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Introduction. A p-divisible group X can be seen as a tower of building blocks, each of which
is isomorphic to the same finite group scheme X[p]. Clearly, if X1 and X2 are isomorphic
then X1[p] ∼= X2[p]; however, conversely X1[p] ∼= X2[p] does in general not imply that X1

and X2 are isomorphic. Can we give, over an algebraically closed field in characteristic p, a
condition on the p-kernels which ensures this converse? Here are two known examples of such
a condition: consider the case that X is ordinary, or the case that X is superspecial (X is
the p-divisible group of a product of supersingular elliptic curves); in these cases the p-kernel
uniquely determines X.

These are special cases of a surprisingly complete and simple answer:

if G is “minimal”, then X1[p] ∼= G ∼= X2[p] implies X1
∼= X2,

see (1.2); for a definition of “minimal” see (1.1). This is “necessary and sufficient” in the
sense that for any G that is not minimal there exist infinitely many mutually non-isomorphic
p-divisible groups with p-kernel isomorphic to G; see (4.1).

Remark (motivation). You might wonder why this is interesting.

EO In [7] we have defined a natural stratification of the moduli space of polarized abelian
varieties in positive characteristic: moduli points are in the same stratum if and only
if the corresponding p-kernels are geometrically isomorphic. Such strata are called EO-
strata.

Fol In [8] we define in the same moduli spaces a foliation : moduli points are in the same leaf
if and only if the corresponding p-divisible groups are geometrically isomorphic; in this
way we obtain a foliation of every open Newton polygon stratum.

Fol ⊂ EO The observation X ∼= Y ⇒ X[p] ∼= Y [p] shows that any leaf in the second sense
is contained in precisely one stratum in the first sense; the main result of this paper,
“X is minimal if and only if X[p] is minimal”, shows that a stratum (in the first sense)
and a leaf (in the second sense) are equal if we are in the minimal, principally polarized
situation.

In this paper we consider p-divisible groups and finite group schemes over an algebraically
closed field k of characteristic p.

An apology. In (2.5) and in (3.5) we fix notations, used for the proof of (2.2), respectively
(3.1); according to the need, the notations in these two different cases are different. We hope
this difference in notations in Section 2 versus Section 3 will not cause confusion.
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Group schemes considered are supposed to be commutative. We use covariant Dieudonné
module theory. We write W = W∞(k) for the ring of infinite Witt vectors with coordinates
in k. Finite products in the category of W -modules are denoted “×” or by “

∏
”, while finite

products in the category of Dieudonné modules are denoted by “⊕”; for finite products of
p-divisible groups we use “×” or “

∏
”. We write F and V , as usual, for “Frobenius” and

“Verschiebung” on commutative group schemes; we write F = D(V ) and V = D(F ), see [7],
15.3, for the corresponding operations on Dieudonné modules.

Acknowledgments. Part of the work for this paper was done while visiting Université de Rennes, and

the Massachusetts Institute of Technology; I thank the Mathematics Departments of these universities for

hospitality and stimulating working environment. I thank Bas Edixhoven and Johan de Jong for discussions

on ideas necessary for this paper. I thank the referee for helpful, critical remarks.

1 Notations and the main result.

(1.1) Some definitions and notations.
Hm,n. We define the p-divisible group Hm,n over the prime field Fp in case m and n are
coprime non-negative integers, see [2], 5.2. This p-divisible group Hm,n is of dimension m, its
Serre-dual Xt is of dimension n, it is isosimple, and its endomorphism ring End(Hm,n ⊗ Fp)
is the maximal order in the endomorphism algebra End0(Hm,n ⊗ Fp) (and these properties
characterize this p-divisible group over Fp). We will use the notation Hm,n over any base S in
characteristic p, i.e. we write Hm,n instead of Hm,n ×Spec(Fp) S, if no confusion can occur.

The ring End(Hm,n ⊗ Fp) = R′ is commutative; write L for the field of fractions of R′.
Consider integers x, y such that for the coprime positive integers m and n we have x·m+y·n =
1. In L we define the element π = Fy·Vx ∈ L. Write h = m + n. Note that πh = p in L.
Here R′ ⊂ L is the maximal order, hence R′ integrally closed in L, and we conclude that
π ∈ R′. This element π will be called the uniformizer in this endomorphism ring. In fact,
W∞(Fp) = Zp, and R′ ∼= Zp[π]. In L we have:

m + n =: h, πh = p, F = πn, V = πm.

For a further description of π, of R = End(Hm,n⊗ k) and of D = End0(Hm,n⊗ k) see [2], 5.4;
note that End0(Hm,n⊗ k) is non-commutative if m > 0 and n > 0. Note that R is a “discrete
valuation ring” (terminology sometimes also used for non-commutative rings).

