ��linear way and V in a 	 �linear way on M	 where
	 � ���� Direct veri�cation shows that this de�nes the structure of a Dieudonn�e
module of a p�divisible group with a symplectic W �base fZ �i j � � i � �gg� By
construction	 modulo p	 this gives back the standard type which is k�isomorphic
with A with its symplectic form� this ends the construction�

Hence the proof of the lemma is complete� �������

������ Lemma� Let K be a perfect �eld� Let �N�� ��� and �N�� ��� be �nite
group schemes with an anti�symmetric symmetry over K� Let Ai �� D �Ni �
be their Dieudonn�e modules� Let f � A� � A� be a W �linear� bijective map�
where W � W��K�� Suppose that f commutes with Frobenius and with the
symmetries� i�e� the diagrams

A
�p�
�

f�p�

�� A
�p�
� A�

��
�� AD

�

F � � F and f � � fD

A�
f
�� A� A�

��
�� AD

�

are commutative� Then f is an isomorphism of Dieudonn�e modules� hence

�N�� ���
�
�� �N�� ����

Proof� On A� and on A� we have the Verschiebung	 V � Ai � A
�p�
i � We have

to show that f also commutes with these maps in order to conclude that f is
an an isomorphism of Dieudonn�e modules� We show this by pushing F with
the help of the �i onto the duals	 and then by duality transforming F on the
duals into V on the Ai�

At �rst we show�

�A�p�D
� � AD

� � AD
� � � fD �F



� F�f �p�D � �A

�p�D
� � A

�p�D
� � AD

� ��

We should draw a large diagram	 and chasing leads to�

�A
�p�
� � A� � A

�p�D
� � AD

� � AD
� � � �fD �F���

�p�
� �f �p��� �

� �fD �F��
�p�DD
� ���f �p� � fD �����f �F� �

fD �����f �F� � ���F � F�fDD ���
�p�
� �f �p���

hence
�fD �F� � �F�f �p�D� � A

�p�D
� � AD

� �

We use�
�A

�p�D
i

F
�� AD

i �
D � �A

�p�D
i � A

�p�
i

V
�� Ai � ADD

i �

��



under the identi�cation � � Ai � ADD
i � This proves that f �commutes� with

V	 and the lemma is proved� �

We show that the boundary of a stratum is a union of �lower dimensional�
strata�

������ Proposition� Let � � � be an elementary sequence� let ��X�� ���� �
� � �S��c� and let ��Ys� s�� � s � A such that ES�X�� ��� � ES�Ys� s�� Then
s � �S��c� This implies�

S�� 
 ��S��
c� �� � �� S�� � �S��

c�

Proof� It su�ces to show this under the extra condition that X��p� is a local�
local group scheme	 i�e� ����� � �� We suppose k is an algebraically closed �eld	
with �X�� ��� � A�k�	 over which �Ys� s� is also de�ned� As � � �S��c we can
choose a complete local domain R of characteristic p	 with residue class �eld k	
and an abelian scheme �X���� / � Spec�R� such that �X����Rk � �X�� ���
and for the generic point � � / we have ES�X
 � �
� � �� As ES�X�� ��� �
�� � ES�Ys� s�	 using ����	 �0�	 we can choose an isomorphism �which we will
write as an identi�cation��

�X�� ����p� � �N�� ��� � �Ys� s��p��

Let fZig be a symplectic W �base for M� �� D �X� �p
��� such that

Zg��� � � � � Z�g � VM � On this basis the matrix of F on M� is given by the
display �

A B
C D

�
and

�
A� TC B � TD

C D

�

is the display of the deformation �X�� ��� � �X���	 where T � Mat�g �
g�W��R�� is a symmetric matrix� We choose a symplectic basis for D �Ys �p���
such that this modulo p coincides with fZi mod pg on D �X� �p�� � D �N� � �
D �Ys �p��� We write �

a b
c d

�

for the display on this basis on D �Ys �p���� Note that

�
A mod p �
C mod p �

�
�

�
a mod p �
c mod p �

�
�

We de�ne a deformation of �Ys�p
��� s�	 and hence by the theorem of Serre

and Tate	 a deformation �Y� � of �Ys� s�	 by the display

�
a� Tc b� Td

c d

�
�

��



We claim� ES�Y
 � 
� � �� Indeed	 let K be a perfect �eld containing Q�R��
We see that F on D �X
 ��p��K is given by the same display�

