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Introduction. A p-divisible group X can be seen as a tower of building blocks, each of which
is isomorphic to the same finite group scheme X|[p|. Clearly, if X; and X, are isomorphic
then Xi[p] = Xa[p]; however, conversely Xi[p] = Xa[p] does in general not imply that X
and Xs are isomorphic. Can we give, over an algebraically closed field in characteristic p, a
condition on the p-kernels which ensures this converse? Here are two known examples of such
a condition: consider the case that X is ordinary, or the case that X is superspecial (X is
the p-divisible group of a product of supersingular elliptic curves); in these cases the p-kernel
uniquely determines X.
These are special cases of a surprisingly complete and simple answer:

if G is “minimal”, then Xi[p] =2 G = Xs[p] implies X1 = Xo,

see (1.2); for a definition of “minimal” see (1.1). This is “necessary and sufficient” in the
sense that for any G that is not minimal there exist infinitely many mutually non-isomorphic
p-divisible groups with p-kernel isomorphic to G; see (4.1).

Remark (motivation). You might wonder why this is interesting.

EO In [7] we have defined a natural stratification of the moduli space of polarized abelian
varieties in positive characteristic: moduli points are in the same stratum if and only
if the corresponding p-kernels are geometrically isomorphic. Such strata are called EO-
strata.

Fol In [8] we define in the same moduli spaces a foliation : moduli points are in the same leaf
if and only if the corresponding p-divisible groups are geometrically isomorphic; in this
way we obtain a foliation of every open Newton polygon stratum.

Fol C EO The observation X =Y = X|[p] = Y|[p] shows that any leaf in the second sense
is contained in precisely one stratum in the first sense; the main result of this paper,
“X is minimal if and only if X[p] is minimal’, shows that a stratum (in the first sense)
and a leaf (in the second sense) are equal if we are in the minimal, principally polarized
situation.

In this paper we consider p-divisible groups and finite group schemes over an algebraically
closed field k of characteristic p.

An apology. In (2.5) and in (3.5) we fix notations, used for the proof of (2.2), respectively
(3.1); according to the need, the notations in these two different cases are different. We hope
this difference in notations in Section 2 versus Section 3 will not cause confusion.



Group schemes considered are supposed to be commutative. We use covariant Dieudonné
module theory. We write W = Wy (k) for the ring of infinite Witt vectors with coordinates
in k. Finite products in the category of W-modules are denoted “x” or by “[]”, while finite
products in the category of Dieudonné modules are denoted by “@”; for finite products of
p-divisible groups we use “x” or “[[’. We write F' and V, as usual, for “Frobenius” and
“Verschiebung” on commutative group schemes; we write 7 = D(V') and V = D(F), see [7],
15.3, for the corresponding operations on Dieudonné modules.
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1 Notations and the main result.

(1.1) Some definitions and notations.
Hy, . We define the p-divisible group H,,, over the prime field IF, in case m and n are
coprime non-negative integers, see [2], 5.2. This p-divisible group H,, ,, is of dimension m, its
Serre-dual X! is of dimension n, it is isosimple, and its endomorphism ring End(Hp, ., ® IFTP)
is the maximal order in the endomorphism algebra EndO(Hm,n ® E) (and these properties
characterize this p-divisible group over IE‘_p) We will use the notation H,,,, over any base S in
characteristic p, i.e. we write H,,,, instead of H,, XSpec(F,) S, if no confusion can occur.
The ring End(H,,,, ® Fy) = R’ is commutative; write L for the field of fractions of R'.
Consider integers z, y such that for the coprime positive integers m and n we have x-m+y-n =
1. In L we define the element 7 = F¥-V* € L. Write h = m + n. Note that 7" = p in L.
Here R’ C L is the maximal order, hence R’ integrally closed in L, and we conclude that
7 € R'. This element 7 will be called the uniformizer in this endomorphism ring. In fact,

Weo(Fp) = Zp, and R’ = Zy[r]. In L we have:
m+n=:h, at=p, F=1" V=nm

For a further description of 7, of R = End(H,,, ® k) and of D = End®(H,, , ® k) see [2], 5.4;
note that End’ (Hp,n ® k) is non-commutative if m > 0 and n > 0. Note that R is a “discrete
valuation ring” (terminology sometimes also used for non-commutative rings).

