Minimal p-divisible groups

Frans Oort

Version 21-V-2004

Introduction. A *p*-divisible group X can be seen as a tower of building blocks, each of which is isomorphic to the same finite group scheme X[p]. Clearly, if X_1 and X_2 are isomorphic then $X_1[p] \cong X_2[p]$; however, conversely $X_1[p] \cong X_2[p]$ does in general not imply that X_1 and X_2 are isomorphic. Can we give, over an algebraically closed field in characteristic p, a condition on the *p*-kernels which ensures this converse? Here are two known examples of such a condition: consider the case that X is *ordinary*, or the case that X is *superspecial* (X is the *p*-divisible group of a product of supersingular elliptic curves); in these cases the *p*-kernel uniquely determines X.

These are special cases of a surprisingly complete and simple answer:

if G is "minimal", then
$$X_1[p] \cong G \cong X_2[p]$$
 implies $X_1 \cong X_2$,

see (1.2); for a definition of "minimal" see (1.1). This is "necessary and sufficient" in the sense that for any G that is *not minimal* there exist infinitely many mutually non-isomorphic p-divisible groups with p-kernel isomorphic to G; see (4.1).

Remark (motivation). You might wonder why this is interesting.

- **EO** In [7] we have defined a natural *stratification* of the moduli space of polarized abelian varieties in positive characteristic: moduli points are in the same stratum if and only if the corresponding p-kernels are geometrically isomorphic. Such strata are called EO-strata.
- Fol In [8] we define in the same moduli spaces a *foliation* : moduli points are in the same leaf if and only if the corresponding p-divisible groups are geometrically isomorphic; in this way we obtain a foliation of every open Newton polygon stratum.
- Fol \subset EO The observation $X \cong Y \Rightarrow X[p] \cong Y[p]$ shows that any leaf in the second sense is contained in precisely one stratum in the first sense; the main result of this paper, "X is minimal if and only if X[p] is minimal", shows that a stratum (in the first sense) and a leaf (in the second sense) are equal if we are in the minimal, principally polarized situation.

In this paper we consider p-divisible groups and finite group schemes over an *algebraically* closed field k of characteristic p.

An apology. In (2.5) and in (3.5) we fix notations, used for the proof of (2.2), respectively (3.1); according to the need, the notations in these two different cases are different. We hope this difference in notations in Section 2 versus Section 3 will not cause confusion.

Group schemes considered are supposed to be commutative. We use *covariant* Dieudonné module theory. We write $W = W_{\infty}(k)$ for the ring of infinite Witt vectors with coordinates in k. Finite products in the category of W-modules are denoted "×" or by " \prod ", while finite products in the category of Dieudonné modules are denoted by " \oplus "; for finite products of p-divisible groups we use "×" or " \prod ". We write F and V, as usual, for "Frobenius" and "Verschiebung" on commutative group schemes; we write $\mathcal{F} = \mathbb{D}(V)$ and $\mathcal{V} = \mathbb{D}(F)$, see [7], 15.3, for the corresponding operations on Dieudonné modules.

Acknowledgments. Part of the work for this paper was done while visiting Université de Rennes, and the Massachusetts Institute of Technology; I thank the Mathematics Departments of these universities for hospitality and stimulating working environment. I thank Bas Edixhoven and Johan de Jong for discussions on ideas necessary for this paper. I thank the referee for helpful, critical remarks.

1 Notations and the main result.

(1.1) Some definitions and notations.

 $H_{m,n}$. We define the *p*-divisible group $H_{m,n}$ over the prime field \mathbb{F}_p in case *m* and *n* are coprime non-negative integers, see [2], 5.2. This *p*-divisible group $H_{m,n}$ is of dimension *m*, its Serre-dual X^t is of dimension *n*, it is isosimple, and its endomorphism ring $\operatorname{End}(H_{m,n} \otimes \overline{\mathbb{F}_p})$ is the maximal order in the endomorphism algebra $\operatorname{End}^0(H_{m,n} \otimes \overline{\mathbb{F}_p})$ (and these properties characterize this *p*-divisible group over $\overline{\mathbb{F}_p}$). We will use the notation $H_{m,n}$ over any base *S* in characteristic *p*, i.e. we write $H_{m,n}$ instead of $H_{m,n} \times_{\operatorname{Spec}(\mathbb{F}_p)} S$, if no confusion can occur.

The ring $\operatorname{End}(H_{m,n} \otimes \mathbb{F}_p) = R'$ is commutative; write L for the field of fractions of R'. Consider integers x, y such that for the coprime positive integers m and n we have $x \cdot m + y \cdot n =$ 1. In L we define the element $\pi = \mathcal{F}^y \cdot \mathcal{V}^x \in L$. Write h = m + n. Note that $\pi^h = p$ in L. Here $R' \subset L$ is the maximal order, hence R' integrally closed in L, and we conclude that $\pi \in R'$. This element π will be called the uniformizer in this endomorphism ring. In fact, $W_{\infty}(\mathbb{F}_p) = \mathbb{Z}_p$, and $R' \cong \mathbb{Z}_p[\pi]$. In L we have:

$$m+n=:h, \ \pi^h=p, \ \mathcal{F}=\pi^n, \ \mathcal{V}=\pi^m.$$

For a further description of π , of $R = \text{End}(H_{m,n} \otimes k)$ and of $D = \text{End}^0(H_{m,n} \otimes k)$ see [2], 5.4; note that $\text{End}^0(H_{m,n} \otimes k)$ is non-commutative if m > 0 and n > 0. Note that R is a "discrete valuation ring" (terminology sometimes also used for non-commutative rings).

Newton polygons. Let β be a Newton polygon. By definition, in the notation used here, this is a lower convex polygon in \mathbb{R}^2 starting at (0,0), ending at (h,c) and having break points with integral coordinates; it is given by h slopes in non-decreasing order; every slope λ is a rational number, $0 \leq \lambda \leq 1$.

To each ordered pair of nonnegative integers (m, n) we assign a set of m + n = h slopes equal to n/(m+n); this Newton polygon ends at (h, c = n).

