Ia The United Nations
University

UNU/IST

International Institute for
Software Technology

Process Algebra Semantics of ¢SDL

Jan A. Bergstra and Cornelis A. Middelburg

April 1996

UNU/IIST Report No. 68

UNU/IIST

UNU/IIST enables developing countries to attain self-reliance in software technology by: (i) their own
development of high integrity computing systems, (ii) highest level post-graduate university teaching, (iii)
international level research, and, through the above, (iv) use of as sophisticated software as reasonable.

UNU/IIST contributes through: (a) advanced, joint industry-university advanced development projects
in which rigorous techniques supported by semantics-based tools are applied in case studies to large
scale software developments, (b) own and joint university and academy institute research in which new
techniques for application domain and computing platform modeling, requirements capture, software
engineering and programming are being investigated, (¢) advanced, post-graduate and post-doctoral
level courses which typically teach Design Calculi oriented software development techniques, (d) events
[panels, task forces, workshops and symposia], and (e) dissemination.

Application-wise, the advanced development projects presently focus on software to support large-scale
infrastructure systems such as railways, manufacturing industries, health care systems, etc., and are thus
aligned with UN and International Aid System concerns. The research projects parallel and support the
advanced development projects.

At present, the technical focus of UNU/IIST in all of the above is on applying, teaching, research-
ing, and disseminating Design Calculi oriented techniques and tools for trustworthy software develop-
ment. UNU/IIST currently emphasizes techniques that permit proper development steps and interfaces.
UNU/IIST also endeavours to promulgate sound project and product management principles.

UNU/IIST’s primary dissemination strategy is to act as a clearing house for reports from research and
technology centres in industrial countries to industries and academic institutions in developing coun-
tries. At present more than 175 institutions worldwide contribute to UNU/IIST’s report collection while
UNU/IIST at the same time subscribes to more than 125 international scientific and technical journals.
Information on reports received (and produced) and on journal articles is to be disseminated regularly
to developing country centres — which are then free to order a reasonable number of report and article
copies from UNU/IIST.

Dines Bjgrner, Director

UNU/IIST Reports are either Research, Technical, Compendia or .Administrative reports:

Research Report e Technical Report e Compendium e Administrative Report

&Y

&7

e §||a The United Nations
> University

UNU/IST

International Institute for
Software Technology

P.O. Box 3058
Macau

Process Algebra Semantics of ¢SDL

Jan A. Bergstra and Cornelis A. Middelburg

Abstract

A new semantics of an interesting subset of the specification language SDL is given by a trans-
lation to a discrete-time extension of process algebra in the form of ACP with data added as in
BCRL. The strength of the chosen subset, called ©SDL, is its close connection with full SDL,
despite its dramatically reduced size. Thus, we are able to concentrate on solving the basic
semantic issues without being in danger of having to turn the results inside out in order to
deal with full SDL. Novel to the presented semantics is that it relates the time used with timer
setting to the time involved in waiting for signals and delay of signals.

Note: This paper is a major revision of [14].

Jan Bergstra is a Professor of Programming and Software Engineering at the University of Am-
sterdam and a Professor of Applied Logic at Utrecht University, both in the Netherlands. His
research interest is in mathematical aspects of software and system development, in particular
in the design of algebras that can contribute to a better understanding of the relevant issues at a
conceptual level. He is perhaps best known for his contributions to the field of process algebra.
E-mail: janb@fwi.uva.nl

Kees Middelburg is a Senior Research Fellow at UNU/IIST. He is on a two year leave (1996-1997)
from KPN Research and Utrecht University, the Netherlands, where he is a Senior Computer Sci-
entist and a Professor of Applied Logic, respectively. His research interest is in formal techniques
for the development of software for reactive and distributed systems, including related subjects
such as semantics of specification languages and concurrency theory. E-mail: cam@iist.unu.edu

Copyright © 1996 by UNU/IIST, Jan A. Bergstra and Cornelis A. Middelburg

Contents

Contents
1 Introduction 1
2 Overview of ¢SDL 3
2.1 System definitiono 3
2.2 Process behaviours L e e e e e e e e 5
2.3 Values e e e e 7
2.4 Differences with SDL e e e e 8
3 Process algebra preliminaries 8
4 Processes with states 11
4.1 Prellminaries o v e e e e e e e e e e e e e 11
4.2 Basic domains and functions, the state space 12
4.3 Actions and expressionso .o o e 15
4.4 State transformers, observers and propositions 18
4.5 State operator and evaluation function 0L, 26
5 Process algebra semantics 29
5.1 System definition Lo e e 30
5.2 Process behaviours L e e e e e e e 32
5.3 Values e e e e e e e s 34
6 Closing remarks 35
A Notational conventions 38
B Contextual information 39
C System environment 41

Report No. 68, April 4, 1996

UNU/IIST, P.O. Box 3058, Macau

Introduction 1

1 Introduction

A process algebra semantics of ¢SDL is presented. ¢SDL is roughly a subset of Basic SDL.!
The following simplifications have been made:

blocks are removed and consequently channels and signal routes are merged — making
channel to route connections obsolete;

variables are treated more liberal: all variables are revealed and they can be viewed freely;
timer setting is regarded as just a special use of signals;

timer setting is based on discrete time.

Besides, ¢SDL does not deal with the specification of abstract data types. An algebraic speci-
fication of all data types used in an ¢SDL specification is assumed as well as an initial algebra
semantics for it. The pre-defined data types Boolean and Natural, with the obvious interpreta-
tion, should be included; and besides, Pld and Time should be included as copies of Natural.

We decided to focus in ¢SDL on the behavioural aspects of SDL. We did so for the following
two reasons. Firstly, the structural aspects of SDL are mostly of a static nature and therefore
not very relevant from a semantic point of view. Secondly, the part of SDL that deals with the
specification of abstract data types is well understood — besides, it can easily be isolated and
treated as a parameter.? Because it will largely be a routine matter, we also chose to postpone
the inclusion of procedures, syntypes with a range condition and process types with a bound on
the number of instances that may exist simultaneously. For similar reasons, the any expression
is omitted. Services are not supported by ¢SDL for other reasons: the semantics of services
is hard to understand, ETSI forbids for this reason their use in European telecommunication
standards (see [24]), and the SDL community currently discusses its usefulness (see [22]).

Apart from the data type definitions, SDL system definitions can be transformed to ¢SDL system
definitions, provided that no use is made of facilities whose inclusion has been postponed. The
transformation concerned has, apart from some minor adaptations, already been given. The first
part of the transformation is the mapping for the shorthand notations of SDL which is given
informally in the ITU/TS Recommendation Z.100 [26] and defined in a fully precise manner
in its Annex F.2 [28]. The second and final part is essentially the mapping eztract-dict which
is defined in its Annex F.3 [29]; ¢SDL system definitions can actually be viewed as textual
presentations of the extracted FEntity-dicts which are interpreted instead of the SDL system
definitions proper.

1This subset is called pSDL, where ¢ stands for flat, as it does not cover the structural aspects of SDL.
Throughout the paper, we will write SDL for the version of SDL defined in [26], the ITU/TS Recommendation
7.100 published in 1992.

2The following is also worth noticing: (1) ETSI discourages the use of abstract data types other than the
pre-defined ones in European telecommunication standards (see [24]); (2) ASN.1 [25] is widely used for data
type specification in the telecommunications field, and there is an emerging I'TU/TS Recommendation, Z.105, for
combining SDL and ASN.1 (see [30]).

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Introduction 2

The semantics of pSDL agrees with the semantics of SDL as far as reasonably possible. This
means in the first place that obvious errors in [29] have not been taken over. For example, the
intended effect of SDL’s create and output actions may sometimes be reached with interruption
according to [29] — allowing amongst other things that a process ceases to exist while a signal
is sent to it without any delay. Secondly, the way of dealing with time is considered to be
unnecessarily complex and inadequate in SDL and has been adapted as explained below.

In SDL,Time and Duration, the pre-defined sorts of absolute time and relative time, are both
copies of the pre-defined sort Real (intended to stand for the real numbers, but in fact standing
for the rational numbers, see [27]). When a timer is set, a real expiration time must be given.
However, the time considered is the system time which proceeds actually in a discrete manner:
the system receives ticks from the environment which increase the system time with a certain
amount (how much real time they represent is left open). Therefore, the timer is considered to
expire when the system receives the first tick that indicates that its expiration time has passed.
So nothing is lost by adopting in ¢SDL a discrete time approach, using copies of Natural for
Time and Duration, where the time unit can be viewed as the time between two ticks but does
not really rely upon the environment. This much simpler approach also allows us to remove the
original inadequacy to relate the time used with timer setting to the time involved in waiting
for signals by processes and in delay of signals in channels.

We generally had to make our own choices with respect to the time related aspects of SDL,
because they are virtually left out completely in the ITU/TS recommendation Z.100. Our
choices were based on communications with various practitioners from the telecommunications
field using SDL. In particular the communications with Leonard Pruitt [23] provided convincing
practical justification for the premise of our choices: provided time is divided into sufficiently
large time slices, an SDL process will only enter a next time slice if there are no more signals
to consume for it in the current time slice. Ease of adaptation to other viewpoints on time in
SDL is guaranteed relatively well by using a discrete time variant of process algebra, essentially
ACPyg, (see [5, 6]), as the basis of the presented semantics.

In telecommunications, systems are frequently specified using SDL. This is usually done with
the intention to be able to analyse the behavioural properties of these systems. Systems are
increasingly described at different levels of abstraction. This gives rise to an growing need
to verify that the properties represented by an abstract specification are preserved in a more
concrete one. The current situation is that there are only means for limited analysis and no
means at all for formal verification. The intrinsic highly reactive and distributed nature of
the systems developed in telecommunications demands more advanced analysis than currently
possible, e.g. analysis giving considerations to timing properties as well. Besides, the increasing
complexity of systems will become a compelling reason to use, at least to a certain extent, formal
verification to justify design steps. Prerequisites for advanced analysis and formal verification
is a dramatically simplified version of SDL and an adequate semantics for it. Only after that
possibilities for advanced analysis can be elaborated and proof rules for formal verification
devised. The language ¢SDL and the presented semantics for it are primarily intended to come
up to these prerequisites.

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Overview of pSDL 3

The structure of this paper is as follows. First of all, we give an overview of ¢SDL (Section 2).
Next, we give a brief summary of the ingredients of process algebra which make up the basis for
the semantics of ¢SDL presented in this paper (Section 3). Then, we describe specifics on the
operator used to formalize execution of a process in a state (Section 4). After that, we present
the process algebra semantics of ¢SDL (Section 5). Finally, we make some additional remarks
about the work reported on in this paper as well as some remarks about related work (Section 6).
There are appendices about notational conventions used (Appendix A), details concerning the
contexts used to model scope in the presented semantics (Appendix B), and details concerning
the environment of systems modelled using SDL (Appendix C).

2 Overview of pSDL

This section gives an overview of ¢oSDL. Its syntax is described by means of production rules
in the form of an extended BNF grammar (the extensions are explained in Appendix A). The
meaning of the language constructs of the various forms distinguished by these production rules
is explained informally. Some peculiar details, inherited from full SDL, are left out to improve
the comprehensibility of the overview. These details will, however, be made mention of in
Section 5, where a process algebra semantics of pSDL is presented.

2.1 System definition

First of all, the ¢SDL view of a system is explained in broad outline.

Basically, a system consists of processes which communicate with each other and the environment
by sending and receiving signals via signal routes. A process proceeds in parallel with the other
processes in the system and communicates with these processes in an asynchronous manner.
This means that a process sending a signal does not wait until the receiving process consumes
it, but it proceeds immediately. A process may also use local variables for storage of values. A
variable is associated with a value that may change by assigning a new value to it. A variable
can only be assigned new values by the process to which it is local, but it may be viewed by
other processes. Processes can be distinguished by unique addresses, called pid values (process
identification values), which they get with their creation.