Newton polygons. Let § be a Newton polygon. By definition, in the notation used here,
this is a lower convex polygon in R? starting at (0,0), ending at (h, c¢) and having break points
with integral coordinates; it is given by h slopes in non-decreasing order; every slope A is a
rational number, 0 < \ < 1.

To each ordered pair of nonnegative integers (m,n) we assign a set of m + n = h slopes
equal to n/(m 4+ n); this Newton polygon ends at (h,c = n).

In this way a Newton polygon corresponds with a set of ordered pairs; such a set we denote
symbolically by >, (m;, n;); conversely such a set determines a Newton polygon. Usually we
consider only coprime pairs (m;,n;); we write H(3) 1= X; Hy,, n, in case § = Y. (m;,n;).
A p-divisible group X over a field of positive characteristic defines a Newton polygon where
h is the height of X and c is the dimension of its Serre-dual X*. By the Dieudonné-Manin
classification, see [5], Th. 2.1 on page 32, we know: two p-divisible groups over an algebraically
closed field of positive characteristic are isogenous if and only if their Newton polygons are
equal.



Definition. A p-divisible group X is called minimal if there exists a Newton polygon (B and
an isomorphism Xy = H(8)k, where k is an algebraically field.

Note that in every isogeny class of p-divisible groups over an algebraically closed field there
is precisely one minimal p-divisible group.

Truncated p-divisible groups. A finite group scheme G (finite and flat over some base,
but in this paper we will soon work over a field) is called a BTy, see [1], page 152, if G[F] :=
KerFg = ImVg =: V(G) and G[V] = F(G) (in particular this implies that G is annihilated
by p). Such group schemes over a perfect field appear as the p-kernel of a p-divisible group,
see [1], Prop. 1.7 on page 155. The abbreviation “BT;” stand for “l-truncated Barsotti-Tate
group”; the terms “p-divisible group” and “Barsotti-Tate group” indicate the same concept.
The Dieudonné module of a BT over a perfect field K is called a DMy; for G = X|[p| we
have D(G) = D(X)/pD(X). In other terms: such a Dieudonné module M; = D(X|[p]) is a
finite dimensional vector space over K, on which F and V operate (with the usual relations),

with the property that M;[V] = F(M;) and M;[F] = V(M;).

Definition. Let G be a BT group scheme; we say that G is minimal if there exists a Newton
polygon [ such that Gy, = H(()[p]g. A DM; is called minimal if it is the Dieudonné module
of a minimal BT1.

(1.2) Theorem. Let X be a p-divisible group over an algebraically closed field k of charac-
teristic p. Let B be a Newton polygon. Then

X[pl = HPB)p] = X=H(p).

In particular: if X1 and Xy are p-divisible groups over k, with Xi[p| =2 G = Xs[p], where G
1 minimal, then X; = Xo.

Remark. We have no a priori condition on the Newton polygon of X, nor do we a priori
assume that X; and X, have the same Newton polygon.

Remark. In general an isomorphism ¢; : X[p] — H(0)[p] does not lift to an isomorphism
i X — H(B).

(1.3) Here is another way of explaining the result of this paper. Consider the map
[p] : {X | a p-divisible group}/ =, — {G |a BT}/ =4, X — X|p].

This map is surjective, e.g. see [1], 1.7; also see [7], 9.10.

e By results of this paper we know: For every Newton polygon [ there is an isomorphism
class X := H([3) such that the fiber of the map [p] containing X consists of one element.

e For every X not isomorphic to some H(B3) the fiber of [p| containing X is infinite; see
(4.1)

Convention. The slope A = 0, given by the pair (1,0), defines the p-divisible group Gio =
G [p™], and its p-kernel is ;. The slope A = 1, given by the pair (0,1), defines the p-divisible
group Go1 = Qp/Z, and its p-kernel is Z/pZ. These p-divisible groups and their p-kernels

split off naturally over a perfect field, see [6], 2.14. The theorem is obvious for these minimal
BT, group schemes over an algebraically closed field. Hence it suffices to prove the theorem in
case all group schemes considered are of local-local type, i.e. all slopes considered are strictly
between 0 and 1; from now on we make this assumption.



