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Introduction

In this paper we study p-divisible groups and their p-kernels over an algebraically closed field.
We try to obtain insight in which way these two kind of objects depend on each other. In this
paper p is a prime number.

The p-kernel of a p-divisible group is called a BT1 group scheme; here BT stand for Barsotti-
Tate group scheme (a synonym for a p-divisible group), and the index 1 stands for “truncated
at level one”. For such group schemes we defines notions of being “indecomposable” see
(1.2), “minimal” see (1.9), and “simple” see (1.2); this last terminology is short for the notion
“BT1-simple”. With these notions defined we show:

(0.1) Theorem A. Let G be a BT1 group scheme over an algebraically closed field k;

G is indecomposable and minimal ⇐⇒ G is simple.

A proof will be given in Section 3 and in Section 5.

Starting from a p-divisible group X we obtain a BT1 group scheme:

[p] : {X | a p− divisible group}/ ∼=k −→ {G | a BT1}/ ∼=k; X �→ G := X[p].

This map is known to be surjective; see [1], 1.7, see [6], 9.10; also see (2.5), where we define
a section for this map. It is the main theorem of [8] that the fiber of this map over (G up to
∼=k) is precisely one p-divisible group X if G is minimal; however things are different if G is
not minimal, as we will show here:

(0.2) Theorem B. Let G be a BT1 group scheme over an algebraically closed field k; suppose
G is not minimal; then:

#({X | X[p] ∼= G}/ ∼=k) = ∞.
A proof will be given in Sections 8, 9, 10.

We will see that there are subtle differences between numerical invariants attached to a p-
divisible group X and to X[p]. This will make a proof of Theorem B not so easy. We
illustrate this difficulty in an example in Section 6.
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Throughout this paper we fix a prime number p. Base schemes will be over Fp, and fields
considered are of characteristic p. We use k and Ω for algebraically closed fields of characteristic
p > 0.

We have gathered some information on notation in the first two sections; it seems best to start
reading in Section 3, where proofs start, and refer back whenever information on notation is
needed.

This paper was partly written during a visit to the ETH Zürich. I thank the Department of Mathematics of

the ETH for hospitality and excellent working conditions. I thank the referee for valuable remarks on an earlier

draft of this paper.

1 Group schemes annihilated by p

We review results obtained in [3], and we fix notations (slightly different from notation used
in that reference). We only study “circular words” as we do not need the “linear words” as
in [3]. As we mainly study Dieudonné modules, the action of a word is given on the covariant
Dieudonné modules of groups schemes studied (we had to make choices).

(1.1) BT1 group schemes. A finite locally free group scheme G→ S is called a BT1 group
scheme, see [1], page 152, if G[F ] := KerFG = ImVG =: V (G) and G[V ] = F (G). In particular
this implies that G is annihilated by p. The abbreviation “BT1” stands for “1-truncated
Barsotti-Tate group”; the terms “p-divisible group” and “Barsotti-Tate group” indicate the
same concept. We refer to [9], Exp. VIIA.4, for the definition of FT : T → T (p) for an S-scheme
T → S and of VG : G(p) → G for a commutative S-group scheme G→ S.

(1.2) Definitions. A BT1 group scheme G over a field is said to be decomposable if there
exist non-zero BT1 group schemes G1 and G2 and an isomorphism G ∼= G1 × G2. We say
that G is indecomposable if there is no isomorphism G ∼= G1 ×G2 with non-zero BT1 group
schemes G1 and G2.

A non-zero BT1 group scheme G over a field is said to be simple (or: BT1-simple) if for
any BT1 subgroup scheme G′ ⊂ G we have either 0 = G′ or G′ = G.
Remark. There are many examples of a group scheme which are BT1-simple (i.e. simple in
the category of BT1 group schemes), but which are not simple as a finite group scheme. For
example, for a supersingular elliptic curve E over a field K ⊃ Fp the group scheme E[p] is
a BT1 group scheme, it is BT1-simple; however E[F ] ⊂ E[p] is a proper, non-zero subgroup
scheme, and we see that E[p] is not simple as a group scheme.
Remark. If G is a BT1 group scheme, and as a group scheme it is decomposable, G ∼=
G′ × G′′, then G′ and G′′ are BT1 group schemes. We see that “BT1-indecomposable” and
“indecomposable as group scheme” are equivalent notions for a BT1 group scheme.

(1.3) If G is a BT1 group scheme over a perfect field K ⊃ Fp its covariant Dieudonné
module D(G) = M1 is a finite dimensional vector space over K on which F and V operate in
a p-linear, respectively p−1-linear way, such that FV = [p]M1 = 0 = VF , with the property
that M1[F ] = VM1 and M1[V] = FM1. The Dieudonné module of a BT1 is called a DM1.

In [3] BT1 group schemes over an algebraically closed field k are classified. Here is that
classification.
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(1.4) A circular word will be a finite, ordered set of the symbols F and V:

w = L1 · · ·Lh, Li ∈ {F ,V};
this will be read in a cyclic way, in the sense that the letter L1 is supposed to come directly
after Lh; cyclic permutations give an equivalence relation, and the class of a word is given by:

L1 · · ·Lh� = 
L2 · · ·Lh, L1� = · · · = 
Li · · ·LhL1 · · ·Li−1� = · · · . From now on we use the
terminology “word” for the concept “circular word”.

For a given word w and a perfect field K we construct a finite group scheme Gw over K defined
by: the K-vector space

D(Gw) =
∑

1≤i≤h
K·zi,

with structure of a Dieudonné module; the operation of F and of V will be described by the
the combination z1L1z2 · · · zhLhz1; this means:

Li = F ⇒ F·zi := zi+1, V·zi+1 := 0,

Li = V ⇒ V·zi+1 := zi, F·zi := 0.

One can visualize this by putting the symbols Li in a circular graph, with the arrows Li = F
pointing clockwise, and the arrows equal to V anti-clockwise.

We will use the notation zi for all i ∈ Z, with the convention that zi = zi′ if i ≡ i′

(mod h), and the same convention for the notation Li for all i ∈ Z.

Comments. We see that the symbol F in a word indeed acts as F on the Dieudonné module,
going clock-wise, but the symbol V act as “V−1”, i.e. Vzi+1 = zi. We have chosen not to
incorporate that exponent “-1” in the notation of the word.

Definitions above show that a word w defines a DM1 and hence defines a group scheme
which is a BT1 group scheme; this will be denoted denoted by Gw. Moreover equivalent words
define isomorphic .

Notation. We see that Gw is defined over Fp. We will use the notation Gw over any field
and over any base scheme in characteristic p: instead of writing Gw ⊗Fp K, or G×Spec(Fp) S
we will just write Gw if it is clear from the context over what field, or base scheme we are
working.

A word w is called decomposable if there exist h, µ ∈ Z>0, with µ·h′ = h and L1, · · · , Lh′ ∈
{F ,V}, such that


L1 · · ·Lh� = 
(L1 · · ·Lh′)µ� := 
(L1 · · ·Lh′) · · · (L1 · · ·Lh′)�.
If such a way of writing with µ > 1 is not possible we say the word w is indecomposable.

(1.5) Theorem (see [3], Section 5). Let k ⊃ Fp be an algebraically closed field.
(a) A (circular) word w, by the formulas above, defines a BT1 group scheme Gw, and w is
indecomposable if and only if Gw is indecomposable.
(b) Any BT1 group scheme over k is a direct sum of indecomposable BT1 group schemes.
(c) For any indecomposable BT1 group scheme G over k there exists an indecomposable word
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w such that G ∼= Gw.
Hence: any BT1 group scheme G over k can be written as

G ∼=
∏

1≤j≤t
Gwj

with indecomposable words w1, · · · , wt. �

Notation. For an indecomposable G ∼= Gw, with w = L1 · · ·Lh we will say that w is the
K-cycle, or the Kraft-cycle defining G. Notation: Γ(G) = w. Also see (1.9).

(1.6) The type of a simple p-divisible group. For a p-divisible we use the word “simple”
meaning that every sub-p-divisible group is either zero or the whole group. We recall the
definition of the ”Type” of a simple p-divisible group, as it was given in [2].

We choose coprime positive integers m,n ∈ Z. Write h = m+ n.
Definition. A semi-module for m and n is a subset A ⊂ Z,

bounded from below
such that m+A ⊂ A and n+A ⊂ A.

If A ⊂ Z and b ∈ Z we write b+ A := {b + a | a ∈ A}, and call this the translation of A over
b. Once m and n are fixed we will say “semi-module” omitting “for m and n”.

We consider all p-divisible groups X of dimension m, such that the dimension of Xt is n, and
such that the Newton polygon N (X) is isoclinic, necessarily consisting of h slopes equal to
n/(m + n). Over an algebraically closed field k this gives just one isogeny class. For every
such X we define a semi-module A = Type(X); here is a description of X �→ Type(X).

DefineH = Hm,n as in [2]; this means thatH is in the isogeny class given above and End(H⊗k)
is the maximal order in End0(H⊗k); this is a (non-commutative) DVR; call its uniformizer π;
we can see that Hm,n is defined over Fp, but we use the notation Hm,n over any base scheme,
if there is no danger for confusion. Over an algebraically closed field the conditions mentioned
define H = Hm,n up to isomorphism.

A p-divisible group X over k is in the isogeny class given above if and only if it is isogenous
with Hm,n. An isogeny X → H = Hm,n gives an inclusion D(X) = M ⊂ Q = D(H); there is
a filtration Q ⊃ · · · ⊃ Q(i) := πi·Q ⊃ · · ·; we write

Type(X) := {i ∈ Z |M ∩Q(i) �= M ∩Q(i+1)}.
Clearly this gives a semi-module. Any isogeny X → H = Hm,n defines in this way a semi-
modules. It is not difficult to see that two such isogenies for X fixed give semi-modules which
are equal up to translation.

