Simple p-kernels of p-divisible groups

Frans Oort

Dedicated to Mike Artin, for his 70-th birthday

Introduction

In this paper we study p-divisible groups and their p-kernels over an algebraically closed field. We try to obtain insight in which way these two kind of objects depend on each other. In this paper p is a prime number.

The p-kernel of a p-divisible group is called a BT_{1} group scheme; here BT stand for BarsottiTate group scheme (a synonym for a p-divisible group), and the index 1 stands for "truncated at level one". For such group schemes we defines notions of being "indecomposable" see (1.2), "minimal" see (1.9), and "simple" see (1.2); this last terminology is short for the notion " BT_{1}-simple". With these notions defined we show:
(0.1) Theorem A. Let G be a $B T_{1}$ group scheme over an algebraically closed field k;

$$
G \text { is indecomposable and minimal } \Longleftrightarrow G \text { is simple. }
$$

A proof will be given in Section 3 and in Section 5.
Starting from a p-divisible group X we obtain a BT_{1} group scheme:

$$
[p]:\{X \mid \text { a } p-\text { divisible group }\} / \cong_{k} \longrightarrow\left\{G \mid \text { a } \mathrm{BT}_{1}\right\} / \cong_{k} ; \quad X \mapsto G:=X[p] .
$$

This map is known to be surjective; see [1], 1.7, see [6], 9.10; also see (2.5), where we define a section for this map. It is the main theorem of [8] that the fiber of this map over (G up to \cong_{k}) is precisely one p-divisible group X if G is minimal; however things are different if G is not minimal, as we will show here:
(0.2) Theorem B. Let G be a BT_{1} group scheme over an algebraically closed field k; suppose G is not minimal; then:

$$
\#\left(\{X \mid X[p] \cong G\} / \cong_{k}\right)=\infty
$$

A proof will be given in Sections 8, 9, 10.
We will see that there are subtle differences between numerical invariants attached to a p divisible group X and to $X[p]$. This will make a proof of Theorem B not so easy. We illustrate this difficulty in an example in Section 6.

Throughout this paper we fix a prime number p. Base schemes will be over \mathbb{F}_{p}, and fields considered are of characteristic p. We use k and Ω for algebraically closed fields of characteristic $p>0$.

We have gathered some information on notation in the first two sections; it seems best to start reading in Section 3, where proofs start, and refer back whenever information on notation is needed.

This paper was partly written during a visit to the ETH Zürich. I thank the Department of Mathematics of the ETH for hospitality and excellent working conditions. I thank the referee for valuable remarks on an earlier draft of this paper.

1 Group schemes annihilated by p

We review results obtained in [3], and we fix notations (slightly different from notation used in that reference). We only study "circular words" as we do not need the "linear words" as in [3]. As we mainly study Dieudonné modules, the action of a word is given on the covariant Dieudonné modules of groups schemes studied (we had to make choices).
(1.1) BT_{1} group schemes. A finite locally free group scheme $G \rightarrow S$ is called a BT_{1} group scheme, see [1], page 152 , if $G[F]:=\operatorname{Ker} F_{G}=\operatorname{Im} V_{G}=: V(G)$ and $G[V]=F(G)$. In particular this implies that G is annihilated by p. The abbreviation " BT_{1} " stands for "1-truncated Barsotti-Tate group"; the terms " p-divisible group" and "Barsotti-Tate group" indicate the same concept. We refer to [9], Exp. $\mathrm{VII}_{A} .4$, for the definition of $F_{T}: T \rightarrow T^{(p)}$ for an S-scheme $T \rightarrow S$ and of $V_{G}: G^{(p)} \rightarrow G$ for a commutative S-group scheme $G \rightarrow S$.
(1.2) Definitions. $A \mathrm{BT}_{1}$ group scheme G over a field is said to be decomposable if there exist non-zero BT_{1} group schemes G_{1} and G_{2} and an isomorphism $G \cong G_{1} \times G_{2}$. We say that G is indecomposable if there is no isomorphism $G \cong G_{1} \times G_{2}$ with non-zero BT_{1} group schemes G_{1} and G_{2}.

A non-zero BT_{1} group scheme G over a field is said to be simple (or: BT_{1}-simple) if for any BT_{1} subgroup scheme $G^{\prime} \subset G$ we have either $0=G^{\prime}$ or $G^{\prime}=G$.
Remark. There are many examples of a group scheme which are BT_{1}-simple (i.e. simple in the category of BT_{1} group schemes), but which are not simple as a finite group scheme. For example, for a supersingular elliptic curve E over a field $K \supset \mathbb{F}_{p}$ the group scheme $E[p]$ is a BT_{1} group scheme, it is BT_{1}-simple; however $E[F] \subset E[p]$ is a proper, non-zero subgroup scheme, and we see that $E[p]$ is not simple as a group scheme.
Remark. If G is a BT_{1} group scheme, and as a group scheme it is decomposable, $G \cong$ $G^{\prime} \times G^{\prime \prime}$, then G^{\prime} and $G^{\prime \prime}$ are BT_{1} group schemes. We see that " BT_{1}-indecomposable" and "indecomposable as group scheme" are equivalent notions for a BT_{1} group scheme.
(1.3) If G is a BT_{1} group scheme over a perfect field $K \supset \mathbb{F}_{p}$ its covariant Dieudonné module $\mathbb{D}(G)=M_{1}$ is a finite dimensional vector space over K on which \mathcal{F} and \mathcal{V} operate in a p-linear, respectively p^{-1}-linear way, such that $\mathcal{F} \mathcal{V}=[p]_{M_{1}}=0=\mathcal{V} \mathcal{F}$, with the property that $M_{1}[\mathcal{F}]=\mathcal{V} M_{1}$ and $M_{1}[\mathcal{V}]=\mathcal{F} M_{1}$. The Dieudonné module of a BT_{1} is called a DM_{1}.

In [3] BT_{1} group schemes over an algebraically closed field k are classified. Here is that classification.
(1.4) A circular word will be a finite, ordered set of the symbols \mathcal{F} and \mathcal{V} :

$$
w=L_{1} \cdots L_{h}, \quad L_{i} \in\{\mathcal{F}, \mathcal{V}\}
$$

this will be read in a cyclic way, in the sense that the letter L_{1} is supposed to come directly after L_{h}; cyclic permutations give an equivalence relation, and the class of a word is given by: $\left\lceil L_{1} \cdots L_{h}\right\rfloor=\left\lceil L_{2} \cdots L_{h}, L_{1}\right\rfloor=\cdots=\left\lceil L_{i} \cdots L_{h} L_{1} \cdots L_{i-1}\right\rfloor=\cdots$. From now on we use the terminology "word" for the concept "circular word".

For a given word w and a perfect field K we construct a finite group scheme G_{w} over K defined by: the K-vector space

$$
\mathbb{D}\left(G_{w}\right)=\sum_{1 \leq i \leq h} K \cdot z_{i}
$$

with structure of a Dieudonné module; the operation of \mathcal{F} and of \mathcal{V} will be described by the the combination $z_{1} L_{1} z_{2} \cdots z_{h} L_{h} z_{1}$; this means:

$$
\begin{gathered}
L_{i}=\mathcal{F} \quad \Rightarrow \quad \mathcal{F} \cdot z_{i}:=z_{i+1}, \quad \mathcal{V} \cdot z_{i+1}:=0 \\
L_{i}=\mathcal{V} \quad \Rightarrow \quad \mathcal{V} \cdot z_{i+1}:=z_{i}, \quad \mathcal{F} \cdot z_{i}:=0
\end{gathered}
$$

One can visualize this by putting the symbols L_{i} in a circular graph, with the arrows $L_{i}=\mathcal{F}$ pointing clockwise, and the arrows equal to \mathcal{V} anti-clockwise.

We will use the notation z_{i} for all $i \in \mathbb{Z}$, with the convention that $z_{i}=z_{i^{\prime}}$ if $i \equiv i^{\prime}$ $(\bmod h)$, and the same convention for the notation L_{i} for all $i \in \mathbb{Z}$.

Comments. We see that the symbol \mathcal{F} in a word indeed acts as \mathcal{F} on the Dieudonné module, going clock-wise, but the symbol \mathcal{V} act as " \mathcal{V}^{-1} ", i.e. $\mathcal{V} z_{i+1}=z_{i}$. We have chosen not to incorporate that exponent " -1 " in the notation of the word.

Definitions above show that a word w defines a DM_{1} and hence defines a group scheme which is a BT_{1} group scheme; this will be denoted denoted by G_{w}. Moreover equivalent words define isomorphic.

Notation. We see that G_{w} is defined over \mathbb{F}_{p}. We will use the notation G_{w} over any field and over any base scheme in characteristic p : instead of writing $G_{w} \otimes_{\mathbb{F}_{p}} K$, or $G \times{ }_{\operatorname{Spec}\left(\mathbb{F}_{p}\right)} S$ we will just write G_{w} if it is clear from the context over what field, or base scheme we are working.

A word w is called decomposable if there exist $h, \mu \in \mathbb{Z}_{>0}$, with $\mu \cdot h^{\prime}=h$ and $L_{1}, \cdots, L_{h^{\prime}} \in$ $\{\mathcal{F}, \mathcal{V}\}$, such that

$$
\left\lceil L_{1} \cdots L_{h}\right\rfloor=\left\lceil\left(L_{1} \cdots L_{h^{\prime}}\right)^{\mu}\right\rfloor:=\left\lceil\left(L_{1} \cdots L_{h^{\prime}}\right) \cdots\left(L_{1} \cdots L_{h^{\prime}}\right)\right\rfloor .
$$

If such a way of writing with $\mu>1$ is not possible we say the word w is indecomposable.
(1.5) Theorem (see [3], Section 5). Let $k \supset \mathbb{F}_{p}$ be an algebraically closed field.
(a) A (circular) word w, by the formulas above, defines a BT_{1} group scheme G_{w}, and w is indecomposable if and only if G_{w} is indecomposable.
(b) Any BT_{1} group scheme over k is a direct sum of indecomposable BT_{1} group schemes.
(c) For any indecomposable BT_{1} group scheme G over k there exists an indecomposable word
w such that $G \cong G_{w}$.
Hence: any BT_{1} group scheme G over k can be written as

$$
G \cong \prod_{1 \leq j \leq t} G_{w_{j}}
$$

with indecomposable words w_{1}, \cdots, w_{t}.
Notation. For an indecomposable $G \cong G_{w}$, with $w=L_{1} \cdots L_{h}$ we will say that w is the K-cycle, or the Kraft-cycle defining G. Notation: $\Gamma(G)=w$. Also see (1.9).
(1.6) The type of a simple p-divisible group. For a p-divisible we use the word "simple" meaning that every sub- p-divisible group is either zero or the whole group. We recall the definition of the "Type" of a simple p-divisible group, as it was given in [2].

We choose coprime positive integers $m, n \in \mathbb{Z}$. Write $h=m+n$.
Definition. A semi-module for m and n is a subset $A \subset \mathbb{Z}$,
bounded from below
such that $m+A \subset A$ and $n+A \subset A$.
If $A \subset \mathbb{Z}$ and $b \in \mathbb{Z}$ we write $b+A:=\{b+a \mid a \in A\}$, and call this the translation of A over b. Once m and n are fixed we will say "semi-module" omitting "for m and n ".

We consider all p-divisible groups X of dimension m, such that the dimension of X^{t} is n, and such that the Newton polygon $\mathcal{N}(X)$ is isoclinic, necessarily consisting of h slopes equal to $n /(m+n)$. Over an algebraically closed field k this gives just one isogeny class. For every such X we define a semi-module $A=\operatorname{Type}(X)$; here is a description of $X \mapsto \operatorname{Type}(X)$.

Define $H=H_{m, n}$ as in [2]; this means that H is in the isogeny class given above and $\operatorname{End}(H \otimes k)$ is the maximal order in $\operatorname{End}^{0}(H \otimes k)$; this is a (non-commutative) DVR; call its uniformizer π; we can see that $H_{m, n}$ is defined over \mathbb{F}_{p}, but we use the notation $H_{m, n}$ over any base scheme, if there is no danger for confusion. Over an algebraically closed field the conditions mentioned define $H=H_{m, n}$ up to isomorphism.

A p-divisible group X over k is in the isogeny class given above if and only if it is isogenous with $H_{m, n}$. An isogeny $X \rightarrow H=H_{m, n}$ gives an inclusion $\mathbb{D}(X)=M \subset Q=\mathbb{D}(H)$; there is a filtration $Q \supset \cdots \supset Q^{(i)}:=\pi^{i} \cdot Q \supset \cdots$; we write

$$
\operatorname{Type}(X):=\left\{i \in \mathbb{Z} \mid M \cap Q^{(i)} \neq M \cap Q^{(i+1)}\right\} .
$$

Clearly this gives a semi-module. Any isogeny $X \rightarrow H=H_{m, n}$ defines in this way a semimodules. It is not difficult to see that two such isogenies for X fixed give semi-modules which are equal up to translation.

We can make the choice of such a semi-module unique, once X is given, by a normalization. Here we will not follow the normalization for semi-modules as was done in [2]. In this paper we usually arrange things in such a way that zero is the smallest element in A, i.e. $A \subset \mathbb{Z}_{\geq 0}$ and $0 \in A$.

Note that Type $\left(H_{m, n}\right)=\mathbb{Z}_{\geq 0}=[0, \infty)$, a semi-module for m and n.
(1.7) Let us fix coprime, positive integers m, and n; we write $h:=m+n$. Let w be a word, in which \mathcal{F} appears m times and \mathcal{V} appears n times. We present another way of encoding the word w.

A subset $C \subset \mathbb{Z}$ is called the beginning of a semi-module if:

- for every $0 \leq i<h$ the set C contains precisely one element of the equivalence class $i+h \cdot \mathbb{Z}$;
- for every $i \in C$ either $i+n \in C$ or $i-m \in C$.

If $C \subset \mathbb{Z}$ is the beginning of a semi-module and $b \in \mathbb{Z}$ then also $b+C$ is the beginning of a semi-module.

From such a C we construct a word: choose $c_{1} \in C$, and proceed inductively:
if $c_{i}+n \in C$, write $L_{i}=\mathcal{F}$ and $c_{i+1}=c_{i}+n$,
if $c_{i}-m \in C$, write $L_{i}=\mathcal{V}$ and $c_{i+1}=c_{i}-m$;
we obtain $C=\left\{c_{1}, \cdots, c_{h}\right\}$ with $c_{h+1}=c_{1}$. Write $z_{i}=e_{c_{i}}$. The class of the word w is given by $\lceil w\rfloor=\left\lceil L_{1} \cdots L_{h}\right\rfloor$. The Dieudonné module of G_{w} is given by $\mathbb{D}\left(G_{w}\right)=\sum_{j \in C} K \cdot z_{j}$, where the action of \mathcal{F} and of \mathcal{V} on $\mathbb{D}\left(G_{w}\right)$ is given by $z_{1} L_{1} \cdots L_{h-1} z_{h} L_{h} z_{1}$.