(1.4) We give already one explanation about notation and method of proof. Let m,n € Z~q
be coprime. Start with H,,, over F,. Let Q' = D(H,,,, @ F,). In the terminology of [2],
5.6 and Section 6, a semi-module of Hy,,, equals [0,00) = Z>(. Choose a non-zero element
in Q'/n@’, this is a one-dimensional vector space over F,, and lift this element to Ay € Q'.
Write A; = w?Ag for every i € Z~g. Note that

mA; = Aiy1, FAi=Aign, VAi=Aigm.

Fix an algebraically closed field k; we write Q = D(H,,,, ® k). Clearly A; € Q' C @, and the
same relations as given above hold. Note that {A; | i € Z>o} generate @) as a W-module. The
fact that a semi-module of the minimal p-divisible group Hy, , does not contain “gaps” is the
essential (but sometimes hidden) argument in the proofs below.

The set {Aog, -, Amin—1} is a W-basis for Q. If m > n we see that {Ag, -+, Ap—1}
is a set of generators for () as a Dieudonné module; the structure of this Dieudonné mod-
ule can be described as follows; for this set of generators we consider another number-
ing {Cq,---,Cp} = {Ao, -, An—1} and we define positive integers 7; by: C; = Ay and
FnCy =VCy,- -+, FC, = VC; (note that we assume m > n), which gives a “cyclic” set of
generators for Q/pQ in the sense of [3]. These notations will be repeated and explained more
in detail in (2.5) and (3.5).

2 A slope filtration

(2.1) We consider a Newton polygon g given by r1(mq,n1),---,r¢(mg,ne); here rq,-+-,r €
Z, and every (m;,n;) is an ordered pair of coprime positive integers; we write h; = m; +n;
and we suppose the ordering is chosen in such a way that \y := ny/hy < .-+ < A 1= ng/hy.
Write

H:=HP)= [[ (Hnn)" G:=H@Ip.

1<j<t

The following proposition uses this notation; suppose that ¢t > 0.

(2.2) Proposition. Suppose X is a p-divisible group over an algebraically closed field k.
Suppose that X[p] = H(B)[p]. Suppose that A\ = ni/h1 < 1/2. Then there exists a p-divisible
subgroup X1 C X and isomorphisms

X1 = (I"Iml,m)r1 and (X/X1)[p] = H (Hmj,nj[p])rj-
i>1

(2.3) Remark. The condition that X|[p] is minimal is essential; e.g. it is easy to give an
example of a p-divisible group X which is isosimple, such that X|[p] is decomposable; see [9)].

(2.4) Corollary. For X with X[p] = H(0)[p|, with 8 as in (2.1), there exists a filtration by
p-divisible subgroups

Xo=0C X1 C--CXy=X suchthat X;/X;j 1= (Hp;pn,)7, for 1<j<t

Proof of the corollary. Assume by induction that the result has been proved for all p-
divisible groups where Y[p] = H(3')[p] is minimal such that 3’ has at most ¢ — 1 different
slopes; induction starting at ¢ — 1 = 0, i.e. Y = 0. If on the one hand the smallest slope of



X is at most 1/2, the proposition gives 0 C X; C X, and using the induction hypothesis on
Y = X/X; we derive the desired filtration. If on the other hand all slopes of X are bigger
than 1/2, we apply the proposition to the Serre-dual of X, using the fact that the Serre-dual
of Hy, y, is Hy, m; dualizing back we obtain 0 C X;_1 C X, and using the induction hypothesis
on Y = X; 1 we derive the desired filtration. Hence we see that the proposition gives the
induction step; this proves the corollary. 0(2.2)=(2.4)

(2.5) We use notation as in (2.1) and (2.2), and we fix further notation which will be used
in the proof of (2.2).

Let M =D(X). We write Qj = D(Hy; n;). Hence
MipM = @ (Q;/pQ;)"
1<5<¢
Using this isomorphism we construct a map

v:M—>Q20U{OO}.

We use notation as in (1.1) and in (1.4). Let 7; be the uniformizer of End(Q;). We choose
A(] € Qj with ¢ € Z>p and 1 < s < r; (which generate @);) such that 7;- A(]) = AEJr)ls,
ng,]) Agi)n ,8 and VAE,S) - AEJr)m 5 " We have Q]/pQ] = ><0<z<h k- (AES) mod pQ )
write

AV = (AY) 1 < s <) e Q)
()

for the vector with coordinate Ai . in the summand on the s-th place.