In this way a Newton polygon corresponds with a set of ordered pairs; such a set we denote symbolically by $\sum_i (m_i, n_i)$; conversely such a set determines a Newton polygon. Usually we consider only coprime pairs (m_i, n_i) ; we write $H(\beta) := \times_i H_{m_i,n_i}$ in case $\beta = \sum_i (m_i, n_i)$. A *p*-divisible group X over a field of positive characteristic defines a Newton polygon where *h* is the height of X and *c* is the dimension of its Serre-dual X^t . By the Dieudonné-Manin classification, see [5], Th. 2.1 on page 32, we know: two *p*-divisible groups over an algebraically closed field of positive characteristic are isogenous if and only if their Newton polygons are equal. **Definition.** A p-divisible group X is called minimal if there exists a Newton polygon β and an isomorphism $X_k \cong H(\beta)_k$, where k is an algebraically field.

Note that in every isogeny class of p-divisible groups over an algebraically closed field there is precisely one minimal p-divisible group.

Truncated *p*-divisible groups. A finite group scheme *G* (finite and flat over some base, but in this paper we will soon work over a field) is called a BT₁, see [1], page 152, if $G[F] := \text{Ker}F_G = \text{Im}V_G =: V(G)$ and G[V] = F(G) (in particular this implies that *G* is annihilated by *p*). Such group schemes over a perfect field appear as the *p*-kernel of a *p*-divisible group, see [1], Prop. 1.7 on page 155. The abbreviation "BT₁" stand for "1-truncated Barsotti-Tate group"; the terms "*p*-divisible group" and "Barsotti-Tate group" indicate the same concept.

The Dieudonné module of a BT₁ over a perfect field K is called a DM₁; for G = X[p] we have $\mathbb{D}(G) = \mathbb{D}(X)/p\mathbb{D}(X)$. In other terms: such a Dieudonné module $M_1 = \mathbb{D}(X[p])$ is a finite dimensional vector space over K, on which \mathcal{F} and \mathcal{V} operate (with the usual relations), with the property that $M_1[\mathcal{V}] = \mathcal{F}(M_1)$ and $M_1[\mathcal{F}] = \mathcal{V}(M_1)$.

Definition. Let G be a BT₁ group scheme; we say that G is minimal if there exists a Newton polygon β such that $G_k \cong H(\beta)[p]_k$. A DM₁ is called minimal if it is the Dieudonné module of a minimal BT₁.

(1.2) Theorem. Let X be a p-divisible group over an algebraically closed field k of characteristic p. Let β be a Newton polygon. Then

$$X[p] \cong H(\beta)[p] \implies X \cong H(\beta).$$

In particular: if X_1 and X_2 are p-divisible groups over k, with $X_1[p] \cong G \cong X_2[p]$, where G is minimal, then $X_1 \cong X_2$.

Remark. We have no a priori condition on the Newton polygon of X, nor do we a priori assume that X_1 and X_2 have the same Newton polygon.

Remark. In general an isomorphism $\varphi_1 : X[p] \to H(\beta)[p]$ does not lift to an isomorphism $\varphi : X \to H(\beta)$.

(1.3) Here is another way of explaining the result of this paper. Consider the map

 $[p]: \{X \mid a \text{ p-divisible group}\} / \cong_k \longrightarrow \{G \mid a BT_1\} / \cong_k, \qquad X \mapsto X[p].$

This map is surjective, e.g. see [1], 1.7; also see [7], 9.10.

- By results of this paper we know: For every Newton polygon β there is an isomorphism class $X := H(\beta)$ such that the fiber of the map [p] containing X consists of one element.
- For every X not isomorphic to some $H(\beta)$ the fiber of [p] containing X is infinite; see (4.1)

Convention. The slope $\lambda = 0$, given by the pair (1,0), defines the *p*-divisible group $G_{1,0} = \mathbb{G}_m[p^{\infty}]$, and its *p*-kernel is μ_p . The slope $\lambda = 1$, given by the pair (0,1), defines the *p*-divisible group $G_{0,1} = \underline{\mathbb{Q}_p}/\mathbb{Z}_p$ and its *p*-kernel is $\underline{\mathbb{Z}}/p\mathbb{Z}$. These *p*-divisible groups and their *p*-kernels split off naturally over a perfect field, see [6], 2.14. The theorem is obvious for these minimal BT₁ group schemes over an algebraically closed field. Hence it suffices to prove the theorem in case all group schemes considered are of local-local type, i.e. all slopes considered are strictly between 0 and 1; from now on we make this assumption.

(1.4) We give already one explanation about notation and method of proof. Let $m, n \in \mathbb{Z}_{>0}$ be coprime. Start with $H_{m,n}$ over \mathbb{F}_p . Let $Q' = \mathbb{D}(H_{m,n} \otimes \mathbb{F}_p)$. In the terminology of [2], 5.6 and Section 6, a semi-module of $H_{m,n}$ equals $[0, \infty) = \mathbb{Z}_{\geq 0}$. Choose a non-zero element in $Q'/\pi Q'$, this is a one-dimensional vector space over \mathbb{F}_p , and lift this element to $A_0 \in Q'$. Write $A_i = \pi^i A_0$ for every $i \in \mathbb{Z}_{>0}$. Note that

$$\pi A_i = A_{i+1}, \quad \mathcal{F}A_i = A_{i+n}, \quad \mathcal{V}A_i = A_{i+m}.$$

Fix an algebraically closed field k; we write $Q = \mathbb{D}(H_{m,n} \otimes k)$. Clearly $A_i \in Q' \subset Q$, and the same relations as given above hold. Note that $\{A_i \mid i \in \mathbb{Z}_{\geq 0}\}$ generate Q as a W-module. The fact that a semi-module of the minimal p-divisible group $H_{m,n}$ does not contain "gaps" is the essential (but sometimes hidden) argument in the proofs below.

The set $\{A_0, \dots, A_{m+n-1}\}$ is a *W*-basis for *Q*. If $m \ge n$ we see that $\{A_0, \dots, A_{n-1}\}$ is a set of generators for *Q* as a Dieudonné module; the structure of this Dieudonné module can be described as follows; for this set of generators we consider another numbering $\{C_1, \dots, C_n\} = \{A_0, \dots, A_{n-1}\}$ and we define positive integers γ_i by: $C_1 = A_0$ and $\mathcal{F}^{\gamma_1}C_1 = \mathcal{V}C_2, \dots, \mathcal{F}^{\gamma_n}C_n = \mathcal{V}C_1$ (note that we assume $m \ge n$), which gives a "cyclic" set of generators for Q/pQ in the sense of [3]. These notations will be repeated and explained more in detail in (2.5) and (3.5).

