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Introduction

[t is widely recognized that Milner’s CCS constitutes a fundamental contribution to the theory of con-
currency. Milner’s aim is to establish laws for concurrent processes in the form of algebraic identities. We
view process algebra, as developed in [3-10], as a rephrasing of the basic issues of CCS. For a motivation
of CCS as a theory of concurrency we refer to Milner [14, 15]. We will not assume that the reader knows
CCS. The differences with CCS in aims and techniques can be summarized as follows:

(1) We use these operators and constants:

+  alternative composition (sum)

. sequential composition (product)
Il parallel composition (merge)

Il left merge

[ communication merge

dy  encapsulation

7;  abstraction

b)) deadlock (failure)

L T silent (internal) action

Table 1.

We will briefly discuss how these operators relate to CCS. The operators +, ||, and + have exactly the
same meaning; multiplication . is more general than the prefix multiplication of CCS: Il and | are new:;
8 is similar to NIL in sums (but not in products). dy and 7, are new operators. (However these are for-
mally renaming operators in the sense of CCs)

(2) This choice of operators allows a finite initial algebra specification of the behaviour of finite
processes. Seen from CCS, || and | are hidden operators involved in this specification. We feel however
that [|_ and | are perfectly meaningful from an intuitive point of view.

Our presentation culminates in a system of equations ACP,, and passes through several smaller
specifications (PA, PA,, ACP) involving only a subset of the operators.
(3) ACP chooses from the onset the axiomatic approach. Thus, where CCS starts with a model of
processes and derives identities in that model as theorems, ACP reverses this procedure: a set of axioms
is given first and its models are investigated next. In the course of our investigations we have met some
twenty interesting process algebras (interesting as opposed to pathological; the axiomatic approach allows
also some less useful models) and since there are so many it seems sensible to organize them as models of
some axiomatic theory.
(4) We claim that ACP is more amenable 1o a mathematical analysis than CCS (in its original from). As
an example we would like to point out the simple formulation of the Expansion Theorem (2.2.3), and the
specification of a Stack in Section 3.5.

The core of this presentation is the system ACP. Infinite models for ACP are constructed as projec-
tive limits of finite models, and as graph models modulo bisimulation. The projective limit models have
been derived from the topological construction in de Bakker & Zucker [1.2]. The work on process algebra
originated from a problem in [2] (page 87) which was solved in [3] thereby essentially using the algebraic
properties of || . (See 1.9 below.)
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paper.

Most of the following material has been covered in more detail in our reports [3-10]. Section 4 con-
tains new results, centering around ACP, an axiom system for communicating processes with internal
steps. Almost all proofs are omitted - these can be found in the above mentioned reports (except for
most of Section 4).

The structure of this paper is as follows:
1. Process algebra: PA
2. Process algebra with communication: ACP
3. Recursively defined processes
4. Hiding internal steps in finite processes

References.

1. Process Algebra: PA

In this section we will introduce the axiom systems PA for process algebra without communication
(treated in Section 2) and without internal steps (treated in Section 4). The co-operation between
processes described by PA is that of interleaving. As semantics for PA several ‘process algebras™ will be
introduced of which the simplest one is the initial algebra of PA.

1.1 The axiom system PA consists of the following list of axioms:

x+y =y+x Al
x+(y+z)=(x+y)tz A2
x+x =x A3
(x+y)ez = xez+y.z Ad
(xep)ez = Xo(y.z) A5
xly = xlLy+yllx MI
all x = asx M2
ax|ly = a(x|ly) M3
(x+wlLz = xlLz+yl .z M4

Table 2.

1.1.1. The signature of PA consists of the following ingredients:

(i) ab,c,..€A, the set of axiomatic actions (also called ‘steps’ or ‘events’). A is also referred to as the
alphabet. Throughout this paper, we will assume that A is finite. (This is done to safeguard the alge-
braic nature of our considerations — e.g. infinite sums of processes are not considered here.)

In the axioms of PA ., ‘a’ varies over 4.

(i) x,.z,.. are variables, ranging over the domains of processes (process algebras) which will be con-
structed below.

(iii) binary gperators. These are:
+ alternative composition, or sum
- sequential composition, or product

|l parallel composition, or merge
[ left-merge.

The ‘main’ operators are + .. ||. Left-merge || is an auxiliary operator.

1.1.2. Process expressions or process terms are built from the a €4 by means of +..,

L. Examples of



process expressions are:

(@a+b), (((a.a)l b)+ (c.d))ee)

The following notational conventions will be employed: xy stands for x .y outermost brackets are omit-
ted: the operator . has the greatest binding power; x” stands for xx .. x (1 times): || and [l bind
stronger than +. So the two process expressions above may be written as

a+b, (@ b + cd Je.

1.2. Semantics of PA .

A process algebra is a domain of processes satisfying the axioms of PA. The three most important
process algebras for PA are:

(1) A, the initial algebra of PA,
(2) A, the graph model of PA,
(3) A™, the standard model of PA

It will turn out that these algebras properly extend each other (modulo isomorphism): A CEATGA™,

L2.1. The initial algebra A,. The elements of 4 w are the process expressions modulo the equivalence given
by PA. So, in A,, '‘a+b’ and ’b+a’ and ‘a +b +a’ are the same. Likewise, the process expressions
((aall b +ed)e and a(abe +bae)+ cde denote the same element in A4, since using PA one computes

(aal b +cd)e = (aall b)e +cde =a(allb)e +cde =
a(all.b+bll a)e+cde = a(ab+ba)e +cde =
a(abe +bae )+ cde.