We can make the choice of such a semi-module unique, once X is given, by a normalization.
Here we will not follow the normalization for semi-modules as was done in [2]. In this paper
we usually arrange things in such a way that zero is the smallest element in A, i.e. A ⊂ Z≥0

and 0 ∈ A.
Note that Type(Hm,n) = Z≥0 = [0,∞), a semi-module for m and n.

(1.7) Let us fix coprime, positive integers m, and n; we write h := m+n. Let w be a word,
in which F appears m times and V appears n times. We present another way of encoding the
word w.
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A subset C ⊂ Z is called the beginning of a semi-module if:

• for every 0 ≤ i < h the set C contains precisely one element of the equivalence class
i+ h·Z;

• for every i ∈ C either i+ n ∈ C or i−m ∈ C.

If C ⊂ Z is the beginning of a semi-module and b ∈ Z then also b + C is the beginning of a
semi-module.

From such a C we construct a word: choose c1 ∈ C, and proceed inductively:
if ci + n ∈ C, write Li = F and ci+1 = ci + n,
if ci −m ∈ C, write Li = V and ci+1 = ci −m;

we obtain C = {c1, · · · , ch} with ch+1 = c1. Write zi = eci . The class of the word w is given
by 
w� = 
L1 · · ·Lh�. The Dieudonné module of Gw is given by D(Gw) =

∑
j∈C K·zj , where

the action of F and of V on D(Gw) is given by z1L1 · · ·Lh−1zhLhz1.
Conversely from a word where the symbol F appears m times and V appears n times such

a set C ⊂ Z (unique up to translation) can be reconstructed using the methods just explained;
write this set as C(w).

See (2.5) for another way to reconstruct C(w) from w.

A word w gives rise to C, another way of encoding the word w. For D(Gw) we have the k- basis
{ej | j ∈ C}, we have a renumbering of C = {c1, · · · , ch}, hence {ej | j ∈ C} = {z1, · · · , zh}
obtained by “following the cycle”; we obtain a k-basis {z1, · · · , zh}, with eci = zi.

(1.8) Let m,n ∈ Z>0 be coprime, positive integers. Suppose C = [0, h− 1] := {0, 1, · · · , h−
1}. This set C defines a word w(C) of length h = m+ n. This particular word is denoted by
w(m,n); it will be called a minimal word. From the construction of Gw and from properties
of Hm,n we see that Gw(m,n) = Hm,n[p]. We see that w(m,n) = w({0, · · · , h− 1}).

We will also use the notation w = w(V,F) in order to remind the reader that a given word
w is written with the letters V and F ; in Section 4 we will see the use of this notation. I hope
these slightly inconsequent notations w(m,n), w(C) and w(V,F) will not cause confusion.

Example. Let m = 3, and n = 2. Write the set of base vectors {ei | 0 ≤ i ≤ 4} = {ei | i ∈ C}
according to the set of integers {0, 1, 2, 3, 4} = C. The circular word

(e0 = z1)F(e2 = z2)F(e4 = z3)V(e1 = z4)F(e3 = z5)V(e0 = z1); w(3, 2) = FFVFV
is the minimal word associated with (m,n) = (3, 2).

The set C ′ = {0, 2, 3, 4, 6} defines the class of the word w(C ′) = FFFVV; this class is
not equal the class of the minimal word 
w(3, 2)� = 
w({0, 1, 2, 3, 4})� = 
FFVFV� = 
C�
associated with the ordered pair (3, 2).

For (m,n) = (1, 0) we write w(1, 0) = F , and Gw(1,0) = µp. For (m,n) = (0, 1) we write
w(0, 1) = V, and Gw(0,1) = Z/pZ.

A remark on notation. We use covariant Dieudonné module theory. Hence D(F ) = V and
D(V ) = F ; see [6], 15.3. Note that F = 0 on µp; this explains why V = 0 on D(µp).
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(1.9) Minimal BT1 group schemes: Definition. A BT1 group scheme G is called
minimal if there are pairs (mi, ni) and an isomorphism

G ∼=
∏

1≤j≤t
Gw(mj ,nj), gcd(mj , nj) = 1.

As Gw(m,n)
∼= Hm,n[p] we see that this definition is equivalent with the one given in [8]:

Definition. A BT1 group scheme is minimal if and only if it can be written as a direct sum
of group schemes Hmj ,nj [p].

In Section 4 we will describe how to recognize from a word whether it is minimal or not.

Notation. If G ∼= ∏
1≤j≤t Gwj we will write formally Γ(G) =

∑
1≤j≤twj.

(1.10) The lowest index. Let w be an indecomposable word, C = C(w), and G = Gw.
We have M = D(G) =

∑
j∈C k·ej . Let d ∈ C be the largest element in C. The vector ed

will be called the lowest generator. Note that D(αp) = k·z with Fz = 0 = Vz; by z �→ ed we
obtain a homomorphism of group schemes

ι : αp ↪→ Gw,

which we will call the lowest embedding of αp into G = Gw.
Note that the word w reads · · · FedV · · ·. In general the condition · · · (F = Li)zi+1(V =

Li+1) · · · is not sufficient to conclude that zd is the lowest position, see Section 4.

2 Notations and definitions, preliminaries

We work over an algebraically closed field k.

(2.1) Definition. Let w′ = L′
1 · · ·L′

r and w = L1 · · ·Lh be indecomposable words. An
infinite slice γ from w′ to w is a subset of (Z/r)× (Z/h) given by an integer j and equalities

L′
i = Li+j, ∀i ∈ Z.

We recall the convention Li = Li+th for all t ∈ Z and L′
i = L′

i+th.
Note that if an infinite slice exists, then 
w′� = 
w�.

Remark. Note that if a slice extends to the right in an infinite way, then it also extends to
the left in an infinite way. Indeed L′

i = L′
i+hr for all i ∈ Z and Li+j = Li+j+hr.

Definition. A finite slice γ from w′ to w is a subset of (Z/r)× (Z/h) given by the following
properties:

there are given an integer j, integers B < E (B = Beginning, E = End) such that:

L′
B−1 �= LB−1+j , L′

i = Li+j ∀B ≤ i < E, L′
E �= LE+j.

Moreover this finite slice is called a zero finite slice if moreover

L′
B−1 = F & LB−1+j = V, or L′

E = V & LE+j = F .
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We say that γ is a non-zero finite slice if moreover

L′
B−1 = V & LB−1+j = F , and L′

E = F & LE+j = V.

We denote by S(w′, w) the set of non-zero slices from w′ to w.

(2.2) Definition. Consider words w, and w′, as above and the indecomposable BT1 group
schemes G = Gw and G′ = Gw′ defined by these words. Let γ = (j,B,E) be a finite slice. We
say that (γ, aB−1, aB , · · · , aE , aE+1) is a finite string if ai ∈ k and aB−1 = 0 and aE+1 = 0,
and

B ≤ i ≤ E ⇒ ai �= 0; B ≤ i < E, L′
i = F ⇒ ai1+1 = api , L′

i = V ⇒ ai1+1 = ap
−1

i .

A string ψ defines a homomorphism ψ : Gw′ → Gw.

Note that in one the following situations:

z′i
F−→ z′i+1 z′i

V←− z′i+1

↓ ↓ or ↓ ↓
a·zi+j+1 a·zi+j

zi+j
V←− zi+j+1 zi+j

F−→ zi+j+1

we obtain a = 0. This shows that a non-zero string cannot be constructed upon a zero slice.

As k is algebraically closed, hence perfect, for any non-zero finite slice and any choice of aB ∈ k
with aB �= 0 this can be completed to a finite string. We sum up the data for a non-zero finite
string in the following diagram.

z′B−1
V←− z′B · · · z′E

F−→ z′E+1 w′

↓ ↓ || ↓ ↓ ↓
0 �= 0 || �= 0 0

zB+j−1
F−→ zB+j · · · zE+j

V←− zE+j+1 w,

V = LB−1 �= LB+j−1 = F ; B ≤ i < E ⇒ L′
i = Li+j; F = LE �= LE+j = V.

Remark. Suppose a non-zero finite slice γ from w′ to w exists. Then there exist non-zero
finite strings based on this slice. In fact we get a bijective map

{ψ}γ ∼−→ k ψ �→ ψ(z′E),

from the set of all strings ψ based on γ to k.

Slices and strings as defined here were already earlier considered in the context of group
schemes with an additional structure, see [4], Section 4.

We say that ψ is in an infinite string if there exist an infinite slice γ and ai ∈ k, non-zero for
every i, coherent in the way explained before.
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Suppose w and w′ are indecomposable. Let m be the number of copies of F in w and n be
the number of copies of V in w.

Claim. If there exists an infinite slice γ from G′ = Gw′ to G = Gw, then w′ = w and G′ ∼= G,
and ai ∈ Fp|m−n|. For any choice i we obtain a bijective map

{ψ}γ ∼−→ Fp|m−n| ψ �→ ψ(z′i).

We see that L′
i = Li+j for all i ∈ Z. This shows the indecomposable words are equivalent.

Applying L1, · · · , Lm+n we obtain a1 = ap
|m−n|

1 . �

Conversely, if G′ and G are both powers of the same indecomposable BT1, then there does
exist an infinite string from G′ to G.

(2.3) Let w′ and w be indecomposable words of lengths r, respectively h. For every j ∈ Z

consider in (Z/r) × (Z/h) a “diagonal line” given by all pairs {(i, i + j)}. Consider all pairs
(i, s) ∈ Z with L′

i �= Ls. These split up the diagonal lines into slices. We see that (Z/r)×(Z/h)
is a disjoint union of slices.