Newton polygons. Let β be a Newton polygon. By definition, in the notation used here,
this is a lower convex polygon in R2 starting at (0, 0), ending at (h, c) and having break points
with integral coordinates; it is given by h slopes in non-decreasing order; every slope λ is a
rational number, 0 ≤ λ ≤ 1.

To each ordered pair of nonnegative integers (m,n) we assign a set of m + n = h slopes
equal to n/(m + n); this Newton polygon ends at (h, c = n).

In this way a Newton polygon corresponds with a set of ordered pairs; such a set we denote
symbolically by

∑
i (mi, ni); conversely such a set determines a Newton polygon. Usually we

consider only coprime pairs (mi, ni); we write H(β) := ×i Hmi,ni in case β =
∑

i (mi, ni).
A p-divisible group X over a field of positive characteristic defines a Newton polygon where
h is the height of X and c is the dimension of its Serre-dual Xt. By the Dieudonné-Manin
classification, see [5], Th. 2.1 on page 32, we know: two p-divisible groups over an algebraically
closed field of positive characteristic are isogenous if and only if their Newton polygons are
equal.
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Definition. A p-divisible group X is called minimal if there exists a Newton polygon β and
an isomorphism Xk

∼= H(β)k, where k is an algebraically field.
Note that in every isogeny class of p-divisible groups over an algebraically closed field there

is precisely one minimal p-divisible group.

Truncated p-divisible groups. A finite group scheme G (finite and flat over some base,
but in this paper we will soon work over a field) is called a BT1, see [1], page 152, if G[F ] :=
KerFG = ImVG =: V (G) and G[V ] = F (G) (in particular this implies that G is annihilated
by p). Such group schemes over a perfect field appear as the p-kernel of a p-divisible group,
see [1], Prop. 1.7 on page 155. The abbreviation “BT1” stand for “1-truncated Barsotti-Tate
group”; the terms “p-divisible group” and “Barsotti-Tate group” indicate the same concept.

The Dieudonné module of a BT1 over a perfect field K is called a DM1; for G = X[p] we
have D(G) = D(X)/pD(X). In other terms: such a Dieudonné module M1 = D(X[p]) is a
finite dimensional vector space over K, on which F and V operate (with the usual relations),
with the property that M1[V] = F(M1) and M1[F ] = V(M1).

Definition. Let G be a BT1 group scheme; we say that G is minimal if there exists a Newton
polygon β such that Gk

∼= H(β)[p]k. A DM1 is called minimal if it is the Dieudonné module
of a minimal BT1.

(1.2) Theorem. Let X be a p-divisible group over an algebraically closed field k of charac-
teristic p. Let β be a Newton polygon. Then

X[p] ∼= H(β)[p] =⇒ X ∼= H(β).

In particular: if X1 and X2 are p-divisible groups over k, with X1[p] ∼= G ∼= X2[p], where G
is minimal, then X1

∼= X2.
Remark. We have no a priori condition on the Newton polygon of X, nor do we a priori
assume that X1 and X2 have the same Newton polygon.
Remark. In general an isomorphism ϕ1 : X[p] → H(β)[p] does not lift to an isomorphism
ϕ : X → H(β).

(1.3) Here is another way of explaining the result of this paper. Consider the map

[p] : {X | a p-divisible group}/ ∼=k −→ {G | a BT1}/ ∼=k, X 	→ X[p].

This map is surjective, e.g. see [1], 1.7; also see [7], 9.10.

• By results of this paper we know: For every Newton polygon β there is an isomorphism
class X := H(β) such that the fiber of the map [p] containing X consists of one element.

• For every X not isomorphic to some H(β) the fiber of [p] containing X is infinite; see
(4.1)

Convention. The slope λ = 0, given by the pair (1, 0), defines the p-divisible group G1,0 =
Gm[p∞], and its p-kernel is µp. The slope λ = 1, given by the pair (0, 1), defines the p-divisible
group G0,1 = Qp/Zp and its p-kernel is Z/pZ. These p-divisible groups and their p-kernels
split off naturally over a perfect field, see [6], 2.14. The theorem is obvious for these minimal
BT1 group schemes over an algebraically closed field. Hence it suffices to prove the theorem in
case all group schemes considered are of local-local type, i.e. all slopes considered are strictly
between 0 and 1; from now on we make this assumption.
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(1.4) We give already one explanation about notation and method of proof. Let m,n ∈ Z>0

be coprime. Start with Hm,n over Fp. Let Q′ = D(Hm,n ⊗ Fp). In the terminology of [2],
5.6 and Section 6, a semi-module of Hm,n equals [0,∞) = Z≥0. Choose a non-zero element
in Q′/πQ′, this is a one-dimensional vector space over Fp, and lift this element to A0 ∈ Q′.
Write Ai = πiA0 for every i ∈ Z>0. Note that

πAi = Ai+1, FAi = Ai+n, VAi = Ai+m.