For B € M we uniquely write
B mod pM =a = Z bgjg(AEQ mod pQ;), bgjs) € k;
7 0Si<h]’, 1<s<r;

if moreover B ¢ pM we define
B L
v(B) = mln]’ i, s 0040 n

If B € p°M and B’ ¢ p’*'M we define v(B') = 3+ v(p~"-B’). We write v(0) = co. This
ends the construction of v: M — Q>0 U {oo}.

For any p € Q we define

M, ={B [ v(B) = p};
note that pM, C M,;1. Let T be the least common multiple of h1,---, hs. Note that, in fact,
v: M — {0} — +Z>¢. Note that, by construction, v(B) > d € Z if and only if p¢ divides B in
M. Hence Np—.oo M, = {0}.

The basic assumption X [p] = H(F)[p] of (1.2) is

MpM = P [T *(AY mod pQ;))

1<5<t, 1§S§7”j 0§i<hj



(we write this isomorphism of Dieudonné modules as an equality). For 0 < ¢ < h; and
1 < s < rj we choose B(]) € M such that:

S

BY) mod pM = Az(?s) mod pQ;j.

Define Bgi)ﬁ_hj’s = pﬂ-BZ-(i,). By construction we have: v(BZ(]s)) =1i/hj for all i > 0, all j and all
s. Note that M), is generated over W = W (k) by all elements Bi(fs) with U(Bi(fs)) >p. Asa
short-hand we will write

Bi(j) for the vector (Bi(];) |1<s<r;)e M.

We write P C M for the sub-W-module generated by all Bi(j ) with J = 2and i < hj; we write

S

N C M for the sub-W-module generated by all Bi(l) with ¢ < hy. Note that M = N x P, a

S

direct sum of W-modules. Note that M, = (N N Mp) x (PN M,).

In the proof the W -submodule P C M will be fixed; its W-complement N C M will change
eventually if it is not already a Dieudonné submodule.

We write m; =m, n; =n, h=hy =m+n,and r = r1. Note that we assumed 0 < \; < 1/2,
hence m > n > 0. For i > 0 we define integers d; by:
i-h<dén<im+(@i+1)n=ih+n
and non-negative integers ; such that
00=0, =+l di=n+l+r+l++yn+l
note that 6, = h = m 4+ n; hence v + --- + v, = m. For 1 <i¢ < n we write
fi) =dicam— (i —1)-h;

this means that 0 < f(i) < n is the remainder of dividing d;_1n by h; note that f(1) =0. As
ged(n, h) = 1 we see that
f{l,,n}—>{0,,n—l}

is a bijective map. The inverse map f’ is given by:

f{o - n =1y —={1,---,n}, fl(x)=1- (mod n), 1< f'(z)<n.

SR

In (@Q1)" we have the vectors AZ(.I). We choose Cf = A(()l) and we choose {C{,---,C}} =
{457, Al by

1. A1) ' _ A1),
Cli= Apy Chy = AP

this means that:
FiCl=VCl,,, 1<i<n, F"C,=VC], hence FC|=p-Cl,, 1<i<n;
note that F*"C{ = p™-C{. With these choices we see that
(Fici|1<i<n0<j<y}={A"|0<t<h}

For later reference we state:



(2.6) Suppose @ is a nonzero Dieudonné module with an element C € Q, such that there
exist coprime integers n and n+m = h as above such that F"-C = p™-C and such that Q as
a W-module is generated by {p~U"/MFiC |0 < j < h}, then Q = D(Hypp).

This is proved by explicitly writing out the required isomorphism. Note that F™ is injective
on @, hence F".C' = p™-C implies F™-C = V"-C.

(2.7) Accordingly we choose C; 5 := B](cl(z) s € M with 1 <i < n. Note that
{iji7s|1§i§n, 0<j<~v 1<s<r} isa W-basisfor N,

‘7:%0@'73 — VCZ'+17S epM, 1<1<n, P"Cn,s — VCl,s € pM.

We write C; = (Cj s | 1 < s <r). As a reminder, we sum up some of the notation constructed:

NCcM b, Q)7

|

M/pM = @, (Q;/pQ;)",

BY) e M AY) € c (@)
Ci,s eN Cz{,s €@ C (Ql)m.