(2.4) Proposition. Let w′ and w be indecomposable words. Every homomorphism ϕ :
Gw′ → Gw can be written as

ϕ = ψ1 + · · ·+ ψt,

where each of the ψj belongs to a γj ∈ S(w′, w), and ψi �= ψi′ implies γi �= γi′ .
Proof. We obtain the Dieudonné module map

D(ϕ) : D(Gw′) =
i=r∑
i=1

k·z′i −→ D(Gw) =
s=h∑
s=1

k·zs.

Write D(ϕ)(zi) =
∑
ai,szs. We have seen that if (i, s) belongs to a zero slice, then ai,s = 0.

All (i, s) belonging to one given non-zero slice γj indeed give a string ψj defined by those ai,s
supported by γj. This proves the proposition. �

(2.5) A lift. For every BT1 group scheme G we define a p-divisible group X = L(G);
moreover this has the property that L(G)[p] = G.

We have seen that a BT1 group scheme is direct sum of indecomposable group schemes.
Let w be a (finite) word in the letters F and V. This defines a BT1 group scheme Gw. Writing

w = L1L2 · · ·Lh, Li ∈ {V,F},
we define a Dieudonné module, free of rank h over W , with generators Z1, · · · , Zh (write
Zh+1 = Z1) and relations:

Li = F ⇒ FZi = Zi+1, VZi+1 = pZi,

and
Li = V ⇒ FZi = pZi+1, VZi+1 = Zi.

Clearly this defines a Dieudonné module M ; we define X to be the p-divisible group such that
D(X) = M . This definition works over Fp. However we will use the notation L(Gw) over any
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field, if there is no danger for confusion. Write L(
∏
Gwi) =

∏L(Gwi). From the definition of
L(G) we see that L(G)[p] = G.

The lift L(G) could be called the “tautological lift”. However note it is not functorial. For
the words w1 = FV and w2 = F3V2 there does exist an inclusion Gw1 ↪→ Gw2 . However, we
will see in (2.6) that the p-divisible groups L(Gw1) and L(Gw2) are isoclinic of different slopes,
and hence the only homomorphism between them is the zero map.

For a word w we can construct C(w) in the following way: choose X = L(Gw), and A =
Type(X). Then Ap =: A\(h +A) equals C(w), as can be easily seen.

Suppose w is a word consisting of precisely d letters F and precisely c letters V; write h = d+c,
the length of the word w. We write

µ := gcd(d, c), d = µ·m, c = µ·n.

(2.6) Lemma. With the notation above, the tautological lift L(Gw) is isoclinic of slope

n/(m+ n) : L(Gw) ∼ (Hm,n)µ.

Proof. For every i, with 1 ≤ i ≤ h := m+n we have FhZi = pcZi; this proves the lemma. �

3 Simple finite group schemes

We work over an algebraically closed field k. In this section we will show:

(3.1) Lemma 1. Let G be a simple BT1. Then G is indecomposable:

indecomposable ⇐ simple .

(3.2) Lemma 2. Let G be an indecomposable BT1 which is not minimal. Then G is not
simple:

minimal ⇐ simple + indecomposable ⇐ simple.

(3.3) Lemma 3. Let G be an indecomposable, minimal BT1, let 0 �= G′ be an indecompos-
able, minimal BT1 and let

G′ ↪→ G

be an immersion. Then
G′ ∼−→ G

is an isomorphism:

indecomposable + minimal ⇒ simple.

A proof of Lemma 3 will be given in Section 5.

9



(3.4) Note that these three results imply Theorem A. Indeed, if G is simple, then it is
indecomposable by (3.1), and then, by (3.2) we conclude it minimal.

Conversely, suppose G is indecomposable and minimal. Let G′′ ⊂ G be a non-zero BT1

contained in G. Choose G′ ⊂ G′′ such that (G′ �= 0, and such that) G′ is indecomposable
and simple; by Lemma 2 we conclude that G′ is minimal. By (3.3) we conclude that G′ = G.
Hence under the given conditions we conclude G′′ = G. This implies that G is simple. This
finishes the proof of Theorem A, granting (3.1), (3.2) and (3.3).

(3.5) Proof of (3.1). We know that every BT1 can be written as a direct sum of indecom-
posables,

G =
∏

1≤i≤s
Gi.

If s > 1, we would have G1 ↪→ G with 0 �= G1 � G. This is a contradiction with “G is simple”.
This proves (3.1) �(3.1)

(3.6) Proof of (3.2). We assume that G is an indecomposable BT1 which is not minimal.
We show that G is not simple.

Step one. Let w be an indecomposable word; suppose the number of letters F in w equals
d, the number of letters V in w equals c, and write

d = µ·m, c = µ·n, gcd(m,n) = 1.

We show: if µ > 1 then Gw is not simple. Indeed, X := L(Gw) ∼ (Gm,n)µ, see (2.6). If
µ > 1 then X is not simple, there exists a proper sub-p-divisible group X ′ ⊂ X. Then
X ′[p] ⊂ X[p] = Gw is a proper, non-zero BT1 subgroup scheme; hence we see that in this case
Gw is not simple.

Hence it suffices to show (3.2) under the extra condition µ = 1, d = m, c = n. We write
h := m+ n.

Step two. Let w be as above, G = Gw, and X = L(X). Let A = Type(X). Suppose
that this is normalized (translated) in such a way that A ⊂ Z≥0 and 0 ∈ A. Note that
Γ(G) = Ap := A\(h+A).

We assume that m > n: as G is non-minimal the case m = 1 = n is excluded; proving the
case where m > n, the other case follows by interchanging the role of F and V. The word w
is written as

w = L1L2 · · ·Lh−1Lh.

Let C = C(w) as defined in (1.7); we suppose C is normalized such that 0 ∈ C and C ⊂ Z≥0.
As G is not minimal we know that C �= {0, 1, · · · , h− 1}.

We have {ej | j ∈ C} = {z1, · · · , zh}; this renumbering we write as zi = ebi ; this means
that

{b1, · · · , bh} = C, b1 = 0, Li = F ⇒ bi+1 = bi + n, Li = V ⇒ bi+1 = bi −m.
The action of w is given by:

(z1 = eb1)L1(z2 = eb2)L2 · · ·Lh(z1 = eb1).
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Assume m > n and z1 = e0; we see that

L1 = F = L2, Lh = V.

Note that G = Gw is supposed to be non-minimal, hence C �= [0, h − 1], hence C contains at
least one element larger than h. We make the following choices:

• let t+ 1 < h be the largest index such that bt+1 > h;

• choose a new word w′ of length t defined by:

L′
1 := V �= F = L1, L

′
2 := L2 = F , · · · , L′

i := Li (for 1 < i ≤ t), · · · , L′
t := Lt.

• Consider w′ := L′
1 · · ·L′

t as a circular word of length t. In particular L′
j = L′

j+st for all
s ∈ Z and 1 ≤ j ≤ t.

• Write Gw′ for the BT1 group scheme defined by the word w′.

• Write E for the smallest integer with the property that E > B := 2 and such that
L′
E �= LE.

We will show:
t < E < h, LE = V and L′

E = F . (∗)

From (∗) we conclude

F = L1 �= L′
1 = V, L′

2 = L2, · · · , L′
i = Li (2 =: B ≤ i < E), and F = L′

E �= LE = V;

this means that this is a slice, and from this we conclude that

ψ := (a1 = 0, a2 = 1, · · · , ai = 1 (2 = B < i ≤ E), · · · , aE = 1, aE+1 = 0) (∗∗)

is a string which defines a homomorphism ψ; moreover, because 1 < B < E < h it follows
that ψ is injective

0 �= Gw′
∼−→ ψ(Gw′) � Gw.

Once (∗) has been proved, we conclude that G = Gw is not simple.

In order to prove (∗), we define b′1 = h, b′2 = b2, · · · , b′t = bt. These are positive integers.
Moreover define L′

j+st = L′
j for 1 ≤ j ≤ t and s ∈ Z. Define

L′
i = F ⇒ b′i+1 = b′i + n, i > 0,

L′
i = V ⇒ b′i+1 = b′i −m, i > 0.

Note that b′1 = h and b′t+1 > h. For 1 ≤ j ≤ t we obtain b′j+t = b′j+(b′t+1−b′1) > b′j . Repeating
this argument we obtain b′j+st > b′j > 0 for 1 ≤ j ≤ t and s ∈ Z>0. This proves that b′i > 0
for all i ∈ Z≥0. Note that the numbers bt, bt+1, ...., bh are all positive, and bh+1 = b1 = 0;
from this, and from the definition of E we conclude: E < h. By the choice of t moreover we
conclude that t < E.
Warning: we do not claim that C(w′) and {b1, · · · , bt} are equal.
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By our choice of E we have b′E = bE and b′E+1 �= bE+1. By definition we have:
(i) either b′E+1 = bE+1 + h,
(ii) or b′E+1 = bE+1 − h.

Note that t < E < h; by the choice of t and by the fact that b′E+1 > 0 this shows that case
(ii) is not possible. Hence we are in case (i); this shows

LE = V, L′
E = F ,

and we have proved (∗).
This proves (∗∗) is a string, defining an injective homomorphism G′ ↪→ G; this ends the

proof of (3.2) �(3.2)

4 The Euclidean type of a BT1

We want to recognize whether a given word w defines a minimal BT1. Starting from a minimal
word w we define a “contraction”. This process is based on the Euclidean algorithm. After a
finite number of contractions the process stops. Keeping track of the steps tells us the shape
the word we started with.

(4.1) We consider a circular word w = w(P,Q) in the letters P and Q. We distinguish the
following properties this word could have:

(1) a) There exists s ∈ Z≥0 such that PQsP and PQs+2 appear in the circular word w;
b) There exists s ∈ Z≥0 such that QP sQ and QP s+2 appear in the circular word w.