2 A slope filtration

(2.1) We consider a Newton polygon β given by $r_1(m_1, n_1), \dots, r_t(m_t, n_t)$; here $r_1, \dots, r_t \in \mathbb{Z}_{>0}$, and every (m_j, n_j) is an ordered pair of coprime positive integers; we write $h_j = m_j + n_j$ and we suppose the ordering is chosen in such a way that $\lambda_1 := n_1/h_1 < \dots < \lambda_t := n_t/h_t$. Write

$$H := H(\beta) = \prod_{1 \le j \le t} (H_{m_j, n_j})^{r_j}; \quad G := H(\beta)[p].$$

The following proposition uses this notation; suppose that t > 0.

(2.2) **Proposition.** Suppose X is a p-divisible group over an algebraically closed field k. Suppose that $X[p] \cong H(\beta)[p]$. Suppose that $\lambda_1 = n_1/h_1 \le 1/2$. Then there exists a p-divisible subgroup $X_1 \subset X$ and isomorphisms

$$X_1 \cong (H_{m_1,n_1})^{r_1}$$
 and $(X/X_1)[p] \cong \prod_{j>1} (H_{m_j,n_j}[p])^{r_j}.$

(2.3) Remark. The condition that X[p] is *minimal* is essential; e.g. it is easy to give an example of a p-divisible group X which is isosimple, such that X[p] is decomposable; see [9].

(2.4) Corollary. For X with $X[p] \cong H(\beta)[p]$, with β as in (2.1), there exists a filtration by p-divisible subgroups

$$X_0 := 0 \subset X_1 \subset \cdots \subset X_t = X \quad such \ that \quad X_j / X_{j-1} \cong (H_{m_j, n_j})^{r_j}, \quad for \quad 1 \le j \le t.$$

Proof of the corollary. Assume by induction that the result has been proved for all *p*-divisible groups where $Y[p] = H(\beta')[p]$ is minimal such that β' has at most t - 1 different slopes; induction starting at t - 1 = 0, i.e. Y = 0. If on the one hand the smallest slope of

X is at most 1/2, the proposition gives $0 \subset X_1 \subset X$, and using the induction hypothesis on $Y = X/X_1$ we derive the desired filtration. If on the other hand all slopes of X are bigger than 1/2, we apply the proposition to the Serre-dual of X, using the fact that the Serre-dual of $H_{m,n}$ is $H_{n,m}$; dualizing back we obtain $0 \subset X_{t-1} \subset X$, and using the induction hypothesis on $Y = X_{t-1}$ we derive the desired filtration. Hence we see that the proposition gives the induction step; this proves the corollary. $\Box(2.2) \Rightarrow (2.4)$

(2.5) We use notation as in (2.1) and (2.2), and we fix further notation which will be used in the proof of (2.2).

Let $M = \mathbb{D}(X)$. We write $Q_j = \mathbb{D}(H_{m_j,n_j})$. Hence

$$M/pM \cong \bigoplus_{1 \le j \le t} (Q_j/pQ_j)^{r_j}.$$

Using this isomorphism we construct a map

$$v: M \longrightarrow \mathbb{Q}_{\geq 0} \cup \{\infty\}.$$

We use notation as in (1.1) and in (1.4). Let π_j be the uniformizer of $\operatorname{End}(Q_j)$. We choose $A_{i,s}^{(j)} \in Q_j$ with $i \in \mathbb{Z}_{\geq 0}$ and $1 \leq s \leq r_j$ (which generate Q_j) such that $\pi_j \cdot A_{i,s}^{(j)} = A_{i+1,s}^{(j)}$, $\mathcal{F} \cdot A_{i,s}^{(j)} = A_{i+n_j,s}^{(j)}$ and $\mathcal{V} \cdot A_{i,s}^{(j)} = A_{i+m_j,s}^{(j)}$. We have $Q_j/pQ_j = \times_{0 \leq i < h_j} k \cdot (A_{i,s}^{(j)} \mod pQ_j)$. We write

$$A_i^{(j)} = (A_{i,s}^{(j)} \mid 1 \le s \le r_j) \in (Q_j)^{r_j}$$

for the vector with coordinate $A_{i,s}^{(j)}$ in the summand on the s-th place.

For $B \in M$ we uniquely write

$$B \mod pM = a = \sum_{j, \ 0 \le i < h_j, \ 1 \le s \le r_j} b_{i,s}^{(j)} \cdot (A_{i,s}^{(j)} \mod pQ_j), \quad b_{i,s}^{(j)} \in k;$$

if moreover $B \notin pM$ we define

$$v(B) = \min_{j, i, s, b_{i,s}^{(j)} \neq 0} \frac{i}{h_j}.$$

If $B' \in p^{\beta}M$ and $B' \notin p^{\beta+1}M$ we define $v(B') = \beta + v(p^{-\beta} \cdot B')$. We write $v(0) = \infty$. This ends the construction of $v: M \longrightarrow \mathbb{Q}_{\geq 0} \cup \{\infty\}$.

For any $\rho \in \mathbb{Q}$ we define

$$M_{\rho} = \{ B \mid v(B) \ge \rho \};$$

note that $pM_{\rho} \subset M_{\rho+1}$. Let T be the least common multiple of h_1, \dots, h_t . Note that, in fact, $v: M - \{0\} \to \frac{1}{T}\mathbb{Z}_{\geq 0}$. Note that, by construction, $v(B) \geq d \in \mathbb{Z}$ if and only if p^d divides B in M. Hence $\cap_{\rho \to \infty} M_{\rho} = \{0\}$.

The basic assumption $X[p] \cong H(\beta)[p]$ of (1.2) is:

$$M/pM = \bigoplus_{1 \le j \le t, \ 1 \le s \le r_j} \prod_{0 \le i < h_j} k \cdot ((A_{i,s}^{(j)} \mod pQ_j))$$

(we write this isomorphism of Dieudonné modules as an equality). For $0 \le i < h_j$ and $1 \le s \le r_j$ we choose $B_{i,s}^{(j)} \in M$ such that:

$$B_{i,s}^{(j)} \mod pM = A_{i,s}^{(j)} \mod pQ_j^{r_j}.$$

Define $B_{i+\beta\cdot h_j,s}^{(j)} = p^{\beta}\cdot B_{i,s}^{(j)}$. By construction we have: $v(B_{i,s}^{(j)}) = i/h_j$ for all $i \ge 0$, all j and all s. Note that M_{ρ} is generated over $W = W_{\infty}(k)$ by all elements $B_{i,s}^{(j)}$ with $v(B_{i,s}^{(j)}) \ge \rho$. As a short-hand we will write

$$B_i^{(j)}$$
 for the vector $(B_{i,s}^{(j)} \mid 1 \le s \le r_j) \in M^{r_j}$.