Fix an algebraically closed field k; we write Q = D(Hm,n ⊗ k). Clearly Ai ∈ Q′ ⊂ Q, and the
same relations as given above hold. Note that {Ai | i ∈ Z≥0} generate Q as a W -module. The
fact that a semi-module of the minimal p-divisible group Hm,n does not contain “gaps” is the
essential (but sometimes hidden) argument in the proofs below.

The set {A0, · · · , Am+n−1} is a W -basis for Q. If m ≥ n we see that {A0, · · · , An−1}
is a set of generators for Q as a Dieudonné module; the structure of this Dieudonné mod-
ule can be described as follows; for this set of generators we consider another number-
ing {C1, · · · , Cn} = {A0, · · · , An−1} and we define positive integers γi by: C1 = A0 and
Fγ1C1 = VC2, · · · ,FγnCn = VC1 (note that we assume m ≥ n), which gives a “cyclic” set of
generators for Q/pQ in the sense of [3]. These notations will be repeated and explained more
in detail in (2.5) and (3.5).

2 A slope filtration

(2.1) We consider a Newton polygon β given by r1(m1, n1), · · · , rt(mt, nt); here r1, · · · , rt ∈
Z>0, and every (mj , nj) is an ordered pair of coprime positive integers; we write hj = mj +nj

and we suppose the ordering is chosen in such a way that λ1 := n1/h1 < · · · < λt := nt/ht.
Write

H := H(β) =
∏

1≤j≤t

(Hmj ,nj)
rj ; G := H(β)[p].

The following proposition uses this notation; suppose that t > 0.

(2.2) Proposition. Suppose X is a p-divisible group over an algebraically closed field k.
Suppose that X[p] ∼= H(β)[p]. Suppose that λ1 = n1/h1 ≤ 1/2. Then there exists a p-divisible
subgroup X1 ⊂ X and isomorphisms

X1
∼= (Hm1,n1)

r1 and (X/X1)[p] ∼=
∏
j>1

(Hmj ,nj [p])rj .

(2.3) Remark. The condition that X[p] is minimal is essential; e.g. it is easy to give an
example of a p-divisible group X which is isosimple, such that X[p] is decomposable; see [9].

(2.4) Corollary. For X with X[p] ∼= H(β)[p], with β as in (2.1), there exists a filtration by
p-divisible subgroups

X0 := 0 ⊂ X1 ⊂ · · · ⊂ Xt = X such that Xj/Xj−1
∼= (Hmj ,nj )

rj , for 1 ≤ j ≤ t.

Proof of the corollary. Assume by induction that the result has been proved for all p-
divisible groups where Y [p] = H(β′)[p] is minimal such that β′ has at most t − 1 different
slopes; induction starting at t − 1 = 0, i.e. Y = 0. If on the one hand the smallest slope of
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X is at most 1/2, the proposition gives 0 ⊂ X1 ⊂ X, and using the induction hypothesis on
Y = X/X1 we derive the desired filtration. If on the other hand all slopes of X are bigger
than 1/2, we apply the proposition to the Serre-dual of X, using the fact that the Serre-dual
of Hm,n is Hn,m; dualizing back we obtain 0 ⊂ Xt−1 ⊂ X, and using the induction hypothesis
on Y = Xt−1 we derive the desired filtration. Hence we see that the proposition gives the
induction step; this proves the corollary. �(2.2)⇒(2.4)

(2.5) We use notation as in (2.1) and (2.2), and we fix further notation which will be used
in the proof of (2.2).

Let M = D(X). We write Qj = D(Hmj ,nj). Hence

M/pM ∼=
⊕

1≤j≤t

(Qj/pQj)rj .

Using this isomorphism we construct a map

v : M −→ Q≥0 ∪ {∞}.

We use notation as in (1.1) and in (1.4). Let πj be the uniformizer of End(Qj). We choose
A

(j)
i,s ∈ Qj with i ∈ Z≥0 and 1 ≤ s ≤ rj (which generate Qj) such that πj ·A(j)

i,s = A
(j)
i+1,s,

F·A(j)
i,s = A

(j)
i+nj ,s and V·A(j)

i,s = A
(j)
i+mj ,s . We have Qj/pQj = ×0≤i<hj

k·(A(j)
i,s mod pQj). We

write
A

(j)
i = (A(j)

i,s | 1 ≤ s ≤ rj) ∈ (Qj)rj

for the vector with coordinate A
(j)
i,s in the summand on the s-th place.

For B ∈M we uniquely write

B mod pM = a =
∑

j, 0≤i<hj , 1≤s≤rj

b
(j)
i,s ·(A(j)

i,s mod pQj), b
(j)
i,s ∈ k;

if moreover B ∈ pM we define

v(B) = min
j, i, s, b

(j)
i,s �=0

i

hj
.