(2.8) Lemma. Use the notation fized up to now.
(1) For every p € Q¢ the map p: M, — M1, multiplication by p, is surjective.
(2) For every p € Q>o we have FM, C M, (/1)

3) For every i and s we have FBY ¢ Moy /n; for every i and s and every j > 1 we have
0,8 (i+n)/

)
FBi% € M) (n/m)y+(1)7)-

(4) For every 1 < i < n we have Focy —piBj(fl(ZH) € (MH(I/T))T; moreover FonCy — p"C €

(M (1/1))"-
(5) If u is an integer with u > Tn, and {y € (N N M, 7)", there exists

nn € NN (Mg r)—y)" such that (F" —p"py =&y (mod (Myi1y,7)")-

Proof. We know that M, is generated by the elements B(];S,) with i/h; > p + 1; because

i7

p > 0 such elements satisfy ¢ > h;. Note that p-Bi(i )hj’ ¢ = BZ(]S) This proves the first property.
O(1)
At first we show FM C M, . Note that for all 1 < j <t and all 8 € Z>q
Bh; <i<phj+m; = FBY =B (+)
and
Bhi+m; <i<(B+Dh; = BP=vBD +pPe cemm. )

from these properties, using n/h < n;/h; we conclude: FM C M, /p-
Further we see: by (%) we have

w(FBY)) = v(BY), ) = (i+n;)/h;,

7



and 4+ - 4+ .
i+n; i+n . i+n; i n o ...
= f j=1; >—+ - if 5> 1.

I oot o n

By (¥x) it suffices to consider only m; < ¢ < h;, and hence FBZ-S) = pB( 7

;s + pFE&; so we
have

o(FBY)) = min (vwBY, ). v(FE)) ;

for j =1 we have v(pBZ( )m1 ;) = (i +n)/h>1and v(pFE) > 1+ (n/h) > (i/h) + (n/h); for

j > 1 we have U(pBZ( m; s) > (i/hj) + (n/h) and (i/h;) + (n/h) <1+ (n/h) < v(pFEs); hence

(fB(] )) > (i/hj) + (n/h) if 7 > 1. This ends the proof of (3). Using (3) we see that (2)
follows. D(2)+(3)

From FY%C; = VCiy1 + p&; for i < n and F'nC,, = VC1 + p&y, here & € M" for ¢ < n, we
conclude: A
FC0r = p'Cisi + Y 1<i<i PFOTNFG, i<,

and the analogous fomula for i = n (write Cy,+1 = C1). Note that
ih <dn and dm <Im+ ({+1)n="»lh+n;

this shows that
Ch+ (8; — dg)n +n > ih;

using (2) we conclude (4). 0(4)

Note that h = hy divides T. If ¢ is an integer such that (¢ — 1)/h < u/T < ¢/h then
u<u+1< E%; in this case we see that N N M, 7 = N N M, 1)/7. In this case we choose
ny = 0.

Suppose that £ is an integer with u/T = ¢/h. Then N N M,;r = Ny O Nygpiyn =
NN M q1y/7- We consider the image of N N M p)_,, under Fh —p". We see, using previous
results, that this image is in Ny, + M(y41)/7 (here “+” stands for the span as W-modules).
We obtain a factorization and an isomorphism

Fr—p" N0 Mny—n — (Nesn + My r) /Mty = Negn/Nesyn

We claim that this map is surjective. The factor space Ny/j,/N(g41y/ 18 @ vector space over k

(1) 1)

spanned by the residue classes of the elements B, ;. For the residue class of ysBé . we solve

the equation - Ts = Ys in k; lifting these x4 to W (denoting the lifts by the same symbol),

we see that ny = >, stél_)nh , has the required properties. This proves the claim, and it
gives a proof of part (5) of the lemma. 0(5),(2.8)

(2.9) Lemma (the induction step). Let uw € Z with u > nT + 1. Suppose D1 € M" such
that D1 = Cy  (mod (My,7)"), and such that & := F"Dy — p"Dy € (M,7)". Then there
exists 1 € (M /7)—n)" such that for Ey := D1 —n we have FhE, — p"E; € (Mys1y/r)" and
Ey=Cy1 (mod (My7)").