(2) a) There exists s ∈ Z≥0 and PQsP and PQs+1P do appear in w and PQtP does not
appear for 0 ≤ t < s and does not appear for t > s+ 1.
b) There exists s ∈ Z≥0 and QP sQ and QP s+1Q do appear in w and QP tQ does not appear
for 0 ≤ t < s and does not appear for t > s+ 1.

(3) a) There exists s ∈ Z≥0 and w = PQs.
b) There exists s ∈ Z≥0 and w = P sQ.

Remarks. These conditions are mutually exclusive: if (1a) or (1b) holds then none of (2)
and (3) hold; the analogous statement if (2a) or (2b) holds; the analogous statement if (3a)
or (3b) holds.

If w is a minimal word, then (1a) and (1b) do not hold.
If (3a) or (3b) holds then w is minimal.
If w is an indecomposable word then at least one of the five conditions hold.
Note that if (1a) and (1b) do not hold then it is not true that P 2 and Q2 appear in w.

Remark. If w is an indecomposable word then at least one of the five conditions hold.
Proof. If P 2 and Q2 occur in w, then (1a) and (1b) are satisfied with s = 0. If Q does occur,
but Q2 does not occur, we can write w = QPn1 · · ·QPnt ; if t = 0 we have w = Q, case (3b);
if t = 1 we are in case (3b); if t > 1 we are either in case (1b) or in case (2b). If Q does
not occur, then w = P , case (3a) with s = 0. If P does occur, but P 2 does not occur, an
analogous reasoning as above can be used. �
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(4.2) Contraction. Suppose that wi = wi(Pi, Qi) satisfies (2a). We define new letters and
a new word:

Pi+1 := PQs, Qi+1 := PQs+1, wi+1(Pi+1, Qi+1) := wi(Pi, Qi).

The new word wi+1 is called the word obtained by contraction from the word wi satisfying
(2a).

Suppose that wi = wi(Pi, Qi) satisfies (2b). In this case we define new letters and a new
word:

Pi+1 := P s+1Q, Qi+1 := P sQ, wi+1(Pi+1, Qi+1) := wi(Pi, Qi).

The new word wi+1 is called the word obtained by contraction from the word wi satisfying
(2b).
Remark. Suppose w satisfies (2), and w2 is the word obtained by contraction. Then w is
indecomposable if and only if w2 is indecomposable.
Remark. Let w be an indecomposable word. After a finite number of contractions w =
w1, w2, · · · , wt we can achieve that wt does not satisfy (2a)and does not satisfy (2b) and hence
does satisfy (1) or (3). Indeed, contraction gives a shorter word, hence this process of con-
tractions stops and the last word in the sequence does not satisfy (2). Every indecomposable
word satisfies one of the five conditions; wt, not satisfying (2), does satisfy (1) or (3). �

(4.3) Suppose that m ≥ n > 0. We characterize the fact that m ≥ n by the symbol ε = +1.
In this case we define β1 = β := [m/n]. We have:

β·n ≤ m < (β + 1)·n.
In case m > n > 1 we define

m2 := m− β·n, and n2 := (β + 1)·n−m.

Claim. If m > n > 1 in the minimal word w = w(m,n) the combinations VFβ and VFβ+1 do
appear. Between two consecutive symbols V these are the only possibilities. A minimal word
with m > n > 0 satisfies (2a).
This follows from the description C(w(m,n)) = [0,m+ n− 1]. �

Note that w minimal with m > n > 1 satisfies (2a) with β = s. In that case we define
“contraction of w” as above: P1 := V, Q1 := F and we write

P2 = VFβ and Q2 = VFβ+1.

This yields w(V,F) = w2(P2, Q2).

Claim. If w1 = w(V,F) satisfies (2a) , the word w2 in the letters P2, and Q2 is a minimal
word if and only if w is minimal, and w2 is the word associated with the pair (m2, n2).

A proof will be given in (4.7).
From (m,n) we have obtained {ε1 = +1, β1; (m2, n2)}. Conversely from these last data we can
recover (m,n) by:

n = n1 = m2 + n2, and m = m1 = (β + 1)m2 + β·n1.
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(4.4) For n > m > 1 we write ε = −1, we write V = P1, F = Q1, w = w1(V,F) =
w1(P1, Q1). We define

β = β1 :=
[ n
m

]
, β·m < n < (β + 1)·m.

We see that precisely P2 := Vβ+1F and Q2 = VβF appear in w. Define n1 = n and m1 = m,

n2 = n1 − β·m1, and m2 = (β + 1)·m1 − n1.

The contracted word w2, defined by

w =: w1(P1, Q1) = w2(P2, Q2),

belongs to the pair (m2, n2). We show: w = w(V,F) is minimal, if and only if w2 is minimal,
see (4.7). We can reconstruct m and n by:

m = m2 + n2, n = (β + 1)n2 + βm2.

This ends the construction of the contraction step for n > m > 1.

(4.5) For a minimal word w = w(m,n) we have gcd(m,n) = 1. If m > n > 1 we are in
case (2a); if n > m > 1 we are in case (2b); in these two cases contraction can be applied.
If m = 1 or n = 1 we are in case (3), and no further contraction is possible. Starting with
a minimal word w and continuing the Euclidean algorithm we obtain a sequence of ordered
pairs of integers

(m,n) = (m1, n1), (m2, n2), · · · , (mr, nr), with mr = 1 or nr = 1;

we call the Euclidean type of (m,n):

et(m,n) = {ε1, β1; · · · ; εi, βi; · · · ; εr, βr},
with r ≥ 1, εi ∈ {+1,−1}, βi ∈ Z>0. We have seen that (m,n) determines this ordered set
of integers, and that conversely from such a set {ε1, · · · , βr} we can reconstruct w = w(m,n).
This is not very deep or exiting, except from the possibility that we can recognize from the
shape of a word whether it is minimal or not, see (4.7).

(4.6) An easy example. We illustrate the idea of the algorithm above by an example:
take (m,n) = (m1, n1) = (11, 8). We see:

ε1 = +1, β1 = 1, (m2, n2) = (3, 5); ε2 = −1, β2 = 1, (m3, n3) = (1, 2); ε3 = −1, β3 = 2.

This is reflected in the contraction steps:

w1 = (VF)(VF)(VFF)(VF)(VF)(VFF)(VF)(VFF);

w2 = (P2P2Q2)(P2P2Q2)(P2Q2);

w3 = P3P3Q3.

Note that w1 starts at the lowest position e18; we have

e18(VF)e15(VF)e12(VFF)e17(VF)e14(VF)e11(VFF)e16(VF)e13(VFF)e18;

we see that w2, using this presentation in 
w2�, also starts at the lowest position, and the
same for w3. This is a general phenomenon:
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(4.7) Lemma. Suppose wi is an indecomposable word satisfying either (2a) or (2b). Let
wi+1 be the word obtained from wi by contraction. Then:

wi is minimal ⇐⇒ wi+1 is minimal.

The place where wi has the lowest position of an embedding of αp is the same as the the lowest
position of an embedding of αp for the word wi+1.
Proof. In order to simplify we write:

w = wi, V = Pi, F = Qi;

we write m = mi for the number of times F appears in w and n = ni for the number of times
V appears; write h = hi = m + n. We write C = C(w); we normalize C by translation such
that h− 1 ∈ C is the largest element of C. If m = 1 or n = 1 we are not in case (2); hence we
can assume m > 1 and n > 1. If gcd(m,n) > 1 then w and wi+1 are not minimal; hence this
case is settled; remaining cases: gcd(m,n) = 1 and either m > n > 1 or n > m > 1.

Assume m > n > 1. Write

u = wi+1, P = Pi+1 = VFβ , Q = Qi+1 = VFβ+1, m′ = mi+1, n′ = ni+1, h′ = m′ + n′.

Note that m′ + n′ = n. The operators P and Q act on C. We see that P “acts by β·n −m”
hence by −m′ and Q2 “acts by = (β + 1)·n−m” hence by +n′. We see that C(u) = C ′ ⊂ C
is the subset under the normalization that h − 1 is the largest element. From this the last
statement follows.

Assume w is minimal. Thus C = [0, h − 1]. Consider C ′ ⊂ C. Note that every element
b ∈ C ′ satisfies b −m ≥ 0, because the words P and Q start with V. As n = m′ + n′ = h′,
hence h− h′ = m+ n− h′ = m it follows that C ′ ⊂ [h− h2, h− 1]. Hence C ′ = [h− h′, h− 1],
and we see that u is minimal.

Assume that u is minimal; with the normalization chosen we have hence C(u) = C ′ =
[h− h′, h− 1]. We show that every for b with 0 ≤ b < m = h− h′ we have b ∈ C; once this is
proven, it follows that C = [0, h − 1], hence w is minimal. For 0 ≤ b < m choose ρ ∈ Z such
that m ≤ b + ρ·n =: y ≤ h − 1; this is possible (and ρ is unique), because h′ = n = h −m.
There are two cases to consider:
1) m+m′ ≤ y +m′ ≤ h− 1; in this case u = · · · (ey+m′)P (ey) · · · ;
2) m ≤ y − n′ and y ≤ h− 1; in this case u = · · · (ey−n′)Q(ey) · · · .

In the first case b + ρ·n +m′ < h = m + n gives ρ·n < (m −m′) + n = (β + 1)n, hence
ρ ≤ β; we see that Fβ−ρV−1ey+m′ = eb.

In the second case ρ·n < h− 1 = m+ n− 1 < (β + 1)n+ n− 1 leads to ρ ≤ β + 1; we see
that Fβ+1−ρV−1ey−n′ = eb. In both cases we conclude b ∈ C. This shows w is minimal.