If B′ ∈ pβM and B′ ∈ pβ+1M we define v(B′) = β + v(p−β ·B′). We write v(0) = ∞. This
ends the construction of v : M −→ Q≥0 ∪ {∞}.

For any ρ ∈ Q we define
Mρ = {B | v(B) ≥ ρ};

note that pMρ ⊂Mρ+1. Let T be the least common multiple of h1, · · · , ht. Note that, in fact,
v : M −{0} → 1

T Z≥0. Note that, by construction, v(B) ≥ d ∈ Z if and only if pd divides B in
M . Hence ∩ρ→∞ Mρ = {0}.

The basic assumption X[p] ∼= H(β)[p] of (1.2) is:

M/pM =
⊕

1≤j≤t, 1≤s≤rj

∏
0≤i<hj

k·((A(j)
i,s mod pQj))
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(we write this isomorphism of Dieudonné modules as an equality). For 0 ≤ i < hj and
1 ≤ s ≤ rj we choose B

(j)
i,s ∈M such that:

B
(j)
i,s mod pM = A

(j)
i,s mod pQ

rj

j .

Define B
(j)
i+β·hj ,s = pβ·B(j)

i,s . By construction we have: v(B(j)
i,s ) = i/hj for all i ≥ 0, all j and all

s. Note that Mρ is generated over W = W∞(k) by all elements B
(j)
i,s with v(B(j)

i,s ) ≥ ρ. As a
short-hand we will write

B
(j)
i for the vector (B(j)

i,s | 1 ≤ s ≤ rj) ∈M rj .

We write P ⊂M for the sub-W -module generated by all B
(j)
i,s with j ≥ 2 and i < hj ; we write

N ⊂ M for the sub-W -module generated by all B
(1)
i,s with i < h1. Note that M = N × P , a

direct sum of W -modules. Note that Mρ = (N ∩Mρ)× (P ∩Mρ).

In the proof the W -submodule P ⊂ M will be fixed; its W -complement N ⊂ M will change
eventually if it is not already a Dieudonné submodule.

We write m1 = m, n1 = n, h = h1 = m+n, and r = r1. Note that we assumed 0 < λ1 ≤ 1/2,
hence m ≥ n > 0. For i ≥ 0 we define integers δi by:

i·h ≤ δi·n < i·m + (i + 1)·n = ih + n

and non-negative integers γi such that

δ0 = 0, δ1 = γ1 + 1, · · · , δi = γ1 + 1 + γ2 + 1 + · · ·+ γi + 1, · · · ;
note that δn = h = m + n; hence γ1 + · · · + γn = m. For 1 ≤ i ≤ n we write

f(i) = δi−1·n− (i− 1)·h;

this means that 0 ≤ f(i) < n is the remainder of dividing δi−1n by h; note that f(1) = 0. As
gcd(n, h) = 1 we see that

f : {1, · · · , n} → {0, · · · , n− 1}
is a bijective map. The inverse map f ′ is given by:

f ′ : {0, · · · , n− 1} → {1, · · · , n}, f ′(x) ≡ 1− x

h
(mod n), 1 ≤ f ′(x) ≤ n.

In (Q1)r we have the vectors A
(1)
i . We choose C ′1 := A

(1)
0 and we choose {C ′1, · · · , C ′n} =

{A(1)
0 , · · · , A(1)

n−1} by

C ′i := A
(1)
f(i), C ′f ′(x) = A(1)

x ;

this means that:

FγiC ′i = VC ′i+1, 1 ≤ i < n, FγnC ′n = VC ′1, hence FδiC ′1 = pi·C ′i+1, 1 ≤ i < n;

note that FhC ′1 = pn·C ′1. With these choices we see that

{F jC ′i | 1 ≤ i ≤ n, 0 ≤ j ≤ γi} = {A(1)
� | 0 ≤ � < h}.

For later reference we state:
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(2.6) Suppose Q is a nonzero Dieudonné module with an element C ∈ Q, such that there
exist coprime integers n and n + m = h as above such that Fh·C = pn·C and such that Q as
a W -module is generated by {p−[jn/h]F jC | 0 ≤ j < h}, then Q ∼= D(Hm,n).
This is proved by explicitly writing out the required isomorphism. Note that Fn is injective
on Q, hence Fh·C = pn·C implies Fm·C = Vn·C.

(2.7) Accordingly we choose Ci,s := B
(1)
f(i),s ∈M with 1 ≤ i ≤ n. Note that

{F jCi,s | 1 ≤ i ≤ n, 0 ≤ j ≤ γi 1 ≤ s ≤ r} is a W -basis for N,

FγiCi,s − VCi+1,s ∈ pM, 1 ≤ i < n, FγnCn,s − VC1,s ∈ pM.