Proof. We write £ = {x + {p according to M = N x P. We conclude that {x € (NN My r)"
and &p € (PN M,,7)". Using (2.8), (5), we construct ny € (N N M;;r)" such that



(F' —p™)nn = & (mod (Mys1y7)"). As Myp C M, we can choose np := —p~"{p; we
have np € My jry—n C (My )" With n:=nx + np we see that

(F'—pMn=¢  (mod (M(y41y/r)") and ne (Myr)"

Hence (F" — p")(Dy — 1) € (M41y,7)" and we see that F; := Dy — n has the required
properties. This proves the lemma.
0(2.9)

(2.10) Proof of (2.2). (1) There exists Ey € M" such that (F" —p")E; =0 and Ey = Cy
(mod (My,7)").
Proof. For u € Z>,141 we write Dy(u) € M" for a vector such that

Di(u)=C1  (mod (My;7) and F'Di(u) — p"Dy(u) € (Myyr)"

By (2.8), (4), the vector C; =: Di(nT + 1) satifies this condition for u = nT + 1. Here we
start induction. By repeated application of (2.9) we conclude there exists a sequence

{D1(u) | w € Z>pri1} such that  Di(u) — Di(u+1) € (Myy/ry—n)"

satisfying the conditions above. As N, M, = {0} this sequence converges. Writing
E, := D1 (o0) we achieve the conclusion. 0O(1)

(2) Choose Ey as in (1). For every j > 0 we have

p_[%}]-'jEl € M; define N’ := H W-p_[%}ijl C M.

1<j<h

This is a Dieudonné submodule and it is a W-module direct summand of M. Moreover there
s an isomorphism
D((Hpn)") & N,

the map N'[[ P — N'+P is an isomorphism of W -modules, and N'+P = M. This constructs
X1 C X, with

D(X; C X) = (N'C M) suchthat (X/X1)[p] = [[(Mim,n,)"7

j>1

Proof. By (2.8), (2), we see that F/Ey € M, ), hence the first statement follows. As

F'E; = p"E; it follows that N’ C M is a Dieudonné submodule; using (2.6) this shows

D((Hpp)") = N'.

Claim. The images N' - N' @ k = N'/pN' ¢ M/pM and P — P/pP C M/pM inside

M /pM have zero intersection and N' @ k+ P ® k = M /pM. Here we write — ® k =

— Qw(W/pW).

For y € Z>( we write g(y) := yn — h-[4]; note that, in the notation in (2.5), we have
pEFC = Ag.

Suppose

ri= Y B WF (B mod pM) € (N' @ kNP @ k) C M/pM, §; €k
0<j<h



such that 7 # 0. Let x,s be a pair of indices such that 8 := 3, # 0 and for every y with
9(y) < g(x) we have B, ; = 0. Project inside M /pM on the factor N,. Then

+P),

1
T = ﬁ-Bf](;)ﬁ (mod ML;ML

1
T

which is a contradiction with the fact that N NP = 0 and with the fact that the residue class

(1) _
By gemerates ((ML;) +P)/(M@+% + P))s = N$,S/N%ﬂ”)+%,s'

We see that 7 # 0 leads to a contradiction. This shows that N @ kN P ® k = 0 and
N ®@k+ P ®k= M/pM. Hence the claim is proved.

As (N'NP)®k C N'®@kNP®k =0 this shows (N'N P)® k = 0. By Nakayama’s lemma
this implies N N P = 0. The proof of the remaining statements follows, in particular we see
that N’ is a W-module direct summand of M. This finishes the proof of (2), and it ends the
proof of the proposition. 0(2.2)
3 Split extensions and proof of the theorem

In this section we prove a proposition on split extensions. We will see that Theorem (1.2)
follows.

(3.1) Proposition. Let (m,n) and (d,e) be ordered pairs of pairwise coprime positive
integers. Suppose that n/(m +n) < e/(d+e). Let

0—Z:=Hp,—T—Y:=Hg.—0
be an exact sequence of p-divisible groups such that the induced sequence of the p-kernels spits:
0— Z[p| — Tlp] — Yp] — 0.

Then the sequence of p-divisible groups splits: T =2 Z @Y .

(3.2) Remark. It is easy to give examples of a non-split extension 7'/Z =Y of p-divisible
groups, with Z non-minimal or ¥ non-minimal, such that the extension T'[p]/Z[p] = Y[p] does
split.