The case n > m > 1 is proved in an analogous way: P := Vβ+1F “acts by −(β+1)m+n =
−m′” and Q = VβF “acts by −β·m+ n = +n′”. This proves the proposition. �

(4.8) Conclusion. Let w be an indecomposable word. Then at least one of the cases (1a) -
(3b) holds. If (3) holds, or if after a finite number of contractions (3) holds, then w is minimal.
If (1) holds, or if after a finite number of contractions (1) holds, then w is not minimal.

5 A proof of Lemma 3

(5.1) In this section we fix notations: m,n are coprime positive integers, m + n = h, and
f, g are coprime positive integers, f + g = r. We study the indecomposable, minimal words
w = w(m,n) and w′ = w(f, g), and the BT1 group schemes G′ = Gw′ and G = Gw.
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(5.2) Lemma. Keep notation as above. Suppose that ψ : G′ → G is a homomorphism
defined by a string (also called ψ). Suppose that ψ is no-zero on the lowest embedding of α
into G′: (

αp
ι′
↪→ G′ ψ−→ G

)
�= 0.

Then the pairs (m,n) and (f, g) are equal.

(5.3) (5.2) ⇒ Lemma 3. Indeed, suppose that ϕ : G′ ↪→ G is an embedding, as in Lemma
3. By (2.4) we can write ϕ = ψ1 + · · ·ψr as finite sum of homomorphisms defined by strings.
As ϕ is injective, we have ι′·ϕ �= 0. This implies that for one of the ψi, say ψ1, we have
ι′·ψ1 �= 0. By (5.2) this implies (m,n) = (f, g). Hence we have an embedding ϕ : G′ ↪→ G of
group schemes of the same rank; hence ϕ is an isomorphism; this proves Lemma 3, granting
(5.2). �

(5.4) If the string in (5.2) is infinite, we see that (m,n) and (f, g) are equal (use the fact
that G′ and G are indecomposable). From now on in the proof of (5.2) we suppose that the
string ψ is finite, and we are going to obtain a contradiction.

(5.5) Where to start induction. Suppose, in the notation above, that one of the four
integers m,n, f, g equals to 1. Then the conclusion of (5.2) follows.
Proof. We study a finite string ψ, and we use notation as in(2.2); for the definition of “lowest
index” see (1.10); we shift indices in the words w and w′ in such a way that a lowest index
in w′ is z′1, and such that in the string ψ the base vector z′1 is mapped in a non-zero way
to z1; hence B ≤ 0 < E. Multiplying the homomorphism ψ by a constant we can suppose
ψ(z′1) = 1·z1.

Suppose g = 1. Then w′ = VFf . We have

z′−f
F−→ · · · F−→ z′−1

F−→ z′0
V←−, L′

−f = · · · = L′
−1 = F , L′

0 = V.

Because ψ(z′1) = z1 we conclude L−1 = F and L0 = V. If this were possible for a non-zero
finite slice, going to the left, we would encounter VF t with t > f as part of the word w;
however, proceeding to the right, we would encounter VFu with u < f as part of the word
w. This is a contradiction with the fact that w is a minimal word. Hence in this case a finite
string which is non-zero on the lowest αp does not exist.

The case f = 1 is treated in the same way, with the roles of F and V interchanged.
Suppose m ≥ n = 1. Then L−m = F = · · · = L−1, L0 = V. Proceeding the string ψ to

the left, we would conclude that we would encounter VF t with t < m as part of the word w′;
proceeding the string ψ to the right, we would conclude that we would encounter VFu with
u > m as part of the word w′. This is a contradiction with the fact that w′ is minimal. In
this case a finite string which is non-zero on the lowest αp does not exist.

The case n ≥ m = 1 is treated in the same way, with the roles of F and V interchanged.
This proves (5.2) in case that at least one of the four integers m,n, f, g equals to 1. �

(5.6) The induction step in the proof of (5.2). We suppose that none of the integers
m,n, f, g equals to 1. We assume there exists a finite ψ as in (5.2).
Induction hypothesis: (5.2) has been proved for all cases where f ′ + g′ < f + g. The
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induction step will be that (5.2) for (m,n) and (f, g) follows if we know (5.2) in the case
(m2, n2) and (f2, g2).

This shows that (5.5) plus a proof of the induction step proves (5.2).

Let z′1 be the position of the lowest embedding of αp in G′.
Claim. Then β(m,n) = β(f, g).

Suppose f > g. Write β = β(f, g), i.e. β = [f/g]. This implies that

(VFβ+1)(z′−β−2) = z′0, and (VFβ)(z′0) = z′β+1.

Following the string to the left, we see that only (VFβ+1) and (VFβ+2) can appear in the part
of w left of z0 covered by ψ. Following the string to the right we see that only (VF t) with
t ≤ β+ 1 can appear in the part of w right of z0 covered by ψ. This proves β(m,n) = β(f, g).

The case g > f is treated in an analogous way. Hence the claim is proved. �

Induction step. Suppose a non-zero finite ψ : G′ = Gw′ → G = Gw as in (5.2) exists with
all four integers m,n, f, g bigger than 1. Then there exists a finite ψ2 : Gw′

2
→ Gw2 which is

non-zero on the lowest ι′2 : αp → Gw′
2
.

Indeed, we have seen that the lowest index in w′ is between a letter Q′
2 and P ′

2, and in
the contracted word w′

2(P
′
2, Q

′
2) this index again is the lowest position, see (4.7). Syllables P ′

2

and Q′
2 in w′ in the range of the finite string ψ are mapped to the same letter P2 = P ′

2 and
Q2 = Q′

2, while at the left end of string there is a P ′
2 mapped by ψ to a Q2 in w2, and at the

right end of the string there is a Q′
2 mapped by ψ to a P2 in w2. This proves that the finite

string ψ as above, with all a1 either equal to 1 or to 0, defines a string between w′
2 and w2

non-zero at the lowest position.

This proves the induction step in case f > g. The case g > f is treated in an analogous way.

Hence induction is proved. It can start by (5.5). Hence by the Euclidean algorithm every case
of (5.2) follows. This proves (5.2), and hence it proves Lemma 3.

�(5.2) �Lemma 3 �Theorem A

6 An example

The contents of this section is not needed for the proofs of the theorems. However we like to
give the reader some background information.

(6.1) For a p-divisible group X over a field k we study its p-kernel X[p] = G. Can we
deduce from numerical properties of X the possibilities for Γ(G)?

See (1.6) for the construction of a semi-module A = Type(X) attached to a simple p-
divisible group X. A candidate for Γ(G) is Ap := A\(h + A): for every element γ in this set
either m+ γ ∈ A′ or n+ γ ∈ A′ and every γ either is in m+A′ or in n+A′; writing F for +n
and V for +m we see that we have a K-cycle.

In some cases, for a p-divisible groupX it turns out that indeed Γ(X[p]) = Ap := A\(h+A).
However we will see that there are cases where this is not the case. This is precisely the
obstruction which makes it hard to compare properties of X, Type(X), X[p] and Γ(X[p]).
We do not have a general formula which computes all possible Γ(X[p]) from Type(X).
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(6.2) We take m = 7 and n = 4. Let Q be the Dieudonné module of Hm,n. Hence Q
is generated over W by {Ei | i ∈ Z≥0}. Moreover F·Ei = Ei+n and V·Ei = Ei+m and
pEi = Ei+m+n. Let M be the Dieudonné module generated by E0 and E5, Hence

Type(M) =: A = {0, 4, 5, 7, 8} ∪ [11,∞);

equations are:
F3·E0 = E12 = V·E5, F4·E5 = E21 = V3·E0.

Conclusion.

Γ(M/pM) =: w = w(C) = F3VF4V3, C := A\(11 +A).

(6.3) A transfer. Again we take m = 7 and n = 4. We choose an algebraically closed field
k, and we take a ∈ k with a �= 0. We write [a] ∈W = W∞(k) for the Teichmüller lift of a. We
define P as the Dieudonné submodule of Q generated by q := E0 + [a]·E1 and E5. We write
A for the semi-module as defined in the previous subsection.

Claim.

Type(P ) = A := {0, 4, 5, 7, 8} ∪ [11,∞), but Γ(P/pP ) = F5V3 + F2V.

Note:
Type(P ) = Type(M) and Γ(P/pP ) �= Γ(M/pM).

Proof. As F2E5 = E13 ∈ M we see that F3q ≡ E12 (mod M ∩ π13Q); using a W -linear
combination of p2q and FpE5 we see that E22 ∈M , hence V3q ≡ E21 (mod M ∩ π22Q); we
see that

{q, Fq, F2q, E12, E5, FE5, F2E5, F3E5, E21, V2q, Vq}
is a W -basis for M . This proves the first claim.

Write q′ := E4. Hence E5 = (Fq − q′)/[ap]; we see that q and q′ generate the Dieudonné
module M . Note that

0 ≤ i ≤ 4⇒ F i·q �∈ V·(P/pP ); 0 ≤ i ≤ 1⇒ F i·q′ �∈ V·(P/pP ).

Choose λ �= 0 in k and µ �= 0 in k such that

λp
5
ap

5
= λp

−3
; µp

2
= −a·µp−1

.

Note that:

p·F·E5 = E20 ∈ p·M ; p·V·E5 = E23, p2·q = E22 + [a]E23 ⇒ E22 ∈ p·M ;

p·q = E11 + [a]E12 ⇒ E11 ≡ −[a]E12 (mod p·M).

With these notations we check:

F5·[λ]·q − V3·[λ]·q ∈ p·M and F2·[µ]·q′ − V·[µ]·q′ ∈ p·M.

This proves the second part of the claim. �
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Note the subtle difference in determining Type(M) and Γ(M/pM). In the fist case equations
like F3 ≡ E12 (mod M ∩π13Q) should be satisfied, while in the second case equations should
be satisfied modulo p·M .