Conversely from a word where the symbol \mathcal{F} appears m times and \mathcal{V} appears n times such a set $C \subset \mathbb{Z}$ (unique up to translation) can be reconstructed using the methods just explained; write this set as $C(w)$.

See (2.5) for another way to reconstruct $C(w)$ from w.

A word w gives rise to C, another way of encoding the word w. For $\mathbb{D}\left(G_{w}\right)$ we have the k - basis $\left\{e_{j} \mid j \in C\right\}$, we have a renumbering of $C=\left\{c_{1}, \cdots, c_{h}\right\}$, hence $\left\{e_{j} \mid j \in C\right\}=\left\{z_{1}, \cdots, z_{h}\right\}$ obtained by "following the cycle"; we obtain a k-basis $\left\{z_{1}, \cdots, z_{h}\right\}$, with $e_{c_{i}}=z_{i}$.
(1.8) Let $m, n \in \mathbb{Z}_{>0}$ be coprime, positive integers. Suppose $C=[0, h-1]:=\{0,1, \cdots, h-$ $1\}$. This set C defines a word $w(C)$ of length $h=m+n$. This particular word is denoted by $w(m, n)$; it will be called a minimal word. From the construction of G_{w} and from properties of $H_{m, n}$ we see that $G_{w(m, n)}=H_{m, n}[p]$. We see that $w(m, n)=w(\{0, \cdots, h-1\})$.

We will also use the notation $w=w(\mathcal{V}, \mathcal{F})$ in order to remind the reader that a given word w is written with the letters \mathcal{V} and \mathcal{F}; in Section 4 we will see the use of this notation. I hope these slightly inconsequent notations $w(m, n), w(C)$ and $w(\mathcal{V}, \mathcal{F})$ will not cause confusion.

Example. Let $m=3$, and $n=2$. Write the set of base vectors $\left\{e_{i} \mid 0 \leq i \leq 4\right\}=\left\{e_{i} \mid i \in C\right\}$ according to the set of integers $\{0,1,2,3,4\}=C$. The circular word

$$
\left(e_{0}=z_{1}\right) \mathcal{F}\left(e_{2}=z_{2}\right) \mathcal{F}\left(e_{4}=z_{3}\right) \mathcal{V}\left(e_{1}=z_{4}\right) \mathcal{F}\left(e_{3}=z_{5}\right) \mathcal{V}\left(e_{0}=z_{1}\right) ; \quad w(3,2)=\mathcal{F} \mathcal{F} \mathcal{V} \mathcal{F} \mathcal{V}
$$

is the minimal word associated with $(m, n)=(3,2)$.
The set $C^{\prime}=\{0,2,3,4,6\}$ defines the class of the word $w\left(C^{\prime}\right)=\mathcal{F} \mathcal{F} \mathcal{F} \mathcal{V} \mathcal{V}$; this class is not equal the class of the minimal word $\lceil w(3,2)\rfloor=\lceil w(\{0,1,2,3,4\})\rfloor=\lceil\mathcal{F} \mathcal{F} \mathcal{V} \mathcal{F} \mathcal{V}\rfloor=\lceil C\rfloor$ associated with the ordered pair $(3,2)$.

For $(m, n)=(1,0)$ we write $w(1,0)=\mathcal{F}$, and $G_{w(1,0)}=\mu_{p}$. For $(m, n)=(0,1)$ we write $w(0,1)=\mathcal{V}$, and $G_{w(0,1)}=\underline{\mathbb{Z} / p \mathbb{Z}}$.

A remark on notation. We use covariant Dieudonné module theory. Hence $\mathbb{D}(F)=\mathcal{V}$ and $\mathbb{D}(V)=\mathcal{F}$; see $[6], 15.3$. Note that $F=0$ on μ_{p}; this explains why $\mathcal{V}=0$ on $\mathbb{D}\left(\mu_{p}\right)$.
(1.9) Minimal BT_{1} group schemes: Definition. A BT_{1} group scheme G is called minimal if there are pairs $\left(m_{i}, n_{i}\right)$ and an isomorphism

$$
G \cong \prod_{1 \leq j \leq t} G_{w\left(m_{j}, n_{j}\right)}, \quad \operatorname{gcd}\left(m_{j}, n_{j}\right)=1
$$

As $G_{w(m, n)} \cong H_{m, n}[p]$ we see that this definition is equivalent with the one given in [8]:
Definition. $A \mathrm{BT}_{1}$ group scheme is minimal if and only if it can be written as a direct sum of group schemes $H_{m_{j}, n_{j}}[p]$.

In Section 4 we will describe how to recognize from a word whether it is minimal or not.
Notation. If $G \cong \prod_{1 \leq j \leq t} \quad G_{w_{j}}$ we will write formally $\Gamma(G)=\sum_{1 \leq j \leq t} w_{j}$.
(1.10) The lowest index. Let w be an indecomposable word, $C=C(w)$, and $G=G_{w}$. We have $M=\mathbb{D}(G)=\sum_{j \in C} k \cdot e_{j}$. Let $d \in C$ be the largest element in C. The vector e_{d} will be called the lowest generator. Note that $\mathbb{D}\left(\alpha_{p}\right)=k \cdot z$ with $\mathcal{F} z=0=\mathcal{V} z$; by $z \mapsto e_{d}$ we obtain a homomorphism of group schemes

$$
\iota: \alpha_{p} \hookrightarrow G_{w}
$$

which we will call the lowest embedding of α_{p} into $G=G_{w}$.
Note that the word w reads $\cdots \mathcal{F} e_{d} \mathcal{V} \cdots$. In general the condition $\cdots\left(\mathcal{F}=L_{i}\right) z_{i+1}(\mathcal{V}=$ $\left.L_{i+1}\right) \cdots$ is not sufficient to conclude that z_{d} is the lowest position, see Section 4.

2 Notations and definitions, preliminaries

We work over an algebraically closed field k.
(2.1) Definition. Let $w^{\prime}=L_{1}^{\prime} \cdots L_{r}^{\prime}$ and $w=L_{1} \cdots L_{h}$ be indecomposable words. An infinite slice γ from w^{\prime} to w is a subset of $(\mathbb{Z} / r) \times(\mathbb{Z} / h)$ given by an integer j and equalities

$$
L_{i}^{\prime}=L_{i+j}, \quad \forall i \in \mathbb{Z}
$$

We recall the convention $L_{i}=L_{i+t h}$ for all $t \in \mathbb{Z}$ and $L_{i}^{\prime}=L_{i+t h}^{\prime}$.
Note that if an infinite slice exists, then $\left\lceil w^{\prime}\right\rfloor=\lceil w\rfloor$.
Remark. Note that if a slice extends to the right in an infinite way, then it also extends to the left in an infinite way. Indeed $L_{i}^{\prime}=L_{i+h r}^{\prime}$ for all $i \in \mathbb{Z}$ and $L_{i+j}=L_{i+j+h r}$.

Definition. A finite slice γ from w^{\prime} to w is a subset of $(\mathbb{Z} / r) \times(\mathbb{Z} / h)$ given by the following properties:
there are given an integer j, integers $B<E(B=$ Beginning, $E=$ End $)$ such that:

$$
L_{B-1}^{\prime} \neq L_{B-1+j}, \quad L_{i}^{\prime}=L_{i+j} \quad \forall B \leq i<E, \quad L_{E}^{\prime} \neq L_{E+j} .
$$

Moreover this finite slice is called a zero finite slice if moreover

$$
L_{B-1}^{\prime}=\mathcal{F} \& L_{B-1+j}=\mathcal{V}, \quad \text { or } \quad L_{E}^{\prime}=\mathcal{V} \& L_{E+j}=\mathcal{F}
$$

We say that γ is a non-zero finite slice if moreover

$$
L_{B-1}^{\prime}=\mathcal{V} \quad \& \quad L_{B-1+j}=\mathcal{F}, \quad \text { and } \quad L_{E}^{\prime}=\mathcal{F} \quad \& \quad L_{E+j}=\mathcal{V}
$$

We denote by $\mathcal{S}\left(w^{\prime}, w\right)$ the set of non-zero slices from w^{\prime} to w.
(2.2) Definition. Consider words w, and w^{\prime}, as above and the indecomposable BT_{1} group schemes $G=G_{w}$ and $G^{\prime}=G_{w^{\prime}}$ defined by these words. Let $\gamma=(j, B, E)$ be a finite slice. We say that $\left(\gamma, a_{B-1}, a_{B}, \cdots, a_{E}, a_{E+1}\right)$ is a finite string if $a_{i} \in k$ and $a_{B-1}=0$ and $a_{E+1}=0$, and

$$
B \leq i \leq E \Rightarrow a_{i} \neq 0 ; \quad B \leq i<E, \quad L_{i}^{\prime}=\mathcal{F} \Rightarrow a_{i_{1}+1}=a_{i}^{p}, \quad L_{i}^{\prime}=\mathcal{V} \Rightarrow a_{i_{1}+1}=a_{i}^{p^{-1}}
$$

A string ψ defines a homomorphism $\psi: G_{w^{\prime}} \rightarrow G_{w}$.
Note that in one the following situations:

we obtain $a=0$. This shows that a non-zero string cannot be constructed upon a zero slice.
As k is algebraically closed, hence perfect, for any non-zero finite slice and any choice of $a_{B} \in k$ with $a_{B} \neq 0$ this can be completed to a finite string. We sum up the data for a non-zero finite string in the following diagram.

$$
\begin{array}{cccccccc}
z_{B-1}^{\prime} & \stackrel{\mathcal{V}}{u} & z_{B}^{\prime} & \cdots & z_{E}^{\prime} & \xrightarrow{\mathcal{F}} & z_{E+1}^{\prime} & w^{\prime} \\
\downarrow & & \downarrow & \| & \downarrow & & \downarrow & \downarrow \\
0 & & \neq 0 & \| & \neq 0 & & 0 & \\
z_{B+j-1} & \stackrel{\mathcal{F}}{\longrightarrow} & z_{B+j} & \cdots & z_{E+j} & \stackrel{\mathcal{V}}{ } & z_{E+j+1} & w, \\
\mathcal{V}=L_{B-1} \neq L_{B+j-1}=\mathcal{F} ; & B \leq i<E \Rightarrow L_{i}^{\prime}=L_{i+j} ; \quad \mathcal{F}=L_{E} \neq L_{E+j}=\mathcal{V} .
\end{array}
$$

Remark. Suppose a non-zero finite slice γ from w^{\prime} to w exists. Then there exist non-zero finite strings based on this slice. In fact we get a bijective map

$$
\{\psi\}_{\gamma} \xrightarrow{\sim} k \quad \psi \mapsto \psi\left(z_{E}^{\prime}\right)
$$

from the set of all strings ψ based on γ to k.
Slices and strings as defined here were already earlier considered in the context of group schemes with an additional structure, see [4], Section 4.

We say that ψ is in an infinite string if there exist an infinite slice γ and $a_{i} \in k$, non-zero for every i, coherent in the way explained before.

Suppose w and w^{\prime} are indecomposable. Let m be the number of copies of \mathcal{F} in w and n be the number of copies of \mathcal{V} in w.

Claim. If there exists an infinite slice γ from $G^{\prime}=G_{w^{\prime}}$ to $G=G_{w}$, then $w^{\prime}=w$ and $G^{\prime} \cong G$, and $a_{i} \in \mathbb{F}_{p^{|m-n|}}$. For any choice i we obtain a bijective map

$$
\{\psi\}_{\gamma} \xrightarrow{\sim} \mathbb{F}_{p|m-n|} \quad \psi \mapsto \psi\left(z_{i}^{\prime}\right) .
$$

We see that $L_{i}^{\prime}=L_{i+j}$ for all $i \in \mathbb{Z}$. This shows the indecomposable words are equivalent. Applying L_{1}, \cdots, L_{m+n} we obtain $a_{1}=a_{1}^{p^{|m-n|}}$.

Conversely, if G^{\prime} and G are both powers of the same indecomposable BT_{1}, then there does exist an infinite string from G^{\prime} to G.
(2.3) Let w^{\prime} and w be indecomposable words of lengths r, respectively h. For every $j \in \mathbb{Z}$ consider in $(\mathbb{Z} / r) \times(\mathbb{Z} / h)$ a "diagonal line" given by all pairs $\{(i, i+j)\}$. Consider all pairs $(i, s) \in \mathbb{Z}$ with $L_{i}^{\prime} \neq L_{s}$. These split up the diagonal lines into slices. We see that $(\mathbb{Z} / r) \times(\mathbb{Z} / h)$ is a disjoint union of slices.
(2.4) Proposition. Let w^{\prime} and w be indecomposable words. Every homomorphism φ : $G_{w^{\prime}} \rightarrow G_{w}$ can be written as

$$
\varphi=\psi_{1}+\cdots+\psi_{t},
$$

where each of the ψ_{j} belongs to a $\gamma_{j} \in \mathcal{S}\left(w^{\prime}, w\right)$, and $\psi_{i} \neq \psi_{i^{\prime}}$ implies $\gamma_{i} \neq \gamma_{i^{\prime}}$.
Proof. We obtain the Dieudonné module map

$$
\mathbb{D}(\varphi): \quad \mathbb{D}\left(G_{w^{\prime}}\right)=\sum_{i=1}^{i=r} k \cdot z_{i}^{\prime} \quad \longrightarrow \quad \mathbb{D}\left(G_{w}\right)=\sum_{s=1}^{s=h} k \cdot z_{s} .
$$

Write $\mathbb{D}(\varphi)\left(z_{i}\right)=\sum a_{i, s} z_{s}$. We have seen that if (i, s) belongs to a zero slice, then $a_{i, s}=0$. All (i, s) belonging to one given non-zero slice γ_{j} indeed give a string ψ_{j} defined by those $a_{i, s}$ supported by γ_{j}. This proves the proposition.
(2.5) A lift. For every BT_{1} group scheme G we define a p-divisible group $X=\mathcal{L}(G)$; moreover this has the property that $\mathcal{L}(G)[p]=G$.

We have seen that a BT_{1} group scheme is direct sum of indecomposable group schemes. Let w be a (finite) word in the letters \mathcal{F} and \mathcal{V}. This defines a BT_{1} group scheme G_{w}. Writing

$$
w=L_{1} L_{2} \cdots L_{h}, \quad L_{i} \in\{\mathcal{V}, \mathcal{F}\}
$$

we define a Dieudonné module, free of rank h over W, with generators Z_{1}, \cdots, Z_{h} (write $Z_{h+1}=Z_{1}$) and relations:

$$
L_{i}=\mathcal{F} \quad \Rightarrow \quad \mathcal{F} Z_{i}=Z_{i+1}, \quad \mathcal{V} Z_{i+1}=p Z_{i},
$$

and

$$
L_{i}=\mathcal{V} \quad \Rightarrow \quad \mathcal{F} Z_{i}=p Z_{i+1}, \quad \mathcal{V} Z_{i+1}=Z_{i} .
$$

Clearly this defines a Dieudonné module M; we define X to be the p-divisible group such that $\mathbb{D}(X)=M$. This definition works over \mathbb{F}_{p}. However we will use the notation $\mathcal{L}\left(G_{w}\right)$ over any
field, if there is no danger for confusion. Write $\mathcal{L}\left(\prod G_{w_{i}}\right)=\prod \mathcal{L}\left(G_{w_{i}}\right)$. From the definition of $\mathcal{L}(G)$ we see that $\mathcal{L}(G)[p]=G$.