(3.3) Proof of (1.2). The theorem follows from (2.4) and (3.1). 0(1.2)

(3.4) In order to show (3.1) it suffices to prove (3.1) under the extra condition that 3 <
e/(d+e).
In fact, if n/(m +n) < e/(d + €) < 3, we consider the exact sequence

O—>Hctl7e = €7d%Tt —>Hfmnan7m—>O
with 3 < d/(e +d) < m/(n+m). 0(3.4)

From now on we assume that 3 < e/(d +e).
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(3.5) We fix notation which will be used in the proof of (3.1). We write the Dieudonné
modules as: D(Z) = N, D(T) = M and D(Y') = @; we obtain an exact sequence of Dieudonné
modules M /N = @, which is a split exact sequence of W-modules, where W = W (k). We
write m+n = h and d+e = g. We know that @ is generated by elements A;, with ¢ € Z>( such
that m(A;) = A;11, where 7 € End(Q) is the uniformizer, and V-A; = A;1q, F-A; = Ajte;
we know that {4; | 0 < i < g = d+ e} is a W-basis for Q. Because § < e/(d + €), hence
e > d we can choose generators for the Dieudonné module @ in the following way. We choose
integers §; by:
g <dpd<(i+1)d+ie=ig+d

and integers ~; such that:
hh=m+1l,-bi=m+l+r+tl+ -+y+]

note that d; = g = d + e. We choose C' = Ay = C; and {C1,---,Cq} = {Ao, -, Ag_1} such
that:

VIiC; = FCiyq, 1<i<d, V¥Cy=FC;, hence V%C =p"Ci1, 1<i<d;
note that VIC = p%.C. With these choices we see that
jd . .
pEico<j<g={(ViC;|1<i<d 0<j<~}={4]0<(<g}
Choose an element B = By € M such that
M — @Q gives By =B~ (Bmod N)=C = (.

Let 7’ be the uniformizer of End(N). Consider the filtration N = N© > ... 5 N® 5
NG 5 .. defined by (7)Y (N©) = N@. Note that FN® = N@+7) and YNNG = NG+m)
and p'N = NP for ; > 0.

(3.6) Proof of (3.1).

(1) Construction of {By,---,Bg}. For every choice of B = B; € M with (B mod N) = C,
and every 1 < i < d we claim that V% B is divisible by p*. Defining Bij1 := p~*V% B, we see
that B; mod N = C; for 1 <1 <d. Moreover we claim:

VIB —pt.B e Nldh+D),

Choose B/ € M with B/ mod N = C;. Then V¥ B} — FBY,, =: p-§ € pN; hence V¥ 1B/ —
p-Bj' | =pV& € pVN. For 1 < i < d we obtain that

ViB—p'B= Y ViT%plVeg, & eN.
1<j<i
From n/(m +n) < e/(d+ e) we conclude g/d > h/m; using d;-d > ig and 6;d < (j + 1)d + je

we see:

i>j implies 0; —d;+1> (i—j)(g/d) > (i—j)(h/m);

hence
(0; — 05)m + j(m +n) +m > ih;

This shows A 4
Voidipive; € pP N,
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As 6, = g we see that VIB — pt.B € pN() = N(dh+1), O(1)

(2) The induction step. Suppose that for a choice B € M with (B mod N) = C, there exists
an integer s > dh + 1 such that VIB — p*- B € N then there exists a choice B' € M such
that B' — B € NG=dh) qnd

VIB' — pt.B e NG+,

In fact, write p%-B — V9B = p?-¢. Then ¢ € N6~ Choose B’ := B — ¢. Then:
VIB — phB' = VIB — ph.B — VI¢ 4 ple = —VI¢ € Nlom—dhts),

note that gm — dh > 0. 0(2)

(3) For any integer v > d + 1, and w > rh there exists B = By as in (3.5) such that
VIB — piB e NW = pr . N@=h) " This gives a homomorphism ¢,_g

M/p =M «— Q/p"?Q extending M/pM — Q/pQ.