We write Ci = (Ci,s | 1 ≤ s ≤ r). As a reminder, we sum up some of the notation constructed:

N ⊂M
⊕

j (Qj)rj⏐⏐�
⏐⏐�

M/pM =
⊕

j (Qj/pQj)rj ,

B
(j)
i,s ∈M A

(j)
i,s ∈ Qj ⊂ (Qj)rj

Ci,s ∈ N C ′i,s ∈ Q1 ⊂ (Q1)r1 .

(2.8) Lemma. Use the notation fixed up to now.
(1) For every ρ ∈ Q≥0 the map p : Mρ →Mρ+1, multiplication by p, is surjective.
(2) For every ρ ∈ Q≥0 we have FMρ ⊂Mρ+(n/h).

(3) For every i and s we have FB
(1)
i,s ∈ M(i+n)/h; for every i and s and every j > 1 we have

FB
(j)
i,s ∈M(i/hj )+(n/h)+(1/T ).

(4) For every 1 ≤ i ≤ n we have FδiC1 − piB
(1)
f(i+1) ∈ (Mi+(1/T ))r; moreover FδnC1 − pnC1 ∈

(Mn+(1/T ))r.
(5) If u is an integer with u > Tn, and ξN ∈ (N ∩Mu/T )r, there exists

ηN ∈ N ∩ (M(u/T )−n)r such that (Fh − pn)ηN ≡ ξN (mod (M(u+1)/T )r).

Proof. We know that Mρ+1 is generated by the elements B
(j)
i,s with i/hj ≥ ρ + 1; because

ρ ≥ 0 such elements satisfy i ≥ hj . Note that p·B(j)
i−hj ,s = B

(j)
i,s . This proves the first property.

�(1)

At first we show FM ⊂Mn/h. Note that for all 1 ≤ j ≤ t and all β ∈ Z≥0

βhj ≤ i < βhj + mj ⇒ FB
(j)
i = B

(j)
i+nj

, (∗)

and

βhj + mj ≤ i < (β + 1)hj ⇒ B
(j)
i = VB

(j)
i−mj

+ p(β+1)ξ, ξ ∈M rj . (∗∗)

from these properties, using n/h ≤ nj/hj we conclude: FM ⊂Mn/h.
Further we see: by (∗) we have

v(FB
(j)
i,s ) = v(B(j)

i+nj ,s) = (i + nj)/hj ,
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and
i + nj

hj
=

i + n

h
if j = 1;

i + nj

hj
>

i

hj
+

n

h
if j > 1.

By (∗∗) it suffices to consider only mj ≤ i < hj, and hence FB
(j)
i,s = pB

(j)
i−mj ,s + pFξ; so we

have
v(FB

(j)
i,s ) ≥ min

(
v(pB

(j)
i−mj ,s), v(pFξs)

)
;

for j = 1 we have v(pB
(1)
i−m1,s) = (i + n)/h ≥ 1 and v(pFξ) ≥ 1 + (n/h) > (i/h) + (n/h); for

j > 1 we have v(pB
(j)
i−mj ,s) > (i/hj) + (n/h) and (i/hj) + (n/h) < 1 + (n/h) ≤ v(pFξs); hence

v(FB
(j)
i,s )) > (i/hj) + (n/h) if j > 1. This ends the proof of (3). Using (3) we see that (2)

follows. �(2)+(3)

From FγiCi = VCi+1 + pξi for i < n and FγnCn = VC1 + pξn, here ξi ∈ M r for i ≤ n, we
conclude:

FδiC1 = piCi+1 +
∑

1≤�≤i p�Fδi−δ�Fξ�, i < n,

and the analogous fomula for i = n (write Cn+1 = C1). Note that

ih ≤ δin and δ�n < �m + (� + 1)n = �h + n;

this shows that
�h + (δi − δ�)n + n > ih;

using (2) we conclude (4). �(4)

Note that h = h1 divides T . If � is an integer such that (� − 1)/h < u/T < �/h then
u < u + 1 ≤ �T

h ; in this case we see that N ∩Mu/T = N ∩M(u+1)/T . In this case we choose
ηN = 0.

Suppose that � is an integer with u/T = �/h. Then N ∩Mu/T = N�/h ⊃ N(�+1)/h =
N ∩M(u+1)/T . We consider the image of N ∩M(�/h)−n under Fh− pn. We see, using previous
results, that this image is in N�/h + M(u+1)/T (here “+” stands for the span as W -modules).
We obtain a factorization and an isomorphism

Fh − pn : N ∩M(�/h)−n −→
(
N�/h + M(u+1)/T

)
/M(u+1)/T

∼= N�/h/N(�+1)/h.