A signal can be sent from the environment to a process, from a process to the environment
or from a process to a process. A signal may carry values to be passed from the sender to the
receiver; on consumption of the signal, these values are assigned to local variables of the receiver.
A signal route is a unidirectional connection between the processes of two types, or between the
processes of one type and the environment, for conveying signals. A signal route may contain
a channel® Signals that must pass through a channel are delayed, but signals always leave a

3The original channels have been merged with signal routes, but the term channel is reused in pSDL (see also
Section 2.4).

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Overview of pSDL 4

channel in the order in which they have entered it. Thus a signal route is a communication
path for sending signals, with or without a delay, from the environment to a process, from one
process to another process or from a process to the environment. If a signal is sent to a process
via a signal route that does not contain a channel, it will be instantaneously delivered to that
process. Otherwise there may be an arbitrary transmission delay. A channel may be contained
in more than one signal route.

Syntax:

<system definition> ::=
system <system nm> ; {<definition>}" endsystem;

<definition> =
dcl <variable nm> <sort nm>;
| signal <signal nm> [(<sort nm> {, <sort nm>1}*)];
| channel <channel nm> ;
| signalroute <signalroute nm>
from {<process nm> | env} to {<process nm> | env}
with <signal nm> {, <signal nm>}* [delayed by <channel nm>];
| process <process nm> (<natural ground expr>);
[fpar <variable nm> {, <variable nm>}*;]
start ; <transition> { <state def>}*
endprocess;

A system definition consists of definitions of the types of processes present in the system, the local
variables used by the processes for storage of values, the types of signals used by the processes for
communication, the signal routes via which the signals are conveyed and the channels contained
in signal routes to delay signals.

A variable definition dclv T'; defines a variable v that may be assigned values of sort T'.

A signal definition signal s(71, ...,T,); defines a type of signals s of which the instances carry
values of the sorts found in T4,...,7,. If (T1,...,T,) is absent, the signals of type s do not
carry any value.

A channel definition channel ¢ defines a channel that delays signals that pass through it.

A signal route definition signalroute r from X; to X, with s1, .. .,s,; defines a signal route r that
delivers without a delay signals sent by processes of type X; to processes of type Xo, for signals
of types found in sy, ...,s,. The process types X; and X, are called the sender type of r and the
receiver type of r, respectively. A signal route from the environment can be defined by replacing
from X; by from env. A signal route to the environment can be defined analogously. A signal
route delivering signals with an arbitrary delay can be defined by adding delayed by ¢, where ¢
is the channel causing the delay.

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Overview of pSDL 5

A process definition process X (k); fpar v1, . .. ,uy;start; tr di ... d, endprocess; defines a type of
processes X of which k instances will be created during the start-up of the system. On creation
of a process of type X after the start-up, the creating process passes values to it which are
assigned to the local variables found in wi,...,u,. If fparvy,...,v, is absent, no values are
passed on creation. The process body start; tr d; ... d;, describes the behaviour of the processes
of type X in terms of states and transitions (see further Section 2.2). Each process will start by
making the transition ¢r, called its start transition, to enter one of its states. The state definitions
found in d; ... d, define all the states in which the process may come while it proceeds.

2.2 Process behaviours

First of all, the ¢SDL view of a process is briefly explained.

To begin with, a process is either in a state or making a transition to another state. Besides, when
a signal arrives at a process, it is put into the unique input queue associated with the process
until it is consumed by the process. The states of a process are the points in its behaviour
where a signal may be consumed. However, a state may have signals that have to be saved,
i.e. withhold from being consumed in that state. The signal consumed in a state of a process is
the first one in its input queue that has not to be saved for that state. If there is no signal to
consume, the process waits until there is a signal to consume. So if a process is in a state, it is
either waiting to consume a signal or consuming a signal.

A transition from a state of a process is initiated by the consumption of a signal, unless it is
a spontaneous transition. The start transition is not initiated by the consumption of a signal
either. A transition is made by performing certain actions: signals may be sent, variables may
be assigned new values, new processes may be created and timers may be set and reset. A
transition may at some stage also take one of a number of branches, but it will eventually come
to an end and bring the process to a next state or to its termination.

A timer can be set which sends at its expiration time a signal to the process setting it. A timer
is identified with the type and carried values of the signal it sends on expiration. Thus an active
timer can be set to a new time or reset; if this is done between the sending of the signal noticing
expiration and its consumption, the signal is removed from the input queue concerned. A timer
is de-activated when it is reset or the signal it sends on expiration is consumed.

Syntax:

<state def> ::=
state <state nm>;
[save <signal nm> {, <signal nm>}*;] {<transition alt>}*

<transition alt> ::=
{<input guard> |input none;} <transition>

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Overview of pSDL 6

<input guard> =
input <signal nm> [(<variable nm> {, <variable nm>}*)];

<transition> :=
{<action>}* {nextstate <state nm> | stop | <decision>} ;

<action> =
output <signal nm> [(<expr> {, <expr>}*)]
[to <pid expr>]via <signalroute nm> {, <signalroute nm>}*;
| set (<time expr>, <signal nm> [(<expr> {, <expr>1}*)]);
| reset (<signal nm> [(<expr> {, <expr>}*)]);
| task <variable nm>:= <expr>;
| create <process nm> [(<expr> {, <expr>}*)];

<decision> 1=
decision { <expr> | any};
([<ground expr>]): <transition>
{([<ground expr>]): <transition>}*
enddecision

A state definition state st;save s1,...,sy,;alt1 ... alt, defines a state st in which signals of certain
types may be consumed and in which, for each of these types, a certain transition is made on
consumption of a signal of that type. The signals of the types found in si,...,s, are saved
for the state. Each input guard occurring in alt; ... alt, gives a type of signals that may be
consumed in the state; the corresponding transition is the one that is initiated on consumption
of a signal of that type. The transitions with input none; instead of an input guard are the
spontaneous transitions that may be made from the state. No signals are saved for the state if
save S1,...,5y; is absent.

An input guard inputs(vi,...,u,); may consume a signal of type s and, on consumption, it
assigns the carried values to the variables found in wvy,...,v,. If the signals of type s carry no
value, (v1,...,v,) is left out.

A transition a1 ... ay, nextstate st; performs the actions found in a; ... a, in sequential order and
ends with entering the state st. Replacing nextstate st by the keyword stop yields a transition
ending with process termination. Replacing it by the decision dec leads instead to transfer of
control to one of two or more transition branches.

An output action outputs(ei,...,ep)toeviar,...,ry; sends a signal of type s carrying the
current values of the expressions in ey, ...,e, to the process with the current (pid) value of the
expression e as its address, via one of the usable signal routes found in viar,...,r,. If the
signals of type s carry no value, (e1,...,e;) is left out. If to e is absent, the signal is sent via
one of the signal routes found in viary,...,r, to an arbitrary process of its receiver type. The
output action is called an output action with explicit addressing if to e is present. Otherwise, it
is called an output action with implicit addressing.

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Overview of pSDL 7

A set action set (e,s(e1,-..,e,)); sets a timer that expires, unless it is set again or reset, at the
current (time) value of the expression e with sending a signal of type s that carries the current
values of the expressions in eq,...,e,.

A reset action reset (s(e1, .- -,e,)); de-activates the timer identified with the signal type s and
the current values of the expressions in eq,...,e,.

An assignment task action task v:=e; assigns the current value of the expression e to the local
variable v.

A create action create X (e1,...,e,); creates a process of type X and passes the current values
of the expressions in e, ...,e, to the newly created process. If no values are passed on creation
of processes of type X, (e1,--.,e;) is left out.

A decision decision e;(e1):tr; . .. (ey):try, enddecision transfers control to the transition branch tr;
(1<i<n) for which the value of the expression e; equals the current value of the expression
e. Non-existence and non-uniqueness of such a branch result in an error. A non-deterministic
choice can be obtained by replacing the expression e by the keyword any and removing all the
expressions e;.

2.3 Values

The value of expressions in ¢SDL may vary according to the last values assigned to variables,
including local variables of other processes. It may also depend on the system state, e.g. on
timers being active or the system time.

Syntax:

<expr> =
<operator nm> [(<expr> {, <expr>}*)]
|if <boolean expr> then <expr> else <expr> fi
| <variable nm>
| view (<variable nm>, <pid expr>)
| active (<signal nm> [(<expr> {, <expr>}*)])
| now | self | parent | offspring | sender

An operator application op(ey,...,e,) evaluates to the value yielded by applying the operation
op to the current values of the expressions in ey, ...,e,.

A conditional expression if e; then e else e3 fi evaluates to the current value of the expression ey if
the current (Boolean) value of the expression e; is true, and the current value of the expression
ez otherwise.

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Process algebra preliminaries 8

A variable access v evaluates to the current value of the local variable v of the process evaluating
the expression.

A view expression view (v,e) evaluates to the current value of the local variable v of the process
with the current (pid) value of the expression e as its address.

An active expression active (s(ei, . ..,e,)) evaluates to the Boolean value true if the timer iden-
tified with the signal type s and the current values of the expressions in ey, ...,e, is currently
active, and false otherwise.

The expression now evaluates to the current system time.

The expressions self, parent, offspring and sender evaluate to the pid values of the process eval-
uating the expression, the process by which it was created, the last process created by it, and
the sender of the last signal consumed by it.

2.4 Differences with SDL

Syntactically, ¢SDL is not exactly a subset of SDL. The syntactic differences are as follows:

e variable definitions occur at the system level instead of inside process definitions;

e signal route definitions and process definitions occur at the system level instead of inside
block definitions;

e channel paths in channel definitions are absent;

e the option delayed by ¢ in signal route definitions is new;

e formal parameters in process definitions are variable names instead of pairs of variable
names and sort names;

e signal names are used as timer names.

These differences are all due to the simplifications mentioned in Section 1.

Recall that channels and signal routes have been merged. Because the resulting communication
paths connect processes with one another or with the environment, like the original signal routes,
we chose to call them signal routes as well. However, the new signal routes may have delaying
parts which are reminiscent of the original channels. Therefore, we chose to reuse their name
for these delaying parts.

3 Process algebra preliminaries

This section gives a brief summary of the ingredients of process algebra which make up the basis
for the semantics of @SDL presented in Section 5. We will suppose that the reader is familiar

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Process algebra preliminaries 9

with them. Appropriate references to the literature are included.

We will make use of ACP,* introduced in [13], extended with the silent step 7 and the abstrac-
tion operator 77 for abstraction. Semantically, we adopt the approach to abstraction, originally
proposed for ACP in [18], which is based on branching bisimulation. ACP with this kind of
abstraction is called ACP”. In ACP with abstraction, processes can be composed by sequen-
tial composition, written P - (), alternative composition, written P + (), parallel composition,
written P || Q, encapsulation, written 0x (P), and abstraction, written 77(P). For a systematic
introduction to ACP, the reader is referred to [7].