�A � TC� mod p �
C mod p �

�
�

�
�a� Tc� mod p �

c mod p �

�

as the one giving F on D �Y
 ��p� � K	 and the pairings on these �nite group
schemes coincide under this identi�cation� Hence the conditions of the previous
lemmaare ful�lled	 and we conclude that �X
 � ���p��K �� �Y
 � ��p��K� Hence
ES�X
 � �
� � ES�Y
� 
� � �	 and the proof of the proposition is concluded� �

We expect that a proof of the previous proposition can be given by local de�
formation theory	 by using ��
�	 and giving an interpretation of the image of
biextension on �nite group schemes to a certain set of anti�symmetric pairings
over arbitrary base schemes� This was our original approach	 which works in
characteristic p � �	 also see ����� We have not carried out this programme for
p � ��

������ Remark� It seems plausible �using the notations in the previous
proof� that �X����p� �� �Y� ��p� � /� However	 in general there is no
�Y� � � / extending �Ys� s� such that �X��� j N and �Y� � j N are isomor�
phic over /	 where X�p� � N � Y �p�� in other terms� the �nite group scheme
with the symmetry �N� �� can be included in a new �Y� �  �Ys� s�	 but in
general the �nite group scheme with biextension �N�E� does not admit such a
construction�

�� Proof of the results

The set of superspecial points � � A is a �nite set of points� It is clear that

ES�X� � g �� a�X� � g �� X is superspecial�

i�e� there is a supersingular elliptic curve E and an isomorphism X � k �� Eg �

������ In Section 
 we have seen the construction of L	 in �
��� we have
proved that L is connected� In Section � we have proved that L � �Sf���������g�

c�
� Theorem �����

������ In Section �� we have seen how to produce new abelian varieties with
an elementary sequence �� �see the notation in that section�� Hence it follows
by induction from the superspecial locus that every elementary sequence does
appear	 i�e� for every � � � the locus S� is non�empty� Using Section �� and
Section ��	 in particular ������ it follows that dim�S�� �j � j�

� Theorem ������

��



������ In ������ we have proved that a locus S�� either does not meet �S��
c

or is contained in �S��c� this is the �rst claim in Theorem ������
Let � � �	 with � �� f�� � � � � �g	 i�e� S� �� �� By ����� we know that every

irreducible component T � T� � A� is quasi�a�ne� because its dimension
is positive	 this implies that its boundary �A��T � �� �� By ����� we conclude
that �A��T � 
A is non�empty� hence we see that every irreducible component
S � S� is not complete� Moreover using ������ this proves that every irreducible
component S � S� has a non�empty boundary in A	 which is of codimension
one by �����	 and we see it is a union of components of lower dimensional
strata� Hence by induction we see that every component of S� contains in its
boundary a component of the �unique� zero�dimensional stratum Sf���������g�
hence by ����� we know that ��S� contains an irreducible component of L�
Hence if � �� f�� � � � � �g	 i�e� S� �� �	 then �S��c is connected�

� Theorem �����

Remark� Instead of using ����� in the proof of �����	 we can use �����	 induction
on g	 and �������

As A � �Sf��������gg�
c	 we know by Theorem ����� that it is connected� Moreover

for n � � it is non�singular� Hence Ag���n�Fp�n is geometrically irreducible for
every g and every n �not divisible by p�� � Corollary �����

������ It su�ces to show ����� in case we moreover assume n � �� We note
that the locus Vg�� � A of non�ordinary polarized abelian varieties equals
Vg�� � �Sf����������g��g�

c� Let us work over an algebraically closed �eld k� Every
component of this closed locus contains at least one irreducible component of
L	 and it contains at least one point of ��

Let ��X� � Eg � ��� � x � � � Vg��� By ���	 ��� we can put a prin�
cipal polarization on Eg in diagonal form� We write out the display of the
universal deformation of �X� � Eg � �� on this basis� The Hasse�Witt matrix
of X� is zero	 and we see that a formal neighborhood of x in A is given by
Spf�k��Ti�j j � � i� j � g����Ti�j � Tj�i��� moreover