The lift $\mathcal{L}(G)$ could be called the "tautological lift". However note it is not functorial. For the words $w_{1}=\mathcal{F V}$ and $w_{2}=\mathcal{F}^{3} \mathcal{V}^{2}$ there does exist an inclusion $G_{w_{1}} \hookrightarrow G_{w_{2}}$. However, we will see in (2.6) that the p-divisible groups $\mathcal{L}\left(G_{w_{1}}\right)$ and $\mathcal{L}\left(G_{w_{2}}\right)$ are isoclinic of different slopes, and hence the only homomorphism between them is the zero map.

For a word w we can construct $C(w)$ in the following way: choose $X=\mathcal{L}\left(G_{w}\right)$, and $A=$ Type (X). Then $A_{p}=: A \backslash(h+A)$ equals $C(w)$, as can be easily seen.

Suppose w is a word consisting of precisely d letters \mathcal{F} and precisely c letters \mathcal{V}; write $h=d+c$, the length of the word w. We write

$$
\mu:=\operatorname{gcd}(d, c), \quad d=\mu \cdot m, \quad c=\mu \cdot n .
$$

(2.6) Lemma. With the notation above, the tautological lift $\mathcal{L}\left(G_{w}\right)$ is isoclinic of slope

$$
n /(m+n): \quad \mathcal{L}\left(G_{w}\right) \sim\left(H_{m, n}\right)^{\mu} .
$$

Proof. For every i, with $1 \leq i \leq h:=m+n$ we have $\mathcal{F}^{h} Z_{i}=p^{c} Z_{i}$; this proves the lemma.

3 Simple finite group schemes

We work over an algebraically closed field k. In this section we will show:
(3.1) Lemma 1. Let G be a simple BT_{1}. Then G is indecomposable:

$$
\text { indecomposable } \Leftarrow \text { simple . }
$$

(3.2) Lemma 2. Let G be an indecomposable BT_{1} which is not minimal. Then G is not simple:

$$
\text { minimal } \Leftarrow \text { simple }+ \text { indecomposable } \Leftarrow \text { simple } .
$$

(3.3) Lemma 3. Let G be an indecomposable, minimal BT_{1}, let $0 \neq G^{\prime}$ be an indecomposable, minimal BT_{1} and let

$$
G^{\prime} \hookrightarrow G
$$

be an immersion. Then

$$
G^{\prime} \xrightarrow{\sim} G
$$

is an isomorphism:

$$
\text { indecomposable }+ \text { minimal } \Rightarrow \text { simple. }
$$

A proof of Lemma 3 will be given in Section 5.
(3.4) Note that these three results imply Theorem A. Indeed, if G is simple, then it is indecomposable by (3.1), and then, by (3.2) we conclude it minimal.

Conversely, suppose G is indecomposable and minimal. Let $G^{\prime \prime} \subset G$ be a non-zero BT_{1} contained in G. Choose $G^{\prime} \subset G^{\prime \prime}$ such that $\left(G^{\prime} \neq 0\right.$, and such that) G^{\prime} is indecomposable and simple; by Lemma 2 we conclude that G^{\prime} is minimal. By (3.3) we conclude that $G^{\prime}=G$. Hence under the given conditions we conclude $G^{\prime \prime}=G$. This implies that G is simple. This finishes the proof of Theorem A, granting (3.1), (3.2) and (3.3).
(3.5) Proof of (3.1). We know that every BT_{1} can be written as a direct sum of indecomposables,

$$
G=\prod_{1 \leq i \leq s} G_{i} .
$$

If $s>1$, we would have $G_{1} \hookrightarrow G$ with $0 \neq G_{1} \subsetneq G$. This is a contradiction with " G is simple". This proves (3.1)
(3.6) Proof of (3.2). We assume that G is an indecomposable BT_{1} which is not minimal. We show that G is not simple.

Step one. Let w be an indecomposable word; suppose the number of letters \mathcal{F} in w equals d, the number of letters \mathcal{V} in w equals c, and write

$$
d=\mu \cdot m, \quad c=\mu \cdot n, \quad \operatorname{gcd}(m, n)=1
$$

We show: if $\mu>1$ then G_{w} is not simple. Indeed, $X:=\mathcal{L}\left(G_{w}\right) \sim\left(G_{m, n}\right)^{\mu}$, see (2.6). If $\mu>1$ then X is not simple, there exists a proper sub-p-divisible group $X^{\prime} \subset X$. Then $X^{\prime}[p] \subset X[p]=G_{w}$ is a proper, non-zero BT_{1} subgroup scheme; hence we see that in this case G_{w} is not simple.

Hence it suffices to show (3.2) under the extra condition $\mu=1, d=m, c=n$. We write $h:=m+n$.

Step two. Let w be as above, $G=G_{w}$, and $X=\mathcal{L}(X)$. Let $A=$ Type (X). Suppose that this is normalized (translated) in such a way that $A \subset \mathbb{Z}_{\geq 0}$ and $0 \in A$. Note that $\Gamma(G)=A_{p}:=A \backslash(h+A)$.

We assume that $m>n$: as G is non-minimal the case $m=1=n$ is excluded; proving the case where $m>n$, the other case follows by interchanging the role of \mathcal{F} and \mathcal{V}. The word w is written as

$$
w=L_{1} L_{2} \cdots L_{h-1} L_{h}
$$

Let $C=C(w)$ as defined in (1.7); we suppose C is normalized such that $0 \in C$ and $C \subset \mathbb{Z}_{\geq 0}$. As G is not minimal we know that $C \neq\{0,1, \cdots, h-1\}$.

We have $\left\{e_{j} \mid j \in C\right\}=\left\{z_{1}, \cdots, z_{h}\right\}$; this renumbering we write as $z_{i}=e_{b_{i}}$; this means that

$$
\left\{b_{1}, \cdots, b_{h}\right\}=C, b_{1}=0, L_{i}=\mathcal{F} \Rightarrow b_{i+1}=b_{i}+n, \quad L_{i}=\mathcal{V} \Rightarrow b_{i+1}=b_{i}-m
$$

The action of w is given by:

$$
\left(z_{1}=e_{b_{1}}\right) L_{1}\left(z_{2}=e_{b_{2}}\right) L_{2} \cdots L_{h}\left(z_{1}=e_{b_{1}}\right)
$$

Assume $m>n$ and $z_{1}=e_{0}$; we see that

$$
L_{1}=\mathcal{F}=L_{2}, \quad L_{h}=\mathcal{V}
$$

Note that $G=G_{w}$ is supposed to be non-minimal, hence $C \neq[0, h-1]$, hence C contains at least one element larger than h. We make the following choices:

- let $t+1<h$ be the largest index such that $b_{t+1}>h$;
- choose a new word w^{\prime} of length t defined by:

$$
L_{1}^{\prime}:=\mathcal{V} \neq \mathcal{F}=L_{1}, L_{2}^{\prime}:=L_{2}=\mathcal{F}, \cdots, L_{i}^{\prime}:=L_{i} \quad(\text { for } \quad 1<i \leq t), \cdots, L_{t}^{\prime}:=L_{t}
$$

- Consider $w^{\prime}:=L_{1}^{\prime} \cdots L_{t}^{\prime}$ as a circular word of length t. In particular $L_{j}^{\prime}=L_{j+s t}^{\prime}$ for all $s \in \mathbb{Z}$ and $1 \leq j \leq t$.
- Write $G_{w^{\prime}}$ for the BT_{1} group scheme defined by the word w^{\prime}.
- Write E for the smallest integer with the property that $E>B:=2$ and such that $L_{E}^{\prime} \neq L_{E}$.

We will show:

$$
\begin{equation*}
t<E<h, \quad L_{E}=\mathcal{V} \quad \text { and } \quad L_{E}^{\prime}=\mathcal{F} \tag{*}
\end{equation*}
$$

From (*) we conclude

$$
\mathcal{F}=L_{1} \neq L_{1}^{\prime}=\mathcal{V}, L_{2}^{\prime}=L_{2}, \cdots, \quad L_{i}^{\prime}=L_{i} \quad(2=: B \leq i<E), \quad \text { and } \quad \mathcal{F}=L_{E}^{\prime} \neq L_{E}=\mathcal{V}
$$

this means that this is a slice, and from this we conclude that

$$
\begin{equation*}
\psi:=\left(a_{1}=0, \quad a_{2}=1, \cdots, \quad a_{i}=1 \quad(2=B<i \leq E), \cdots, \quad a_{E}=1, \quad a_{E+1}=0\right) \tag{**}
\end{equation*}
$$

is a string which defines a homomorphism ψ; moreover, because $1<B<E<h$ it follows that ψ is injective

$$
0 \neq G_{w^{\prime}} \xrightarrow{\sim} \psi\left(G_{w^{\prime}}\right) \subsetneq G_{w}
$$

Once $(*)$ has been proved, we conclude that $G=G_{w}$ is not simple.
In order to prove $(*)$, we define $b_{1}^{\prime}=h, b_{2}^{\prime}=b_{2}, \cdots, b_{t}^{\prime}=b_{t}$. These are positive integers. Moreover define $L_{j+s t}^{\prime}=L_{j}^{\prime}$ for $1 \leq j \leq t$ and $s \in \mathbb{Z}$. Define

$$
\begin{aligned}
& L_{i}^{\prime}=\mathcal{F} \Rightarrow b_{i+1}^{\prime}=b_{i}^{\prime}+n, \quad i>0 \\
& L_{i}^{\prime}=\mathcal{V} \Rightarrow b_{i+1}^{\prime}=b_{i}^{\prime}-m, \quad i>0
\end{aligned}
$$

Note that $b_{1}^{\prime}=h$ and $b_{t+1}^{\prime}>h$. For $1 \leq j \leq t$ we obtain $b_{j+t}^{\prime}=b_{j}^{\prime}+\left(b_{t+1}^{\prime}-b_{1}^{\prime}\right)>b_{j}^{\prime}$. Repeating this argument we obtain $b_{j+s t}^{\prime}>b_{j}^{\prime}>0$ for $1 \leq j \leq t$ and $s \in \mathbb{Z}_{>0}$. This proves that $b_{i}^{\prime}>0$ for all $i \in \mathbb{Z}_{\geq 0}$. Note that the numbers $b_{t}, b_{t+1}, \ldots, b_{h}$ are all positive, and $b_{h+1}=b_{1}=0$; from this, and from the definition of E we conclude: $E<h$. By the choice of t moreover we conclude that $t<E$.
Warning: we do not claim that $C\left(w^{\prime}\right)$ and $\left\{b_{1}, \cdots, b_{t}\right\}$ are equal.

By our choice of E we have $b_{E}^{\prime}=b_{E}$ and $b_{E+1}^{\prime} \neq b_{E+1}$. By definition we have:
(i) either $b_{E+1}^{\prime}=b_{E+1}+h$,
(ii) or $b_{E+1}^{\prime}=b_{E+1}-h$.

Note that $t<E<h$; by the choice of t and by the fact that $b_{E+1}^{\prime}>0$ this shows that case (ii) is not possible. Hence we are in case (i); this shows

$$
L_{E}=\mathcal{V}, \quad L_{E}^{\prime}=\mathcal{F},
$$

and we have proved (*).
This proves $(* *)$ is a string, defining an injective homomorphism $G^{\prime} \hookrightarrow G$; this ends the proof of (3.2)

4 The Euclidean type of a BT_{1}

We want to recognize whether a given word w defines a minimal BT_{1}. Starting from a minimal word w we define a "contraction". This process is based on the Euclidean algorithm. After a finite number of contractions the process stops. Keeping track of the steps tells us the shape the word we started with.
(4.1) We consider a circular word $w=w(P, Q)$ in the letters P and Q. We distinguish the following properties this word could have:
(1) a) There exists $s \in \mathbb{Z}_{\geq 0}$ such that $P Q^{s} P$ and $P Q^{s+2}$ appear in the circular word w;
b) There exists $s \in \mathbb{Z}_{\geq 0}$ such that $Q P^{s} Q$ and $Q P^{s+2}$ appear in the circular word w.
(2) a) There exists $s \in \mathbb{Z}_{\geq 0}$ and $P Q^{s} P$ and $P Q^{s+1} P$ do appear in w and $P Q^{t} P$ does not appear for $0 \leq t<s$ and does not appear for $t>s+1$.
b) There exists $s \in \mathbb{Z}_{\geq 0}$ and $Q P^{s} Q$ and $Q P^{s+1} Q$ do appear in w and $Q P^{t} Q$ does not appear for $0 \leq t<s$ and does not appear for $t>s+1$.
(3) a) There exists $s \in \mathbb{Z}_{\geq 0}$ and $w=P Q^{s}$.
b) There exists $s \in \mathbb{Z}_{\geq 0}$ and $w=P^{s} Q$.

Remarks. These conditions are mutually exclusive: if (1a) or (1b) holds then none of (2) and (3) hold; the analogous statement if (2a) or (2b) holds; the analogous statement if (3a) or (3b) holds.

If w is a minimal word, then (1a) and (1b) do not hold.
If (3a) or (3b) holds then w is minimal.
If w is an indecomposable word then at least one of the five conditions hold.
Note that if (1a) and (1b) do not hold then it is not true that P^{2} and Q^{2} appear in w.
Remark. If w is an indecomposable word then at least one of the five conditions hold.
Proof. If P^{2} and Q^{2} occur in w, then (1a) and (1b) are satisfied with $s=0$. If Q does occur, but Q^{2} does not occur, we can write $w=Q P^{n_{1}} \cdots Q P^{n_{t}}$; if $t=0$ we have $w=Q$, case (3b); if $t=1$ we are in case (3b); if $t>1$ we are either in case (1b) or in case (2b). If Q does not occur, then $w=P$, case (3a) with $s=0$. If P does occur, but P^{2} does not occur, an analogous reasoning as above can be used.
(4.2) Contraction. Suppose that $w_{i}=w_{i}\left(P_{i}, Q_{i}\right)$ satisfies (2a). We define new letters and a new word:

$$
P_{i+1}:=P Q^{s}, \quad Q_{i+1}:=P Q^{s+1}, \quad w_{i+1}\left(P_{i+1}, Q_{i+1}\right):=w_{i}\left(P_{i}, Q_{i}\right)
$$

The new word w_{i+1} is called the word obtained by contraction from the word w_{i} satisfying (2a).