We will use the following abbreviations. Let (P;);cr be an indexed set of process expressions
where I = {i1,...,4,}. Then, we write > ;c; P; for P;, +...+ P;, and ||;er P; for P; || ... || B,
if n >0 and § if n = 0. Let P be a process expression and let n € N. Then, we write || P for
Pl...||P.
—_——

nx

Further we will use the following extensions:

state operator We will use the state operator A%, added to ACP in [1]. This operator for-
malizes execution of a process in the state S of an object m. Basic is the execution of
actions: the action a’ that occurs as the result of executing an action a in a state S, and

the state S’ that results when executing a in S. This leads to defining equations of the
form A¥(a - P) =d - X&(P).

process creation We will also use the process creation mechanism, added to ACP in [9]. The
process creation operator Ey introduced there allows, given a mapping ¢ from process
names to process expressions, the use of actions of the form cr(X) to create processes ¢(X).
The most crucial equation from the defining equations of this operator is Eg4(cr(X) - P) =
er(X) - Eg(¢(X) || P). Note that the process creation operator leaves a trace of actions of
the form 7(X).

conditionals Besides, we will use the one-armed conditional operator :—. The expression
b :— P is to be read as “if b then P”. The operator :— can best be defined in terms
of the two-armed conditional operator <le>, with the defining equations P<truex>Q = P
and P<false>@Q = @, added to ACP in [3]. The one-armed conditional is then defined by
b:— P = Pb>6.

iteration We will also use the binary version of Kleene’s star operator *, added to ACP in [10],
with the defining equation P * Q = P - (P * Q) + Q. The behaviour of P * @ is zero or
more repetitions of P followed by Q.

propositional signals We will further use the root signal emission operator ~* as in [4]. The
expression ¢ ~ = P is the process P where the proposition ¢ is made to hold at its start.
The most crucial equations concerning the operator ~* are (¢ " *P)+Q =¢ ~(P+Q),

4We will actually use ACP without communication, also known as PA;.

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Process algebra preliminaries 10

¢ (@ "P)=(pANp) P, and false *P = L where L stands for an inconsistent
process. We refer to [4] for further details.’

discrete time We need a discrete time extension of ACP with relative timing. We will use the
extension introduced in [5], called ACPg,, with abstraction as added to it in [6]. Here we
give a brief summary. We refer to [5] and [6] for further details on ACPq;y and ACP],,,
respectively.

Time is divided into slices indexed by natural numbers. These time slices represent time
intervals of a length which corresponds to the time unit used. We will use the constants a,
a (for each a in some given set of actions), 7 and ¢, as well as the delay operator ore. The
process a is a performed in any time slice and a is a performed in the current time slice.
Similarly, 7 is a silent step performed in the current time slice and J is a deadlock in the
current time slice. The process o, (P) is P delayed one time slice. In this paper, we use
the notations from [2]. In [5], the notations ats(a), cts(a) and cts(d) are used instead of a,
a and J, respectively. Likewise, in [6], the notation cts(7) is used instead of 7. The process
a is defined in terms g and o, by the equation a = g + orei(a). In a parallel composition
Py || ... || P, the transition to the next time slice is a simultaneous transition of each of
the P;s. For example, ¢ || ovel(b) will never perform b because § can neither be delayed nor
performed, so ¢ || ovel(b) = §. However, a || ovei(b) = @ - orel(b).

We will also use the other extensions of ACP in the setting of ACPg4,. Their integration
is generally straightforward. The most relevant axiom for the integration of propositional
signals is ¢ ~~ orel(x) = 0rel(¢p ~ z), with the intuition that the passage of time cannot

change the propositions that hold in the current state of a process.

summation over data domains We will in addition use actions parametrized by data and
summation over a data domain as in gCRL [20, 21]. The notation a(d,...,d,), where the
d;s denote data values, is used for instances of parametrized actions. In)" ., P, the scope
of the variable z is exactly P. The behaviour of) .5 P is a choice between the instances
of P for the different values that x can take, i.e. the values from the data domain D.

The above-mentioned extensions of ACP with a state operator and a process creation mechanism
are also presented in [7]. In ACP with abstraction, the operators A\ and E; can be defined.
Two objects are relevant to the semantics of SDL: the system being defined and its environment.
These objects will be referred to by s and e, respectively.

In [3], the definition of the state operator is adapted for conditionals. This definition uses an
evaluation function eval’ for conditions. The additional equation in this case is A (b:— P) =
evald' (b) :— N¢(P). Thus, execution of P is disabled in state S if b evaluates to false in S.

If propositional signals are used, the execution of a process in a state may change the proposition
that holds. A signal function sig, associating a propositional signal with each state, is proposed
in [4] to cover this. This is also used for the semantics of pSDL. In case of this extension, the

5In [4] these propositions are called propositional signals. In later sections of the current paper, they are simply
termed propositions in order to prevent confusion with signals in the sense of SDL.

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Processes with states 11

defining equations are of the form A% (a - P) = sig(S) ~ = d' - & (P). The above-mentioned
treatment of conditionals differs from the one in [4] where the conditions are the propositions
that may hold in the states. This allows to use sig instead of eval’d — the crucial equation is
A& (¢ :— P) = sig(S) ~™ (¢ :— XN¢(P)). This approach is not adopted here.

The process creation operator used for the semantics of pSDL is a slight adaptation of the
process creation operator described in [9], due to the following details of the process creation
mechanism of SDL:

e formal parameters are local variables and parameter passing amounts to assigning initial
values to local variables of a newly created process when its execution starts;

e the pid value of the creating process is passed to a newly created process when its execution
starts.

Consequently, the process creation action needs, in addition to the name of a process type,
parameters to be used by the state operator described in Section 4. So the defining equations
have to be reformulated. This is, however, trivial because these additional parameters of the
process creation action are ignored by the process creation operator. For example, the most
crucial equation becomes

Ey(cr(X, (v1,...,0n), (u1,...,up),1) - P) =
(X, (V1,5 Un)s (U1, - - -, Up), %) - Eg(d(X) || P)

where vy, ..., v, are the formal parameters and ui,...,u, are the corresponding actual param-
eters.

4 Processes with states

SDL’s input guards and actions constitute its mechanisms for storage, communication, timing
and process creation. In the process algebra semantics of pSDL, which will be presented in
Section 5, the state operator mentioned in Section 3 is used to describe these mechanisms in
whole or in part. This means that input guards and SDL actions correspond to ACP actions
that interact with a global state. In this section, we will describe the state space, the actions
that transform states, and the result of executing processes, built up from these actions, in a
state from this state space.

4.1 Preliminaries

We mentioned before that SDL does not deal with the specification of abstract data types.
We assume a fixed algebraic specification covering all data types used and an initial algebra

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Processes with states 12

semantics, denoted by A, for it. We will write Sort4 and Op 4 for the set of all sort names
and the set of all operation names, respectively, in the signature of A. We will write U for
Uresort 4 T4, where T is the interpretation of the sort name T in A.°® We will assume that
nil ¢ U. In the sequel, we will use for each op € Op 4 an extension to U, also denoted by op,
such that op(t1,...,t,) = nil if at least one the ¢;s is not of the appropriate sort. Thus, we can
change over from the many-sorted case to the one-sorted case for the description of the meaning
of ¢SDL constructs. We can do so without loss of generality, because it can (and should) be
statically checked that only terms of appropriate sorts occur.

Uncustomary notation concerning sets, functions and sequences, used in this section, is explained
in Appendix A.

4.2 Basic domains and functions, the state space

The state space, used to describe the meaning of system definitions, depends upon the specific
variables, types of signals, channels and types of processes introduced in the system definition
concerned. They largely make up the contextual information extracted from the system defi-
nition by means of the function {e]} defined in Appendix B. For convenience, we define these
state space parameters for arbitrary contexts s (the notation concerning contexts introduced in
Appendix B is used):

Vi = vars(k)
Sk = sigs(k)
Cx = chans(k)
P, = procs(k)

First, we define the set Sig, of signals and the set FztSig, of extended signals, which fit into
the picture of the communication mechanism. A signal consist of the name of its type and the
sequence of values that it carries. An extended signal contains, in addition to a signal, the pid
values of its sender and receiver. The pid value of the sender is needed seeing that the identity
of the sender may otherwise get lost; a delivered signal need not be consumed immediately, but
may be put into an input queue instead. In case a signal must pass through a channel, the pid
value of the receiver is also essential because of the possible loss of identity due to queueing or
delaying.

Sig,. = S x U*
EztSig,, = Sig, x N x N

We write snm(sig) and vals(sig), where sig = (s,vs) € Sig,,, for s and vs, respectively. We
write sig(zsig), where zsig = (sig,i,1') € EztSig,,, for sig.

5We have that B C U and N C U because of the assumption made in Section 1 that Boolean € Sort 4 and
Natural € Sort .

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Processes with states 13

The local state of a process includes a storage which associates local variables with the values
assigned to them, an input queue where delivered signals are kept until they are consumed, and
a component keeping track of the expiration times of active timers. We define the set Stg,. of
storages, the set Inp(), of input queues and the set Timers, of timers as follows:

fi
Sty = Uycy, (V =)
InpQ, = ExtSig*
Timers, = Urcsig. (T 23 N U {nil})

We will follow the convention that the domain of a function from Stg, does not contain variables
with which no value is associated because a value has never been assigned to them. Consequently,
the absence of a value need not to be represented by nil. We will also follow the convention that
the domain of a function from Timers, contains precisely the active timers. While an expired
timer is still active, its former expiration time will be replaced by nil. The basic operations on
Stg,, and Timers, are general operations on functions: function application, overriding (&) and
domain subtraction (<€). Overriding and domain subtraction are defined in Appendix A. In so
far as the communication mechanism of SDL is concerned, the basic operations on Inp(), are
the functions

getnzt : InpQ, X Ppn(Sk) — ExtSig, U {nil},
rmufirst: Inp@Q,. x Sig, — InpQ,.,
merge : Ppin(InpQ,.) — Prin(InpQ,;)

defined below. The value of getnzt(o,ss) is the first (extended) signal in o that is of a type
different from the ones in ss. The value of rmufirst(o, sig) is the input queue o from which the
first occurrence of the signal sig has been removed. Both functions are used to describe the
consumption of signals by SDL processes. The function getnzt is recursively defined by

getnzt({), ss) = nil
getnzt((sig,i,4') & 0, s8) = (sig,i,4) if snm(sig) & ss
getnzt((sig,i,i') & 0, 88) = getnzt(c, ss) if snm(sig) € ss

and the function rmufirst is recursively defined by

rmufirst((), sig) = ()
rmufirst((sig,i,4') & 0,s19) = o
rmufirst((sig,i,i') & o, sig") = (sig,1,1') & rmufirst(o, sig’) if sig # sig’

For each process, sequences of signals coming from different channels as well as signals noticing
timer expiration have to be merged when time progresses to the next time slice. The function
merge is used to describe this precisely. It is inductively defined by

o € merge({a})

() € merge({(), ()})
o € merge({o1,02}) = (sig,1,i') & o € merge({(sig,i,i') & o1,02})
o € merge({o1,02}) A o2 € merge(X) = o € merge({o1} UX)

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Processes with states 14

We define now the set £, of local states. The local state of a process contains, in addition to
the above-mentioned components, the name of its type. Thus, the type of the process concerned
will not get lost. This is important, because a signal may be sent to an arbitrary process of a
process type.

Ly, = Stg, x InpQ,. x Timers,, x Py

We write stg(L), inpg(L), timers(L) and ptype(L), where L = (p,0,0,X) € Ly, for p, o, 6 and
X, respectively.