We claim that this map is surjective. The factor space N�/h/N(�+1)/h is a vector space over k

spanned by the residue classes of the elements B
(1)
�,s . For the residue class of ysB

(1)
�,s we solve

the equation xpn

s −xs = ys in k; lifting these xs to W (denoting the lifts by the same symbol),
we see that ηN :=

∑
s xsB

(1)
�−nh,s has the required properties. This proves the claim, and it

gives a proof of part (5) of the lemma. �(5),(2.8)

(2.9) Lemma (the induction step). Let u ∈ Z with u ≥ nT + 1. Suppose D1 ∈ M r such
that D1 ≡ C1 (mod (M1/T )r), and such that ξ := FhD1 − pnD1 ∈ (Mu/T )r. Then there
exists η ∈ (M(u/T )−n)r such that for E1 := D1 − η we have FhE1 − pnE1 ∈ (M(u+1)/T )r and
E1 ≡ C1 (mod (M1/T )r).
Proof. We write ξ = ξN + ξP according to M = N ×P . We conclude that ξN ∈ (N ∩Mu/T )r

and ξP ∈ (P ∩Mu/T )r. Using (2.8), (5), we construct ηN ∈ (N ∩M1/T )r such that
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(Fh − pn)ηN ≡ ξN (mod (M(u+1)/T )r). As Mu/T ⊂ Mn we can choose ηP := −p−nξP ; we
have ηP ∈M r

(u/T )−n ⊂ (M1/T )r. With η := ηN + ηP we see that

(Fh − pn)η ≡ ξ (mod (M(u+1)/T )r) and η ∈ (M1/T )r.

Hence (Fh − pn)(D1 − η) ∈ (M(u+1)/T )r and we see that E1 := D1 − η has the required
properties. This proves the lemma.

�(2.9)

(2.10) Proof of (2.2). (1) There exists E1 ∈M r such that (Fh − pn)E1 = 0 and E1 ≡ C1

(mod (M1/T )r).
Proof. For u ∈ Z≥nT+1 we write D1(u) ∈M r for a vector such that

D1(u) ≡ C1 (mod (M1/T ) and FhD1(u)− pnD1(u) ∈ (Mu/T )r.

By (2.8), (4), the vector C1 =: D1(nT + 1) satifies this condition for u = nT + 1. Here we
start induction. By repeated application of (2.9) we conclude there exists a sequence

{D1(u) | u ∈ Z≥nT+1} such that D1(u)−D1(u + 1) ∈ (M(u/T )−n)r

satisfying the conditions above. As ∩ρ→∞ Mρ = {0} this sequence converges. Writing
E1 := D1(∞) we achieve the conclusion. �(1)

(2) Choose E1 as in (1). For every j ≥ 0 we have

p−[ jn
h

]F jE1 ∈M ; define N ′ :=
∏

1≤j<h

W ·p−[ jn
h

]F jE1 ⊂M.

This is a Dieudonné submodule and it is a W -module direct summand of M . Moreover there
is an isomorphism

D((Hm,n)r) ∼= N ′,

the map N ′
∏

P → N ′+P is an isomorphism of W -modules, and N ′+P = M . This constructs
X1 ⊂ X, with

D(X1 ⊂ X) = (N ′ ⊂M) such that (X/X1)[p] ∼=
∏
j>1

(Mmj ,nj)
rj .

Proof. By (2.8), (2), we see that F jE1 ∈ M[jn/h], hence the first statement follows. As
FhE1 = pnE1 it follows that N ′ ⊂ M is a Dieudonné submodule; using (2.6) this shows
D((Hm,n)r) ∼= N ′.
Claim. The images N ′ � N ′ ⊗ k = N ′/pN ′ ⊂ M/pM and P � P/pP ⊂ M/pM inside
M/pM have zero intersection and N ′ ⊗ k + P ⊗ k = M/pM . Here we write −⊗ k =
−⊗W (W/pW ).
For y ∈ Z≥0 we write g(y) := yn− h·[yn

h ]; note that, in the notation in (2.5), we have

p−[ jn
h

]F jC ′1 = A
(1)
g(j).

Suppose

τ :=
∑

0≤j<h

βj,sp
−[ jn

h
]F j ·(E1,s mod pM) ∈ (

N ′ ⊗ k ∩ P ⊗ k
) ⊂M/pM, βj ∈ k

9



such that τ = 0. Let x, s be a pair of indices such that β := βx,s = 0 and for every y with
g(y) < g(x) we have βy,s = 0. Project inside M/pM on the factor Ns. Then

τs ≡ β·B(1)
g(x),s (mod M g(x)

h
+ 1

T

+ P ),

which is a contradiction with the fact that N ∩P = 0 and with the fact that the residue class
of

B
(1)
g(x),s generates

(
(M g(x)

h

+ P )/(M g(x)
h

+ 1
T

+ P )
)
s = N g(x)

h
,s
/N g(x)

h
+ 1

h
,s
.