We write $P \subset M$ for the sub-W-module generated by all $B_{i,s}^{(j)}$ with $j \geq 2$ and $i < h_j$; we write $N \subset M$ for the sub-W-module generated by all $B_{i,s}^{(1)}$ with $i < h_1$. Note that $M = N \times P$, a direct sum of W-modules. Note that $M_{\rho} = (N \cap M_{\rho}) \times (P \cap M_{\rho})$.

In the proof the W-submodule $P \subset M$ will be fixed; its W-complement $N \subset M$ will change eventually if it is not already a Dieudonné submodule.

We write $m_1 = m$, $n_1 = n$, $h = h_1 = m + n$, and $r = r_1$. Note that we assumed $0 < \lambda_1 \le 1/2$, hence $m \ge n > 0$. For $i \ge 0$ we define integers δ_i by:

$$i \cdot h \le \delta_i \cdot n < i \cdot m + (i+1) \cdot n = ih + n$$

and non-negative integers γ_i such that

$$\delta_0 = 0, \ \delta_1 = \gamma_1 + 1, \cdots, \delta_i = \gamma_1 + 1 + \gamma_2 + 1 + \cdots + \gamma_i + 1, \cdots;$$

note that $\delta_n = h = m + n$; hence $\gamma_1 + \cdots + \gamma_n = m$. For $1 \le i \le n$ we write

$$f(i) = \delta_{i-1} \cdot n - (i-1) \cdot h;$$

this means that $0 \le f(i) < n$ is the remainder of dividing $\delta_{i-1}n$ by h; note that f(1) = 0. As gcd(n,h) = 1 we see that

$$f: \{1, \cdots, n\} \to \{0, \cdots, n-1\}$$

is a bijective map. The inverse map f' is given by:

$$f': \{0, \dots, n-1\} \to \{1, \dots, n\}, \quad f'(x) \equiv 1 - \frac{x}{h} \pmod{n}, \quad 1 \le f'(x) \le n.$$

In $(Q_1)^r$ we have the vectors $A_i^{(1)}$. We choose $C'_1 := A_0^{(1)}$ and we choose $\{C'_1, \dots, C'_n\} = \{A_0^{(1)}, \dots, A_{n-1}^{(1)}\}$ by

$$C'_i := A^{(1)}_{f(i)}, \quad C'_{f'(x)} = A^{(1)}_x;$$

this means that:

 $\mathcal{F}^{\gamma_i}C'_i = \mathcal{V}C'_{i+1}, \quad 1 \leq i < n, \quad \mathcal{F}^{\gamma_n}C'_n = \mathcal{V}C'_1, \quad \text{hence} \quad \mathcal{F}^{\delta_i}C'_1 = p^i \cdot C'_{i+1}, \quad 1 \leq i < n;$ note that $\mathcal{F}^hC'_1 = p^n \cdot C'_1$. With these choices we see that

$$\{\mathcal{F}^{j}C_{i}' \mid 1 \le i \le n, 0 \le j \le \gamma_{i}\} = \{A_{\ell}^{(1)} \mid 0 \le \ell < h\}.$$

For later reference we state:

(2.6) Suppose Q is a nonzero Dieudonné module with an element $C \in Q$, such that there exist coprime integers n and n + m = h as above such that $\mathcal{F}^h \cdot C = p^n \cdot C$ and such that Q as a W-module is generated by $\{p^{-[jn/h]}\mathcal{F}^j C \mid 0 \leq j < h\}$, then $Q \cong \mathbb{D}(H_{m,n})$.

This is proved by explicitly writing out the required isomorphism. Note that \mathcal{F}^n is injective on Q, hence $\mathcal{F}^h \cdot C = p^n \cdot C$ implies $\mathcal{F}^m \cdot C = \mathcal{V}^n \cdot C$.

(2.7) Accordingly we choose $C_{i,s} := B_{f(i),s}^{(1)} \in M$ with $1 \le i \le n$. Note that

$$\{\mathcal{F}^{j}C_{i,s} \mid 1 \leq i \leq n, \quad 0 \leq j \leq \gamma_{i} \quad 1 \leq s \leq r\} \text{ is a } W\text{-basis for } N,$$
$$\mathcal{F}^{\gamma_{i}}C_{i,s} - \mathcal{V}C_{i+1,s} \in pM, \quad 1 \leq i < n, \quad \mathcal{F}^{\gamma_{n}}C_{n,s} - \mathcal{V}C_{1,s} \in pM.$$

We write $C_i = (C_{i,s} \mid 1 \le s \le r)$. As a reminder, we sum up some of the notation constructed:

$$N \subset M \qquad \bigoplus_{j} (Q_{j})^{r_{j}} \downarrow \qquad \downarrow$$
$$M/pM = \bigoplus_{j} (Q_{j}/pQ_{j})^{r_{j}},$$
$$B_{i,s}^{(j)} \in M \qquad A_{i,s}^{(j)} \in Q_{j} \subset (Q_{j})^{r_{j}},$$
$$C_{i,s} \in N \qquad C_{i,s}^{(j)} \in Q_{1} \subset (Q_{1})^{r_{1}}$$

(2.8) Lemma. Use the notation fixed up to now.

- (1) For every $\rho \in \mathbb{Q}_{\geq 0}$ the map $p: M_{\rho} \to M_{\rho+1}$, multiplication by p, is surjective.
- (2) For every $\rho \in \mathbb{Q}_{\geq 0}$ we have $\mathcal{F}M_{\rho} \subset M_{\rho+(n/h)}$.

(3) For every *i* and *s* we have $\mathcal{F}B_{i,s}^{(1)} \in M_{(i+n)/h}$; for every *i* and *s* and every *j* > 1 we have $\mathcal{F}B_{i,s}^{(j)} \in M_{(i/h_j)+(n/h)+(1/T)}$.

(4) For every $1 \le i \le n$ we have $\mathcal{F}^{\delta_i}C_1 - p^i B_{f(i+1)}^{(1)} \in (M_{i+(1/T)})^r$; moreover $\mathcal{F}^{\delta_n}C_1 - p^n C_1 \in (M_{n+(1/T)})^r$.