The global state of a system contains, besides a local state for each existing process, components
keeping track of the system time and the pid value issued last, and also a queue for each channel
where signals presented to the channel are kept until it is their turn to pass through it. To keep
track of the system time and the pid value issued last, natural numbers suffice. We define the
set Ch@),. of channel queues as follows:

ChQ, = (ExtSig, x N)*

Each element in a channel queue contains, in addition to an (extended) signal, a natural number
presenting the duration of the delay that it experiences when it does pass through the channel;
the arbitrary choice between all possible durations of this delay is made before the signal is put
into the channel queue — by means of alternative composition. Global states can be transformed
by actions as well as by progress of time. As mentioned above, there may be signals leaving
channels and entering the input queues of processes when time progresses to the next time slice,
and there may be timers expiring and corresponding signals entering the input queues as well.
In so far as channels are concerned, the functions that are used to describe this precisely are the
following ones:

unitdelay: ChQ, — ChQ,.,
arriving : ChQ,, x N — InpQ,.,
coming : ChQ, — ChQ,

The value of unitdelay(vy) is the channel queue v in which the delay duration of the first signal
is decreased by one time unit. The value of arriving(vy,1) is the longest prefix of that consists
of signals with delay duration zero, weeded of signals with other receivers than ¢ and stripped
of delay durations. The value of coming(y) is the longest suffix of v that does not start with a
signal with delay duration zero. These functions are used to describe the delivery of signals by
channels. The function unitdelay is defined by the following equations:

unitdelay(()) = ()
unitdelay (((sig,1,1'),0) &) = ((sig,4,7'),0) &y
unitdelay (((sig,i,1'),d + 1) &) = ((sig,i,4'),d) &y

The function arriving and coming are recursively defined by

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Processes with states 15

arriving
arriving
arriving

((),7) = (

(!

(
arriving (

(

(

(

(),)
((sig,i,i'),0) & ,4") = (sig,i,i') & arriving (v, ")
((sig,i,i'),0) &, ') = arriving (v, ') if i’ # j'
((),d

) =

sig,4,4'),d + 1) &,5') = ()

bl

coming (()
comingg Eszg,z i'),0) & 7y) = coming(~y)

coming (((sig,i,4'),d + 1) &) = ((sig,i,4'),d + 1) &

We define now a set M, of global states which contains proper as well as improper states. Recall
that the global state of a system contains a component keeping track of the pid value issued
last, a component keeping track of the system time, a channel queue for each channel and a
local state for each existing process. The channel queues are indexed by the fixed set of channel
names and the local states are indexed by a variable set of pid values, which contains the pid
values of the currently existing processes. The improper states are the ones that does not keep
the last issued pid value up to date.

My = NxNx (Co B ChQy) x Upen, (I — L)

We write ent(G), now(G), chs(G) and Ists(G), where G = (¢,n,[',X) € My, for ¢, n, T and %,
respectively. Note that the local states are indexed by a subset of N;. This means that 0 will
never serve as the pid value of a process that exists within the system. But 0 is not excluded
from being used as a pid value; it is reserved for the environment.

Last, we define the state space Gj:
Gx = {G € My | Vi € dom(Ilsts(G)) -i < cnt(G)}

We write ezists(i,G), where i € N and G € Gy, for i € dom(Ists(G)). The state space G, consists
exactly of the proper states in M.

4.3 Actions and expressions

In this subsection, we will introduce the actions that are used for the semantics of ©SDL. Most
of the actions used are parametrized. The arguments of the instances of these actions are often
values that depend on the state in which the instances are executed, or they have such values
as constituents. The conditional operator :— is used to supply such instances with the right
values (the required adaptation of the state operator is described in Section 3). The syntax of
the expressions used in the conditions concerned is described in this subsection as well.

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Processes with states 16

Actions:

We will make a distinction between the state transforming actions and the actions that do not
transform states. For each action a from the latter kind, the action that appears as the result
of executing a in a state is always the action a itself; i.e. A\;;(a-P) = sig(G) ~*a-Ag(P). These
actions are called inert actions.

The state transforming actions are parametrized by various domains. In addition to the sets
Ny, N, Vi, Cyk, Py, Sig, and EztSig,., the set SigP,. of signal patterns and the set SaveSet, of
save sets are used. We define SigP, and SaveSet, as follows:

SigP,, = S, x V,.*
SaveSet,, = Ppn(Sk)

The domain SigP, differs slightly from FEztSig, because it represents signal patterns, with
variables used for the unknown values.

The following state transforming actions are used:

input : SigP,. x SaveSet, x Ny
output : ExtSig, x (C, U {nil}) x N

set : N x Sig, x N;

reset : Sig, X Np

ass Ve x U XNy

cr : P x V. x U* x (Ny U {nil})
stop : INg

inispont: Nq

These are the ACP actions that correspond to input guards, SDL actions, the terminator stop
and the void guard inputnone. The second argument of an input action is the save set being
in force. The third argument of an output action is the delay that the signal experiences if it
must pass through a channel. The last argument of all actions is the pid value of the process
from which the action originates, except for the output actions where the pid value concerned is
available as the pid value of the sender in the first argument. Recall that the second and third
argument of a €F action are the formal parameters and the actual parameters, respectively, of
the process to be created. The presence of nil needs some further explanation. The second
argument of an output action is a channel if the signal to be sent must pass through a channel,
and nil otherwise. The last argument of a ¢F action is the pid value of the creating process if
it exists, and nil otherwise — a creating process does not exist for the processes created during
system start-up. Similar remarks also apply to the corresponding actions after execution, and
to a cr action (see below).

The following inert actions are used:

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Processes with states 17

cr : P x V. x U* x (Ny U {nil})
input’ : ExtSig,,

output’: ExtSig,

set’ N x Sig, x Ng

reset’ : Sig, x N;

t

They do not transform states. They are the actions that appear as the result of executing a state
transforming action, except for c¢r. The instances of c¢r are used for process creation, leaving
instances of ¢F as a trace. The action % is a special action with no observable effect whatsoever.
It appears as the result of executing an instance of ass, ¢F, stop or inispont as well as during
system start-up as explained in Section 5.2.

The second argument of instances of c¢r and ¢F is the sequence of formal parameters for the
relevant process type. This is convenient in two ways. Firstly, the alternative to make the
association between process types and their formal parameters itself a parameter of the state
operator is very unattractive. Secondly, that association is not fully immutable. Recall that the
formal parameters are variables and that parameter passing amounts to assigning initial values
to these variables — as part of a process creation action. During the start-up of the system, such
values are not available and no parameter passing takes place, which correponds to a different
association between process types and formal parameters. This can simply be accomplished in
the approach adopted here by using an empty sequence of formal parameters.

Expressions:

As explained above, we also need expressions that stand for values that generally depend on the
state in which they are evaluated. The syntax of these expressions, called value expressions, is
as follows:

<vexpr> =
<operator nm> [(<vexpr> {, <vexpr>}*)]
| cond (<boolean vexpr>, <vexpr> , <vexpr>)
| value (<variable nm>, <pid vexpr>)
| active (<signal nm> [(<vexpr> {, <vexpr>}*)], <pid vexpr>)
| now
| <value nm>
| <vexpr> = <vexpr>
| ent
| waiting (<signal nm> {, <signal nm>}* , <pid vexpr>)
| type (<pid vexpr>)
| hasinst (<process nm>)

We assume that the terminal productions of <operator nm>, <variable nm>, <signal nm> and
<process nm> yield the sets Op 4, Vi, Sk and P,, respectively. We also assume that the

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Processes with states 18

terminal productions of <value nm> yield a fixed set of variables in the sense of yCRL and that
this set includes the special value name self.

The first five cases correspond to operator applications, conditional expressions, view expres-
sions, active expressions and the expression now, respectively, in SDL. The SDL expressions
parent, offspring and sender are regarded as variables accesses, and variable accesses are treated
as a special case of view expressions. The sixth case includes self, which corresponds to the
SDL expressions self.

The remaining five cases are needed to reflect the intended meaning of various SDL construct
exactly. Expressions of the form z = t, where x is a value name, are used, together with
the conditional operator :—, to supply instances of parametrized actions with state dependent
values. Expressions of the form self = cnt, are used to supply processes with their pid values.
Expressions of the form t; = t5 are, as a matter of course, also used to give meaning to SDL’s
decisions. Expressions of the form waiting(s1,. .., sp,t) are used to give meaning to SDL’s state
definitions. They are needed to model that signal consumption is not delayed till the next time
slice when there is a signal to consume. Expressions of the forms type(t) and hasinst(X) are
used to give meaning to SDL’s output actions. They are needed to check (dynamically) if a
receiver with a given pid value is of the appropriate type for a given signal route and to check
if a receiver of the appropriate type for a given signal route exists.

4.4 State transformers, observers and propositions

In the process algebra semantics of pSDL, which will be presented in Section 5, ACP actions
that transform states from G, are used to describe the meaning of input guards, SDL actions and
stop. State transforming actions are also needed to initiate spontaneous transitions (indicated
by inputnone). In the next subsection, we will define the result of executing a process, built
up from these actions, in a state from G,. That is, we will define the relevant state operator.
This will, for the most part, boil down to describing how the actions, and the progress of time
(modelled by the delay operator o), transform states. For the sake of comprehensibility, we will
first define matching state transforming operations, and also some state observing operations.

Two of the state observing operations are used directly to define the state operator; the others
are used to define the evaluation function for the value expressions introduced in Section 4.3 —
such expressions stand for values that generally depend on the state in which they are evaluated.
In the next subsection, we will define, in addition to the state operator, the above-mentioned
evaluation function.

Every state from G, produces a proposition which is considered to hold in the state concerned.
In this way, the state of a process is made partly visible. In this subsection, we will also define
a function that gives for each state the proposition produced by that state. This function will
be defined such that a state makes visible exactly what may be modified by SDL actions as well
as be interrogated by SDL expressions. That is, the current value of all local variables and the

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Processes with states 19

current set of active timers are made visible for all existing processes. It is obvious that some
of the state observing operations used to define the evaluation function are also used to define
this function.

State transformers:

In general, the state transformers change one or two components of the local state of one
process. The notable exception is rcvsig, which is defined first. It may change all components
except the process type. This is a consequence of the fact that the storage, communication and
timing mechanisms are rather intertwined on the consumption of signals in SDL. For each state
transformer it holds that everything remains unchanged if an attempt is made to transform the
local state of a non-existing process. This will not be explicitly mentioned in the explanations
given below.

The function rcvsig : ExtSig, x V.* x G. — G, is used to describe how ACP actions corre-
sponding to SDL’s input guards transform states.

revsig((sig,1,1'), (v1,...,v,),G) =
(ent(G), now(Q), chs(G), lsts(G) & {i™ (p, 0,0, X)}) if exists(i', G)

G otherwise

where p = stg(lsts(G)ir) ® {v1 — wvals(sig)1, ..., va> vals(sig)n,sender > i},
o = rmufirst(inpq(lsts(G)y), sig),
0 = {sig} < timers(lsts(G);),
X = ptype(lsts(G)i)

revsig((sig,i,4'), (v1,...,v,), G) deals with the consumption of signal sig sent from 7 to i'. It

transforms the local state of the receiver as follows:

e the values carried by sig are assigned to the local variables vy, ...,v, of the receiver and
the sender’s pid value () is assigned to sender;

e the first occurrence of sig in the input queue of the receiver is removed;

e if sig is a timer signal, it is removed from the active timers.

Everything else is left unchanged.

The function sndsig : EztSig,, x (C,xU{nil}) x N x G, — G, is used to describe how ACP actions
corresponding to SDL’s output actions transform states.

sndsig((sig,i,i'),¢,d,G) =

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Processes with states 20

(ent(G), now(Q), chs(Q), lsts(G) & {7’ — (p,0,0,X)})

if ezists(i',G) A (c = nil V(chs(G). = () Ad = 0))
(ent(G), now(G), chs(G) & {c — 7}, Ists(G))

if =(c = nilV(chs(G). = () ANd=0))

G otherwise

where p = stg(lsts(G)y),

o = inpq(lsts(G)i) ~ ((sig,i,4')),
timers(lsts(G)y),
ptype(lsts(G)),
= chs(G). ™ (((sig,1,7"),d))

sndsig((sig,i,1'),c,d, G) deals with passing signal sig from i to i’, through channel ¢ with a delay
d if ¢ # nil. If ¢ = nil, or the queue of ¢ is empty and d = 0, it transforms the local state of the
receiver as follows:

0
X
v

e sig is put into the input queue of the receiver, unless i’ = 0 (indicating that the environment
is the receiver of the signal).