Vg�� � k at x is given by Det�Ti�j� � ��

Claim� This equation is given by a non�zero� irreducible polynomial� This we
prove by induction on g� For g � � this is clear� Let T � Tg�g � and write

Det�Ti�j j� � i� j � g� �� Dg � A � T �B�

where A � Dg�� and B are polynomials in the other variables� The polynomial
A is non�zero	 and for g � � it is irreducible by the induction assumption� For
g � � we substitute Tj�j � � for all j � g� �� and Tg���g � Tg�g�� � �� and all
other variables � �� this gives B �� � and A �� �� because A is irreducible we
see that A and B are coprime� Hence AT �B is irreducible�

��



Thus we see that Vg�� � k is locally irreducible at all x � �� Hence for
every irreducible component L� � Lk there is exactly one component of Vg���k
containing L�� Hence there is precisely one component of Vg��� k having non�
empty intersection with Lk� By what has been said before this implies that
Vg�� is geometrically irreducible� � Corollary �����

�� Some questions

������ We have seen that some strata are reducible �like �	 like L	 say for
large p�� Some strata are irreducible �like A	 like V� for g � ��� What can be
said in general+ We expect�
Conjecture� Let � � � such that S� is not contained in the supersingular
locus� Then we expect that �S��c is geometrically irreducible�

This is in agreement with the examples just mentioned� it was proved in
certain cases by Van der Geer	 see ����	 Theorem ���� take � � f�� �� � � �� g �
a� � � � � g � ag	 with a � g�

������ In ����� we have seen that T� � A� is a quasi�a�ne set	 and the same
for S�� We expect that T� is ane subscheme of A� for every �� We expect
that there exists � such that S� � A is not ane�

������ Given two elementary sequences �� �� � � we have de�ned the relation
�� � � by ���i� � ��i� for all i� We de�ne

�� � �
def
�� S�� � �S��

c�

It follows from ������ that �� � � � �� � �� It is not so di�cult to give
examples that the converse does not hold�

Example� We choose ��� � � �� and deformation which shows that

�� � �� while �� �� ��

We choose �� � f�� �� �� ���� �� �g	 hence �� � f�� �� �� ���� �� �� ������ �� ����
g�
we choose � � f�� �� �� ������ �g	 hence � � f�� �� �� ���� �� �� ������ �� ����
g�
clearly �� �� �� we prove that �� � �� The standard type for �� has a Dieudonn�e
module with basis�

fY� X�� Y�� X�� Y�� Y��X�� X�� Y�� X�� Y�� X�� Xg�

We write out a display	 where T��� � T � T���	 and all other other variables are
put to zero� Explicitly	 on the basis given above	 we have F � X� �� Y��TX� ��
Z	 and all other images under F of base vectors are the same as before� under
F 	 all Yi are mapped to zero	 and we have X �� Y� and X� �� Z �� T ��Y�	 and
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X� �� X� �� Y� and X� �� Y� and X� �� X� �� Y� Over the �eld of fractions
k��T �� we choose a basis by�

fY� Y�� Y�� X�� X�� ���Z�Y��TX�� ���Y�� ���X�� ������T �Y�� Y�� Y�� X�� X�� Xg�

this puts the generic �ber of the deformed module in standard form	 with
elementary sequence ��� �

We note that �� is canonical	 and it belongs to the cycles
fFVV�VFF �FVFFVFVVg� the �nal sequence belonging to � is not
canonical� it belongs to the cycles fFVV�VFF � �FFVV��g� we have seen that
�� � �� However	 consider the cycles fFVFFVFVVg and f�FFVV��g� these
de�ne ��� � � ��	 and they correspond with elementary sequences f�� �� �� �g
and f�� �� �� �g� hence	 although �� � �	 �subtracting equal parts�	 gives
�� � � and �� � � 0+

We see� in general

� � �� �� � � ���

Question� Is there an easy algorithm� using the combinatorics of sequences�
describing the relation � � ��+