(5) If u is an integer with u > Tn, and $\xi_N \in (N \cap M_{u/T})^r$, there exists

$$\eta_N \in N \cap (M_{(u/T)-n})^r$$
 such that $(\mathcal{F}^h - p^n)\eta_N \equiv \xi_N \pmod{(M_{(u+1)/T})^r}$

Proof. We know that $M_{\rho+1}$ is generated by the elements $B_{i,s}^{(j)}$ with $i/h_j \ge \rho + 1$; because $\rho \ge 0$ such elements satisfy $i \ge h_j$. Note that $p \cdot B_{i-h_j,s}^{(j)} = B_{i,s}^{(j)}$. This proves the first property. $\Box(1)$

At first we show $\mathcal{F}M \subset M_{n/h}$. Note that for all $1 \leq j \leq t$ and all $\beta \in \mathbb{Z}_{\geq 0}$

$$\beta h_j \le i < \beta h_j + m_j \quad \Rightarrow \quad \mathcal{F}B_i^{(j)} = B_{i+n_j}^{(j)},$$

$$(*)$$

and

$$\beta h_j + m_j \le i < (\beta + 1)h_j \implies B_i^{(j)} = \mathcal{V}B_{i-m_j}^{(j)} + p^{(\beta+1)}\xi, \quad \xi \in M^{r_j}.$$
 (**)

from these properties, using $n/h \leq n_j/h_j$ we conclude: $\mathcal{F}M \subset M_{n/h}$.

Further we see: by (*) we have

$$v(\mathcal{F}B_{i,s}^{(j)}) = v(B_{i+n_j,s}^{(j)}) = (i+n_j)/h_j,$$

and

$$\frac{i+n_j}{h_j} = \frac{i+n}{h} \quad \text{if} \quad j=1; \quad \frac{i+n_j}{h_j} > \frac{i}{h_j} + \frac{n}{h} \quad \text{if} \quad j>1$$

By (**) it suffices to consider only $m_j \leq i < h_j$, and hence $\mathcal{F}B_{i,s}^{(j)} = pB_{i-m_j,s}^{(j)} + p\mathcal{F}\xi$; so we have

$$v(\mathcal{F}B_{i,s}^{(j)}) \ge \min\left(v(pB_{i-m_j,s}^{(j)}), v(p\mathcal{F}\xi_s)\right);$$

for j = 1 we have $v(pB_{i-m_{1},s}^{(1)}) = (i+n)/h \ge 1$ and $v(p\mathcal{F}\xi) \ge 1 + (n/h) > (i/h) + (n/h)$; for j > 1 we have $v(pB_{i-m_{j},s}^{(j)}) > (i/h_{j}) + (n/h)$ and $(i/h_{j}) + (n/h) < 1 + (n/h) \le v(p\mathcal{F}\xi_{s})$; hence $v(\mathcal{F}B_{i,s}^{(j)})) > (i/h_{j}) + (n/h)$ if j > 1. This ends the proof of (3). Using (3) we see that (2) follows. $\Box(2)+(3)$

From $\mathcal{F}^{\gamma_i}C_i = \mathcal{V}C_{i+1} + p\xi_i$ for i < n and $\mathcal{F}^{\gamma_n}C_n = \mathcal{V}C_1 + p\xi_n$, here $\xi_i \in M^r$ for $i \leq n$, we conclude:

$$\mathcal{F}^{\delta_i} C_1 = p^i C_{i+1} + \sum_{1 \le \ell \le i} p^\ell \mathcal{F}^{\delta_i - \delta_\ell} \mathcal{F} \xi_\ell, \quad i < n,$$

and the analogous fomula for i = n (write $C_{n+1} = C_1$). Note that

$$ih \leq \delta_i n$$
 and $\delta_\ell n < \ell m + (\ell + 1)n = \ell h + n;$

this shows that

$$\ell h + (\delta_i - \delta_\ell)n + n > ih;$$

using (2) we conclude (4).

Note that $h = h_1$ divides T. If ℓ is an integer such that $(\ell - 1)/h < u/T < \ell/h$ then $u < u + 1 \le \ell \frac{T}{h}$; in this case we see that $N \cap M_{u/T} = N \cap M_{(u+1)/T}$. In this case we choose $\eta_N = 0$.

Suppose that ℓ is an integer with $u/T = \ell/h$. Then $N \cap M_{u/T} = N_{\ell/h} \supset N_{(\ell+1)/h} = N \cap M_{(u+1)/T}$. We consider the image of $N \cap M_{(\ell/h)-n}$ under $\mathcal{F}^h - p^n$. We see, using previous results, that this image is in $N_{\ell/h} + M_{(u+1)/T}$ (here "+" stands for the span as W-modules). We obtain a factorization and an isomorphism

$$\mathcal{F}^h - p^n : N \cap M_{(\ell/h)-n} \longrightarrow \left(N_{\ell/h} + M_{(u+1)/T}\right) / M_{(u+1)/T} \cong N_{\ell/h} / N_{(\ell+1)/h}$$

We claim that this map is surjective. The factor space $N_{\ell/h}/N_{(\ell+1)/h}$ is a vector space over k spanned by the residue classes of the elements $B_{\ell,s}^{(1)}$. For the residue class of $y_s B_{\ell,s}^{(1)}$ we solve the equation $x_s^{p^n} - x_s = y_s$ in k; lifting these x_s to W (denoting the lifts by the same symbol), we see that $\eta_N := \sum_s x_s B_{\ell-nh,s}^{(1)}$ has the required properties. This proves the claim, and it gives a proof of part (5) of the lemma. $\Box(5),(2.8)$

(2.9) Lemma (the induction step). Let $u \in \mathbb{Z}$ with $u \ge nT + 1$. Suppose $D_1 \in M^r$ such that $D_1 \equiv C_1 \pmod{(M_{1/T})^r}$, and such that $\xi := \mathcal{F}^h D_1 - p^n D_1 \in (M_{u/T})^r$. Then there exists $\eta \in (M_{(u/T)-n})^r$ such that for $E_1 := D_1 - \eta$ we have $\mathcal{F}^h E_1 - p^n E_1 \in (M_{(u+1)/T})^r$ and $E_1 \equiv C_1 \pmod{(M_{1/T})^r}$.