Otherwise, it transforms the queue of the delaying channel as follows:
e sig is put into the queue of the delaying channel.

Everything else is left unchanged.

The function settimer : N x Sig, X N; x G, — G, is used to describe how ACP actions corre-
sponding to SDL’s set actions transform states.

settimer(t, sig,i,G) =
(ent(G), now(Q), chs(G),lsts(G) & {i — (p,0,0,X)}) if ezxists(i, G)

G otherwise

where p = stg(lsts(G);),

o = rmufirst(inpq(lsts(G);), sig) if t > now(QG)
rmufirst (inpq(Ists(G);), sig) — ((sig,i,1)) otherwise,

0 = timers(lsts(G);) @ {sig — t} if t > now(G)
timers(lsts(G);) @ {sig — nil} otherwise,

X = ptype(lsts(G);

settimer(t, sig, i, G) deals with setting a timer, identified with signal sig, to time ¢. If ¢ has not
yet passed, it transforms the local state of the process with pid value %, the process to be notified
of the timer’s expiration, as follows:

e the occurrence of sig in the input queue originating from an earlier setting, if any, is
removed;

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Processes with states 21

e sig is included among the active timers with expiration time ¢; thus overriding an earlier
setting, if any.

Otherwise, it transforms the local state of the process with pid value ¢ as follows:

e gig is put into the input queue after removal of its occurrence originating from an earlier
setting, if any;
e sig is included among the active timers without expiration time.

Everything else is left unchanged.

The function resettimer : Sig,, xIN; xG,, — G, is used to describe how ACP actions corresponding
to SDL’s reset actions transform states.

resettimer(sig,i,G) =
(ent(G), now(G), chs(G),Ists(G) & {i — (p,0,0,X)}) if exists(i, G)

G otherwise

where p = stg(lsts(G);),
o = rmufirst(inpq(lsts(G);), sig),
0 = {sig} < timers(lsts(G);),
X = ptype(lsts(GQ);)

resettimer(sig, i, G) deals with resetting a timer, identified with signal sig. It transforms the
local state of the process with pid value 7, the process that would otherwise have been notified
of the timer’s expiration, as follows:

e the occurrence of sig in the input queue originating from an earlier setting, if any, is
removed;
e if sig is an active timer, it is removed from the active timers.

Everything else is left unchanged.

Notice that settimer(t, sig,i,G) and settimer (t, sig, i, resettimer (sig, i, G)) have the same effect.
In other words, settimer resets implicitly. In this way, at most one signal from the same timer
will ever occur in an input queue. Furthermore, SDL keeps timer signals and other signals
apart: not a single signal can originate from both timer setting and customary signal sending.
Thus, resetting, either explicitly or implicitly, will solely remove signals from input queues that
originate from timer setting.

The function assignvar : V, x U x N X G, — G, is used to describe how ACP actions corre-
sponding to SDL’s assignment task actions transform states.

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Processes with states 22

assignvar(v,u,i,G) =
(ent(G), now(G), chs(G),lsts(G) @ {i — (p, 0,0, X)}) if exists(i, G)
G otherwise
where p = stg(lsts(G);) ® {v — u},
o = inpq(lsts(G)s),
0 = timers(lsts(G);),
X = ptype(lsts(Q);)

assignvar(v,u,i, @) deals with assigning value u to variable v. It transforms the local state of
the process with pid value %, the process to which the variable is local, as follows:

e u is assigned to the local variable v, i.e. v is included among the variables in the storage
with value u; thus overriding an earlier assignment, if any.

Everything else is left unchanged.

The function createproc : Py x V. * x U* x (N; U{nil}) x G — Gy is used to describe how ACP
actions corresponding to SDL’s create actions transform states.

createproc(X, (vi,...,vp), (U1,...,up),1,G) =
(ent(G) + 1, now(G), chs(G),

Ists(G) ® {cnt(G) + 1 — (p,0,0,X),i— (p/,0',0',X")}) if exists(i, G)
(ent(G) + 1, now(Q), chs(G),
Ists(G) @ {cnt(G) +1 — (p,0,6,X)}) if 7 = nil
G otherwise
where p = {v1 — u1,...,vy — uy,parent — i},

o =),
= {}7
! stg(lsts(G);) @ {offspring — cnt(G) + 1},
' = inpq(lsts(Q);),
0 = timers(lsts(G);),
X' = ptype(lsts(G);

S~

QA
I

createproc(X, (v1,...,vp), (u1,...,uy),1,G) deals with creating a process of type X. It incre-
ments the last issued pid value — which will be used as the pid value of the created process. In
addition, it transforms the local state of the process with pid value i, the parent of the created
process, as follows:

e the pid value of the created process is assigned to offspring.
Besides, it creates a new local state for the created process which is initiated as follows:

e the values uq,...,u, are assigned to the local variables vy, ..., v, of the created process

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Processes with states 23

and the parent’s pid value (i) is assigned to parent;
e X is made the process type.

Everything else is left unchanged.

The function stopproc : Ny x G, — G is used to describe how ACP actions corresponding to
SDL’s stop transform states.

stopproc(i,G) = (cent(G), now(G), chs(G), {i} € lsts(G))

stopproc(i, G) deals with terminating the process with pid value i. It disposes of the local state
of the process with pid value . Everything else is left unchanged.

The function inispont : N; X G, — G, is used to describe how ACP actions used to initiate
spontaneous transitions transform states.

inispont(i,G) =
(ent(G), now(G), chs(G),lsts(G) & {i — (p,0,0,X)}) if exists(i, G)

G otherwise

where p = stg(lsts(G);) @ {sender — 7},
o = inpq(lsts(G)i),
0 = timers(lsts(G);),

X = ptype(lsts(G);)

inispont (i, G) deals with initiating spontaneous transitions. It transforms the local state of the
process with pid value 4, the process for which a spontaneous transition is initiated, by assigning
1 to sender. Everything else is left unchanged.

The function unitdelay : Gx — Pgn(Gx) is used to describe how progress of time transforms
states. In general, these transformations are non-deterministic — how signals from channels and
expiring timers enter input queues is not uniquely determined. Therefore, this function yields
for each state a set of possible states.

G’ € unitdelay(G) &
ent(G') = ent(G) A
now(G') = now(G) + 1 A
Ve € dom(chs(G)) - chs(G"). = coming(unitdelay(chs(G).)) A
Vi € dom(Ists(Q)) -
stg(lsts(G');) = stg(lsts(GQ);) A
(3o € InpQ -
inpq(lsts(G");) = inpq(lsts(G);) ~ oA
o € merge({arriving (unitdelay(chs(G).),1) | ¢ € dom(chs(G))}U
{{(sig,i,1)) | timers(lsts(G);)(sig) < now(G)}))A
timers(lsts(G");) =
timers(lsts(G);) @ {sig — nil | timers(lsts(G);)(sig) < now(G)} A

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Processes with states 24

ptype(Ists(G');) = ptype(lsts(G);)

unitdelay(G) transforms the global state as follows:

the last issued pid value is left unchanged;

the system time is incremented with one unit;

for each channel, the signals leaving the channel within one time unit are removed from
its queue;

for the local state of each process:

— its storage is left unchanged;

— the signals leaving any channel within one time unit and having the process as receiver,
as well as the signals that notify expiration of any of its timers within one time unit,
are put into its input queue in a merging, order preserving, manner;

— for each of its timers that expire within one time unit, the expiration time is removed;

— its process type is left unchanged.

State observers:

In general, the state observers examine one component of the local state of some process. The
only exception is has-instance, which may even examine the process type component of all
processes. If an attempt is made to observe the local state of a non-existing process, each non-
boolean-valued state observer yields nil and each boolean-valued state observer yields false. This
will not be explicitly mentioned in the explanations given below.

The functions natsig : SaveSet,, x Ny X G, — EztSig, U{nil} and natsignm : SaveSet,, x N1 X G,; —
Sk U {nil} are used to define the result of executing ACP actions corresponding to SDL’s input
guards in a state.

natsig(ss,i, G) = getnat(inpq(lsts(G);), ss) if ezists(i, G)
nil otherwise

nzxtsig(ss, i, G) yields the first signal in the input queue of the process with pid value i that is
of a type different from the ones in ss.

natsignm(ss,i,G) = snm(sig(natsig(ss,i,G))) if nxtsig(ss,i, G) # nil
nil otherwise

natsignm(ss, i, G) yields the type of the first signal in the input queue of the process with pid
value 7 that is of a type different from the ones in ss.

The function contents : V,; x N; X G, — U U {nil} is used to describe the value of expressions
of the form wvalue(v,t) which correspond to SDL’s variable accesses and view expressions.

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Processes with states 25

contents(v,i,G) = p(v) if exists(i,G) A v € dom(p)
nil otherwise

where p = stg(lsts(G);)

contents(v,i,G) yields the current value of the variable v that is local to the process with pid
value 1.

The function is-active : Sig,, X N; x G, — B is used to describe the value of expressions of the
form active(sig,t) which correspond to SDL’s active expressions.

is-active(sig,i,G) = true if exists(i, G) A sig € dom(timers(lsts(G);))
false otherwise

is-active(sig, i, G) yields true iff sig is an active timer signal of the process with pid value 1.

The function is-waiting : SaveSet, X N; X G, — B is used to describe the value of expressions
of the form waiting(si,...,sn,t) which are used to give meaning to SDL’s state definitions.

is-waiting(ss,i,G) = true if exists(i, G) A nztsig(ss, i, G) = nil
false otherwise

is-waiting(ss, i, G) yields true iff there is no signal in the input queue of the process with pid
value 7 that is of a type different from the ones in ss.

The function type : N x G, — P, U {env, nil} is used to describe the value of expressions of the
form type(t) which are used to give meaning to SDL’s output actions with explicit addressing.

type(i, G) = ptype(lsts(G);) if exists(i, G)
env ifi=20
nil otherwise

type(i, Q) yields the type of the process with pid value i. Different from the other state observers,
it yields a result if 1 = 0 as well, viz. env.

The function has-instance : (P, U {env}) x G, — B is used to describe the value of expressions
of the form hasinst(X), where X is a process name, which are used to give meaning to SDL’s
output actions with implicit addressing.

has-instance(X,G) = true if 31 € N- (i =0V ewists(i,G)) A type(i,G) = X
false otherwise

has-instance(X, G) yields true iff there exists a process of type X.

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Processes with states 26

State propositions:

The propositions produced by states from G, can be built from a set Atom, of atomic propo-
sitions, true, false, and the connectives = and —. We consider conjunctions and disjunctions
abbreviations as usual. We define the set Atom, as follows:

Atom, =
{value(v,u,1) | (v,u,i) € Vi x U x N1} U {active(sig,1) | (sig,i) € Sig,, x N1}

We write Prop, for the set of all propositions that can be built as described above, and Lit,
for Atom, U {—¢ | ¢ € Atom,}. An atomic proposition of the form value(v,u,?) is intended to
indicate that u is the value of the local variable v of the process with pid value . An atomic
proposition of the form active(sig,) is intended to indicate that the timer of the process with pid
value ¢ identified with signal sig is active. By using only atomic propositions of these forms, the
state of a process can not be made fully visible via the proposition produced. The proposition
produced by each state, given by the function sig defined below, makes only visible the value of
all local variables and the set of active timers for all existing processes.