Suppose that $w_{i}=w_{i}\left(P_{i}, Q_{i}\right)$ satisfies (2b). In this case we define new letters and a new word:

$$
P_{i+1}:=P^{s+1} Q, \quad Q_{i+1}:=P^{s} Q, \quad w_{i+1}\left(P_{i+1}, Q_{i+1}\right):=w_{i}\left(P_{i}, Q_{i}\right)
$$

The new word w_{i+1} is called the word obtained by contraction from the word w_{i} satisfying (2b).
Remark. Suppose w satisfies (2), and w_{2} is the word obtained by contraction. Then w is indecomposable if and only if w_{2} is indecomposable.
Remark. Let w be an indecomposable word. After a finite number of contractions $w=$ $w_{1}, w_{2}, \cdots, w_{t}$ we can achieve that w_{t} does not satisfy (2a) and does not satisfy (2b) and hence does satisfy (1) or (3). Indeed, contraction gives a shorter word, hence this process of contractions stops and the last word in the sequence does not satisfy (2). Every indecomposable word satisfies one of the five conditions; w_{t}, not satisfying (2), does satisfy (1) or (3).
(4.3) Suppose that $m \geq n>0$. We characterize the fact that $m \geq n$ by the symbol $\varepsilon=+1$. In this case we define $\beta_{1}=\beta:=[m / n]$. We have:

$$
\beta \cdot n \leq m<(\beta+1) \cdot n
$$

In case $m>n>1$ we define

$$
m_{2}:=m-\beta \cdot n, \quad \text { and } \quad n_{2}:=(\beta+1) \cdot n-m
$$

Claim. If $m>n>1$ in the minimal word $w=w(m, n)$ the combinations $\mathcal{V F}^{\beta}$ and $\mathcal{V}^{\beta+1}$ do appear. Between two consecutive symbols \mathcal{V} these are the only possibilities. A minimal word with $m>n>0$ satisfies (2a).
This follows from the description $C(w(m, n))=[0, m+n-1]$.
Note that w minimal with $m>n>1$ satisfies (2a) with $\beta=s$. In that case we define "contraction of w " as above: $P_{1}:=\mathcal{V}, Q_{1}:=\mathcal{F}$ and we write

$$
P_{2}=\mathcal{V} \mathcal{F}^{\beta} \quad \text { and } \quad Q_{2}=\mathcal{V} \mathcal{F}^{\beta+1}
$$

This yields $w(\mathcal{V}, \mathcal{F})=w_{2}\left(P_{2}, Q_{2}\right)$.

Claim. If $w_{1}=w(\mathcal{V}, \mathcal{F})$ satisfies (2a), the word w_{2} in the letters P_{2}, and Q_{2} is a minimal word if and only if w is minimal, and w_{2} is the word associated with the pair $\left(m_{2}, n_{2}\right)$.

A proof will be given in (4.7).
From (m, n) we have obtained $\left\{\varepsilon_{1}=+1, \beta_{1} ;\left(m_{2}, n_{2}\right)\right\}$. Conversely from these last data we can recover (m, n) by:

$$
n=n_{1}=m_{2}+n_{2}, \quad \text { and } \quad m=m_{1}=(\beta+1) m_{2}+\beta \cdot n_{1}
$$

(4.4) For $n>m>1$ we write $\varepsilon=-1$, we write $\mathcal{V}=P_{1}, \quad \mathcal{F}=Q_{1}, \quad w=w_{1}(\mathcal{V}, \mathcal{F})=$ $w_{1}\left(P_{1}, Q_{1}\right)$. We define

$$
\beta=\beta_{1}:=\left[\frac{n}{m}\right], \quad \beta \cdot m<n<(\beta+1) \cdot m .
$$

We see that precisely $P_{2}:=\mathcal{V}^{\beta+1} \mathcal{F}$ and $Q_{2}=\mathcal{V}^{\beta} \mathcal{F}$ appear in w. Define $n_{1}=n$ and $m_{1}=m$,

$$
n_{2}=n_{1}-\beta \cdot m_{1}, \quad \text { and } \quad m_{2}=(\beta+1) \cdot m_{1}-n_{1} .
$$

The contracted word w_{2}, defined by

$$
w=: w_{1}\left(P_{1}, Q_{1}\right)=w_{2}\left(P_{2}, Q_{2}\right),
$$

belongs to the pair $\left(m_{2}, n_{2}\right)$. We show: $w=w(\mathcal{V}, \mathcal{F})$ is minimal, if and only if w_{2} is minimal, see (4.7). We can reconstruct m and n by:

$$
m=m_{2}+n_{2}, \quad n=(\beta+1) n_{2}+\beta m_{2} .
$$

This ends the construction of the contraction step for $n>m>1$.
(4.5) For a minimal word $w=w(m, n)$ we have $\operatorname{gcd}(m, n)=1$. If $m>n>1$ we are in case (2a); if $n>m>1$ we are in case (2b); in these two cases contraction can be applied. If $m=1$ or $n=1$ we are in case (3), and no further contraction is possible. Starting with a minimal word w and continuing the Euclidean algorithm we obtain a sequence of ordered pairs of integers

$$
(m, n)=\left(m_{1}, n_{1}\right),\left(m_{2}, n_{2}\right), \cdots,\left(m_{r}, n_{r}\right), \quad \text { with } \quad m_{r}=1 \quad \text { or } \quad n_{r}=1 ;
$$

we call the Euclidean type of (m, n) :

$$
\operatorname{et}(m, n)=\left\{\varepsilon_{1}, \beta_{1} ; \cdots ; \varepsilon_{i}, \beta_{i} ; \cdots ; \varepsilon_{r}, \beta_{r}\right\},
$$

with $r \geq 1, \quad \varepsilon_{i} \in\{+1,-1\}, \quad \beta_{i} \in \mathbb{Z}_{>0}$. We have seen that (m, n) determines this ordered set of integers, and that conversely from such a set $\left\{\varepsilon_{1}, \cdots, \beta_{r}\right\}$ we can reconstruct $w=w(m, n)$. This is not very deep or exiting, except from the possibility that we can recognize from the shape of a word whether it is minimal or not, see (4.7).
(4.6) An easy example. We illustrate the idea of the algorithm above by an example: take $(m, n)=\left(m_{1}, n_{1}\right)=(11,8)$. We see:
$\varepsilon_{1}=+1, \quad \beta_{1}=1, \quad\left(m_{2}, n_{2}\right)=(3,5) ; \quad \varepsilon_{2}=-1, \quad \beta_{2}=1, \quad\left(m_{3}, n_{3}\right)=(1,2) ; \quad \varepsilon_{3}=-1, \beta_{3}=2$.
This is reflected in the contraction steps:

$$
\begin{gathered}
w_{1}=(\mathcal{V F})(\mathcal{V F})(\mathcal{V F F})(\mathcal{V F})(\mathcal{V F})(\mathcal{V F F})(\mathcal{V F})(\mathcal{V F F}) ; \\
w_{2}=\left(P_{2} P_{2} Q_{2}\right)\left(P_{2} P_{2} Q_{2}\right)\left(P_{2} Q_{2}\right) ; \\
w_{3}=P_{3} P_{3} Q_{3} .
\end{gathered}
$$

Note that w_{1} starts at the lowest position e_{18}; we have

$$
e_{18}(\mathcal{V F}) e_{15}(\mathcal{V F}) e_{12}(\mathcal{V F F}) e_{17}(\mathcal{V F}) e_{14}(\mathcal{V F}) e_{11}(\mathcal{V F F}) e_{16}(\mathcal{V F}) e_{13}(\mathcal{V F F}) e_{18}
$$

we see that w_{2}, using this presentation in $\left\lceil w_{2}\right\rfloor$, also starts at the lowest position, and the same for w_{3}. This is a general phenomenon:
(4.7) Lemma. Suppose w_{i} is an indecomposable word satisfying either (2a) or (2b). Let w_{i+1} be the word obtained from w_{i} by contraction. Then:

$$
w_{i} \text { is minimal } \Longleftrightarrow w_{i+1} \text { is minimal. }
$$

The place where w_{i} has the lowest position of an embedding of α_{p} is the same as the the lowest position of an embedding of α_{p} for the word w_{i+1}.
Proof. In order to simplify we write:

$$
w=w_{i}, \quad \mathcal{V}=P_{i}, \quad \mathcal{F}=Q_{i}
$$

we write $m=m_{i}$ for the number of times \mathcal{F} appears in w and $n=n_{i}$ for the number of times \mathcal{V} appears; write $h=h_{i}=m+n$. We write $C=C(w)$; we normalize C by translation such that $h-1 \in C$ is the largest element of C. If $m=1$ or $n=1$ we are not in case (2); hence we can assume $m>1$ and $n>1$. If $\operatorname{gcd}(m, n)>1$ then w and w_{i+1} are not minimal; hence this case is settled; remaining cases: $\operatorname{gcd}(m, n)=1$ and either $m>n>1$ or $n>m>1$.

Assume $m>n>1$. Write

$$
u=w_{i+1}, \quad P=P_{i+1}=\mathcal{V} \mathcal{F}^{\beta}, \quad Q=Q_{i+1}=\mathcal{V} \mathcal{F}^{\beta+1}, \quad m^{\prime}=m_{i+1}, \quad n^{\prime}=n_{i+1}, \quad h^{\prime}=m^{\prime}+n^{\prime}
$$

Note that $m^{\prime}+n^{\prime}=n$. The operators P and Q act on C. We see that P "acts by $\beta \cdot n-m$ " hence by $-m^{\prime}$ and Q_{2} "acts by $=(\beta+1) \cdot n-m$ " hence by $+n^{\prime}$. We see that $C(u)=C^{\prime} \subset C$ is the subset under the normalization that $h-1$ is the largest element. From this the last statement follows.

Assume w is minimal. Thus $C=[0, h-1]$. Consider $C^{\prime} \subset C$. Note that every element $b \in C^{\prime}$ satisfies $b-m \geq 0$, because the words P and Q start with \mathcal{V}. As $n=m^{\prime}+n^{\prime}=h^{\prime}$, hence $h-h^{\prime}=m+n-h^{\prime}=m$ it follows that $C^{\prime} \subset\left[h-h_{2}, h-1\right]$. Hence $C^{\prime}=\left[h-h^{\prime}, h-1\right]$, and we see that u is minimal.

Assume that u is minimal; with the normalization chosen we have hence $C(u)=C^{\prime}=$ $\left[h-h^{\prime}, h-1\right]$. We show that every for b with $0 \leq b<m=h-h^{\prime}$ we have $b \in C$; once this is proven, it follows that $C=[0, h-1]$, hence w is minimal. For $0 \leq b<m$ choose $\rho \in \mathbb{Z}$ such that $m \leq b+\rho \cdot n=: y \leq h-1$; this is possible (and ρ is unique), because $h^{\prime}=n=h-m$. There are two cases to consider:

1) $m+m^{\prime} \leq y+m^{\prime} \leq h-1$; in this case $u=\cdots\left(e_{y+m^{\prime}}\right) P\left(e_{y}\right) \cdots$;
2) $m \leq y-n^{\prime}$ and $y \leq h-1$; in this case $u=\cdots\left(e_{y-n^{\prime}}\right) Q\left(e_{y}\right) \cdots$.

In the first case $b+\rho \cdot n+m^{\prime}<h=m+n$ gives $\rho \cdot n<\left(m-m^{\prime}\right)+n=(\beta+1) n$, hence $\rho \leq \beta$; we see that $\mathcal{F}^{\beta-\rho} \mathcal{V}^{-1} e_{y+m^{\prime}}=e_{b}$.

In the second case $\rho \cdot n<h-1=m+n-1<(\beta+1) n+n-1$ leads to $\rho \leq \beta+1$; we see that $\mathcal{F}^{\beta+1-\rho} \mathcal{V}^{-1} e_{y-n^{\prime}}=e_{b}$. In both cases we conclude $b \in C$. This shows w is minimal.

The case $n>m>1$ is proved in an analogous way: $P:=\mathcal{V}^{\beta+1} \mathcal{F}$ "acts by $-(\beta+1) m+n=$ $-m^{\prime \prime}$ and $Q=\mathcal{V}^{\beta} \mathcal{F}$ "acts by $-\beta \cdot m+n=+n^{\prime \prime}$. This proves the proposition.
(4.8) Conclusion. Let w be an indecomposable word. Then at least one of the cases (1a) (3b) holds. If (3) holds, or if after a finite number of contractions (3) holds, then w is minimal. If (1) holds, or if after a finite number of contractions (1) holds, then w is not minimal.

5 A proof of Lemma 3

(5.1) In this section we fix notations: m, n are coprime positive integers, $m+n=h$, and f, g are coprime positive integers, $f+g=r$. We study the indecomposable, minimal words $w=w(m, n)$ and $w^{\prime}=w(f, g)$, and the BT_{1} group schemes $G^{\prime}=G_{w^{\prime}}$ and $G=G_{w}$.
(5.2) Lemma. Keep notation as above. Suppose that $\psi: G^{\prime} \rightarrow G$ is a homomorphism defined by a string (also called ψ). Suppose that ψ is no-zero on the lowest embedding of α into G^{\prime} :

$$
\left(\alpha_{p} \stackrel{\iota^{\prime}}{\hookrightarrow} G^{\prime} \stackrel{\psi}{\longrightarrow} G\right) \neq 0 .
$$

Then the pairs (m, n) and (f, g) are equal.
(5.3) (5.2) \Rightarrow Lemma 3. Indeed, suppose that $\varphi: G^{\prime} \hookrightarrow G$ is an embedding, as in Lemma 3. By (2.4) we can write $\varphi=\psi_{1}+\cdots \psi_{r}$ as finite sum of homomorphisms defined by strings. As φ is injective, we have $\iota^{\prime} \cdot \varphi \neq 0$. This implies that for one of the ψ_{i}, say ψ_{1}, we have $\iota^{\prime} \cdot \psi_{1} \neq 0$. By (5.2) this implies $(m, n)=(f, g)$. Hence we have an embedding $\varphi: G^{\prime} \hookrightarrow G$ of group schemes of the same rank; hence φ is an isomorphism; this proves Lemma 3, granting (5.2).
(5.4) If the string in (5.2) is infinite, we see that (m, n) and (f, g) are equal (use the fact that G^{\prime} and G are indecomposable). From now on in the proof of (5.2) we suppose that the string ψ is finite, and we are going to obtain a contradiction.
(5.5) Where to start induction. Suppose, in the notation above, that one of the four integers m, n, f, g equals to 1 . Then the conclusion of (5.2) follows.
Proof. We study a finite string ψ, and we use notation as in(2.2); for the definition of "lowest index" see (1.10); we shift indices in the words w and w^{\prime} in such a way that a lowest index in w^{\prime} is z_{1}^{\prime}, and such that in the string ψ the base vector z_{1}^{\prime} is mapped in a non-zero way to z_{1}; hence $B \leq 0<E$. Multiplying the homomorphism ψ by a constant we can suppose $\psi\left(z_{1}^{\prime}\right)=1 \cdot z_{1}$.