In the second case we see that in E16 + [ap4]·E17 we have E16 = p·E5, and we get modulo
pM a “transfer” (like in railway tracks) to E17 and then to E21 under F :

E0 + [a]·E1 = q �→ Fq �→ F2q �→ F3q ≡ E13 �→ E17 �→ E21 ← V2q ← Vq ← q,

and
E4 = q′ �→ Fq′ �→ F2q′ ≡ E11 ← q′

(up to units, in M/p·M , and so on).

7 A catalogue of p-divisible groups

We produce a mild generalization of [2], Section 5. In this section we fix a Newton polygon
β. If β =

∑
i(mi, ni) we write H = H(β) :=

∏
iHmi,ni .

(7.1) From the proof of [7], (1.6), Step 1, we cite:
Given h there exists an integer d(h) such that for every p-divisible group X of height h and
Newton polygon N (X) = β there is an isogeny ρ : H(β)→ X of degree deg(ρ) = d(h).

(7.2) We choose δ ∈ Z≥0. We work over a field K. For every scheme S over K we write

T (S) = {ρ : H × S → X | deg(ρ) = pδ},
where X → S is a p-divisible group, and ρ an isogeny of the degree indicated; equivalently
one could give a finite flat subgroup scheme of the given rank inside HS.

The functor S �→ T (S) is representable: use the same, easy arguments as in [2], 5.9. The
representing object will be denoted by T = Tβ,δ. This carries its universal family ρ : H ×T →
X .

(7.3) If δ ≥ d(h) the pair (T = Tβ,δ, ρ : H×T → X ) is a catalogue for all p-divisible groups
isogenous with H, by which we mean that for any algebraically closed field Ω containing K and
for every p-divisible group Y over Ω with N (Y ) = β there exists at least one point t ∈ Tβ,δ(Ω)
such that Xt ∼= Y .

(7.4) Lemma. For δ ≥ 0 and for any algebraically closed field Ω the map

Tβ,δ(Ω) −→ {Y }/∼=Ω, (ρt : H → Xt)) = t �→ Xt = Y

has finite fibers.
Proof. Suppose given Y . By [7], 1.10, the set of subgroup schemes J ⊂ HΩ of given rank pδ

with the property that there exists some isomorphism HΩ/J ∼= Y is finite. This proves the
lemma. �

(7.5) Remark. In [7] we have developed a theory of ”central leaves” and ”isogeny leaves”.
Any catalogue as constructed above defines an image in the local deformation theory of any
of its fibers, and such an image is contained in an isogeny leaf in the sense of [7].
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8 Constructing a family

In order to conclude a proof of Theorem B we prove a stronger fact:

(8.1) Proposition. Suppose given a BT1 group scheme G over an algebraically closed field
k. We choose the p-divisible group X by defining X := L(G). Let β = N (X), choose δ ≥ d(h)
(as in Section 7), and consider Tβ,δ as before. Consider

SG(Tβ,δ) := {t ∈ Tβ,δ | ∃Ω : Xt[p]Ω ∼= GΩ}.
If G is not minimal then SG(Tβ,δ) has an irreducible component S of positive dimension
containing (H → X) = x ∈ Tβ,δ.

Remark. By [6], Prop. 3.2 we know that SG(Tβ,δ) ⊂ Tβ,δ is locally closed.

(8.2) Note: (8.1) ⇒ Theorem B. If this proposition holds, then theorem B follows. Indeed,
we apply Lemma (7.4) to the infinite set of points S(k) ⊂ SG(Tβ,δ)(k).

(8.3) First Step. If for some positive integer δ1 the set SG(Tβ,δ1) contains a component of
positive dimension then (8.1) is correct for every δ ≥ d(h).

Using (7.4) we conclude that

#({X | X[p] ∼= G}/ ∼=k) = ∞.
Again using (7.4), by δ ≥ d(h) it follows that SG(Tβ,δ)(k) is non-finite. This proves the first
step.

(8.4) Second Step. The general case of Proposition (8.1) follows if we prove this statement
for the case G = Gw is indecomposable and non minimal.

Suppose G =
∏
Gwi , a product of indecomposables; as before, X = L(G), β = N (X);

write βi = N (L(Gwi)). Let us assume that an integer δ is chosen in such a way that δ =
∏
δi

with δi ≥ d(h(βi)). If G is not minimal, at least one of the words wi is not minimal, say w1.
If we know the proposition for one factor Gw1, we have a positive dimensional S ⊂ SG(Tβ1,δ1);
over this S we multiply with fixed isogenies H(βi)→ L(Gwi) for i > 2 each of degree pδi . We
obtain a positive dimensional family in SG(Tβ,δ).

We see that in order to prove (8.1), and hence to prove Theorem B, it suffices to prove (8.1)
in case G is indecomposable. The rest of this section, Section 9 and Section 10 are devoted to
proving that.

(8.5) We are going to prove (8.1) under the following assumptions:
We work over an algebraically closed field k. We write w = L1L2 · · ·Lh, a finite word, G = Gw;
the number of letters equal to F in w is d and the number of letters equal to V is c,

d = µ·m, c = µ·n, gcd(m,n) = 1; β = µ·(m,n).

We write X = L(G) and M = D(X). We write H = H(β) and Q = D(H).
Note that X ∼ (Hm,n)µ, see (2.6).
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(8.6) Lemma. Among all embeddings Q ↪→M there is a maximal one.
Proof. Let R := End(Hm,n ⊗ k). We know R is the maximal order in the endomorphism
algebra End0(Hm,n⊗k), and it is (non-commutative) discrete valuation ring; a uniformizer was
called π. If M ′ ⊂M and M ′′ ⊂M are Dieudonné submodules, so is their sum M ′ +M ′′ ⊂M ;
if both are isomorphic with Q, then both are R-modules, and so is M ′ +M ′′. Hence the sup
Mmax of all submodules isomorphic with Q is a Dieudonné submodule, and it is an R-module.

Using a, b ∈ Z such that am + bn = 1 we see, as in [2], Lemma 5.4, that the action of π
on W (Fpm+n) inside End(Hm,n) is given by λ·π = π·σb−a(λ); define W∞(k)[π] by using this
formula as the action of π on any λ ∈ W∞(k). We see that this defines a discrete valuation
ring W∞(k)[π] and that the action of R on Mmax extends to an action of W∞(k)[π] on Mmax.
We see that the W∞(k)[π]-module Mmax is torsion-free and finitely generated. We conclude
that Mmax is free over W∞(k)[π], i.e. Mmax ∼= Q. This proves the lemma. �

(8.7) We fix the maximal embedding Q ⊂ M . Choose the minimal i ∈ Z≥0 such that
M ⊂ π−iQ =: Q′. Note that M is supposed not to be a minimal p-divisible group, hence
Q �= M , and M �= Q′. In this situation

Q � M � Q′

we distinguish two possibilities:
(8.7)(1) πQ′ ⊂M , hence Q = πQ′, or
(8.7)(2) πQ′ �⊂M , and Q = πiQ′ with i > 1.

In both cases Q′ = (D(Hm,n))µ. We are going to prove the proposition in the two cases
separately.

9 Case (1)

We analyze the structure of X = L(G) and X[p] = G as in (8.7)(1). We write out “equa-
tions” for such situations and we conclude that any such case can be deformed in a positive
dimensional family, in which X[p] is geometrically constant.

We use assumptions and notations as in (8.5), and (8.7)(1). Write atop = dimk(M/Q); note
that Q = π·Q′.

(9.1) Lemma. In case (8.7)(1) it follows that m = 1 = n (i.e. X is supersingular), the
length of the word w is 2µ for some µ ∈ Z≥2, and Q′ = (D(G1,1))µ.
Proof. As M �= Q′ we have atop < µ. Note that F·Q′ = πm·Q′ and V·Q′ = πn·Q′. Hence
atop < µ and Q = πQ′ ⊂M imply m = 1 = n. �

The Dieudonné module D(H1,1) contains an element e with Fe = Ve, and such that D(H1,1) =
We⊕WFe.

(9.2) Note that atop ≤ a := dimk(M/(F·M + V·M)) (this last number equals the “usual
a-number”). We define v : Q′\{0} → Z≥0 by: Z ∈ πiQ′ and Z �∈ πi+1Q′ then v(Z) = i.

We fix an isomorphism Q′ ∼= (D(H1,1))µ; we will write {e1, · · · , eµ} for the set of generators
which gives this isomorphism, where ei is the Dieudonné module generator as above of the
i-th factor.
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We have D(Gw) =
∑

1≤i≤2µ k·zi, and the word w operates as z1L1z2L2 · · · z2µL2µz1. We choose
Zi ∈ M with Zi mod pM = zi. Define b to be the number of indices i, with 1 ≤ i ≤ 2µ such
that v(Zi) = 2.

(9.3) Lemma. (a) If Z ∈M and Z �∈ FM + VM then v(Z) ≤ 1.
(b) For every i we have 0 ≤ v(Zi) ≤ 2. Hence V3 and F3 do not appear in w.
(c) Define A as the number of times V2 appears in w. We have A ≥ 1.
(d) There exists a presentation w = L1 · · ·L2µ such that for every 0 ≤ i < µ the combination
L2i+1L2i+2 is either FV or VF .
(e) We have atop > 0 and b > 0 and atop + b = µ.
Proof. As π2Q′ ⊂ FπQ′ + VπQ′ ⊂ FM + VM part (a) follows.

Note that πQ′ ⊂ M implies π3Q′ ⊂ pM ; hence the first part of (b) follows; this implies
the second part of (b).

As M is not isomorphic with Q the word w is not equal to (FV)µ; hence (c) follows from
(b).