We see that τ = 0 leads to a contradiction. This shows that N ′ ⊗ k ∩ P ⊗ k = 0 and
N ′ ⊗ k + P ⊗ k = M/pM . Hence the claim is proved.

As (N ′ ∩P )⊗ k ⊂ N ′⊗ k∩P ⊗ k = 0 this shows (N ′ ∩P )⊗ k = 0. By Nakayama’s lemma
this implies N ′ ∩ P = 0. The proof of the remaining statements follows, in particular we see
that N ′ is a W -module direct summand of M . This finishes the proof of (2), and it ends the
proof of the proposition. �(2.2)

3 Split extensions and proof of the theorem

In this section we prove a proposition on split extensions. We will see that Theorem (1.2)
follows.

(3.1) Proposition. Let (m,n) and (d, e) be ordered pairs of pairwise coprime positive
integers. Suppose that n/(m + n) < e/(d + e). Let

0→ Z := Hm,n −→ T −→ Y := Hd,e → 0

be an exact sequence of p-divisible groups such that the induced sequence of the p-kernels spits:

0→ Z[p] ←−→ T [p] ←−→ Y [p]→ 0.

Then the sequence of p-divisible groups splits: T ∼= Z ⊕ Y .

(3.2) Remark. It is easy to give examples of a non-split extension T/Z ∼= Y of p-divisible
groups, with Z non-minimal or Y non-minimal, such that the extension T [p]/Z[p] ∼= Y [p] does
split.

(3.3) Proof of (1.2). The theorem follows from (2.4) and (3.1). �(1.2)

(3.4) In order to show (3.1) it suffices to prove (3.1) under the extra condition that 1
2 ≤

e/(d + e).
In fact, if n/(m + n) < e/(d + e) < 1

2 , we consider the exact sequence

0→ Ht
d,e = He,d −→ T t −→ Ht

m,n = Hn,m → 0

with 1
2 < d/(e + d) < m/(n + m). �(3.4)

From now on we assume that 1
2 ≤ e/(d + e).
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(3.5) We fix notation which will be used in the proof of (3.1). We write the Dieudonné
modules as: D(Z) = N , D(T ) = M and D(Y ) = Q; we obtain an exact sequence of Dieudonné
modules M/N = Q, which is a split exact sequence of W -modules, where W = W∞(k). We
write m+n = h and d+e = g. We know that Q is generated by elements Ai, with i ∈ Z≥0 such
that π(Ai) = Ai+1, where π ∈ End(Q) is the uniformizer, and V·Ai = Ai+d, F·Ai = Ai+e;
we know that {Ai | 0 ≤ i < g = d + e} is a W -basis for Q. Because 1

2 ≤ e/(d + e), hence
e ≥ d we can choose generators for the Dieudonné module Q in the following way. We choose
integers δi by:

i·g ≤ δi·d < (i + 1)·d + i·e = ig + d

and integers γi such that:

δ1 = γ1 + 1, · · · , δi = γ1 + 1 + γ2 + 1 + · · ·+ γi + 1;

note that δd = g = d + e. We choose C = A0 = C1 and {C1, · · · , Cd} = {A0, · · · , Ad−1} such
that:

VγiCi = FCi+1, 1 ≤ i < d, VγdCd = FC1, hence VδiC = pi·Ci+1, 1 ≤ i < d;

note that VgC = pd·C. With these choices we see that

{p−[ jd
g

]VjC | 0 ≤ j < g} = {VjCi | 1 ≤ i ≤ d, 0 ≤ j ≤ γi} = {A� | 0 ≤ � < g}.

Choose an element B = B1 ∈M such that

M −→ Q gives B1 = B 	→ (B mod N) = C = C1.

Let π′ be the uniformizer of End(N). Consider the filtration N = N (0) ⊃ · · · ⊃ N (i) ⊃
N (i+1) ⊃ · · · defined by (π′)i(N (0)) = N (i). Note that FN (i) = N (i+n), and VN (i) = N (i+m),
and piN = N (i·h) for i ≥ 0.

(3.6) Proof of (3.1).
(1) Construction of {B1, · · · , Bd}. For every choice of B = B1 ∈ M with (B mod N) = C,
and every 1 ≤ i < d we claim that VδiB is divisible by pi. Defining Bi+1 := p−iVδiB, we see
that Bi mod N = Ci for 1 ≤ i ≤ d. Moreover we claim:

VgB − pd·B ∈ N (dh+1).

Choose B′′i ∈M with B′′i mod N = Ci. Then VγiB′′i −FB′′i+1 =: p·ξi ∈ pN ; hence Vγi+1B′′i −
p·B′′i+1 = pVξi ∈ pVN . For 1 < i ≤ d we obtain that

VδiB − pi·B =
∑

1≤j<i

Vδi−δjpjVξj, ξj ∈ N.