First, we define the function lits : G, — P(Lit,) giving for each state the set of literals, i.e.
atomic propositions and negated atomic propositions, that hold in that state. It is inductively
defined by

contents(v,i, G) = u = value(v,u,) € lits(G)
contents(v,i,G) # u = (—wvalue(v,u,1)) € lits(G)
is-active(sig, i, G) = true = active(sig,1) € lits(G)
is-active(sig,i,G) # true = (—active(sig,1)) € lits(G)

We define now the function sig : G, — Prop,, as follows:

s19(G) = Ageciits(c) ¢

So sig(G) is the conjunction of all atomic propositions and negated atomic propositions that
hold in state G.

4.5 State operator and evaluation function

In this subsection, we will finally define the state operator that is used to describe, in whole
or in part, the SDL. mechanisms for storage, communication, timing and process creation. We
will not define the action and effect functions explicitly, as in [1]. Instead we will define, for
each state transforming action a, the result of executing a process of the form o - P in a state
from G,..” Because progress of time transforms states as well, we will also define the result of

L 8

"We follow the convention that, for each equation A& (a - P) = sig(G) a’ - X% (P), the equation A (a) =
sig(G) T ™ a’ is implicit.

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Processes with states 27

executing a process of the form o, (P) in a state. In addition, we will define the evaluation
function that is used to describe the value of an expression ¢ in a state G.

State operator:

The state transformers defined in Section 4.4 are used below to describe the state G’ resulting
from executing a state transforming action a in a state G. The action a’ that appears as the result
of executing a state transforming action ¢ in a state G is reminiscent to a, provided the action
is concerned with communication or timing. In case of an input action, the connection is most
loose. An input action a has a signal pattern, a save set and a pid value as its arguments and
the corresponding action a’ has an extended signal matching this pattern as its sole argument.
If the action is not concerned with communication or timing, the special action ¢ appears as the
result of executing it.

We will first define the result of executing a process of the form a - P in a state from G, for
the state transforming ACP actions corresponding to SDL’s input guards, output actions, set
actions, reset actions, assignment task actions, create actions and the terminator stop, and for
the state transforming ACP actions of the form inispont(u) which will be used to set sender
properly when spontaneous transitions take place. All this is rather straightforward with the
state transformers defined in Section 4.4; only the case of the ACP actions corresponding to
SDL’s input guards needs further explanation. Different from the other cases, the execution
of an action input((s, (vi,...,vn)),ss,X) may fail in certain states. It fails if the type of the

first signal in the input queue of the process with pid value ¢ with a type not occurring in ss
is different from s. Otherwise, it succeeds, the values carried by this signal are assigned to the
local variables v, ...,v, of the process concerned, and the signal is removed from the input
queue.

A‘(),Cw‘(inpmf((8, <U1,---avn>)53377;) P) =
sig(G) ™ input’ (isig) - A cusigUisig, (01 eenim),G) (P) if natsignm(ss,i,G) = s
sig(G) ™0 otherwise

where isig = natsig(ss,i,G)

A& (output(osig, c,d) - P) = sig(G) ~™* output’(osig) -)\‘;ndsig(osig,c,d7G)(P)

N (set(t, tsig,i) - P) = sig(G) ~* set'(t, tsig, i) -)\Zettimer(t,tsig,i,G) (P)

A (reset(tsig,i) - P) = sig(G) ~ ™ reset’(tsig,i) - XS

resettimer(tsig,i,G)

(P)

Ag(ass(v,u,i) - P) = sig(G) ~ - A3 (P)

= “assignvar(v,u,:,G)

A%(E(X,fpar, apar, 7’) ’ P) = Sig(G) /\2) Ai?eateproc(X,fpm",apar,i,G) (P)

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Processes with states 28

)\SG(ﬂ(Z)) P) = Sig(G) /\i : Aitopproc(i,G)(P)

g (inispont (i) - P) = sig(G) ~ ™ ¢ - fmspom(i,G)(P)

Recall that for each inert action a, we simply have
Mo(a- P) =sig(G) ™a- A;(P)

We will now proceed with defining the result of executing a process of the form o (P) in a
state from G,. This case is quite different from the preceding ones. Executing a process that
is delayed till the next time slice in some state means that the execution is delayed till the
next time slice and, in general, that it takes place in another state due to the progress of time.
Usually, it is not uniquely determined how progress of time transforms states. This leads to the
following equation:

Ag(ore(P)) = 5i9(G) 7 0rel (X e unitdetay(@) Ao (P))

Evaluation function:

We will end this section with defining the evaluation function that is used to describe the value
of an expression ¢ in a state G. Most state observers defined in Section 4.4 are used to define
this function. If the value of at least one of the subexpressions occurring in an expression is
undefined in the state concerned, the expression will be undefined, i.e. yield nil.

The SDL expressions are covered by the first six cases, as explained in Section 4.3. These cases
do not need any further explanation except the remark that the fixed set of value names ranged
over by the meta-variable z is also used as a set of variables in the sense of yCRL.

evalg(op(t, ..., tn)) =
op(evalg;(t1),. .., evalg(ty)) if evald;(t1) # nil AL . A evall(t,) # nil
nil otherwise

evaly(cond(ty,ta,t3)) =
eval(to) if evald(t1) = true
eval(ts) if evalg;(t1) = false
nil otherwise

eval(value(v,t)) =
contents(v, eval,(t), G) if evalf;(t) € Ny

nil otherwise

evaly(active(s(ty, ..., t,),t)) =
is-active(sig, eval(t), G) if evall,(t1) # nil A... A evalg;(ty) # nil Aeval(t) € Ny
nil otherwise

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Process algebra semantics 29

where sig = (s, (eval(t1), ..., eval(tn)))
evaly(now) = now(G)
eval;(z) =

The remaining five cases are about expressions which are also needed in Section 5, as explained
in Section 4.3 as well. They are very straightforward.

eval;(ty = ta) =
true if evalf;(t1) = evalf;(t2) A eval;(t1) # nil Aevalf;(t2) # nil
false if evalf;(t1) # evalg;(t2) A evalg(t1) # nil Aevalf(ta) # nil
nil otherwise

evali(ent) = ent(Q)

eval(waiting(s1, ..., Sn,t)) =
is-waiting ({s1, ..., Sn}, eval(t), G) if eval;(t) € Ny
nil otherwise
evaly (type(t)) =
type(evalg;(t), G) if eval(t) € N
nil otherwise

eval;(hasinst(X)) = has-instance(X, Q)

5 Process algebra semantics

In this section, we will present a process algebra semantics of SDL. It relies heavily upon the
specifics of the state operator defined in Section 4.5. Here, all peculiar details of the semantics,
inherited from full SDL, become visible.

The semantics of ¢SDL is defined by interpretation functions, one for each syntactic category,
which are all written in the form [e]”. The superscript x is used to provide contextual infor-
mation where required. The exact interpretation function is always clear from the context. We
will be lazy about specifying the range of each interpretation function, since this is usually clear
from the context as well. Many of the interpretations are expressions, equations, etc. They will
simply be written in their display form. We will in addition assume that the interpretation of a
name is the same name. If an optional clause represents a sequence, its absence is always taken
to stand for an empty sequence. Otherwise, it is treated as a separate case.

In the presented semantics, we will use the following abbreviation. Let a(ui,...,u,) be an
instance of a parametrized action a : Dy X ... x D, where D; C U (1 < i < n) and let

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Process algebra semantics 30

t; be a value expression. Then we write a(u1,...,ui—1,%;, Uit1,---,Un) for 3o, .p T = t; :—
Uiy .oy Uj—1y Tjy Uit 1, - - -, Up). We will also use the obvious extensions of this notation to the
cases where D; is somehow composed of subsets of U and other domains by cartesian product.
Note that this abbreviation covers exactly the use of the conditional operator :— mentioned in
Section 4.3: to supply instances of parametrized actions with state dependent values.

In Section 5.1, we will use the term system input stream for a stream of signals that a system
can receive via signal routes from the environment. Details concerning system input streams
are given in Appendix C.

5.1 System definition

The meaning of a system definition is a quadruple ({, ¢, E,G) where:

e (is a mapping from system input streams to process expressions describing the behaviour
of the system from its start-up for all possible system input streams;

¢ is the mapping from process names to process expressions that is to be associated with
the process creation operator used in the process expressions in the range of (;

E is the set of recursive process-equations defining the processes corresponding to the SDL
states referred to in the process expressions in the range of ¢;

G is the state space that is to be associated with the state operator used in the process
expressions in the range of (.

The first component depends on the definitions of signal types, channels and signal routes, on the
names introduced by the process definitions, and on the given numbers of processes to be created
during the start-up of the system for the process types defined. The second and third component
depend heavily on the process definitions proper. The last component depends simply on the
names introduced by the definitions of variables, signal types, channels and process types — this
means that the state space depends solely on purely syntactic aspects of the system.

The meaning of each definition occurring in a system definition is a pair (¢, E) where:

e ¢ is a singleton mapping from process names to process expressions if it is the definition
of a process type, and an empty mapping otherwise;

e F is the set of recursive process-equations defining the processes corresponding to the SDL
states referred to in the single process expression in the range of ¢ if it is the definition of
a process type, and an empty set otherwise.

In case of a process definition, the first component is expressed in terms of the meaning of its
start transition and the second component in terms of the meaning of its state definitions. We

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Process algebra semantics 31

write [D]5 and [D]F, where [D]* = (¢, E), for ¢ and E, respectively. Thus, we have [D]"
= ([P15: [P1%)-

The second and third component of the meaning of a system definition are obtained by taking
the union of the first components and second components, respectively, of the meaning of all
definitions occurring in it.

[system S;D; ... D, endsystem;] :=
({a = 11003 (MG, (B (P) || Env(e))) | o € L},
[[Dl]]g Uu...U [[Dn]]g, [Di]sY...U[Dn]%,Gk)

where P = ||X6pmcs(n) (Hinit(n,X) g(Xa < >7 <>a nil)),

Go = (0,0,{c+— () | c € chans(k)},{}),
k = {system S;D; ... D, endsystem;]}

[process X (k); fpar vy, . .. ,vp,; start; tr dj ... d,, endprocess;]” :=
(X = Xsapa self = ent :— [ir]* }{[di]", ..., [dn]" })

where k' = updscopeunit(r, X)

[D]* = ({},{}) if the definition D is not of the form
process X (k); fpar vy, . .. ,upy;start; ir d; . .. d, endprocess;

The set Z,; of possible system input streams and the notation Env(a) for the process generating
the system input stream « are defined in Appendix C. In the case of a system definition, the
process expression T7us} (AG, (Ep(P) || Env())) expresses that, for each process type defined,
the given initial number of processes are created and the result is executed in the state Gy
while it receives a stream « of signals via signal routes from the environment. Additionally,
the internal action ¢ as well as the actions in I are hidden. The set I is to be regarded as a
parameter of the semantics. If one takes the empty set for I, one gets an extreme semantics,
viz. a concrete one corresponding to the viewpoint that all internal actions of a system related
to communication and timing are observable. By taking appropriate non-empty sets, one can
get a range of more abstract semantics, including the interesting one that corresponds to the
viewpoint that only the communication with the environment is observable. Gy is the state in
which the last issued pid value and the system time are zero, there is an empty queue for each
channel defined, and there are no local states. Recall that the pid value zero is reserved for
the environment and that a newly created process gets its pid value and local state only when
its execution starts. In the case of a process definition, the process expression in the singleton
mapping {X — 3=, cnt = self :— [tr]*'} expresses that, for each process of the type X, its
behaviour is the behaviour determined by the given start transition ¢r in case self stands for
the last issued pid value. The process equations [di]*, ..., [d,]* describe how the process X
behaves from each of the n states in which it may come while it proceeds.