Choose L2µ = V = L1, which is possible by (c). Then v(Z1) = 1 by (b). By the previous
results we see that for all 0 ≤ i ≤ µ we have v(Z2i+1) = 1; indeed, assume (induction
hypothesis) that for some 0 ≤ i ≤ µ we have v(Z2i+1) = 1 (induction can start at i = 0); then
L2i+1 = F = L2i+2 and L2i+1 = V = L2i+2 lead to a contradiction with 0 ≤ v(Z2i+3) ≤ 2;
hence (d) follows.

As πQ′ � M we have atop > 0. By (c) there is at least one index j with v(Zj) = 2; hence
b > 0. We see that atop + b is the number of indices j with v(Zj) = 0 or v(Zj) = 2; as the
number of j′ with v(Zj′) = 1 equals µ we have atop + b = 2µ− µ = µ. This ends the proof of
the lemma. �

(9.4) We define a map ρ : Q′ → Q′, “taking the leading term”, as follows. We write ρ(0) = 0.
If 0 �= Z ∈ Q′, with v(Z) = s, we determine xj ∈ k such that

Z mod πs+1Q′ =
∑
j

xj(πs·ej mod πs+1Q′) ∈ πsQ′/πs+1Q′

and we define
ρ(Z) =

∑
1≤j≤2µ

[xj]·πs·ej .

Write ρ(Zi) =: Z ′
i, write M ′ for the Dieudonné module generated by Z ′

1, · · · , Z ′
2µ and define

z′j := Zj mod pM ′.

Lemma. We have M = M ′, and {z′1, · · · , z′2µ} is cyclic under the word w.
Proof. We have M/Q = M ′/Q ⊂ Q′/Q and (M ∩ Q)/πQ = (M ′ ∩ Q)/πQ ⊂ Q/πQ; this
implies the first statement. Note that pM ⊂ π2Q′; a congruence of the form Fszj ≡ Vtzj+1

(mod pM) with s, t ∈ {1, 2} implies Fsz′j ≡ Vtz′j+1 (mod pM). This proves the second
statement. �

Normalization. From now on we suppose that the elements zj and Zj are chosen such that
ρ(Zj) = Zj .

22



(9.5) Notation. We have seen that V2 appears at least once in w. We choose a presentation
of the circular word such that

· · · (L2µ = V)z1(L1 = V) · · · ; note that v(Z1) = 1.

The word w can be be written as

w = (VF)t1(FV)(VF)t2(FV) · · · (VF)tu(FV),

where we write ti = 0 at places where we have (FV)(FV) = (FV)(VF)0(FV). We see that A
is the number of times we have ti > 0. Note that in this notation, if · · · (VF)tiFzjV · · · then
v(Zj) = 2 and conversely all such letters are at such places; hence u = b. We write abot for
the number of times that v(Zj) = 1 and · · · (Lj−1 = V)Zj(Lj = F) · · · . We recall notation
fixed up to now:

a′ := atop > 0, a′′ = abot ≥ 0; it follows that a = a′ + a′′.

Note that
a′ + b = µ; A+ a′′ = b; A > 0, b > 0.

We write 2 = ε1 < · · · < εA < 2µ for the indices immediately after V2 appears; i.e. these are
all indices for which w = · · · VVzεj · · ·. Note that all εj are even. We write ξj := Zεj .

We write γ1 < · · · < γa′′ for those indices with v(Zj) = 1 and · · · (Lj−1 = V)zj(Lj = F) · · ·;
not that a′′ ≥ 0; in case a′′ = 0, there is no index γj. We write ηj := Zγj .

We write t = t(j) in the case that zεj appears in the part (VF)(t(j)) in the word w; i.e.
w = · · · (V = Lεj−1)(VF)(t(j))F · · ·.

(9.6) Lemma. Consider ξj := Zεj and suppose that we have

· · · (FV)(VZ ′
εj
F)(VF)t−1(FV) · · · , i.e. t = t(j) ≥ 0;

then
Zεj+1 = F·ξj , Zεj+2 =

1
p
F2·ξj , · · · , Zεj+2t+1 =

1
pt
F2t+1·ξj

are determined by Zεj .
Proof. Keep in mind that we normalized all elements Zs, see (9.4). Moreover pM ⊂ π2Q′.
Equalities in the circular word z1L1 · · ·L2µ induce congruences for the elements Zs; these
congruences are equalities between the elements Zs with εj ≤ s ≤ εj + 2t + 1, because for
these indices we have v(Zs) ≤ 1. �

Remark. The elements Zεj+2�, 1 ≤ j ≤ A, 0 ≤ � ≤ t(j) and γ1, · · · , γa′′ form a k-basis for
M/(FM + VM).

(9.7) We introduce variables

Xj,s, 1 ≤ j ≤ A, 1 ≤ s ≤ 2µ; Yj,s, 1 ≤ j ≤ a′′, 1 ≤ s ≤ 2µ.

We write
ξ
(X)
j =

∑
1≤s≤2µ

[Xj,s]·ej , η
(Y )
j =

∑
1≤s≤2µ

[Yj,s]·πej .
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From ξ
(X)
j = Z

(X)
εj we determine Z(X)

εj+1, · · · , Z(X)
εj+2t(j)+1 as in the lemma above by writing:

Z
(X)
εj+1 = F·ξ(X)

j , · · · , Z(X)
εj+2t(j)+1 =

1
pt(j)

F2t(j)+1·ξj .

For every 1 ≤ j ≤ A we write Zεj−1 = VZεj .

We determine under which conditions the variables Xj,s and Yj,s define elements (there are a
elements):

(∗(X,Y )) ξ
(X)
j , Z

(X)
εj+2�, 1 ≤ j ≤ A, 1 ≤ � ≤ t(j), η

(Y )
j , 1 ≤ j ≤ a′′

generating a Dieudonné module M (X,Y ) whose “p-kernel” 1
pM

(X,Y )/M (X,Y ) ∼=
M (X,Y )/p·M (X,Y ) has geometric isomorphism type given by w.

(9.8) Here are those conditions/equations for (∗(X,Y )):

ξ
(X)
j , Z

(X)
εj+s, 1 ≤ j ≤ A, 1 ≤ s ≤ t(j) are linearly independent in Q′/π·Q′; (1)

Z1, Z3, · · · , Z2µ−1 generate Q/πQ; (2)

note that πQ/π2Q � πQ/pM ; we write U = πQ/pM ;

F2Zεj+2t(j) ≡ VZεj+2t(j)+3 (mod pM (X)), 1 ≤ j ≤ A; (3)

FZγj ≡ VZγj+2 (mod pM (X)), 1 ≤ j ≤ a′′. (4)

Note that (1) and (2) are open conditions on the variables; we see that (3) and (4) are equalities
in U ; we see that the tuple (ξj , 1 ≤ j ≤ A; ηj , 1 ≤ j ≤ a′′) gives a solution for these
equations. Note that if (x) and (y) satisfy (1), (2), (3) and (4) then ξ(x) and η(y) determine a
Dieudonné module whose “p-kernel” is given by w.

We write A(X,Y ) for the affine space given by the variables (∗(X,Y )); hence dim(A(X,Y )) =
A·2µ+a′′·2µ. We write A(X) for the affine space given by the variables Xj,s; hence dim(A(X)) =
A·2µ. We write G for the Grassmannian Grass(atop, 2µ) of linear spaces of dimension a′ = atop
in affine space of dimension 2µ. Note that M (X,Y ) determines the point [M (X,Y )/Q] ∈ G.

(9.9) Proposition. We construct a commutative diagram

A(X,Y ) −→ A(X) −→ G
↑ ↑ ↑
X −→ Y −→ Z;

for properties of X ,Y and Z see below.
(a) The conditions/equations (1) – (4) above define a locally closed set of X ′ ⊂ A(X,Y ); this set
contains the point (ξ, η); we define X ⊂ X ′ ⊂ A(X,Y ) as an irreducible component containing
this point. Then:

dim(X ) ≥ (A+ a′′)·µ− b·(µ− a′).
(b) Write f : A(X,Y ) −→ A(X) for the projection (forgetting Y ); this induces fX : X → A(X);
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fibers of the morphism fX have dimension at most a′′·a′.
(c) Let Y be the image Y = fX (X ); then

dim(Y) ≥ A·a′.

(d) Write g : Y → G for the map which assigns to the given data the element g(M (X,Y )) :=
[M (X,Y )/Q] ∈ G. Note that this depends only on the variables Xj,s.

Fibers of the morphism g : Y → G have dimension at most A·(a′ − 1).

(e) Consider the locally closed set Z ⊂ G of points [B/Q] ∈ G such that B + Q generates a
Dieudonné module M (B) inside Q′ where the geometric isomorphism type of M (B)/pM (B) is
given by w. Then:

dim(Z) ≥ A ≥ 1.

By this we mean that every component of Z has at least this dimension.
Proof. (a) There are (A + a′′)µ unknowns, the dimension of A(X,Y ). By (3) and (4) we
obtain b·(µ− a′) equations, as dim(U) = µ− a′. Hence

dim(X ) ≥ (A+ a′′)µ− b·(µ− a′) = ba′.

(b) There are a′′ elements ηYj . Fixing V(ηYj ) ∈ U we see that this image is equal to V(ηYj +Cj) ∈
U if and only if VCj ∈ pM . This proves (b).
(c) Hence

dim(Y) ≥ ba′ − a′′a′ = Aa′.

Discussion: note that Y is constructible; we can talk about dim(Y); we are eventually inter-
ested in Z, and we know that this is a locally closed set in G.
(d) Instead of ξ(X)

j we could choose λ·ξ(X)
j +Dj , with 0 �= λ ∈ k and and Dj a linear combina-

tion of all base elements in M/Q not equal to ξ(X)
j . Trying to satisfy the equations above and

going through the word w we see that λ ∈ Fp2µ . Hence all Dj , 1 ≤ j ≤ A, give a “freedom”
of dimension at most A(a′ − 1).
Discussion: It may be that several choices for Cj and for Dj do not give a solution to the
equations above.