The induction step (2) proves the first statement, induction starting at w = (d+1)h > dh+ 1.
Having chosen Bj, using (1) we construct B := p*iV‘L’Bl for 1 < i < d. In that case on
the one hand VB, — FB; = p-£4, on the other hand VIB — p?B € N c p"N. Hence
p?VE; € p'N; hence p&; € p"~%N. This shows that the residue classes of By,---, By in
M/p"~%M generate a Dieudonné module isomorphic to Q/p"~%Q which moreover by (3.5)
extends the given isomorphism induced by the splitting. 0(3)

By [8], 1.6 we see that for some large r the existence of M/p" =M «— Q/p"~%Q as in (3)
shows that its restriction M/pM «— Q/pQ lifts to a homomorphism ¢ of Dieudonné modules
M — @; in that case 1 is injective. Hence ¢ splits the extension M /N = Q. Taking into
account (3.4) this proves the proposition. 0(3.1)

Remark. Instead of the last step of the proof above, we could construct an infinite sequence
{B(u) | u € Z(g41yn} such that VIB(u) — p?B € N® and B(u + 1) — B(u) € N“=h) for all
u > (d+ 1)h. This sequence converges and its limit B(co) can be used to define the required
section.

4 Some comments

(4.1) Remark. For any G, a BT over k, which is not minimal there exist infinitely many
mutually non-isomorphic p-divisible groups X over k such that X [p] = G. Details will appear
in a later publication, see [9].

(4.2) Remark. Suppose that G is a minimal BT1; we can recover the Newton polygon [
with the property H(3)[p] = G from G. This follows from the theorem, but there are also
other ways to prove this fact.

(4.3) For BT, group schemes we can define a Newton polygon; let G be a BT; group scheme

over k, and let G = x; G; be a decomposition into indecomposable ones, see [3]. Let G; be

of rank p™, and let n; be the dimension of the tangent space of GZD ; here GZD stands for

the Cartier dual of G;; define N'(G;) as the isoclinic polygon consisting of h; slopes equal to
n;/h;; arranging the slopes in non-decreasing order, we have defined N’(G). For a p-divisible
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group X we compare N (X) and N’(X|[p]). These polygons have the same endpoints. If X is
minimal, equivalently X [p] is minimal, then N (X) = A’(X[p]). Besides this I do not see rules
describing the relation between N(X) and N’(X[p]). For Newton polygons 3 and v with the
same endpoints we write 8 < 7 if every point of § is on or below . Note:

e There exists a p-divisible group X such that N (X) z N'(X[p]); indeed, choose X
isosimple, hence N (X) isoclinic, such that X[p] is decomposable.

e There exists a p-divisible group X such that N (X) = N'(X[p]); indeed, choose X such
that A(X) is not isoclinic, hence X not isosimple, all slopes strictly between 0 and 1
and a(X) = 1; then X|[p] is indecomposable, hence N’(X[p]) is isoclinic.

Here we use a(X) := dimpHom(a,, X). It could be useful to have better insight in the relation
between various properties of X and X|p].

References

[1] L. Hlusie — Déformations de groupes de Barsotti-Tate. Exp.VI in: Séminaire sur les
pinceaux arithmétiques: la conjecture de Mordell (L. Szpiro), Astérisque 127, Soc. Math.
France 1985.

[2] A.J. de Jong & F. Oort — Purity of the stratification by Newton polygons. Journ. Amer.
Math. Soc. 13 (2000), 209 - 241.

[3] H. Kraft — Kommutative algebraische p-Gruppen (mit Anwendungen auf p-divisible Grup-
pen und abelsche Varietiten). Sonderforsch. Bereich Bonn, September 1975. Ms. 86 pp.

[4] H. Kraft and F. Oort — Group schemes annihilated by p. [In preparation]

[5] Yu.I. Manin — The theory of commutative formal groups over fields of finite characteristic.
Usp. Math. 18 (1963), 3-90; Russ. Math. Surveys 18 (1963), 1-80.

[6] F. Oort — Commutative group schemes. Lect. Notes Math. 15, Springer - Verlag 1966.

[7] F. Oort — A stratification of a moduli space of polarized abelian varieties. In: Moduli
of abelian varieties. (Ed. C. Faber, G. van der Geer, F. Oort). Progress Math. 195,
Birkhauser Verlag 2001; pp. 345 - 416.

[8] F. Oort — Foliations in moduli spaces of abelian varieties. Journ. Amer. Math. Soc. 17

(2004), 267-296.

9] F. Oort — Simple p-kernels of p-divisible groups. [To appear in Advances in Mathematics.]

Frans Oort

Mathematisch Instituut

Budapestlaan 6 Postbus 80010

NL - 3584 CD TA Utrecht NL - 3508 TA Utrecht
The Netherlands The Netherlands

email: oort@math.uu.nl

13




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