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Process algebra semantics 32

5.2 Process behaviours

The meaning of a state definition, occurring in the scope of a process definition, is a process-
equation defining, for the process type defined, the common behaviour of its instances from the
state being defined (using parametrization by the identifying pid value self). It is expressed
in terms of the meaning of its transition alternatives, which are process expressions describing
the behaviour from the state being defined for the individual signal types of which instances
may be consumed and, in addition, possibly for some spontaneous transitions. The meaning of
each transition alternative is in turn expressed in terms of the meaning of its input guard, if the
alternative is not a spontaneous transition, and its transition.

[state st;save si, ... ,spialty ... alty]" =
Xy = —waiting(sy, . .., sm, self) = ([alt]" + ... + [alt,]*)+
waiting (81, . - -, Sm, self) :— o (Xst)

where X = scopeunit(k),

k' = updsaveset(rk,{s1,...,5m})

I[il'lput s(vis- .. ,Un);tr]]” =
(It(ent, ng) :— 1) * (=lt(ent,ng) :— input((s, (v1,...,v)), ss, self) - [tr]F)

where 719 = 3 X eprocs(x) init(k, X),8
ss = saveset(k)

[input none; tr]* := inispont(self) - [tr]*

In the case of a state definition, the process-equation describes that the processes of type X
behave from the state st as one of the given transition alternatives, and that this behaviour is
possibly delayed till the first future time slice in which there is a signal to consume if there are
no more signals to consume in the current time slice. In process-equations, we use names of
process types with state name subscripts, such as X,; above, as variables; in process expressions
elsewhere, we use them to refer to the processes defined thus. Note that, in the absence of
spontaneous transitions, a delay becomes inescapable if there are no more signals to consume
in the current time slice. In the case of a guarded transition alternative, the process expression
input((s, (vi, ..., vn)), ss, self) -[tr]" expresses that the transition ¢r is initiated on consumption
of a signal of type s; iteration is used to guarantee that no communication takes place till the
start-up of the system has come to an end. In the case of an unguarded transition alternative,
the process expression expresses that the transition #r is initiated spontaneously, i.e. without a
preceding signal consumption, with sender set to the value of self.

The meaning of a transition, occurring in the scope of a process definition, is a process expression
describing the behaviour of the transition. It is expressed in terms of the meaning of its actions
and its transition terminator.

8Here, we use > for summation of a set of natural numbers.

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Process algebra semantics 33

[a1 ... a, nextstate st;]"* := [ai1]*-...- [an]” - Xs
where X = scopeunit(k)
[a1 ... apstop;]* = [a1]” ... [an]” - stop(self)

[a1 ... an dec;]® = [a1]" - ... - [an]” - [dec]®

In the case of a transition terminated by nextstate st, the process expression expresses that the
transition performs the actions ay, ..., a, in sequential order and ends with entering state st
— i.e. goes on behaving as defined for state st of the processes of the type defined. In case of
termination by stop, it ends with ceasing to exist; and in case of termination by a decision dec,
it goes on behaving as described by dec.

Of course, the meaning of a decision is a process expression as well. It is expressed in terms of
the meaning of its expressions and transitions.

[decision e;(e1):tr1 - . . (ey):try, enddecision]” :=
[e] = [e] = [tr1]® + ... + [e] = [en] :— [trn]”

[decision any; ():t7; . .. ():tr, enddecision]” := [tri]* + ... + [try]"

In the case of a decision with a question expression e, the process expression expresses that the
decision transfers control to the transition ¢r; for which the value of e equals the value of e;.
In the case of a decision with any instead, the process expression expresses that the decision
transfers non-deterministically control to one of the transitions ¢rq,..., tr,.

The meaning of an SDL action is also a process expression. It is expressed in terms of the
meaning of the expressions occurring in it. It also depends on the occurring names (names of
variables, signal types, signal routes and process types — dependent on the kind of action).

[output s(e1,....ep)toeviary, ... ,ry:]" ==
(lt(ent,ng) =— &) *
(—lt(ent,ng) == (type([e]) = X1 :— Pr+ ... + type([e]) = Xm :— Py +
(type([e]) = X1 V...V type([e]) = Xy,) :— &)

where 7o = 3 xcprocs(x) it (5, X),

for1 <j<m:

P; = output(((s,([e1],- .., [en])), self ,[e]),c;,0) if ¢; = nil
Zd:l]\l OUtPUt(((sa <[[€1]]a IR [[eﬂ]]»a self , |[6]]), G4, d) otherwise,

X; = rev(s,ryj),

c; = ch(k,r;)

[output s(ey, ..., ex)viary, ..., rpi]" =
(It(ent,ng) =— &) *
(—lt(ent,ng) == (X (type(i) = X1 : = P+ ...+ type(i) = X :— Pp) +

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Process algebra semantics 34

—(hasinst(X1) A ... A hasinst (X)) :— &)

where 19 = 3 x ¢ procs(x) it (5, X),
for1<j<m:
P; = output(((s,([e],-- -, [enl)), self,4),¢;,0) if ¢; = nil
Zd:h\l OUtpUt(((Sa <[[el]]a R [[en]]»a Selfa 7’)7 Cj, d) otherwise,
X; = rev(s,ryj),
c; = ch(k,rj)

[set (e.s(e1,---.en))]* = set([e], (s,{[er],---,[en])), self)

[reset (s(e1,-...en))s]" = reset((s,([ei],---,[en])), self)
[task v:=e;]" := ass(v,[e], self)
[create X (e1,...,e,);]" = cr(X, fpars(k, X),([e1],---, [en]), self)

All cases except the ones for output actions are straightforward. The cases of output actions need
further explanation. The receiver of a signal sent via a certain signal route must be of the receiver
type associated with that signal route. Therefore, the conditions of the form type(t) = X; are
used. In the case of an output action with a receiver expression e, if none of the signal routes
r{, ..., Tm has the type of the process with pid value e as its receiver type, or a process with that
pid value does not exist, the signal is simply discarded and no error occurs. This is expressed by
the summand —(type([e]) = X1 V...V type([e]) = Xm) :— . In the case of an output action
without a receiver expression, first an arbitrary choice from the signal routes 7, ..., r, is made
and thereafter an arbitrary choice from the existing processes of the receiver type for the chosen
signal route is made. However, there may be no existing process of the receiver type for that
signal route. Should this occasion arise, the signal is simply discarded. This is expressed by the
summand —(hasinst(X1) A...Ahasinst(X,,)) :— #. Note that this occasion may already arise if
there is one signal route for which there exists no process of its receiver type. Note further that
a process expression of the form Y ;.. output(sig,c,d) is used for each signal route containing
a delaying channel ¢. Thus, the arbitrary delay is modelled by an arbitrary choice between all
possible delay durations d as already mentioned in Section 4.2. As for input guards, iteration is
used to guarantee that no communication takes place till the start-up of the system has come
to an end.

5.3 Values

The meaning of an SDL expression is given by a translation to a value expression of the same
kind. There is a close correspondence between the SDL expressions and their translations.
Essential of the translation is that self is added where the local states of different processes
need to be distinguished. Consequently, a variable access v is just treated as a view expression
view (v, self). For convenience, the expressions parent, offspring and sender are also regarded as

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Closing remarks 35

variable accesses.
[op(er,....en)] = op([ed],-- -, [en])
[if e1 then e; else e3 fi] := cond([e1], [ea], [es])
[v] == value(v, self)
[view (v.e)] = value (v, [e])

[active (s(e1,e,))] = active((s,([e1],--.,[en])), self)

[now] := now
[self] := self
[parent] := wvalue(parent, self)

[offspring] := wvalue(offspring, self)
[sender] := wvalue(sender, self)

All cases are very straightforward and need no further explanation. This is due to the choice of
value expressions and the evaluation function defined on them in Section 4.5.

6 Closing remarks

In [11], timed frames, which are closely related to the kind of transition systems used for the
operational semantics of ACPg,¢, are studied in a general algebraic setting and results concerning
the connection between timed frames and discrete time processes are given. In [12], a general
first-order logic of timed frames, called TFL, is proposed and results concerning its strong
distinguishing power and its connections with the logics underlying two model checkers are
given. The results of the work reported in [11] and [12], together with the semantics of pSDL
given in this paper, are meant to be used to devise a general logic of discrete time processes, and
to adapt an existing model checker to ¢SDL and a fragment of this logic where model checking
is feasible.

In a forthcoming paper, process creation is left out from ¢SDL. In this way we confine ourselves
there to the most distinctive features of SDL and allow a more intelligible presentation of their
semantics. Besides, an example is used in that paper to illustrate how time related behavioural
aspects of systems specified in this restricted version of ¢SDL can be analysed using the process
algebra semantics.

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

References 36

Presently, we are also starting to elaborate a more abstract semantics for SDL, based on dataflow
networks. The intended result is expected to provide convincing mathematical arguments in
favor of the choice of concepts concerning storage, communication, timing and process creation
around which SDL has been set up. By way of preparation, we have studied dataflow networks
in a general algebraic setting [15].

In [16] a foundation for the semantics of SDL, based on streams and stream processing functions,
has been proposed. This proposal indicates that the SDL view of systems gives an interesting
type of dynamic dataflow networks, but the treatment of time in the proposal is however too
sketchy to be used as a starting point for the semantics of the time related features of SDL.
In [17] and [19] attempts have been made to give a structured operational semantics of SDL,
the latter including the time related features. However, not all relevant details were worked out,
and the results will probably have to be turned inside out in order to deal with full SDL. At the
outset, we also tried shortly to give a structured operational semantics of SDL, but we found
that it is very difficult, especially if time aspects have to be taken into account.

References

[1] J.C.M. Baeten and J.A. Bergstra. Global renaming operators in concrete process algebra.
Information and Control, 78:205-245, 1988.

[2] J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra (extended abstract). In
W.R. Cleaveland, editor, CONCUR’92, pages 401-420. LNCS 630, Springer-Verlag, 1992.
Full version: Report PRG 9208b, Programming Research Group, University of Amsterdam.

[3] J.C.M. Baeten and J.A. Bergstra. Process algebra with signals and conditions. In M. Broy,
editor, Programming and Mathematical Methods, pages 273-323. NATO ASI Series F88,
Springer-Verlag, 1992.

[4] J.C.M. Baeten and J.A. Bergstra. Process algebra with propositional signals. Logic Group
Preprint Series 123, Utrecht University, Department of Philosophy, November 1994.

[5] J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra. Report P9208c, University
of Amsterdam, Programming Research Group, March 1995. To appear in Formal Aspects
of Computing.

[6] J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra with abstraction. In
H. Reichel, editor, Fundamentals of Computation Theory, pages 1-15. LNCS 965, Springer-
Verlag, 1995.

[7] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical
Computer Science 18, Cambridge University Press, 1990.

[8] F. Belina, D. Hogrefe, and A. Sarma. SDL with Applications from Protocol Specification.
Prentice-Hall, 1991.

[9] J.A. Bergstra. A process creation mechanism in process algebra. In J.C.M. Baeten, editor,
Applications of Process Algebra, pages 81-88. Cambridge Tracts in Theoretical Computer
Science 17, Cambridge University Press, 1990.

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

References 37

[10]
[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

J.A. Bergstra, I. Bethke, and A. Ponse. Process algebra with iteration. The Computer
Journal, 37:243-258, 1994.

J.A. Bergstra, W.J. Fokkink, and C.A. Middelburg. Algebra of timed frames. Logic Group
Preprint Series 148, Utrecht University, Department of Philosophy, November 1995.

J.A. Bergstra, W.J. Fokkink, and C.A. Middelburg. A logic for signal inserted timed frames.
Logic Group Preprint Series 155, Utrecht University, Department of Philosophy, January
1996.

J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication. Information
and Control, 60:109-137, 1984.