Proof. We write $\xi = \xi_N + \xi_P$ according to $M = N \times P$. We conclude that $\xi_N \in (N \cap M_{u/T})^r$ and $\xi_P \in (P \cap M_{u/T})^r$. Using (2.8), (5), we construct $\eta_N \in (N \cap M_{1/T})^r$ such that

 $\Box(4)$

 $(\mathcal{F}^h - p^n)\eta_N \equiv \xi_N \pmod{(M_{(u+1)/T})^r}$. As $M_{u/T} \subset M_n$ we can choose $\eta_P := -p^{-n}\xi_P$; we have $\eta_P \in M^r_{(u/T)-n} \subset (M_{1/T})^r$. With $\eta := \eta_N + \eta_P$ we see that

$$(\mathcal{F}^h - p^n)\eta \equiv \xi \pmod{(M_{(u+1)/T})^r}$$
 and $\eta \in (M_{1/T})^r$.

Hence $(\mathcal{F}^h - p^n)(D_1 - \eta) \in (M_{(u+1)/T})^r$ and we see that $E_1 := D_1 - \eta$ has the required properties. This proves the lemma.

$$\Box(2.9)$$

(2.10) Proof of (2.2). (1) There exists $E_1 \in M^r$ such that $(\mathcal{F}^h - p^n)E_1 = 0$ and $E_1 \equiv C_1 \pmod{(M_{1/T})^r}$.

Proof. For $u \in \mathbb{Z}_{\geq nT+1}$ we write $D_1(u) \in M^r$ for a vector such that

$$D_1(u) \equiv C_1 \pmod{(M_{1/T})}$$
 and $\mathcal{F}^h D_1(u) - p^n D_1(u) \in (M_{u/T})^r$.

By (2.8), (4), the vector $C_1 =: D_1(nT+1)$ satisfies this condition for u = nT+1. Here we start induction. By repeated application of (2.9) we conclude there exists a sequence

$$\{D_1(u) \mid u \in \mathbb{Z}_{\geq nT+1}\}$$
 such that $D_1(u) - D_1(u+1) \in (M_{(u/T)-n})^n$

satisfying the conditions above. As $\cap_{\rho \to \infty}$ $M_{\rho} = \{0\}$ this sequence converges. Writing $E_1 := D_1(\infty)$ we achieve the conclusion. $\Box(1)$

(2) Choose E_1 as in (1). For every $j \ge 0$ we have

$$p^{-\left[\frac{jn}{h}\right]}\mathcal{F}^{j}E_{1} \in M; \quad \text{define} \quad N' := \prod_{1 \leq j < h} \quad W \cdot p^{-\left[\frac{jn}{h}\right]}\mathcal{F}^{j}E_{1} \subset M.$$

This is a Dieudonné submodule and it is a W-module direct summand of M. Moreover there is an isomorphism

$$\mathbb{D}((H_{m,n})^r) \cong N',$$

the map $N' \prod P \to N' + P$ is an isomorphism of W-modules, and N' + P = M. This constructs $X_1 \subset X$, with

$$\mathbb{D}(X_1 \subset X) = (N' \subset M) \quad such that \quad (X/X_1)[p] \cong \prod_{j>1} (M_{m_j,n_j})^{r_j}.$$

Proof. By (2.8), (2), we see that $\mathcal{F}^{j}E_{1} \in M_{[jn/h]}$, hence the first statement follows. As $\mathcal{F}^{h}E_{1} = p^{n}E_{1}$ it follows that $N' \subset M$ is a Dieudonné submodule; using (2.6) this shows $\mathbb{D}((H_{m,n})^{r}) \cong N'$.

Claim. The images $N' \twoheadrightarrow N' \otimes k = N'/pN' \subset M/pM$ and $P \twoheadrightarrow P/pP \subset M/pM$ inside M/pM have zero intersection and $N' \otimes k + P \otimes k = M/pM$. Here we write $-\otimes k = -\otimes_W(W/pW)$.

For $y \in \mathbb{Z}_{\geq 0}$ we write $g(y) := yn - h \cdot \left[\frac{yn}{h}\right]$; note that, in the notation in (2.5), we have

$$p^{-[\frac{jn}{h}]}\mathcal{F}^{j}C_{1}' = A_{g(j)}^{(1)}$$

Suppose

$$\tau := \sum_{0 \le j < h} \beta_{j,s} p^{-\left[\frac{jn}{h}\right]} \mathcal{F}^j \cdot (E_{1,s} \bmod pM) \in \left(N' \otimes k \cap P \otimes k\right) \subset M/pM, \quad \beta_j \in k$$

such that $\tau \neq 0$. Let x, s be a pair of indices such that $\beta := \beta_{x,s} \neq 0$ and for every y with g(y) < g(x) we have $\beta_{y,s} = 0$. Project inside M/pM on the factor N_s . Then

$$\tau_s \equiv \beta \cdot B_{g(x),s}^{(1)} \pmod{M_{\frac{g(x)}{h} + \frac{1}{T}}} + P),$$

which is a contradiction with the fact that $N \cap P = 0$ and with the fact that the residue class of

$$B_{g(x),s}^{(1)} \text{ generates } \left((M_{\frac{g(x)}{h}} + P) / (M_{\frac{g(x)}{h} + \frac{1}{T}} + P) \right)_{s} = N_{\frac{g(x)}{h},s} / N_{\frac{g(x)}{h} + \frac{1}{h},s}.$$

We see that $\tau \neq 0$ leads to a contradiction. This shows that $N' \otimes k \cap P \otimes k = 0$ and $N' \otimes k + P \otimes k = M/pM$. Hence the claim is proved.

As $(N' \cap P) \otimes k \subset N' \otimes k \cap P \otimes k = 0$ this shows $(N' \cap P) \otimes k = 0$. By Nakayama's lemma this implies $N' \cap P = 0$. The proof of the remaining statements follows, in particular we see that N' is a W-module direct summand of M. This finishes the proof of (2), and it ends the proof of the proposition. $\Box(2.2)$

3 Split extensions and proof of the theorem

In this section we prove a proposition on split extensions. We will see that Theorem (1.2) follows.

(3.1) **Proposition.** Let (m, n) and (d, e) be ordered pairs of pairwise coprime positive integers. Suppose that n/(m+n) < e/(d+e). Let

$$0 \to Z := H_{m,n} \longrightarrow T \longrightarrow Y := H_{d,e} \to 0$$

be an exact sequence of p-divisible groups such that the induced sequence of the p-kernels spits:

$$0 \to Z[p] \stackrel{\leftarrow}{\longrightarrow} T[p] \stackrel{\leftarrow}{\longrightarrow} Y[p] \to 0.$$

Then the sequence of p-divisible groups splits: $T \cong Z \oplus Y$.