Suppose $g=1$. Then $w^{\prime}=\mathcal{V} \mathcal{F}^{f}$. We have

$$
z_{-f}^{\prime} \xrightarrow{\mathcal{F}} \cdots \xrightarrow{\mathcal{F}} z_{-1}^{\prime} \xrightarrow{\mathcal{F}} z_{0}^{\prime} \stackrel{\mathcal{V}}{\longleftrightarrow}, \quad L_{-f}^{\prime}=\cdots=L_{-1}^{\prime}=\mathcal{F}, \quad L_{0}^{\prime}=\mathcal{V} .
$$

Because $\psi\left(z_{1}^{\prime}\right)=z_{1}$ we conclude $L_{-1}=\mathcal{F}$ and $L_{0}=\mathcal{V}$. If this were possible for a non-zero finite slice, going to the left, we would encounter $\mathcal{V} \mathcal{F}^{t}$ with $t>f$ as part of the word w; however, proceeding to the right, we would encounter \mathcal{V}^{u} with $u<f$ as part of the word w. This is a contradiction with the fact that w is a minimal word. Hence in this case a finite string which is non-zero on the lowest α_{p} does not exist.

The case $f=1$ is treated in the same way, with the roles of \mathcal{F} and \mathcal{V} interchanged.
Suppose $m \geq n=1$. Then $L_{-m}=\mathcal{F}=\cdots=L_{-1}, \quad L_{0}=\mathcal{V}$. Proceeding the string ψ to the left, we would conclude that we would encounter $\mathcal{V} \mathcal{F}^{t}$ with $t<m$ as part of the word w^{\prime}; proceeding the string ψ to the right, we would conclude that we would encounter $\mathcal{V} \mathcal{F}^{u}$ with $u>m$ as part of the word w^{\prime}. This is a contradiction with the fact that w^{\prime} is minimal. In this case a finite string which is non-zero on the lowest α_{p} does not exist.

The case $n \geq m=1$ is treated in the same way, with the roles of \mathcal{F} and \mathcal{V} interchanged.
This proves (5.2) in case that at least one of the four integers m, n, f, g equals to 1 .
(5.6) The induction step in the proof of (5.2). We suppose that none of the integers m, n, f, g equals to 1 . We assume there exists a finite ψ as in (5.2).
Induction hypothesis: (5.2) has been proved for all cases where $f^{\prime}+g^{\prime}<f+g$. The
induction step will be that (5.2) for (m, n) and (f, g) follows if we know (5.2) in the case $\left(m_{2}, n_{2}\right)$ and $\left(f_{2}, g_{2}\right)$.

This shows that (5.5) plus a proof of the induction step proves (5.2).
Let z_{1}^{\prime} be the position of the lowest embedding of α_{p} in G^{\prime}.
Claim. Then $\beta(m, n)=\beta(f, g)$.
Suppose $f>g$. Write $\beta=\beta(f, g)$, i.e. $\beta=[f / g]$. This implies that

$$
\left(\mathcal{V} \mathcal{F}^{\beta+1}\right)\left(z_{-\beta-2}^{\prime}\right)=z_{0}^{\prime}, \quad \text { and } \quad\left(\mathcal{V} \mathcal{F}^{\beta}\right)\left(z_{0}^{\prime}\right)=z_{\beta+1}^{\prime}
$$

Following the string to the left, we see that only $\left(\mathcal{V} \mathcal{F}^{\beta+1}\right)$ and $\left(\mathcal{V} \mathcal{F}^{\beta+2}\right)$ can appear in the part of w left of z_{0} covered by ψ. Following the string to the right we see that only $\left(\mathcal{V} \mathcal{F}^{t}\right)$ with $t \leq \beta+1$ can appear in the part of w right of z_{0} covered by ψ. This proves $\beta(m, n)=\beta(f, g)$.

The case $g>f$ is treated in an analogous way. Hence the claim is proved.
Induction step. Suppose a non-zero finite $\psi: G^{\prime}=G_{w^{\prime}} \rightarrow G=G_{w}$ as in (5.2) exists with all four integers m, n, f, g bigger than 1. Then there exists a finite $\psi_{2}: G_{w_{2}^{\prime}} \rightarrow G_{w_{2}}$ which is non-zero on the lowest $\iota_{2}^{\prime}: \alpha_{p} \rightarrow G_{w_{2}^{\prime}}$.

Indeed, we have seen that the lowest index in w^{\prime} is between a letter Q_{2}^{\prime} and P_{2}^{\prime}, and in the contracted word $w_{2}^{\prime}\left(P_{2}^{\prime}, Q_{2}^{\prime}\right)$ this index again is the lowest position, see (4.7). Syllables P_{2}^{\prime} and Q_{2}^{\prime} in w^{\prime} in the range of the finite string ψ are mapped to the same letter $P_{2}=P_{2}^{\prime}$ and $Q_{2}=Q_{2}^{\prime}$, while at the left end of string there is a P_{2}^{\prime} mapped by ψ to a Q_{2} in w_{2}, and at the right end of the string there is a Q_{2}^{\prime} mapped by ψ to a P_{2} in w_{2}. This proves that the finite string ψ as above, with all a_{1} either equal to 1 or to 0 , defines a string between w_{2}^{\prime} and w_{2} non-zero at the lowest position.

This proves the induction step in case $f>g$. The case $g>f$ is treated in an analogous way.

Hence induction is proved. It can start by (5.5). Hence by the Euclidean algorithm every case of (5.2) follows. This proves (5.2), and hence it proves Lemma 3.

$$
\square(5.2)
$$

\square Lemma 3
\square Theorem A

6 An example

The contents of this section is not needed for the proofs of the theorems. However we like to give the reader some background information.
(6.1) For a p-divisible group X over a field k we study its p-kernel $X[p]=G$. Can we deduce from numerical properties of X the possibilities for $\Gamma(G)$?

See (1.6) for the construction of a semi-module $A=\operatorname{Type}(X)$ attached to a simple p divisible group X. A candidate for $\Gamma(G)$ is $A_{p}:=A \backslash(h+A)$: for every element γ in this set either $m+\gamma \in A^{\prime}$ or $n+\gamma \in A^{\prime}$ and every γ either is in $m+A^{\prime}$ or in $n+A^{\prime}$; writing \mathcal{F} for $+n$ and \mathcal{V} for $+m$ we see that we have a K-cycle.

In some cases, for a p-divisible group X it turns out that indeed $\Gamma(X[p])=A_{p}:=A \backslash(h+A)$. However we will see that there are cases where this is not the case. This is precisely the obstruction which makes it hard to compare properties of $X, \operatorname{Type}(X), X[p]$ and $\Gamma(X[p])$. We do not have a general formula which computes all possible $\Gamma(X[p])$ from Type (X).
(6.2) We take $m=7$ and $n=4$. Let Q be the Dieudonné module of $H_{m, n}$. Hence Q is generated over W by $\left\{E_{i} \mid i \in \mathbb{Z}_{\geq 0}\right\}$. Moreover $\mathcal{F} \cdot E_{i}=E_{i+n}$ and $\mathcal{V} \cdot E_{i}=E_{i+m}$ and $p E_{i}=E_{i+m+n}$. Let M be the Dieudonné module generated by E_{0} and E_{5}, Hence

$$
\operatorname{Type}(M)=: A=\{0,4,5,7,8\} \cup[11, \infty)
$$

equations are:

$$
\mathcal{F}^{3} \cdot E_{0}=E_{12}=\mathcal{V} \cdot E_{5}, \quad \mathcal{F}^{4} \cdot E_{5}=E_{21}=\mathcal{V}^{3} \cdot E_{0}
$$

Conclusion.

$$
\Gamma(M / p M)=: w=w(C)=\mathcal{F}^{3} \mathcal{V} \mathcal{F}^{4} \mathcal{V}^{3}, \quad C:=A \backslash(11+A)
$$

(6.3) A transfer. Again we take $m=7$ and $n=4$. We choose an algebraically closed field k, and we take $a \in k$ with $a \neq 0$. We write $[a] \in W=W_{\infty}(k)$ for the Teichmüller lift of a. We define P as the Dieudonné submodule of Q generated by $q:=E_{0}+[a] \cdot E_{1}$ and E_{5}. We write A for the semi-module as defined in the previous subsection.

Claim.

$$
\text { Type }(P)=A:=\{0,4,5,7,8\} \cup[11, \infty), \quad \text { but } \quad \Gamma(P / p P)=\mathcal{F}^{5} \mathcal{V}^{3}+\mathcal{F}^{2} \mathcal{V}
$$

Note:

$$
\operatorname{Type}(P)=\operatorname{Type}(M) \quad \text { and } \quad \Gamma(P / p P) \neq \Gamma(M / p M)
$$

Proof. As $\mathcal{F}^{2} E_{5}=E_{13} \in M$ we see that $\mathcal{F}^{3} q \equiv E_{12}\left(\bmod M \cap \pi^{13} Q\right)$; using a W-linear combination of $p^{2} q$ and $\mathcal{F} p E_{5}$ we see that $E_{22} \in M$, hence $\mathcal{V}^{3} q \equiv E_{21} \quad\left(\bmod M \cap \pi^{22} Q\right)$; we see that

$$
\left\{q, \mathcal{F} q, \mathcal{F}^{2} q, E_{12}, E_{5}, \mathcal{F} E_{5}, \mathcal{F}^{2} E_{5}, \mathcal{F}^{3} E_{5}, E_{21}, \mathcal{V}^{2} q, \mathcal{V} q\right\}
$$

is a W-basis for M. This proves the first claim.
Write $q^{\prime}:=E_{4}$. Hence $E_{5}=\left(\mathcal{F} q-q^{\prime}\right) /\left[a^{p}\right]$; we see that q and q^{\prime} generate the Dieudonné module M. Note that

$$
0 \leq i \leq 4 \Rightarrow \mathcal{F}^{i} \cdot q \notin \mathcal{V} \cdot(P / p P) ; \quad 0 \leq i \leq 1 \Rightarrow \mathcal{F}^{i} \cdot q^{\prime} \notin \mathcal{V} \cdot(P / p P)
$$

Choose $\lambda \neq 0$ in k and $\mu \neq 0$ in k such that

$$
\lambda^{p^{5}} a^{p^{5}}=\lambda^{p^{-3}} ; \quad \mu^{p^{2}}=-a \cdot \mu^{p^{-1}}
$$

Note that:

$$
\begin{gathered}
p \cdot \mathcal{F} \cdot E_{5}=E_{20} \in p \cdot M ; \quad p \cdot \mathcal{V} \cdot E_{5}=E_{23}, \quad p^{2} \cdot q=E_{22}+[a] E_{23} \quad \Rightarrow \quad E_{22} \in p \cdot M \\
p \cdot q=E_{11}+[a] E_{12} \quad \Rightarrow \quad E_{11} \equiv-[a] E_{12} \quad(\bmod p \cdot M)
\end{gathered}
$$

With these notations we check:

$$
\mathcal{F}^{5} \cdot[\lambda] \cdot q-\mathcal{V}^{3} \cdot[\lambda] \cdot q \in p \cdot M \quad \text { and } \quad \mathcal{F}^{2} \cdot[\mu] \cdot q^{\prime}-\mathcal{V} \cdot[\mu] \cdot q^{\prime} \in p \cdot M
$$

This proves the second part of the claim.

Note the subtle difference in determining $\operatorname{Type}(M)$ and $\Gamma(M / p M)$. In the fist case equations like $\mathcal{F}^{3} \equiv E_{12} \quad\left(\bmod M \cap \pi^{13} Q\right)$ should be satisfied, while in the second case equations should be satisfied modulo $p \cdot M$.

In the second case we see that in $E_{16}+\left[a^{p 4}\right] \cdot E_{17}$ we have $E_{16}=p \cdot E_{5}$, and we get modulo $p M$ a "transfer" (like in railway tracks) to E_{17} and then to E_{21} under \mathcal{F} :

$$
E_{0}+[a] \cdot E_{1}=q \mapsto \mathcal{F} q \mapsto \mathcal{F}^{2} q \mapsto \mathcal{F}^{3} q \equiv E_{13} \mapsto E_{17} \mapsto E_{21} \leftarrow \mathcal{V}^{2} q \leftarrow \mathcal{V} q \leftarrow q,
$$

and

$$
E_{4}=q^{\prime} \mapsto \mathcal{F} q^{\prime} \mapsto \mathcal{F}^{2} q^{\prime} \equiv E_{11} \leftarrow q^{\prime}
$$

(up to units, in $M / p \cdot M$, and so on).

7 A catalogue of p-divisible groups

We produce a mild generalization of [2], Section 5. In this section we fix a Newton polygon β. If $\beta=\sum_{i}\left(m_{i}, n_{i}\right)$ we write $H=H(\beta):=\prod_{i} H_{m_{i}, n_{i}}$.
(7.1) From the proof of $[7]$, (1.6), Step 1, we cite:

Given h there exists an integer $d(h)$ such that for every p-divisible group X of height h and Newton polygon $\mathcal{N}(X)=\beta$ there is an isogeny $\rho: H(\beta) \rightarrow X$ of degree $\operatorname{deg}(\rho)=d(h)$.
(7.2) We choose $\delta \in \mathbb{Z}_{\geq 0}$. We work over a field K. For every scheme S over K we write

$$
T(S)=\left\{\rho: H \times S \rightarrow \mathcal{X} \mid \operatorname{deg}(\rho)=p^{\delta}\right\},
$$

where $\mathcal{X} \rightarrow S$ is a p-divisible group, and ρ an isogeny of the degree indicated; equivalently one could give a finite flat subgroup scheme of the given rank inside H_{S}.

The functor $S \mapsto T(S)$ is representable: use the same, easy arguments as in [2], 5.9. The representing object will be denoted by $T=T_{\beta, \delta}$. This carries its universal family $\rho: H \times T \rightarrow$ \mathcal{X}.
(7.3) If $\delta \geq d(h)$ the pair $\left(T=T_{\beta, \delta}, \quad \rho: H \times T \rightarrow \mathcal{X}\right)$ is a catalogue for all p-divisible groups isogenous with H, by which we mean that for any algebraically closed field Ω containing K and for every p-divisible group Y over Ω with $\mathcal{N}(Y)=\beta$ there exists at least one point $t \in T_{\beta, \delta}(\Omega)$ such that $\mathcal{X}_{t} \cong Y$.
(7.4) Lemma. For $\delta \geq 0$ and for any algebraically closed field Ω the map

$$
\left.T_{\beta, \delta}(\Omega) \quad \longrightarrow \quad\{Y\} / \cong_{\Omega}, \quad\left(\rho_{t}: H \rightarrow \mathcal{X}_{t}\right)\right)=t \mapsto \mathcal{X}_{t}=Y
$$

has finite fibers.
Proof. Suppose given Y. By [7], 1.10, the set of subgroup schemes $J \subset H_{\Omega}$ of given rank p^{δ} with the property that there exists some isomorphism $H_{\Omega} / J \cong Y$ is finite. This proves the lemma.
(7.5) Remark. In [7] we have developed a theory of "central leaves" and "isogeny leaves". Any catalogue as constructed above defines an image in the local deformation theory of any of its fibers, and such an image is contained in an isogeny leaf in the sense of [7].