������ On A we have de�ned a strati�cation A � t��� S�� For every sym�
metric Newton polygon � there is a stratumW	 � A� this is the �closed� set of
points where the Newton polygon is either equal or above �� we write W �

	 for
the locally closed set of points where the Newton polygon is equal to �� we have
A � t	 W �

	 � for this structure	 see ��
�� Both strati�cations are reasonably well
understood by now� However intersections are not so easy to understand� For
example	 I have some information	 but no proven complete results	 which tell
us exactly which elementary sequences appear on the set W �

	 �

������ Even more di�cult is the question to describe intersections of all NP�
strata	 and of all EO�strata with the Torelli locus j�Mg� � T �

g � �T �
g �

c �� Tg �
A� in these case I have no reasonable conjecture to o�er� Here is an example�
Question� Does every symmetric Newton polygon appear on Tg�

It is known that even for large values of g there are supersingular curves
of genus g	 contrary what might be thought after dimension considerations	 see
����� I expect the answer to this question to be negative for large g	 but I have
no reasonable theory	 no method	 no examples to support this expectation�

I do not know which elementary sequences appear on Tg�

Also I have no idea to describe the intersection of Tg with either of the
two foliations of W �

	 which will be described in �����

��



������ Remark� Suppose that the answer to the question in ������ is neg�
ative	 i�e� suppose there exists a symmetric Newton polygon which does not
appear on the corresponding Tg� Then it follows that there exists an abelian
variety over Q which is not isogenous with a Jacobian� this would answer a
question asked by N� Katz �we expect a negative answer��
Question� Is every abelian variety over Q� or over Fp isogenous with a Ja�
cobian� Note that over C there exists for every g � � an abelian variety not
isogenous with a Jacobian�

������ In general a p�divisible group G is not determined by the structure
of its p�kernel G�p�� For example	 Choose g � �	 and consider all principally
polarized abelian varieties �X��� with f�X� � � and a�X� � �� We have seen
that in such a case we have �X�p�� ���� �� Nf�����g	 in the notation of Section
� but we know that the formal isogeny type of X�p�� can be either G����G���

or ��G���� Moreover	 even if the formal isogeny type is given	 then within one
of these classes there are in�nitely many mutually non�isomorphic possibilities�
Many more examples along these line can be given�

However there are cases in which the p�kernel does determine the p�
divisible group� For example	 if f�X� is maximal �the ordinary case�	 or if a�X�
is maximal �the superspecial case�� over an algebraically closed �eld there is a
unique isomorphism class for the p�divisible group having this p�kernel�

Also	 in �����	 case �I�	 we have seen other cases where the p�kernel deter�
mines the p�divisible group�

It would be nice to have a general criterion which tells us when it should be
true that the p�kernel of a p�divisible group already determines the structure of
the p�divisible group� To that end we formulate a conjecture	 which includes the
cases recorded above� We hope you can soon consult ���� for a more extensive
discussion�

We work over an algebraically closed �eld k� Let � �
P
�mi� ni� be a symmetric

Newton polygon� We write H�m�n� for the �minimal� p�divisible group in
the isogeny class of Gm�n	 see ���	 �����	 see ����� above� We write H��� �L

H�Mi� ni�� There is an �obvious� principal quasi�polarization  on H���
�note that � is symmetric�� For �minimal isogeny types� we could hope the
following to be true�

������ Conjecture� Suppose �G� �� is a p�divisible group with a principal
quasi�polarization over an algebraically closed �eld k� suppose that there exists
a symmetric Newton polygon � and an isomorphism

�G� �� jG�p�
�� �H���� � jH�	��p�� then we expect� �G� �� �� �H���� ��
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������ Remark� We have seen that every elementary sequence appears in
Ag�� � Fp � We have constructed for every symmetric canonical type 	 a non�
empty	 locally closed subscheme D� � A� � Ag � Fp � however we do not know
which �nite group schemes N � X�p� appear on a given irreducible component
of Ag�Fp	 i�e� we do not know which strata D� for an arbitrary canonical type
	 are non�empty	 and how they appear in components of A��

������� The following is true� Let S be a complete� irreducible scheme over
Fp � Let G � S be a p�divisible group� such that any two geometric �bers of
G�p� � S are isomorphic� i�e� if s� t � S�k�	 with k � k	 then there exists an
isomorphism G�p�s �� G�p�t� equivalently� over some �nite covering T � S the
group scheme G�p�T is constant� Then it follows that any two geometric �bers
of G� S are isomorphic�
We hope to publish a proof soon	 and we expect to come back to this and
related questions� Note that in general G does not become constant over any
�nite cover� Note that in general the conclusion does not hold if we delete the
condition �S is complete��

�� Appendix Some notations

������ Throughout this paper all base schemes	 and all base �elds	 will be in
characteristic p� Let X be an abelian variety over a �eld K� The p�rank of X�
denoted by f � f�X� is de�ned by�

X�p��k� �� �Z�p�f�

where k denotes the algebraic closed �eld containing K	 and X�p� is the group
scheme Ker��p � X � X�� An abelian variety X of dimension g such that
f�X� � g �i�e� the case where the p�rank is maximal� is called ordinary�

We �x a positive integer g	 a prime number p and a positive integer n not
divisible by p� and we denote by

A � Ag���n � Fp�n�

the moduli space of principally polarized abelian varieties with a symplectic
level�n�structure in characteristic p�

Let G be a group scheme over a �eld K� We write a�G� �� dimLHom��p� GL��
where L  K is a perfect �eld containing K� Here �p � Ga �F �	 the kernel
of the Frobenius morphism on the additive linear group of dimension one�
this group scheme is de�ned over Fp	 and we will consider this over any base
without further indicating over which base it is considered� An abelian variety
is ordinary i� a�X� � ��
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Let E be an elliptic curve over a �eld K �of characteristic p�� Then either E
has a point of order exactly p over an algebraically closed �eld k  K	 and in
this case the elliptic curve E is ordinary	 or

f�E� � �� and the curve is called supersingular�

In short� an elliptic curve is supersingular i� its p�rank is zero	 i� a�E� � ��
We say that an abelian variety X is supersingular if it isogenous to a product
of supersingular elliptic curves over some extension �eld� It is superspecial if
it isomorphic to a product of supersingular elliptic curves over some extension
�eld�

For a commutative group scheme G and q �Z�� we denote by G�q� the kernel
of multiplication by q on G� In this paper the p�kernel X�p� of abelian varieties
in consideration will play a central role� We write X�p�� for the union of the
�nite group schemes X�pi� for all � � i� note that it contains the formal group
'X of X and 'X � X�p�� i� f�X� � ��

������ Here is a survey of some of the notions about supersingular and su�
perspecial abelian varieties�
Theorem�Denition� Let k be an algebraically closed �eld of characteristic
p� and let E be a supersingular elliptic curve over k� Let X be an abelian variety
of dimension g over a �eld K � k� Let g � ��
a�

'Xk � 'Eg ��Xk � Eg def
�� X is supersingular�

b� If E�� � � � � E�g are supersingular elliptic curves� then

E� � � � � � Eg
�� Eg�� � � � � � E�g�

c� A supersingular elliptic curve is superspecial�

'Xk
�� 'Eg �� a�X� � dimX ��X �� Eg def

�� X is superspecial�

The �rst statement was proved in ����	 Th� ���� Statement �b� is a theorem
by Deligne ����	 Th� ��� on page ���	 which uses a class number computation
by Eichler	 cf� �
�� also see ����� For proving �c�	 note that if 'X �� 'Eg� then
a�X� � dimX� and by ���� it follows that X is isomorphic with a product of
supersingular elliptic curves	 X �� E� � � � � �Eg� such a product is isomorphic
with Eg by �b�� For further information	 see ����

������ Covariant Dieudonn�e modules �with apologies to the Contravar�
ianists�� Over a perfect �eld �of positive characteristic� �nite group schemes
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and p�divisible groups can be classi�ed by the theory of Dieudonn�e modules�
This can be done in a contravariant way as in ����	 ����� One can also use the
covariant theory� And it is not important which one we choose as long as we
work over a perfect �eld� these two theories are anti�equivalent�

However as soon as we are working over a more general base ring
�e�g� when studying deformation theory� things are di�erent� For �nite group
schemes the theory is much more di�cult	 but see ��
�	 ����� For formal groups
Cartier developed a theory of covariant Dieudonn�e modules which works well�
Later this was developed and used in the disguise of displays	 invented by Mum�
ford	 see ����	 and see ����	 ���	 ����	 ����� Therefore� in all cases we shall
work with the covariant theory�

For a domainR of positive characteristic p we writeW �W �R� � W��R�
for the ring of in�nite Witt vectors� The �Frobenius� x �� xp on R lifts to a
ring homomorphism� �W �W � From now on we use a perfect �eld K� In that
case � � W �K� � W �K� is an isomorphism� We write E for the ring �power
series� in the variables F and V with coe�cients in W with the relations
FV � p � V F and Fa � a�F and aV � V a� for a � W � Note that E is
commutative i� K � Fp �
Finite group schemes over a perfect eld� Denote by N � Nloc�loc�K the
category of �nite group schemes over the perfect �eld K which are of local�local
type� Dieudonn�e module theory tells us�

There is a covariant equivalence� D between N and the category of E�modules
of �nite length on which F and V act nilpotently� This equivalence has the
following properties�

rk�N � � pt �� ��D �N �� � t�

Moreover �with apologies�����

D �F � N � N �p�� � �V � A� A�p���

D �V � N �p� � N � � �F � A�p� � A��

notation� the module A�p� is the one obtained from A obtained by the base
change �� We have distinguished the action of Frobenius on group schemes	
denoted by F 	 and the action on Dieudonn�e modules given by Frobenius	 which
we indicate by F � In the central part of this paper	 we consider an abelian
variety X	 we write N �� X�p�	 we write A �� D �N � for the Dieudonn�e module
of this p�kernel� We use the operation V on N 	 which corresponds with F on
A�

������ Serre duality� For a p�divisible group G � ind�lim�i�Gi �over an
arbitrary base� we follow Serre in de�ning the dual p�divisible group�

Gt � ind�lim�i� GD
i �
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here �D is the Cartier dual	 and �p � Gi�� � Gi dualizes to inclusions GD
i �

GD
i�� which we use to de�ne Gt�

Note that the duality theorem on abelian schemes	 see ����	 Th� ���	
implies that for an abelian scheme X � S we have�

X�p��t � Xt�p���

������ Classication by Dieudonn�e and Manin� notation� In ���� we
�nd a classi�cation for isogeny classes of p�divisible groups over an algebraically
closed �eld k  Fp � For a pair of non�negative integers m�n �Z�� a p�divisible
group Gn�m is de�ned� We write G��� � G�m � Gm �p��� We write G��� for its
dual	 which in fact is the �constant group scheme� Qp�Zp�

For m � � and n � � which are relatively prime positive integers we write
Gm�n for a formal group of dimension m	 whose Serre dual has dimension n	
and which is �isosimple�� It is de�ned by�

D �Gm�n� �W ��F� V ���W ��F� V ����Fm � V n��

Over Fp already we have the isomorphism�

�Gm�n�
t � Gn�m�

The Dieudonn�e � Manin classi�cation theorem reads�
Let k  Fp be an algebraically closed �eld� For a p�divisible group G over k�
of dimension d and height h� there exist pairs f�mi� ni� j � � i � sg and an
isogeny�

G �
X
i

G�mi�ni��
X

mi � d�
X

�mi � ni� � h�

The set of these pairs is called the formal isogeny type of G� In case G ��
X�p��	 the p�divisible group of an abelian variety the formal isogeny type is
�symmetric� and we can change the notation above into�

X�p�� � f ��G��� � G����
M

s�G���

M ��X
i

�Gmi�ni �Gni�mi
��

where f �Z��	 and s �Z��	 and the integers mi	 and ni are pairwise coprime
with mi � ni � ��

A formal isogeny type can be encoded via the notion of a Newton poly�
gon abbreviated NP� for a p�divisible group G of height h and dimension d a
Newton polygon is a polygon in R� �or in Q�	 if you prefer that�	 starting at
��� ��	 ending at �h� h� d�	 which is lower convex and which has break points
in Z�� The p�divisible group Gm�n gives the slope n��n �m� with multiplicity
n�m� A direct sum as above gives a Newton polygon by ordering the slopes in
increasing order� Note that the local��etale part gives all slopes equal to �	 the
local�local summands gives slopes strictly between � and �	 and the �etale�local
part gives all slopes ��
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������ Displays�This tool invented by Mumford	 see ����	 developed in ����	
���	 and by Zink in various manuscripts	 see ����	 ����	 ����� this describes
deformation theory by giving the Frobenius mapping on what we would like
to consider as the �Dieudonn�e module of the deformed p�divisible group�� In
this paper we do not use the full strength of that method� What we need is
the following �for more details on the notations	 see ����	 �� � ������ Suppose
G� is a p�divisible group over a perfect �eld K  Fp	 and let M� � D �G��
be its covariant Dieudonn�e module� Let fX�

�� � � � � X
�
d� Y

�
� � � � �Y

�
cg be a W �basis

for M�	 such that Y �
� � � � �Y

�
c � V�M �� here we write X�

i etc� because in Section
 the notation Xi	 and Yj has been used for elements of a standard base for
D �G� �p���

Displays of a p�divisible group over a eld� In this situation we de�ne the
display of this p�divisible group over a �eld� The ��linear mapF �M� �M� can
be written out on the W �basis fe� � X �

�� � � � � ed � X�
d� ed�� � Y �

� � � � � � ed�c �
Y �cg as�

Fej �
hP
i��

aijei � � j � d�

ej � V

�
hP
i��

aijei

�
d � j � h � c� d�

we say that we have written the module in displayed form� We shall write

�ai�j j � � i� j � h� �

�
A B
C D

�
�

This matrix	 denoted by �a�	 will be called the matrix of the display� Note that
in this case the ��linear map F is given on this base by the matrix�

A pB
C pD

�
�

where
A � �aij j � � i� j � d�� B � �aij j � � i � d � j � h��

C � �aij j � � j � d � i � h� �� D � �aij j d � i� j � h��

Where the display�matrix is symbolically denoted by �a�	 we write �pa� sym�
bolically for the associated F �matrix �it is clear what is meant as soon as d is
given��

Suppose R is a complete Noetherian local ring with perfect residue class �eld
K� We assume p�� � � � R� Let tr�s be elements in the maximal ideal of R	
with � � r � d � s � h	 and let

Tr�s � �tr�s� �� � � �� �W �R�
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be their Teichm.uller lifts� Write

T �

�
B�

T��d�� � � � T��h
���

���
Td�d�� � � � Td�h


CA �

�
A� TC pB � pTD

C pD

�
�

We can ask whether this is the matrix of a display connected with a deformation
of G�� In fact�

Let K be a perfect �eld� let R be a complete Noetherian local ring with residue
class �eld K� and let G� be a formal p�divisible group over K� The formulas
above de�ne a display over the ring W of Witt vectors over R �in the sense of
������ Hence these formulas de�ne a deformation G� Spec�R� of G��

Remark� One can show that the deformation just given is the universal defor�
mation ofG� in equal characteristic p	 by taking the elements tr�s as parameters	

R �� K��tr�s j � � r � d � s � h���

Suppose moreover the p�divisible group G� has a principal quasi�polarization
�� and let the base fX�

�� � � � � Y
�
dg be symplectic �in this case c � h � d � d��

Then assume moreover that

tr�s � ts�d�r�d � R�

the displayed form above de�nes a deformation �G� �� as quasi�polarized formal
p�divisible group of �G�� ����

In this case we renumber the elements as xi�j � ti�j�d	 with d � g � c �
h��xi�j � ti�j�d	 with d � g � c � h��� In this case the formal power series
ring

R �� K��xi�j j � � i� j � g����xi�j � xj�i j � � i� j � g�

de�nes the universal deformation space of �G�� ����

This gives an explicit description of the deformation theory of local�local p�
divisible groups over complete local domains in characteristic p� also the defor�
mation theory of such groups with a principal quasi�polarization	 and hence	
by the theorem of Serre and Tate	 of principally polarized abelian varieties �the
theory can be applied to much more general situations	 but we will not need
that here��
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