(3.2) **Remark.** It is easy to give examples of a non-split extension $T/Z \cong Y$ of *p*-divisible groups, with Z non-minimal or Y non-minimal, such that the extension $T[p]/Z[p] \cong Y[p]$ does split.

(3.3) **Proof of** (1.2). The theorem follows from (2.4) and (3.1). \Box (1.2)

(3.4) In order to show (3.1) it suffices to prove (3.1) under the extra condition that $\frac{1}{2} \leq e/(d+e)$.

In fact, if $n/(m+n) < e/(d+e) < \frac{1}{2}$, we consider the exact sequence

$$0 \to H_{d,e}^t = H_{e,d} \longrightarrow T^t \longrightarrow H_{m,n}^t = H_{n,m} \to 0$$

with $\frac{1}{2} < d/(e+d) < m/(n+m)$. $\Box(3.4)$

From now on we assume that $\frac{1}{2} \le e/(d+e)$.

(3.5) We fix notation which will be used in the proof of (3.1). We write the Dieudonné modules as: $\mathbb{D}(Z) = N$, $\mathbb{D}(T) = M$ and $\mathbb{D}(Y) = Q$; we obtain an exact sequence of Dieudonné modules M/N = Q, which is a split exact sequence of W-modules, where $W = W_{\infty}(k)$. We write m+n = h and d+e = g. We know that Q is generated by elements A_i , with $i \in \mathbb{Z}_{\geq 0}$ such that $\pi(A_i) = A_{i+1}$, where $\pi \in \text{End}(Q)$ is the uniformizer, and $\mathcal{V} \cdot A_i = A_{i+d}$, $\mathcal{F} \cdot A_i = A_{i+e}$; we know that $\{A_i \mid 0 \leq i < g = d + e\}$ is a W-basis for Q. Because $\frac{1}{2} \leq e/(d+e)$, hence $e \geq d$ we can choose generators for the Dieudonné module Q in the following way. We choose integers δ_i by:

$$i \cdot g \le \delta_i \cdot d < (i+1) \cdot d + i \cdot e = ig + d$$

and integers γ_i such that:

$$\delta_1 = \gamma_1 + 1, \dots, \delta_i = \gamma_1 + 1 + \gamma_2 + 1 + \dots + \gamma_i + 1;$$

note that $\delta_d = g = d + e$. We choose $C = A_0 = C_1$ and $\{C_1, \dots, C_d\} = \{A_0, \dots, A_{d-1}\}$ such that:

$$\mathcal{V}^{\gamma_i}C_i = \mathcal{F}C_{i+1}, \quad 1 \le i < d, \quad \mathcal{V}^{\gamma_d}C_d = \mathcal{F}C_1, \quad \text{hence} \quad \mathcal{V}^{\delta_i}C = p^i \cdot C_{i+1}, \quad 1 \le i < d;$$

note that $\mathcal{V}^g C = p^d \cdot C$. With these choices we see that

$$\{p^{-[\frac{ja}{g}]}\mathcal{V}^{j}C \mid 0 \le j < g\} = \{\mathcal{V}^{j}C_{i} \mid 1 \le i \le d, 0 \le j \le \gamma_{i}\} = \{A_{\ell} \mid 0 \le \ell < g\}.$$

Choose an element $B = B_1 \in M$ such that

$$M \longrightarrow Q$$
 gives $B_1 = B \mapsto (B \mod N) = C = C_1.$

Let π' be the uniformizer of End(N). Consider the filtration $N = N^{(0)} \supset \cdots \supset N^{(i)} \supset N^{(i+1)} \supset \cdots$ defined by $(\pi')^i (N^{(0)}) = N^{(i)}$. Note that $\mathcal{F}N^{(i)} = N^{(i+n)}$, and $\mathcal{V}N^{(i)} = N^{(i+m)}$, and $p^i N = N^{(i\cdot h)}$ for $i \ge 0$.

(3.6) Proof of (3.1).

(1) Construction of $\{B_1, \dots, B_d\}$. For every choice of $B = B_1 \in M$ with $(B \mod N) = C$, and every $1 \leq i < d$ we claim that $\mathcal{V}^{\delta_i}B$ is divisible by p^i . Defining $B_{i+1} := p^{-i}\mathcal{V}^{\delta_i}B$, we see that $B_i \mod N = C_i$ for $1 \leq i \leq d$. Moreover we claim:

$$\mathcal{V}^g B - p^d \cdot B \in N^{(dh+1)}.$$

Choose $B''_i \in M$ with $B''_i \mod N = C_i$. Then $\mathcal{V}^{\gamma_i} B''_i - \mathcal{F} B''_{i+1} =: p \cdot \xi_i \in pN$; hence $\mathcal{V}^{\gamma_i+1} B''_i - p \cdot B''_{i+1} = p\mathcal{V}\xi_i \in p\mathcal{V}N$. For $1 < i \leq d$ we obtain that

$$\mathcal{V}^{\delta_i}B - p^i \cdot B = \sum_{1 \le j < i} \mathcal{V}^{\delta_i - \delta_j} p^j \mathcal{V}\xi_j, \quad \xi_j \in N.$$

From n/(m+n) < e/(d+e) we conclude g/d > h/m; using $\delta_i \cdot d \ge ig$ and $\delta_j d < (j+1)d + je$ we see:

$$i > j$$
 implies $\delta_i - \delta_j + 1 > (i - j)(g/d) > (i - j)(h/m);$

hence

$$(\delta_i - \delta_j)m + j(m+n) + m > ih;$$

This shows

$$\mathcal{V}^{\delta_i - \delta_j} p^j \mathcal{V} \xi_i \in p^i N^{(1)}.$$

As $\delta_d = g$ we see that $\mathcal{V}^g B - p^d \cdot B \in p^d N^{(1)} = N^{(dh+1)}$. $\Box(1)$

(2) The induction step. Suppose that for a choice $B \in M$ with $(B \mod N) = C$, there exists an integer $s \ge dh + 1$ such that $\mathcal{V}^g B - p^d \cdot B \in N^{(s)}$; then there exists a choice $B' \in M$ such that $B' - B \in N^{(s-dh)}$ and

$$\mathcal{V}^g B' - p^d \cdot B' \in N^{(s+1)}$$

In fact, write $p^d \cdot B - \mathcal{V}^g B = p^d \cdot \xi$. Then $\xi \in N^{(s-dh)}$. Choose $B' := B - \xi$. Then:

$$\mathcal{V}^{g}B' - p^{d} \cdot B' = \mathcal{V}^{g}B - p^{d} \cdot B - \mathcal{V}^{g}\xi + p^{d}\xi = -\mathcal{V}^{g}\xi \in N^{(gm-dh+s)};$$

 $\Box(2)$

note that gm - dh > 0.