8 Constructing a family

In order to conclude a proof of Theorem B we prove a stronger fact:
(8.1) Proposition. Suppose given a BT_{1} group scheme G over an algebraically closed field k. We choose the p-divisible group X by defining $X:=\mathcal{L}(G)$. Let $\beta=\mathcal{N}(X)$, choose $\delta \geq d(h)$ (as in Section 7), and consider $T_{\beta, \delta}$ as before. Consider

$$
\mathcal{S}_{G}\left(T_{\beta, \delta}\right):=\left\{t \in T_{\beta, \delta} \mid \exists \Omega: \quad \mathcal{X}_{t}[p]_{\Omega} \cong G_{\Omega}\right\} .
$$

If G is not minimal then $\mathcal{S}_{G}\left(T_{\beta, \delta}\right)$ has an irreducible component S of positive dimension containing $(H \rightarrow X)=x \in T_{\beta, \delta}$.

Remark. By [6], Prop. 3.2 we know that $\mathcal{S}_{G}\left(T_{\beta, \delta}\right) \subset T_{\beta, \delta}$ is locally closed.
(8.2) Note: $(8.1) \Rightarrow$ Theorem B. If this proposition holds, then theorem B follows. Indeed, we apply Lemma (7.4) to the infinite set of points $S(k) \subset \mathcal{S}_{G}\left(T_{\beta, \delta}\right)(k)$.
(8.3) First Step. If for some positive integer δ_{1} the set $\mathcal{S}_{G}\left(T_{\beta, \delta_{1}}\right)$ contains a component of positive dimension then (8.1) is correct for every $\delta \geq d(h)$.

Using (7.4) we conclude that

$$
\#\left(\{X \mid X[p] \cong G\} / \cong_{k}\right)=\infty
$$

Again using (7.4), by $\delta \geq d(h)$ it follows that $\mathcal{S}_{G}\left(T_{\beta, \delta}\right)(k)$ is non-finite. This proves the first step.
(8.4) Second Step. The general case of Proposition (8.1) follows if we prove this statement for the case $G=G_{w}$ is indecomposable and non minimal.

Suppose $G=\Pi G_{w_{i}}$, a product of indecomposables; as before, $X=\mathcal{L}(G), \beta=\mathcal{N}(X)$; write $\beta_{i}=\mathcal{N}\left(\mathcal{L}\left(G_{w_{i}}\right)\right)$. Let us assume that an integer δ is chosen in such a way that $\delta=\prod \delta_{i}$ with $\delta_{i} \geq d\left(h\left(\beta_{i}\right)\right)$. If G is not minimal, at least one of the words w_{i} is not minimal, say w_{1}. If we know the proposition for one factor $G_{w_{1}}$, we have a positive dimensional $S \subset \mathcal{S}_{G}\left(T_{\beta_{1}, \delta_{1}}\right)$; over this S we multiply with fixed isogenies $H\left(\beta_{i}\right) \rightarrow \mathcal{L}\left(G_{w_{i}}\right)$ for $i>2$ each of degree $p^{\delta_{i}}$. We obtain a positive dimensional family in $\mathcal{S}_{G}\left(T_{\beta, \delta}\right)$.

We see that in order to prove (8.1), and hence to prove Theorem B, it suffices to prove (8.1) in case G is indecomposable. The rest of this section, Section 9 and Section 10 are devoted to proving that.
(8.5) We are going to prove (8.1) under the following assumptions:

We work over an algebraically closed field k. We write $w=L_{1} L_{2} \cdots L_{h}$, a finite word, $G=G_{w}$; the number of letters equal to \mathcal{F} in w is d and the number of letters equal to \mathcal{V} is c,

$$
d=\mu \cdot m, \quad c=\mu \cdot n, \quad \operatorname{gcd}(m, n)=1 ; \quad \beta=\mu \cdot(m, n) .
$$

We write $X=\mathcal{L}(G)$ and $M=\mathbb{D}(X)$. We write $H=H(\beta)$ and $Q=\mathbb{D}(H)$.
Note that $X \sim\left(H_{m, n}\right)^{\mu}$, see (2.6).
(8.6) Lemma. Among all embeddings $Q \hookrightarrow M$ there is a maximal one.

Proof. Let $R:=\operatorname{End}\left(H_{m, n} \otimes k\right)$. We know R is the maximal order in the endomorphism algebra $\operatorname{End}^{0}\left(H_{m, n} \otimes k\right)$, and it is (non-commutative) discrete valuation ring; a uniformizer was called π. If $M^{\prime} \subset M$ and $M^{\prime \prime} \subset M$ are Dieudonné submodules, so is their sum $M^{\prime}+M^{\prime \prime} \subset M$; if both are isomorphic with Q, then both are R-modules, and so is $M^{\prime}+M^{\prime \prime}$. Hence the sup $M^{\max }$ of all submodules isomorphic with Q is a Dieudonné submodule, and it is an R-module.

Using $a, b \in \mathbb{Z}$ such that $a m+b n=1$ we see, as in [2], Lemma 5.4, that the action of π on $W\left(\mathbb{F}_{p^{m+n}}\right)$ inside $\operatorname{End}\left(H_{m, n}\right)$ is given by $\lambda \cdot \pi=\pi \cdot \sigma^{b-a}(\lambda)$; define $W_{\infty}(k)[\pi]$ by using this formula as the action of π on any $\lambda \in W_{\infty}(k)$. We see that this defines a discrete valuation ring $W_{\infty}(k)[\pi]$ and that the action of R on $M^{\max }$ extends to an action of $W_{\infty}(k)[\pi]$ on $M^{\max }$. We see that the $W_{\infty}(k)[\pi]$-module $M^{\max }$ is torsion-free and finitely generated. We conclude that $M^{\max }$ is free over $W_{\infty}(k)[\pi]$, i.e. $M^{\max } \cong Q$. This proves the lemma.
(8.7) We fix the maximal embedding $Q \subset M$. Choose the minimal $i \in \mathbb{Z}_{\geq 0}$ such that $M \subset \pi^{-i} Q=: Q^{\prime}$. Note that M is supposed not to be a minimal p-divisible group, hence $Q \neq M$, and $M \neq Q^{\prime}$. In this situation

$$
Q \quad \subsetneq \quad M \quad \subsetneq \quad Q^{\prime}
$$

we distinguish two possibilities:
(8.7)(1) $\pi Q^{\prime} \subset M$, hence $Q=\pi Q^{\prime}$, or
(8.7)(2) $\pi Q^{\prime} \not \subset M$, and $Q=\pi^{i} Q^{\prime}$ with $i>1$.

In both cases $Q^{\prime}=\left(\mathbb{D}\left(H_{m, n}\right)\right)^{\mu}$. We are going to prove the proposition in the two cases separately.

$9 \quad$ Case (1)

We analyze the structure of $X=\mathcal{L}(G)$ and $X[p]=G$ as in (8.7)(1). We write out "equations" for such situations and we conclude that any such case can be deformed in a positive dimensional family, in which $X[p]$ is geometrically constant.

We use assumptions and notations as in (8.5), and (8.7)(1). Write $a_{\text {top }}=\operatorname{dim}_{k}(M / Q)$; note that $Q=\pi \cdot Q^{\prime}$.
(9.1) Lemma. In case (8.7)(1) it follows that $m=1=n$ (i.e. X is supersingular), the length of the word w is 2μ for some $\mu \in \mathbb{Z}_{\geq 2}$, and $Q^{\prime}=\left(\mathbb{D}\left(G_{1,1}\right)\right)^{\mu}$.
Proof. As $M \neq Q^{\prime}$ we have $a_{\text {top }}<\mu$. Note that $\mathcal{F} \cdot Q^{\prime}=\pi^{m} \cdot Q^{\prime}$ and $\mathcal{V} \cdot Q^{\prime}=\pi^{n} \cdot Q^{\prime}$. Hence $a_{\text {top }}<\mu$ and $Q=\pi Q^{\prime} \subset M$ imply $m=1=n$.

The Dieudonné module $\mathbb{D}\left(H_{1,1}\right)$ contains an element e with $\mathcal{F} e=\mathcal{V} e$, and such that $\mathbb{D}\left(H_{1,1}\right)=$ $W e \oplus W \mathcal{F} e$.
(9.2) Note that $a_{\text {top }} \leq a:=\operatorname{dim}_{k}(M /(\mathcal{F} \cdot M+\mathcal{V} \cdot M))$ (this last number equals the "usual a-number"). We define $v: Q^{\prime} \backslash\{0\} \rightarrow \mathbb{Z}_{\geq 0}$ by: $Z \in \pi^{i} Q^{\prime}$ and $Z \notin \pi^{i+1} Q^{\prime}$ then $v(Z)=i$.

We fix an isomorphism $Q^{\prime} \cong\left(\mathbb{D}\left(H_{1,1}\right)\right)^{\mu}$; we will write $\left\{e_{1}, \cdots, e_{\mu}\right\}$ for the set of generators which gives this isomorphism, where e_{i} is the Dieudonné module generator as above of the i-th factor.

We have $\mathbb{D}\left(G_{w}\right)=\sum_{1 \leq i \leq 2 \mu} k \cdot z_{i}$, and the word w operates as $z_{1} L_{1} z_{2} L_{2} \cdots z_{2 \mu} L_{2 \mu} z_{1}$. We choose $Z_{i} \in M$ with $Z_{i} \bmod p M=z_{i}$. Define b to be the number of indices i, with $1 \leq i \leq 2 \mu$ such that $v\left(Z_{i}\right)=2$.
(9.3) Lemma. (a) If $Z \in M$ and $Z \notin \mathcal{F} M+\mathcal{V} M$ then $v(Z) \leq 1$.
(b) For every i we have $0 \leq v\left(Z_{i}\right) \leq 2$. Hence \mathcal{V}^{3} and \mathcal{F}^{3} do not appear in w.
(c) Define A as the number of times \mathcal{V}^{2} appears in w. We have $A \geq 1$.
(d) There exists a presentation $w=L_{1} \cdots L_{2 \mu}$ such that for every $0 \leq i<\mu$ the combination $L_{2 i+1} L_{2 i+2}$ is either $\mathcal{F} \mathcal{V}$ or $\mathcal{V} \mathcal{F}$.
(e) We have $a_{\text {top }}>0$ and $b>0$ and $a_{\text {top }}+b=\mu$.

Proof. As $\pi^{2} Q^{\prime} \subset \mathcal{F} \pi Q^{\prime}+\mathcal{V} \pi Q^{\prime} \subset \mathcal{F} M+\mathcal{V} M$ part (a) follows.
Note that $\pi Q^{\prime} \subset M$ implies $\pi^{3} Q^{\prime} \subset p M$; hence the first part of (b) follows; this implies the second part of (b).

As M is not isomorphic with Q the word w is not equal to $(\mathcal{F V})^{\mu}$; hence (c) follows from (b).

Choose $L_{2 \mu}=\mathcal{V}=L_{1}$, which is possible by (c). Then $v\left(Z_{1}\right)=1$ by (b). By the previous results we see that for all $0 \leq i \leq \mu$ we have $v\left(Z_{2 i+1}\right)=1$; indeed, assume (induction hypothesis) that for some $0 \leq i \leq \mu$ we have $v\left(Z_{2 i+1}\right)=1$ (induction can start at $i=0$); then $L_{2 i+1}=\mathcal{F}=L_{2 i+2}$ and $L_{2 i+1}=\mathcal{V}=L_{2 i+2}$ lead to a contradiction with $0 \leq v\left(Z_{2 i+3}\right) \leq 2 ;$ hence (d) follows.

As $\pi Q^{\prime} \subsetneq M$ we have $a_{\text {top }}>0$. By (c) there is at least one index j with $v\left(Z_{j}\right)=2$; hence $b>0$. We see that $a_{\text {top }}+b$ is the number of indices j with $v\left(Z_{j}\right)=0$ or $v\left(Z_{j}\right)=2$; as the number of j^{\prime} with $v\left(Z_{j^{\prime}}\right)=1$ equals μ we have $a_{\text {top }}+b=2 \mu-\mu=\mu$. This ends the proof of the lemma.
(9.4) We define a map $\rho: Q^{\prime} \rightarrow Q^{\prime}$, "taking the leading term", as follows. We write $\rho(0)=0$. If $0 \neq Z \in Q^{\prime}$, with $v(Z)=s$, we determine $x_{j} \in k$ such that

$$
Z \bmod \pi^{s+1} Q^{\prime}=\sum_{j} x_{j}\left(\pi^{s} \cdot e_{j} \bmod \pi^{s+1} Q^{\prime}\right) \in \pi^{s} Q^{\prime} / \pi^{s+1} Q^{\prime}
$$

and we define

$$
\rho(Z)=\sum_{1 \leq j \leq 2 \mu}\left[x_{j}\right] \cdot \pi^{s} \cdot e_{j}
$$

Write $\rho\left(Z_{i}\right)=$: Z_{i}^{\prime}, write M^{\prime} for the Dieudonné module generated by $Z_{1}^{\prime}, \cdots, Z_{2 \mu}^{\prime}$ and define $z_{j}^{\prime}:=Z_{j} \bmod p M^{\prime}$.

Lemma. We have $M=M^{\prime}$, and $\left\{z_{1}^{\prime}, \cdots, z_{2 \mu}^{\prime}\right\}$ is cyclic under the word w.
Proof. We have $M / Q=M^{\prime} / Q \subset Q^{\prime} / Q$ and $(M \cap Q) / \pi Q=\left(M^{\prime} \cap Q\right) / \pi Q \subset Q / \pi Q$; this implies the first statement. Note that $p M \subset \pi^{2} Q^{\prime}$; a congruence of the form $\mathcal{F}^{s} z_{j} \equiv \mathcal{V}^{t} z_{j+1}$ $(\bmod p M)$ with $s, t \in\{1,2\}$ implies $\mathcal{F}^{s} z_{j}^{\prime} \equiv \mathcal{V}^{t} z_{j+1}^{\prime} \quad(\bmod p M)$. This proves the second statement.