Hence fibers of Y → Z have dimension at most A(a′ − 1).
(e) We conclude:

dim(Z) ≥ Aa′ −A(a′ − 1) = A ≥ 1.

This proves the proposition. �

(9.10) Corollary. Suppose G and X = L(G) are as in (8.5), (8.7)(1). There is a family of
positive dimension in SG(Tβ,δ) with β = σ = µ·(1, 1) and δ = a′ which contains the given X
as closed fiber.
By construction X determines a point in SG(Tσ,a′) ⊂ Z such that X is the closed fiber above
this point. By the last part of the preceding proposition we see that this family in G has
positive dimension. �

By (8.3) this proves (8.1) in the case (8.7)(1). �(8.1)(1)
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10 Case (2)

We use assumptions and notations as in (8.5), and (8.7)(2). We construct

v : Q′\{0} → Z≥0 by: v(Z) = i⇔ Z ∈ πi·Q′, Z �∈ πi+1·Q′.

The word w = L1 · · ·Lh acts as z1L1z2L2 · · · zhLhz1. Choose Zi ∈ M with Zi mod pM = zi.
Assume the (circular) word to be presented in such a way that v(Z1) ≤ v(Zi) for all i. We
write v(zi) = v(Zi).

We focus on a subset of the elements zi, the “top elements”, and also on “bottom elements”.
We write

w = (Fd1Vc1) · · · (FdaVca), di > 0, ci > 0,

and write
t1 = z1, t2 = z1+d1+c1, · · · , ta = z1+d1+c1+···+da−1+ca−1,

and
b1 = z1+d1 , b2 = z1+d1+c1+d2 , · · · , ba = z1+d1+c1+···+ca−1+da .

The top elements are those where the word reads · · · VtF · · ·, the bottom elements are those
where the word reads · · · FbV · · ·.

We pay special attention not only to a ”highest top element”: t1, but also to a “lowest
bottom element”: we choose ε, with 1 ≤ ε ≤ a such that

v(bε) ≥ v(bj) ∀j.

This can be phrased as: (d1 + ·+ di)n+ (c1 + · · ·+ ci−1)m is maximal for i = ε. This implies

M ∩ πv(bε)+1·Q′ ⊂ p·M. (∗)

By definition the skeleton of Q′ is the image of D(H ⊗ Fp) in D(H ⊗ k) = Q′. As we are in
case (8.7)(2), there exists an element G in the skeleton of Q′ such that v(G) > 0 and G �∈M ,
and such that

πv(G)+1·Q′ ⊂M. (∗∗)
I.e. G is an element with maximal value having the property not being in M . Being in the
skeleton implies that FmG = VnG (this assumption is just made in order to make computa-
tions easier). We fix such a choice.

Remark. In fact we have πv(G)+1·Q′ = Q, i.e. v(G) + 1 = i in the notation in (8.7). Indeed,
we know that Q is a π-power multiple of Q′, we see that G �∈M and we conclude by (∗∗).

For a choice of fields k ⊂ K and an element u ∈ K we are going to construct a Dieudonné
module M (u) over the algebraic closure Ω of K (the choice of M (u) depends on M , on u, and
on the particular choices of a highest top element t1 and a lowest bottom element bε).

As before we define the top elements Ti ∈ M by T1 = Z1, · · · and the bottom elements
B1 = Z1+d1 · · ·. We write U := [u] ∈W∞(K), the Teichmüller lift of u ∈ K. For 1 ≤ i ≤ ε we
define:

T
(u)
1 = T1 + U ·G, T

(u)
2 = p−c1Fd1+c1(T1 + U ·G), · · · ,
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T (u)
ε = p−(c1+···+cε−1)F (d1+c1+d2+···+cε−1)(T1 + U ·G),

and
T

(u)
1 = T1 + U ·G, T (u)

a = p−daVca+da(T1 + U ·G), · · · ,
T

(u)
ε+1 = p−(da+···+dε+1)V(ca+da+ca−1+···+dε+1)(T1 + U ·G).

Note that for u = 0 we have T (u)
i = Ti for all i.

We define M (u) ⊂ Q′ as the Dieudonné module generated by T (u)
ε+1, · · · , T (u)

a , T
(u)
1 , · · · , T (u)

ε .

Remark on notation. We will use Q′ for the Dieudonné module D(H), but also for the
Dieudonné module D(H ⊗ Ω). In the latter case we should write Q′ ⊗W (Ω), but we will not
do that. We will study M ⊂ Q′ and M (u) ⊂ Q′ ⊗W (Ω), but we will simplify notation, e.g.
write instead M (u) ⊂ Q′, hoping that this will not cause confusion.

For a submodule P ⊂ Q′ = (D(H1,1))µ we write Type(P ) for the subset of Z×{0, 1, · · · , µ}
defined in the analogous way as we did this for µ = 1: we define Type(P ) as the set of all
pairs (i,Di), where considering at place i ∈ Z we write Di ∈ {0, 1, · · · , µ} as the dimension of
(πi·Q′ ∩M)/(πi+1·Q′ ∩M).

Crucial Lemma. With notations introduced above:
(a) the isomorphism type of M (u)/p·M (u) is the same as the isomorphism type of M/p·M ,
i.e.

Γ
(
M (u)/p·M (u)

)
= w;

(b) Type(M) = Type(M (u)), and Q ⊂M (u) and the length of M/Q and of M (u)/Q are the
same.
Proof. We know Fdε ·tε = Vcεtε+1. By (∗) and (∗∗) we conclude that

Fdε ·T (u)
ε ≡ VcεT (u)

ε+1 (mod p·M (u)).

This proves that the residue classes mod p·M (u) of the elements T
(u)
i , 1 ≤ i ≤ a, in

M (u)/p·M (u) are cyclic under the word w. This proves part (a) of the lemma.
This set of generators for M (u), cyclic modulo p·M (u), is a W -basis for M (u). This proves

Type(M) = Type(M (u)). From this the other claims follow. This proves the lemma. �

(10.1) We come to a choice of a positive dimensional subspace of SG(Tβ,δ) containing x
as in (8.1) in case (8.7)(2). We start with an algebraically closed field k. We choose a
transcendental u over k, write K = k(u), and we write Ω for an algebraic closure of K. Note
that the Dieudonné module M (u) is defined over Ω. We have proved that Q ⊂M (u) and that

the length δ of M/Q

(Dieudonné modules over k)

is the same as the length of M (u)/Q

(Dieudonné modules over Ω). The Dieudonné module inclusions Q ⊂M (u) ⊂ Q′ gives rise to
isogenies H → X(u) → H ′, and

Nu = Ker(H → X(u)) ⊂ H[πi] = Ker(H → H ′).
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This subgroup scheme is a point in the Grassmannian considered, i.e. it corresponds with a
point

(ρu : H → X(u) = H/Nu) ∈ Tβ,δ;
this point is rational over some field L. Note that this field can be chosen within the perfect
closure of K, and it can be chosen as a finite extension of K. We write B for the integral
closure of k[u] in L. Note that for any specialization g : k[u] → k the length of M (g(u))/Q
equals δ; hence ρu ∈ Tβ,δ(L) extends to ρ ∈ Tβ,δ(B). Hence we have constructed a family
Spec(B) =: S ⊂ Tβ,δ of positive dimension defined over k, containing (ρ0 : H → X) = x,
where generic fiber and special fiber have the given w as K-cycle for the kernel by p. By (8.3)
this proves (8.1) in case (8.7)(2). Hence the proof of (8.1) is finished; we have Theorem B as
corollary.

�(8.1), Theorem B

11 Some questions.

(11.1) Conjecture. Let X0 be a p-divisible group, ϕ the isomorphism type of X0[p], and
D = Defo(X0) its equal-characteristic p universal deformation space. Inside D we have the
“central leaf” CX0(D) ⊂ D, the locus where the p-divisible group is geometrically isomor-
phic with X0, and we have the “EO-stratum” Sϕ(D) ⊂ D, the locus where the p-kernel is
geometrically isomorphic with X0[p]. Clearly CX0(D) ⊂ Sϕ(D). We conjecture:

X0 is not minimal ?=⇒ CX0(D) � Sϕ(D).

Remarks. By [8] we know that if X0 is minimal, equality holds.
This conjecture holds if X0 is isoclinic.

(11.2) Conjecture. Notation as in (11.1). Let γ = N (X0). Denote by W0
γ (D) ⊂ D the

set where the Newton polygon is equal to γ; note that no Newton polygon strictly above γ
appears on D. We conjecture:

X0 is not minimal ?=⇒ CX0(D) �
(W0

γ (D) ∩ Sϕ(D)
)
.

Remark. We showed above the special case of this conjecture, when X0 = L(X0[p]). Note
that (11.2) implies (11.1).

(11.3) Conjecture. Let (A0, λ0) be a principally polarized abelian variety. We conjecture:

X0 := A0[p∞] is not minimal ?=⇒ C(X0,λ0)(A) � S(A0,λ0)[p](A),

X0 := A0[p∞] is not minimal ?=⇒ C(X0,λ0)(A) �
(
W0

N (A0)
(D) ∩ S(A0,λ0)[p](A)

)
,

where A = Ag ⊗ Fp.

(11.4) Suppose given a semi-module A attached to m and n, see (1.6). Can we describe all
possibe

∑
wi such that there exists X with Type(X) = A and Γ(X[p]) =

∑
wi ?
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(11.5) An analogous question, phrased in slightly different terms: given a symmetric Newton
polygon ξ. Can we determine all possible isomorphisms types ϕ of a polarized BT1 such that
Sϕ ∩W 0

ξ �= ∅ ?
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