From n/(m + n) < e/(d + e) we conclude g/d > h/m; using δi·d ≥ ig and δjd < (j + 1)d + je
we see:

i > j implies δi − δj + 1 > (i− j)(g/d) > (i− j)(h/m);

hence
(δi − δj)m + j(m + n) + m > ih;

This shows
Vδi−δjpjVξj ∈ piN (1).

11



As δd = g we see that VgB − pd·B ∈ pdN (1) = N (dh+1). �(1)

(2) The induction step. Suppose that for a choice B ∈M with (B mod N) = C, there exists
an integer s ≥ dh + 1 such that VgB − pd·B ∈ N (s); then there exists a choice B′ ∈ M such
that B′ −B ∈ N (s−dh) and

VgB′ − pd·B′ ∈ N (s+1).

In fact, write pd·B − VgB = pd·ξ. Then ξ ∈ N (s−dh). Choose B′ := B − ξ. Then:

VgB′ − pd·B′ = VgB − pd·B − Vgξ + pdξ = −Vgξ ∈ N (gm−dh+s);

note that gm− dh > 0. �(2)

(3) For any integer r ≥ d + 1, and w ≥ rh there exists B = B1 as in (3.5) such that
VgB − pdB ∈ N (w) = pr·N (w−rh). This gives a homomorphism ϕr−d

M/pr−dM ←− Q/pr−dQ extending M/pM ←− Q/pQ.

The induction step (2) proves the first statement, induction starting at w = (d+1)h > dh+1.
Having chosen B1, using (1) we construct Bi+1 := p−iVδiB1 for 1 ≤ i < d. In that case on
the one hand VγdBd − FB1 = p·ξd, on the other hand VgB − pdB ∈ N (w) ⊂ prN . Hence
pdVξd ∈ prN ; hence pξd ∈ pr−dN . This shows that the residue classes of B1, · · · , Bd in
M/pr−dM generate a Dieudonné module isomorphic to Q/pr−dQ which moreover by (3.5)
extends the given isomorphism induced by the splitting. �(3)

By [8], 1.6 we see that for some large r the existence of M/pr−dM ←− Q/pr−dQ as in (3)
shows that its restriction M/pM ←− Q/pQ lifts to a homomorphism ϕ of Dieudonné modules
M ← Q; in that case ϕ1 is injective. Hence ϕ splits the extension M/N ∼= Q. Taking into
account (3.4) this proves the proposition. �(3.1)

Remark. Instead of the last step of the proof above, we could construct an infinite sequence
{B(u) | u ∈ Z(d+1)h} such that VgB(u)− pdB ∈ N (u) and B(u + 1) − B(u) ∈ N (u−dh) for all
u ≥ (d + 1)h. This sequence converges and its limit B(∞) can be used to define the required
section.

4 Some comments

(4.1) Remark. For any G, a BT1 over k, which is not minimal there exist infinitely many
mutually non-isomorphic p-divisible groups X over k such that X[p] ∼= G. Details will appear
in a later publication, see [9].

(4.2) Remark. Suppose that G is a minimal BT1; we can recover the Newton polygon β
with the property H(β)[p] ∼= G from G. This follows from the theorem, but there are also
other ways to prove this fact.

(4.3) For BT1 group schemes we can define a Newton polygon; let G be a BT1 group scheme
over k, and let G = ×i Gi be a decomposition into indecomposable ones, see [3]. Let Gi be
of rank phi , and let ni be the dimension of the tangent space of GD

i ; here GD
i stands for

the Cartier dual of Gi; define N ′(Gi) as the isoclinic polygon consisting of hi slopes equal to
ni/hi; arranging the slopes in non-decreasing order, we have defined N ′(G). For a p-divisible
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group X we compare N (X) and N ′(X[p]). These polygons have the same endpoints. If X is
minimal, equivalently X[p] is minimal, then N (X) = N ′(X[p]). Besides this I do not see rules
describing the relation between N (X) and N ′(X[p]). For Newton polygons β and γ with the
same endpoints we write β ≺ γ if every point of β is on or below γ. Note:

• There exists a p-divisible group X such that N (X) � N ′(X[p]); indeed, choose X
isosimple, hence N (X) isoclinic, such that X[p] is decomposable.

• There exists a p-divisible group X such that N (X) � N ′(X[p]); indeed, choose X such
that N (X) is not isoclinic, hence X not isosimple, all slopes strictly between 0 and 1
and a(X) = 1; then X[p] is indecomposable, hence N ′(X[p]) is isoclinic.

Here we use a(X) := dimkHom(αp,X). It could be useful to have better insight in the relation
between various properties of X and X[p].
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