Normalization. From now on we suppose that the elements z_{j} and Z_{j} are chosen such that $\rho\left(Z_{j}\right)=Z_{j}$.
(9.5) Notation. We have seen that \mathcal{V}^{2} appears at least once in w. We choose a presentation of the circular word such that

$$
\cdots\left(L_{2 \mu}=\mathcal{V}\right) z_{1}\left(L_{1}=\mathcal{V}\right) \cdots ; \quad \text { note that } \quad v\left(Z_{1}\right)=1
$$

The word w can be be written as

$$
w=(\mathcal{V} \mathcal{F})^{t_{1}}(\mathcal{F} \mathcal{V})(\mathcal{V} \mathcal{F})^{t_{2}}(\mathcal{F} \mathcal{V}) \cdots(\mathcal{V} \mathcal{F})^{t_{u}}(\mathcal{F} \mathcal{V})
$$

where we write $t_{i}=0$ at places where we have $(\mathcal{F} \mathcal{V})(\mathcal{F V})=(\mathcal{F} \mathcal{V})(\mathcal{V} \mathcal{F})^{0}(\mathcal{F} \mathcal{V})$. We see that A is the number of times we have $t_{i}>0$. Note that in this notation, if $\cdots(\mathcal{V} \mathcal{F})^{t_{i}} \mathcal{F} z_{j} \mathcal{V} \cdots$ then $v\left(Z_{j}\right)=2$ and conversely all such letters are at such places; hence $u=b$. We write $a_{\text {bot }}$ for the number of times that $v\left(Z_{j}\right)=1$ and $\cdots\left(L_{j-1}=\mathcal{V}\right) Z_{j}\left(L_{j}=\mathcal{F}\right) \cdots$. We recall notation fixed up to now:

$$
a^{\prime}:=a_{\mathrm{top}}>0, \quad a^{\prime \prime}=a_{\mathrm{bot}} \geq 0 ; \quad \text { it follows that } \quad a=a^{\prime}+a^{\prime \prime}
$$

Note that

$$
a^{\prime}+b=\mu ; \quad A+a^{\prime \prime}=b ; \quad A>0, \quad b>0
$$

We write $2=\varepsilon_{1}<\cdots<\varepsilon_{A}<2 \mu$ for the indices immediately after \mathcal{V}^{2} appears; i.e. these are all indices for which $w=\cdots \mathcal{V} \mathcal{V} z_{\varepsilon_{j}} \cdots$. Note that all ε_{j} are even. We write $\xi_{j}:=Z_{\varepsilon_{j}}$.

We write $\gamma_{1}<\cdots<\gamma_{a^{\prime \prime}}$ for those indices with $v\left(Z_{j}\right)=1$ and $\cdots\left(L_{j-1}=\mathcal{V}\right) z_{j}\left(L_{j}=\mathcal{F}\right) \cdots$; not that $a^{\prime \prime} \geq 0$; in case $a^{\prime \prime}=0$, there is no index γ_{j}. We write $\eta_{j}:=Z_{\gamma_{j}}$.

We write $t=t(j)$ in the case that $z_{\varepsilon_{j}}$ appears in the part $(\mathcal{V} \mathcal{F})^{(t(j))}$ in the word w; i.e. $w=\cdots\left(\mathcal{V}=L_{\varepsilon_{j}-1}\right)(\mathcal{V} \mathcal{F})^{(t(j))} \mathcal{F} \cdots$.
(9.6) Lemma. Consider $\xi_{j}:=Z_{\varepsilon_{j}}$ and suppose that we have

$$
\cdots(\mathcal{F} \mathcal{V})\left(\mathcal{V} Z_{\varepsilon_{j}}^{\prime} \mathcal{F}\right)(\mathcal{V} \mathcal{F})^{t-1}(\mathcal{F} \mathcal{V}) \cdots, \text { i.e. } \quad t=t(j) \geq 0
$$

then

$$
Z_{\varepsilon_{j}+1}=\mathcal{F} \cdot \xi_{j}, \quad Z_{\varepsilon_{j}+2}=\frac{1}{p} \mathcal{F}^{2} \cdot \xi_{j}, \cdots, \quad Z_{\varepsilon_{j}+2 t+1}=\frac{1}{p^{t}} \mathcal{F}^{2 t+1} \cdot \xi_{j}
$$

are determined by $Z_{\varepsilon_{j}}$.
Proof. Keep in mind that we normalized all elements Z_{s}, see (9.4). Moreover $p M \subset \pi^{2} Q^{\prime}$. Equalities in the circular word $z_{1} L_{1} \cdots L_{2 \mu}$ induce congruences for the elements Z_{s}; these congruences are equalities between the elements Z_{s} with $\varepsilon_{j} \leq s \leq \varepsilon_{j}+2 t+1$, because for these indices we have $v\left(Z_{s}\right) \leq 1$.

Remark. The elements $Z_{\varepsilon_{j}+2 \ell}, \quad 1 \leq j \leq A, \quad 0 \leq \ell \leq t(j)$ and $\gamma_{1}, \cdots, \gamma_{a^{\prime \prime}}$ form a k-basis for $M /(\mathcal{F} M+\mathcal{V} M)$.
(9.7) We introduce variables

$$
X_{j, s}, \quad 1 \leq j \leq A, \quad 1 \leq s \leq 2 \mu ; \quad Y_{j, s}, \quad 1 \leq j \leq a^{\prime \prime}, \quad 1 \leq s \leq 2 \mu
$$

We write

$$
\xi_{j}^{(X)}=\sum_{1 \leq s \leq 2 \mu}\left[X_{j, s}\right] \cdot e_{j}, \quad \eta_{j}^{(Y)}=\sum_{1 \leq s \leq 2 \mu}\left[Y_{j, s}\right] \cdot \pi e_{j}
$$

From $\xi_{j}^{(X)}=Z_{\varepsilon_{j}}^{(X)}$ we determine $Z_{\varepsilon_{j}+1}^{(X)}, \cdots, Z_{\varepsilon_{j}+2 t(j)+1}^{(X)}$ as in the lemma above by writing:

$$
Z_{\varepsilon_{j}+1}^{(X)}=\mathcal{F} \cdot \xi_{j}^{(X)}, \cdots, Z_{\varepsilon_{j}+2 t(j)+1}^{(X)}=\frac{1}{p^{t}(j)} \mathcal{F}^{2 t(j)+1} \cdot \xi_{j} .
$$

For every $1 \leq j \leq A$ we write $Z_{\varepsilon_{j}-1}=\mathcal{V} Z_{\varepsilon_{j}}$.
We determine under which conditions the variables $X_{j, s}$ and $Y_{j, s}$ define elements (there are a elements):

$$
(*(X, Y)) \quad \xi_{j}^{(X)}, Z_{\varepsilon_{j}+2 \ell}^{(X)}, \quad 1 \leq j \leq A, \quad 1 \leq \ell \leq t(j), \quad \eta_{j}^{(Y)}, \quad 1 \leq j \leq a^{\prime \prime}
$$

generating a Dieudonné module $M^{(X, Y)}$ whose "p-kernel" $\frac{1}{p} M^{(X, Y)} / M^{(X, Y)} \cong$ $M^{(X, Y)} / p \cdot M^{(X, Y)}$ has geometric isomorphism type given by w.
(9.8) Here are those conditions/equations for $(*(X, Y))$:

$$
\begin{align*}
\xi_{j}^{(X)}, Z_{\varepsilon_{j}+s}^{(X)}, \quad 1 \leq j \leq A, 1 \leq s \leq t(j) & \text { are linearly independent in } \quad Q^{\prime} / \pi \cdot Q^{\prime} ; \\
Z_{1}, Z_{3}, \cdots, Z_{2 \mu-1} & \text { generate } Q / \pi Q \tag{2}
\end{align*}
$$

note that $\pi Q / \pi^{2} Q \rightarrow \pi Q / p M$; we write $U=\pi Q / p M$;

$$
\begin{align*}
\mathcal{F}^{2} Z_{\varepsilon_{j}+2 t(j)} & \equiv \mathcal{V} Z_{\varepsilon_{j}+2 t(j)+3} \quad\left(\bmod p M^{(X)}\right), \quad 1 \leq j \leq A ; \tag{3}\\
\mathcal{F} Z \gamma_{j} & \equiv \mathcal{V} Z_{\gamma_{j}+2} \quad\left(\bmod p M^{(X)}\right), \quad 1 \leq j \leq a^{\prime \prime} . \tag{4}
\end{align*}
$$

Note that (1) and (2) are open conditions on the variables; we see that (3) and (4) are equalities in U; we see that the tuple ($\xi_{j}, \quad 1 \leq j \leq A ; \quad \eta_{j}, \quad 1 \leq j \leq a^{\prime \prime}$) gives a solution for these equations. Note that if (x) and (y) satisfy (1), (2), (3) and (4) then $\xi^{(x)}$ and $\eta^{(y)}$ determine a Dieudonné module whose " p-kernel" is given by w.

We write $\mathbb{A}^{(X, Y)}$ for the affine space given by the variables $(*(X, Y))$; hence $\operatorname{dim}\left(\mathbb{A}^{(X, Y)}\right)=$ $A \cdot 2 \mu+a^{\prime \prime} \cdot 2 \mu$. We write $\mathbb{A}^{(X)}$ for the affine space given by the variables $X_{j, s}$; hence $\operatorname{dim}\left(\mathbb{A}^{(X)}\right)=$ $A \cdot 2 \mu$. We write \mathcal{G} for the Grassmannian $\operatorname{Grass}\left(a_{\text {top }}, 2 \mu\right)$ of linear spaces of dimension $a^{\prime}=a_{\text {top }}$ in affine space of dimension 2μ. Note that $M^{(X, Y)}$ determines the point $\left[M^{(X, Y)} / Q\right] \in \mathcal{G}$.
(9.9) Proposition. We construct a commutative diagram

$$
\begin{array}{lllll}
\mathbb{A}^{(X, Y)} & \longrightarrow & \mathbb{A}^{(X)} & \longrightarrow & \mathcal{G} \\
\uparrow & & \uparrow & & \uparrow \\
\mathcal{X} & \longrightarrow & \mathcal{Y} & \longrightarrow & \mathcal{Z}
\end{array}
$$

for properties of \mathcal{X}, \mathcal{Y} and \mathcal{Z} see below.
(a) The conditions/equations (1) - (4) above define a locally closed set of $\mathcal{X}^{\prime} \subset \mathbb{A}^{(X, Y)}$; this set contains the point (ξ, η); we define $\mathcal{X} \subset \mathcal{X}^{\prime} \subset \mathbb{A}^{(X, Y)}$ as an irreducible component containing this point. Then:

$$
\operatorname{dim}(\mathcal{X}) \geq\left(A+a^{\prime \prime}\right) \cdot \mu-b \cdot\left(\mu-a^{\prime}\right) .
$$

(b) Write $f: \mathbb{A}^{(X, Y)} \longrightarrow \mathbb{A}^{(X)}$ for the projection (forgetting Y); this induces $f \mathcal{X}: \mathcal{X} \rightarrow \mathbb{A}^{(X)}$;
fibers of the morphism $f_{\mathcal{X}}$ have dimension at most $a^{\prime \prime} \cdot a^{\prime}$.
(c) Let \mathcal{Y} be the image $\mathcal{Y}=f_{\mathcal{X}}(\mathcal{X})$; then

$$
\operatorname{dim}(\mathcal{Y}) \geq A \cdot a^{\prime}
$$

(d) Write $g: \mathcal{Y} \rightarrow \mathcal{G}$ for the map which assigns to the given data the element $g\left(M^{(X, Y)}\right):=$ $\left[M^{(X, Y)} / Q\right] \in \mathcal{G}$. Note that this depends only on the variables $X_{j, s}$.

Fibers of the morphism $g: \mathcal{Y} \rightarrow \mathcal{G}$ have dimension at most $A \cdot\left(a^{\prime}-1\right)$.
(e) Consider the locally closed set $\mathcal{Z} \subset \mathcal{G}$ of points $[B / Q] \in \mathcal{G}$ such that $B+Q$ generates a Dieudonné module $M^{(B)}$ inside Q^{\prime} where the geometric isomorphism type of $M^{(B)} / p M^{(B)}$ is given by w. Then:

$$
\operatorname{dim}(\mathcal{Z}) \geq A \geq 1
$$

By this we mean that every component of \mathcal{Z} has at least this dimension.
Proof. (a) There are $\left(A+a^{\prime \prime}\right) \mu$ unknowns, the dimension of $\mathbb{A}^{(X, Y)}$. By (3) and (4) we obtain $b \cdot\left(\mu-a^{\prime}\right)$ equations, as $\operatorname{dim}(U)=\mu-a^{\prime}$. Hence

$$
\operatorname{dim}(\mathcal{X}) \geq\left(A+a^{\prime \prime}\right) \mu-b \cdot\left(\mu-a^{\prime}\right)=b a^{\prime}
$$

(b) There are $a^{\prime \prime}$ elements η_{j}^{Y}. Fixing $\mathcal{V}\left(\eta_{j}^{Y}\right) \in U$ we see that this image is equal to $\mathcal{V}\left(\eta_{j}^{Y}+C_{j}\right) \in$ U if and only if $\mathcal{V} C_{j} \in p M$. This proves (b).
(c) Hence

$$
\operatorname{dim}(\mathcal{Y}) \geq b a^{\prime}-a^{\prime \prime} a^{\prime}=A a^{\prime}
$$

Discussion: note that \mathcal{Y} is constructible; we can talk about $\operatorname{dim}(\mathcal{Y})$; we are eventually interested in \mathcal{Z}, and we know that this is a locally closed set in \mathcal{G}.
(d) Instead of $\xi_{j}^{(X)}$ we could choose $\lambda \cdot \xi_{j}^{(X)}+D_{j}$, with $0 \neq \lambda \in k$ and and D_{j} a linear combination of all base elements in M / Q not equal to $\xi_{j}^{(X)}$. Trying to satisfy the equations above and going through the word w we see that $\lambda \in \mathbb{F}_{p^{2 \mu}}$. Hence all $D_{j}, \quad 1 \leq j \leq A$, give a "freedom" of dimension at most $A\left(a^{\prime}-1\right)$.
Discussion: It may be that several choices for C_{j} and for D_{j} do not give a solution to the equations above.

Hence fibers of $\mathcal{Y} \rightarrow \mathcal{Z}$ have dimension at most $A\left(a^{\prime}-1\right)$.
(e) We conclude:

$$
\operatorname{dim}(\mathcal{Z}) \geq A a^{\prime}-A\left(a^{\prime}-1\right)=A \geq 1
$$

This proves the proposition.
(9.10) Corollary. Suppose G and $X=\mathcal{L}(G)$ are as in (8.5), (8.7)(1). There is a family of positive dimension in $\mathcal{S}_{G}\left(T_{\beta, \delta}\right)$ with $\beta=\sigma=\mu \cdot(1,1)$ and $\delta=a^{\prime}$ which contains the given X as closed fiber.
By construction X determines a point in $\mathcal{S}_{G}\left(T_{\sigma, a^{\prime}}\right) \subset \mathcal{Z}$ such that X is the closed fiber above this point. By the last part of the preceding proposition we see that this family in \mathcal{G} has positive dimension.

By (8.3) this proves (8.1) in the case (8.7)(1).

10 Case (2)

We use assumptions and notations as in (8.5), and (8.7)(2). We construct

$$
v: Q^{\prime} \backslash\{0\} \rightarrow \mathbb{Z}_{\geq 0} \quad \text { by: } \quad v(Z)=i \Leftrightarrow Z \in \pi^{i} \cdot Q^{\prime}, \quad Z \notin \pi^{i+1} \cdot Q^{\prime}
$$

The word $w=L_{1} \cdots L_{h}$ acts as $z_{1} L_{1} z_{2} L_{2} \cdots z_{h} L_{h} z_{1}$. Choose $Z_{i} \in M$ with $Z_{i} \bmod p M=z_{i}$. Assume the (circular) word to be presented in such a way that $v\left(Z_{1}\right) \leq v\left(Z_{i}\right)$ for all i. We write $v\left(z_{i}\right)=v\left(Z_{i}\right)$.