(3) For any integer $r \ge d+1$, and $w \ge rh$ there exists $B = B_1$ as in (3.5) such that $\mathcal{V}^g B - p^d B \in N^{(w)} = p^r \cdot N^{(w-rh)}$. This gives a homomorphism φ_{r-d}

$$M/p^{r-d}M \longleftarrow Q/p^{r-d}Q$$
 extending $M/pM \longleftarrow Q/pQ$

The induction step (2) proves the first statement, induction starting at w = (d+1)h > dh+1. Having chosen B_1 , using (1) we construct $B_{i+1} := p^{-i}\mathcal{V}^{\delta_i}B_1$ for $1 \leq i < d$. In that case on the one hand $\mathcal{V}^{\gamma_d}B_d - \mathcal{F}B_1 = p \cdot \xi_d$, on the other hand $\mathcal{V}^g B - p^d B \in N^{(w)} \subset p^r N$. Hence $p^d \mathcal{V}\xi_d \in p^r N$; hence $p\xi_d \in p^{r-d}N$. This shows that the residue classes of B_1, \dots, B_d in $M/p^{r-d}M$ generate a Dieudonné module isomorphic to $Q/p^{r-d}Q$ which moreover by (3.5) extends the given isomorphism induced by the splitting. $\Box(3)$

By [8], 1.6 we see that for some large r the existence of $M/p^{r-d}M \leftarrow Q/p^{r-d}Q$ as in (3) shows that its restriction $M/pM \leftarrow Q/pQ$ lifts to a homomorphism φ of Dieudonné modules $M \leftarrow Q$; in that case φ_1 is injective. Hence φ splits the extension $M/N \cong Q$. Taking into account (3.4) this proves the proposition. $\Box(3.1)$

Remark. Instead of the last step of the proof above, we could construct an infinite sequence $\{B(u) \mid u \in \mathbb{Z}_{(d+1)h}\}$ such that $\mathcal{V}^g B(u) - p^d B \in N^{(u)}$ and $B(u+1) - B(u) \in N^{(u-dh)}$ for all $u \ge (d+1)h$. This sequence converges and its limit $B(\infty)$ can be used to define the required section.

4 Some comments

(4.1) **Remark.** For any G, a BT₁ over k, which is *not minimal* there exist infinitely many mutually non-isomorphic p-divisible groups X over k such that $X[p] \cong G$. Details will appear in a later publication, see [9].

(4.2) Remark. Suppose that G is a minimal BT_1 ; we can recover the Newton polygon β with the property $H(\beta)[p] \cong G$ from G. This follows from the theorem, but there are also other ways to prove this fact.

(4.3) For BT₁ group schemes we can define a Newton polygon; let G be a BT₁ group scheme over k, and let $G = \times_i G_i$ be a decomposition into indecomposable ones, see [3]. Let G_i be of rank p^{h_i} , and let n_i be the dimension of the tangent space of G_i^D ; here G_i^D stands for the Cartier dual of G_i ; define $\mathcal{N}'(G_i)$ as the isoclinic polygon consisting of h_i slopes equal to n_i/h_i ; arranging the slopes in non-decreasing order, we have defined $\mathcal{N}'(G)$. For a p-divisible group X we compare $\mathcal{N}(X)$ and $\mathcal{N}'(X[p])$. These polygons have the same endpoints. If X is minimal, equivalently X[p] is minimal, then $\mathcal{N}(X) = \mathcal{N}'(X[p])$. Besides this I do not see rules describing the relation between $\mathcal{N}(X)$ and $\mathcal{N}'(X[p])$. For Newton polygons β and γ with the same endpoints we write $\beta \prec \gamma$ if every point of β is on or below γ . Note:

- There exists a *p*-divisible group X such that $\mathcal{N}(X) \succeq \mathcal{N}'(X[p])$; indeed, choose X isosimple, hence $\mathcal{N}(X)$ isoclinic, such that X[p] is decomposable.
- There exists a *p*-divisible group X such that $\mathcal{N}(X) \not\supseteq \mathcal{N}'(X[p])$; indeed, choose X such that $\mathcal{N}(X)$ is not isoclinic, hence X not isosimple, all slopes strictly between 0 and 1 and a(X) = 1; then X[p] is indecomposable, hence $\mathcal{N}'(X[p])$ is isoclinic.

Here we use $a(X) := \dim_k \operatorname{Hom}(\alpha_p, X)$. It could be useful to have better insight in the relation between various properties of X and X[p].

References

- L. Illusie Déformations de groupes de Barsotti-Tate. Exp.VI in: Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell (L. Szpiro), Astérisque 127, Soc. Math. France 1985.
- [2] A. J. de Jong & F. Oort Purity of the stratification by Newton polygons. Journ. Amer. Math. Soc. 13 (2000), 209 - 241.
- [3] H. Kraft Kommutative algebraische p-Gruppen (mit Anwendungen auf p-divisible Gruppen und abelsche Varietäten). Sonderforsch. Bereich Bonn, September 1975. Ms. 86 pp.
- [4] H. Kraft and F. Oort Group schemes annihilated by p. [In preparation]
- Yu. I. Manin The theory of commutative formal groups over fields of finite characteristic. Usp. Math. 18 (1963), 3-90; Russ. Math. Surveys 18 (1963), 1-80.
- [6] F. Oort Commutative group schemes. Lect. Notes Math. 15, Springer Verlag 1966.
- [7] F. Oort A stratification of a moduli space of polarized abelian varieties. In: Moduli of abelian varieties. (Ed. C. Faber, G. van der Geer, F. Oort). Progress Math. 195, Birkhäuser Verlag 2001; pp. 345 - 416.
- [8] F. Oort Foliations in moduli spaces of abelian varieties. Journ. Amer. Math. Soc. 17 (2004), 267-296.
- [9] F. Oort Simple p-kernels of p-divisible groups. [To appear in Advances in Mathematics.]

Frans Oort Mathematisch Instituut Budapestlaan 6 Postbus 80010 NL - 3584 CD TA Utrecht NL - 3508 TA Utrecht The Netherlands The Netherlands email: oort@math.uu.nl