J.A. Bergstra and C.A. Middelburg. Process algebra semantics of @SDL. Logic Group
Preprint Series 129, Utrecht University, Department of Philosophy, March 1995.

J.A. Bergstra, C.A. Middelburg, and Gh. Stefanescu. Network algebra for synchronous and
asynchronous dataflow. Report P9508, University of Amsterdam, Programming Research
Group, October 1995.

M. Broy. Towards a formal foundation of the specification and description language SDL.
Formal Aspects of Computing, 3:21-57, 1991.

A. Gammelgaard and J.E. Kristensen. A correctness proof of a translation from SDL to
CRL. In O. Fargemand and A. Sarma, editors, SDL ’93: Using Objects, pages 205-219.
Elsevier (North-Holland), 1991. Full version: Report TFL RR 1992-4, Tele Danmark Re-
search.

R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimulation
semantics (extended abstract). In G.X. Ritter, editor, Information Processing 89, pages
613-618. North-Holland, 1989. Full version: Report CS-9120, CWI.

J.C. Godskesen. An operational semantics model for Basic SDL (extended abstract). In
O. Fargemand and R. Reed, editors, SDL ’91: FEwvolving Methods, pages 15-22. Elsevier
(North-Holland), 1991. Full version: Report TFL RR 1991-2, Tele Danmark Research.
J.F. Groote and A. Ponse. Proof theory for 4CRL: A language for processes with data.
In D.J. Andrews, J.F. Groote, and C.A. Middelburg, editors, Semantics of Specification
Languages, pages 232-251. Workshop in Computing Series, Springer-Verlag, 1994.

J.F. Groote and A. Ponse. The syntax and semantics of yCRL. In A. Ponse, C. Verhoef,
and S.F.M. van Vlijmen, editors, Algebra of Communicating Processes 1994, pages 26—62.
Workshop in Computing Series, Springer-Verlag, 1995.

B. Mgller-Pedersen. On the simplification of SDL. SDL Newsletter, 17:4-6, 1994.

L. Pruitt, 1994. Personal Communications.

Rules for the use of SDL. ETSI Document MTS (93) 10, 1993.

Specification of abstract syntax notation one (ASN.1). Blue Book Fasc. VIII.4, Recommen-
dation X.208, 1989.

Specification and description language (SDL). ITU-T Recommendation Z.100, Revision 1,
1994.

SDL predefined data. ITU-T Recommendation Z.100 D, Revision 1, 1994. Annex D to
Recommendation Z.100.

Specification and description language (SDL) — SDL formal definition: Static semantics.
ITU-T Recommendation Z.100 F2, Revision 1, 1994. Annex F.2 to Recommendation Z.100.

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Notational conventions 38

[29] Specification and description language (SDL) — SDL formal definition: Dynamic semantics.
ITU-T Recommendation Z.100 F3, Revision 1, 1994. Annex F.3 to Recommendation Z.100.

[30] SDL combined with ASN.1 (SDL/ASN.1). Proposed New ITU-T Recommendation Z.105,
1994.

A Notational conventions

Meta-language for syntax:

The syntax of (SDL is described by means of production rules in the form of an eztended BNF
grammar. The curly brackets “{” and “}” are used for grouping. The asterisk “*” and the plus
sign “T” are used for zero or more repetitions and one or more repetitions, respectively, of curly
bracketed groups. The square brackets “[” and “|” are also used for grouping, but indicate that
the group is optional. An underlined part included in a nonterminal symbol does not belong to
the context free syntax; it describes a semantic condition.

Special set, function and sequence notation:

We write P(A) for the set of all subsets of A, and we write Pg, (A) for the set of all finite subsets
of A.

We write f : A — B to indicate that f is a total function from A to B, thatis f C Ax BAVz €
A-Fy € B-(z,y) € f. If A is finite, we emphasize this by writing f : A ™ B instead. We write
dom(f), where f : A — B, for A. For an (ordered) pair (z,y), where z and y are intended for
argument and value of some function, we use the notation z — y to emphasize this intention.
The binary operators < (domain subtraction) and & (overriding) on functions are defined by

Adf={z—y|zedom(f)Nz & AN f(z) =y}
f@g = (dom(g) < f)Ug

For a function f : A — B presenting a family B indexed by A, we use the notation f; (for i € A)
instead of f(z).

Functions are also used to present sequences; as usual we write (z1, ..., z,) for the sequence pre-
sented by the function {1 — z1,...,n + z,}. The unary operators hd and tl stand for selection
of head and tail, respectively, of sequences. The binary operator ~ stands for concatenation of
sequences. We write z & t for (z) " t.

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Contextual information 39

B Contextual information

The meaning of a ¢SDL construct generally depends on the definitions in the scope in which it
occurs. Contexts are primarily intended for modeling the scope. The context that is ascribed to
a complete system definition is also used to define the state space used to describe its meaning.
The context of a construct contains all names introduced by the definitions of variables, signal
types, channels, signal routes and process types occurring in the system definition on hand and
additionally:

e if the construct occurs in the scope of a process definition, the name introduced by that
process definition, called the scope unit;

e if the construct occurs in the scope of a state definition, the set of names occurring in the
save part of that state definition, called the save set.

These names are in addition connected with their static attributes. For example, a name of
a variable is connected with the name of the sort of the values that may be assigned to it;
and a name of a process type is connected with the names of the variables that are its formal
parameters and the number of processes of this type that have to be created during the start-up
of the system.

Context =
Ppin(VarD) x Ppn(SigD) x Ppin(ChanD) x Pgn(RouteD) X Pgy(ProcD) x
(ProcId U {nil}) X Pgy(Sigld)

where
VarD = Varld x Sortld
SigD = Sigld x Sortld*

ChanD = Chanld

RouteD = Routeld x (Procld U {env}) x (Procld U {env}) X Py (Sigld)x
(Chanld U {nil})

ProcD = Procld x VarId* x N

We write vards(k), sigds(k), chands(k), routeds(k), procds(k), scopeunit(k) and saveset(k),
where k = (V, S,C, R, P, X, ss) € Context, for V, S, C, R, P, X and ss, respectively. We write
vars(k) for {v | 3T - (v,T) € vards(k)}. The abbreviations sigs(k), chans(x) and procs(k) are
used analogously. For constructs that do not occur in a process definition, the absence of a
scope unit will be represented by nil and, for constructs that do not occur in a state definition,
the absence of a save set will be represented by { }.

Useful operations on Context are the functions

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

Contextual information 40

TCU : Context x Routeld — Procld U {env},
ch : Context x Routeld — Chanld U {nil},
fpars : Context x Procld — Varld*,

init : Context X Procld — N,

updscopeunit: Context X Procld — Context,
updsaveset : Context X Pgy(Sigld) — Context,
envd : Context — Ppn(Sigld x Sortld* x Chanld)

defined below. The functions rcv and ch are used to extract the receiver type and the delaying

channel, respectively, of a given signal route from the context. These functions are inductively
defined by

(r, X1, X9, s8,¢) € routeds(k) = rcv(k,r) = Xo,
(r, X1, Xo, ss,c) € routeds(k) = ch(k,r) =c

The functions fpars and init are used to extract the formal parameters and the initial number of
processes, respectively, of a given process type from the context. These functions are inductively
defined by

(X, vs, k) € procds(k) = fpars(k,X) = vs,
(X,vs, k) € procds(rk) = nit(k,X) =k

The functions updscopeunit and updsaveset are used to update the scope unit and the save set,
respectively, of the context. These functions are inductively defined by

k= (V,S,C,R, P, X, ss) = updscopeunit(x, X') = (V,S,C, R, P, X', ss),
k= (V,S,C,R, P, X, ss) = updsaveset(k,ss') = (V,S,C,R, P, X, ss")

The function enwvd is used to determine the possible system input streams, i.e. streams of signals
that the system can receive via signal routes from the environment. It is inductively defined by

s€ssA(s,(Th,...,T,)) € sigds(k) A (r,env, Xo, s, ¢) € routeds(k) =
(s, (T1,...,Ty),c) € envd(k)

The context ascribed to a system definition is a minimal context in the sense that the contextual
information available in it is common to all contexts on which constructs occurring in it depend.
The additional information that may be available applies to the scope unit for constructs occur-
ring in a process definition and the save set for constructs occurring in a state definition. The
context ascribed to a system definition is obtained by taking the union of the corresponding
components of the (partial) contexts contributed by all definitions occurring in it, except for the
scope unit and the save set which are permanently the same — nil and { }, respectively.

{lsystem S;D; ... D, endsystem;]} :=
(vards({{D1]}) U ... U vards({Dy]}),
sigds (D)) U - U sigds({D,]},
chands({D1]}) U...U chands({D,]}),
routeds({{D1]}) U ... U routeds({{D,]}),

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

System environment 41

procds({D1]}) U ... U procds ({{Dy]}),
nil, {})

{ddo T3} = ({(v, D)} { LA} { il {)
{isignal s(To, ..., T}l == ({1 {(s:(T0s o, Tn)) b {3 {1 { Lol { 1)
{[channel ;[== ({},{},{c} {}, {};nil,{})

{[signalroute r from X; to X5 with s, ...,s, delayed by ¢;[} :=

({ }a{}7{}a{(T’X17X2’{317""Sn}’ C)}a{}’nila{})

{[signalroute r from X; to Xy with s1,...,sp;]} =

({ }a { }7 { }a {(T’leXZ’ {517 R Sn}’ nil)}7 { }’ nil, { })

{[process X (k); fpar vy, ... ,v,; start; tr d; ... d, endprocess;]} :=

EH LK, (o, um), B) By mil {)

C System environment

The set of possible system input streams depends upon the specific types of signals and signal
routes introduced in the system definition concerned. The function enwvd, defined in Appendix B,
is meant for the extraction of the relevant information: applying envd to the context ascribed
to a system definition yields an environment description for the system concerned. From this
environment description, the set of signals that the system can receive via signal routes from the
environment can be determined. In order to put such a signal into the right channel queues, it
is needed that the delaying channel in its route, if it is present, is attached to it. That is, they
are elements of EnvSig,, C ExtSig, x (C U {nil}). We define the set of such environment signals
for arbitrary contexts k:

EnvSig, =
U((s,(T1,...,Tn)),c)Eem;d(n){(((37 <’LL1, s 7“”))5 0, [L)a C) ‘ul €T,...,up €Tp,t € Nl}

We write zsig(esig) and chan(esig), where esig = (zsig, ¢), for zsig and c, respectively.

The set Z, of possible system input streams is now defined by
T, = (EnSig,*)*

That is, a possible system input stream « is an infinite sequence of finite sequences of environ-
ment signals; (a;); (i > 0, 0 < j < len(ey)) is the jth signal arriving during the ith time slice
from the start-up of the system.

We use the notation Env(a), where o € Zy, for the process generating the system input stream
a.

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

System environment 42

Env(a) = A&(Xeny) where Xeny = envinp - Xepy + 0rel(Xenv)

The state operator for the environment is defined below.

A (envinp - P) =
P"if hd(a) # ()

0 otherwise

where P = output(osig,c,0) -)\:l(hd(a))/\tl(a) (P) if ¢ = nil
> g (output (osig, ¢, d) - A:l(hd(a))ﬂtl(a) (P)) otherwise,
osig = zsig(hd(hd(a))),
¢ = chan(hd(hd(a)))

Aalowel(P)) =
Urel()\gl(a)(P)) if hd(a) = ()

1) otherwise

We see immediately that the jth signal generated by Env(a) during the ith time slice from its
start-up is (a;); (for i >0, 0 < j < len(ay)).

Report No. 68, April 4, 1996 UNU/IIST, P.O. Box 3058, Macau