We focus on a subset of the elements z_{i}, the "top elements", and also on "bottom elements". We write

$$
w=\left(\mathcal{F}^{d_{1}} \mathcal{V}^{c_{1}}\right) \cdots\left(\mathcal{F}^{d_{a}} \mathcal{V}^{c_{a}}\right), \quad d_{i}>0, \quad c_{i}>0
$$

and write

$$
t_{1}=z_{1}, \quad t_{2}=z_{1+d_{1}+c_{1}}, \quad \cdots, \quad t_{a}=z_{1+d_{1}+c_{1}+\cdots+d_{a-1}+c_{a-1}}
$$

and

$$
b_{1}=z_{1+d_{1}}, \quad b_{2}=z_{1+d_{1}+c_{1}+d_{2}}, \quad \cdots, \quad b_{a}=z_{1+d_{1}+c_{1}+\cdots+c_{a-1}+d_{a}} .
$$

The top elements are those where the word reads $\cdots \mathcal{V} t \mathcal{F} \cdots$, the bottom elements are those where the word reads $\cdots \mathcal{F} b \mathcal{V} \cdots$.

We pay special attention not only to a "highest top element": t_{1}, but also to a "lowest bottom element": we choose ε, with $1 \leq \varepsilon \leq a$ such that

$$
v\left(b_{\varepsilon}\right) \geq v\left(b_{j}\right) \quad \forall j
$$

This can be phrased as: $\left(d_{1}+\cdot+d_{i}\right) n+\left(c_{1}+\cdots+c_{i-1}\right) m$ is maximal for $i=\varepsilon$. This implies

$$
\begin{equation*}
M \cap \pi^{v\left(b_{\varepsilon}\right)+1} \cdot Q^{\prime} \subset p \cdot M \tag{*}
\end{equation*}
$$

By definition the skeleton of Q^{\prime} is the image of $\mathbb{D}\left(H \otimes \mathbb{F}_{p}\right)$ in $\mathbb{D}(H \otimes k)=Q^{\prime}$. As we are in case $(8.7)(2)$, there exists an element G in the skeleton of Q^{\prime} such that $v(G)>0$ and $G \notin M$, and such that

$$
\pi^{v(G)+1} \cdot Q^{\prime} \subset M . \quad(* *)
$$

I.e. G is an element with maximal value having the property not being in M. Being in the skeleton implies that $\mathcal{F}^{m} G=\mathcal{V}^{n} G$ (this assumption is just made in order to make computations easier). We fix such a choice.

Remark. In fact we have $\pi^{v(G)+1} \cdot Q^{\prime}=Q$, i.e. $v(G)+1=i$ in the notation in (8.7). Indeed, we know that Q is a π-power multiple of Q^{\prime}, we see that $G \notin M$ and we conclude by ($* *$).

For a choice of fields $k \subset K$ and an element $u \in K$ we are going to construct a Dieudonné module $M^{(u)}$ over the algebraic closure Ω of K (the choice of $M^{(u)}$ depends on M, on u, and on the particular choices of a highest top element t_{1} and a lowest bottom element b_{ε}).

As before we define the top elements $T_{i} \in M$ by $T_{1}=Z_{1}, \cdots$ and the bottom elements $B_{1}=Z_{1+d_{1}} \cdots$. We write $U:=[u] \in W_{\infty}(K)$, the Teichmüller lift of $u \in K$. For $1 \leq i \leq \varepsilon$ we define:

$$
T_{1}^{(u)}=T_{1}+U \cdot G, \quad T_{2}^{(u)}=p^{-c_{1}} \mathcal{F}^{d_{1}+c_{1}}\left(T_{1}+U \cdot G\right), \cdots
$$

$$
T_{\varepsilon}^{(u)}=p^{-\left(c_{1}+\cdots+c_{\varepsilon-1}\right)} \mathcal{F}^{\left(d_{1}+c_{1}+d_{2}+\cdots+c_{\varepsilon-1}\right)}\left(T_{1}+U \cdot G\right),
$$

and

$$
\begin{aligned}
& T_{1}^{(u)}=T_{1}+U \cdot G, \quad T_{a}^{(u)}=p^{-d_{a}} \mathcal{V}^{c_{a}+d_{a}}\left(T_{1}+U \cdot G\right), \cdots, \\
& T_{\varepsilon+1}^{(u)}=p^{-\left(d_{a}+\cdots+d_{\varepsilon+1}\right)} \mathcal{V}^{\left(c_{a}+d_{a}+c_{a-1}+\cdots+d_{\varepsilon+1}\right)}\left(T_{1}+U \cdot G\right) .
\end{aligned}
$$

Note that for $u=0$ we have $T_{i}^{(u)}=T_{i}$ for all i.
We define $M^{(u)} \subset Q^{\prime}$ as the Dieudonné module generated by $T_{\varepsilon+1}^{(u)}, \cdots, T_{a}^{(u)}, T_{1}^{(u)}, \cdots, T_{\varepsilon}^{(u)}$.
Remark on notation. We will use Q^{\prime} for the Dieudonné module $\mathbb{D}(H)$, but also for the Dieudonné module $\mathbb{D}(H \otimes \Omega)$. In the latter case we should write $Q^{\prime} \otimes W(\Omega)$, but we will not do that. We will study $M \subset Q^{\prime}$ and $M^{(u)} \subset Q^{\prime} \otimes W(\Omega)$, but we will simplify notation, e.g. write instead $M^{(u)} \subset Q^{\prime}$, hoping that this will not cause confusion.

For a submodule $P \subset Q^{\prime}=\left(\mathbb{D}\left(H_{1,1}\right)\right)^{\mu}$ we write Type (P) for the subset of $\mathbb{Z} \times\{0,1, \cdots, \mu\}$ defined in the analogous way as we did this for $\mu=1$: we define Type (P) as the set of all pairs $\left(i, D_{i}\right)$, where considering at place $i \in \mathbb{Z}$ we write $D_{i} \in\{0,1, \cdots, \mu\}$ as the dimension of $\left(\pi^{i} \cdot Q^{\prime} \cap M\right) /\left(\pi^{i+1} \cdot Q^{\prime} \cap M\right)$.

Crucial Lemma. With notations introduced above:
(a) the isomorphism type of $M^{(u)} / p \cdot M^{(u)}$ is the same as the isomorphism type of $M / p \cdot M$, i.e.

$$
\Gamma\left(M^{(u)} / p \cdot M^{(u)}\right)=w ;
$$

(b) $\operatorname{Type}(M)=\operatorname{Type}\left(M^{(u)}\right)$, and $Q \subset M^{(u)}$ and the length of M / Q and of $M^{(u)} / Q$ are the same.
Proof. We know $\mathcal{F}^{d_{\varepsilon}} \cdot t_{\varepsilon}=\mathcal{V}^{c_{\varepsilon}} t_{\varepsilon+1}$. By (*) and (**) we conclude that

$$
\mathcal{F}^{d_{\varepsilon}} \cdot T_{\varepsilon}^{(u)} \equiv \mathcal{V}^{c_{\varepsilon}} T_{\varepsilon+1}^{(u)} \quad\left(\bmod p \cdot M^{(u)}\right)
$$

This proves that the residue classes $\bmod p \cdot M^{(u)}$ of the elements $T_{i}^{(u)}, \quad 1 \leq i \leq a$, in $M^{(u)} / p \cdot M^{(u)}$ are cyclic under the word w. This proves part (a) of the lemma.

This set of generators for $M^{(u)}$, cyclic modulo $p \cdot M^{(u)}$, is a W-basis for $M^{(u)}$. This proves $\operatorname{Type}(M)=\operatorname{Type}\left(M^{(u)}\right)$. From this the other claims follow. This proves the lemma.
(10.1) We come to a choice of a positive dimensional subspace of $\mathcal{S}_{G}\left(T_{\beta, \delta}\right)$ containing x as in (8.1) in case (8.7)(2). We start with an algebraically closed field k. We choose a transcendental u over k, write $K=k(u)$, and we write Ω for an algebraic closure of K. Note that the Dieudonné module $M^{(u)}$ is defined over Ω. We have proved that $Q \subset M^{(u)}$ and that

$$
\text { the length } \delta \text { of } M / Q
$$

(Dieudonné modules over k)
is the same as the length of $M^{(u)} / Q$
(Dieudonné modules over Ω). The Dieudonné module inclusions $Q \subset M^{(u)} \subset Q^{\prime}$ gives rise to isogenies $H \rightarrow X^{(u)} \rightarrow H^{\prime}$, and

$$
N_{u}=\operatorname{Ker}\left(H \rightarrow X^{(u)}\right) \quad \subset \quad H\left[\pi^{i}\right]=\operatorname{Ker}\left(H \rightarrow H^{\prime}\right) .
$$

This subgroup scheme is a point in the Grassmannian considered, i.e. it corresponds with a point

$$
\left(\rho_{u}: H \rightarrow X^{(u)}=H / N_{u}\right) \in T_{\beta, \delta} ;
$$

this point is rational over some field L. Note that this field can be chosen within the perfect closure of K, and it can be chosen as a finite extension of K. We write B for the integral closure of $k[u]$ in L. Note that for any specialization $g: k[u] \rightarrow k$ the length of $M^{(g(u))} / Q$ equals δ; hence $\rho_{u} \in T_{\beta, \delta}(L)$ extends to $\rho \in T_{\beta, \delta}(B)$. Hence we have constructed a family $\operatorname{Spec}(B)=: S \subset T_{\beta, \delta}$ of positive dimension defined over k, containing $\left(\rho_{0}: H \rightarrow X\right)=x$, where generic fiber and special fiber have the given w as K-cycle for the kernel by p. By (8.3) this proves (8.1) in case (8.7)(2). Hence the proof of (8.1) is finished; we have Theorem B as corollary.
$\square(8.1)$, Theorem B

11 Some questions.

(11.1) Conjecture. Let X_{0} be a p-divisible group, φ the isomorphism type of $X_{0}[p]$, and $D=\operatorname{Defo}\left(X_{0}\right)$ its equal-characteristic p universal deformation space. Inside D we have the "central leaf" $\mathcal{C}_{X_{0}}(D) \subset D$, the locus where the p-divisible group is geometrically isomorphic with X_{0}, and we have the "EO-stratum" $\mathcal{S}_{\varphi}(D) \subset D$, the locus where the p-kernel is geometrically isomorphic with $X_{0}[p]$. Clearly $\mathcal{C}_{X_{0}}(D) \subset \mathcal{S}_{\varphi}(D)$. We conjecture:

$$
X_{0} \quad \text { is not minimal } \quad \stackrel{?}{\Longrightarrow} \mathcal{C}_{X_{0}}(D) \subsetneq \mathcal{S}_{\varphi}(D) .
$$

Remarks. By [8] we know that if X_{0} is minimal, equality holds.
This conjecture holds if X_{0} is isoclinic.
(11.2) Conjecture. Notation as in (11.1). Let $\gamma=\mathcal{N}\left(X_{0}\right)$. Denote by $\mathcal{W}_{\gamma}^{0}(D) \subset D$ the set where the Newton polygon is equal to γ; note that no Newton polygon strictly above γ appears on D. We conjecture:

$$
X_{0} \quad \text { is not minimal } \quad \stackrel{?}{\Longrightarrow} \mathcal{C}_{X_{0}}(D) \subsetneq\left(\mathcal{W}_{\gamma}^{0}(D) \cap \mathcal{S}_{\varphi}(D)\right) .
$$

Remark. We showed above the special case of this conjecture, when $X_{0}=\mathcal{L}\left(X_{0}[p]\right)$. Note that (11.2) implies (11.1).
(11.3) Conjecture. Let $\left(A_{0}, \lambda_{0}\right)$ be a principally polarized abelian variety. We conjecture:

$$
\begin{aligned}
& \qquad X_{0}:=A_{0}\left[p^{\infty}\right] \text { is not minimal } \stackrel{?}{\Longrightarrow} \mathcal{C}_{\left(X_{0}, \lambda_{0}\right)}(\mathcal{A}) \subsetneq \mathcal{S}_{\left(A_{0}, \lambda_{0}\right)[p]}(\mathcal{A}), \\
& X_{0}:=A_{0}\left[p^{\infty}\right] \text { is not minimal } \stackrel{?}{\Longrightarrow} \mathcal{C}_{\left(X_{0}, \lambda_{0}\right)}(\mathcal{A}) \subsetneq\left(\mathcal{W}_{\mathcal{N}\left(A_{0}\right)}^{0}(D) \cap \mathcal{S}_{\left(A_{0}, \lambda_{0}\right)[p]}(\mathcal{A})\right), \\
& \text { where } \mathcal{A}=\mathcal{A}_{g} \otimes \mathbb{F}_{p} .
\end{aligned}
$$

(11.4) Suppose given a semi-module A attached to m and n, see (1.6). Can we describe all possibe $\sum w_{i}$ such that there exists X with $\operatorname{Type}(X)=A$ and $\Gamma(X[p])=\sum w_{i}$?
(11.5) An analogous question, phrased in slightly different terms: given a symmetric Newton polygon ξ. Can we determine all possible isomorphisms types φ of a polarized BT_{1} such that $S_{\varphi} \cap W_{\xi}^{0} \neq \emptyset$?

References

[1] L. Illusie - Déformations de groupes de Barsotti-Tate. Exp.VI in: Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell (Ed. L. Szpiro), Astérisque 127, Soc. Math. France 1985.
[2] A. J. de Jong \& F. Oort - Purity of the stratification by Newton polygons. Journ. Amer. Math. Soc. 13 (2000), 209-241. See: http://www.ams.org/jams
[3] H. Kraft - Kommutative algebraische p-Gruppen (mit Anwendungen auf p-divisible Gruppen und abelsche Varietäten). Sonderforsch. Bereich Bonn, September 1975. Ms. 86 pp.
[4] B. Moonen - Group schemes with additional structures and Weyl group cosets. In: Moduli of abelian varieties. (Ed. C. Faber, G. van der Geer, F. Oort). Progress Math. 195, Birkhäuser Verlag 2001; pp. 255-298 .
[5] F. Oort - Commutative group schemes. Lect. Notes Math. 15, Springer - Verlag 1966.
[6] F. Oort - A stratification of a moduli space of polarized abelian varieties. In: Moduli of abelian varieties. (Ed. C. Faber, G. van der Geer, F. Oort). Progress Math. 195, Birkhäuser Verlag 2001; pp. 345-416.
[7] F. Oort - Foliations in moduli spaces of abelian varieties. Journ. Amer. Math. Soc. 17 (2004), 267-296.
[8] F. Oort - Minimal p-divisible groups. [To appear in Ann. Math.] See: http://www.math.uu.nl/people/oort/
[9] Séminaire de géométrie algébrique, SGA 3. Schémas en groupes I. M. Demazure and A. Grothendieck. Lect. Notes Math. 151, Springer - Verlag, 1970.

Frans Oort
Mathematisch Instituut
P.O. Box. 80.010

NL - 3508 TA Utrecht
The Netherlands
email: oort@math.uu.nl