Note that this derivation has eliminated the Il. [l operators in the original process term. We have the fol-
lowing general fact:

1.2.1.1. Theorem.

(1)  Using the axioms of PA as rewrite rules Jrom left to right, every process expression can be rewritten 10
an expression without || or || .

(i) If PAvt) = tyandt,, t,y do not contain |, || ., then Al-Stty = 1,

This entails that elements of the initial algebra A, can be thought of as process expressions built from

atoms via + and . only, modulo Al-5. Using this fact we arrive at a convenient representation of ele-
ments of 4 :

1.2.1.2. Proposition. Modulo PA-equivalence, A, is inductively generated as follows:
m n
X, €A, a; €A (i=1,.. .n) bed(j=1,..,m)= b+ Faxed,
=1 =1

1.2.1.3. Example. bab|lab =bab | ab +ab IL_bab =b(abllab)+a(b |bab)=

blabll_ab +ab|| ab)+a(b|l bab + bab [Lb)Y=b(ab |l ab)+a(bbab +b(abllb))=

bla(bllab))+a(bbab +(b(ab| b +b L ab))=b(a(bab +abb))+ a(bbab + b(abb + bab ).

Expressions like the last one, without || and || . can conveniently be *pictured’ as finite trees:
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Figure 1.

Let us note here (in advance to the definition of || for process graphs later on in this section) that the
tree above, resulting from the interleaving of bab and ab. can be obtained quickly by ‘unraveling’ the
cartesian product graph

Figure 2.

Vice versa, the above tree yields this product graph by identifying some nodes with identical subtrees.)
We will return to such process trees and graphs later.

Note that PA does not contain the distributive law x(y +z) = xy +xz. Indeed, for pairwise dif-
ferent atoms a,b,c the processes a(b +c) and ab +ac are different in A,. (Cf. also Example 2.1.1.3.)

We have now constructed our first process algebra as semantics of PA, the initial algebra 4, whose
elements can also be thought of as finitely branching and finitely deep process irees. The fact that the
processes in A, are only finitely deep, means that we cannot find solutions p in A, for recursive defini-
tions like p = ap; for, p would be aaaa ... or a®.

Therefore we will now construct process algebras which do have infinite elements, and in which solu-
tions of recursion equations can be found.

1.2.2. The process graph model A™.

A process graph (also called: transition diagram) over a set of atoms A is a rooted, directed multigraph
whose edges are labeled by elements of A. Process graphs may be infinite and may contain cycles. Pro-
cess trees are special cases: they are acyclic process graphs where no subgraph is shared (and containing
no multiple edges); in other words, where no two edges have the same end-point. Some examples will
clarify these concepts.



(1) (i1) (iif) (iv)

b b b
SO — -
a d 4
(v)
a
b
b
(vi)

Figure 3.

Here (i), (ii) are finite acyclic process graphs, but not trees; (iii), (iv) are finite process graphs containing
cycles; (v) is an infinite process graph containing cycles and (vi) is an infinite process tree.

To construct our second process algebra A, we will restrict ourselves to finitely branching process
graphs. (This also puts a bound on the cardinality of the edges and nodes of such graphs.)

Having this large collection of finitely branching process graphs available, we note that there are “100
many” of them — some process graphs should be identified. E.g. the five graphs in Fig4 all seem to
denote the same process: in each node (“state of the process™) there are in all five cases infinitely many
a-steps possible.
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Figure 4,
An elegant notion, introduced in Park [16], called bisimulation, does indeed identify these graphs.

1.2.2.1. Bisimulation of process graphs is defined as follows.
Let gy,g, be process graphs with node sets Nodes (g1), Nodes (g;). Let 54, be the roots of 8182
respectively. Then g.g, are bisimilar, in symbols:
g1 % &2
if there is a relation R C Nodes (g;) X Nodes (g,) such that
(i) s¢Rt, (the roots are related)
(i) if s Ss’is an edge of g, and sRt, there must be an edge 1 ¢’ of g, such that s’R¢’. In a diagram:

,l i
|
| slL_R [t _R_-
OGN )
Sk B =
o

(iii) vice versa (with the role of g,g, interchanged):




[ v

(1) (i1)

(iii) §5
a /

(In Figure 5 (iii) the bisimulation
is given by the numbering
of the nodes.)

(iv) A non-example:

are notr bisimilar.

b
a
b
|
and X
a a \'\a
b C bf/ Ec

(C1. our earlier remark that AFalb+c) = ab tac.) Note that unfolding (or unwinding) a process
graph respects bisimilarity. The same holds for sharing (identifying nodes with identical subgraphs).

We call the process graph with one node and no edges, the trivial graph. - A node lying on a cycle is a
cyelic node,

Now the second process algebra for PA , called the process graph algebra A is defined as follows,
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The elements of A* are the finitely branching, nontrivial process graphs with acyclic roots modulo
bisimulation.

1.2.2.3. The operations +...l.[. on A* are defined thus:
(1) The sum g,+g; is obtained by identifying the roots of g,.g>. E.g.:

~ t }‘"’n\t

- aLl_{ k! - y:: \ e ’ \_“‘)

o b 1 ;‘:)' \
Figure 6.

(This example indicates why the roots have to be acyclic: otherwise

- s
. g ( .
¥, . Pox #F ,‘_'
— h
Figure 7.

(ii) The product g,.g, is obtained by appending g, to all end nodes of g,.
(iii) The merge g,llg; is the cartesian product graph as in the example:

- - i
a1, | I-&—— T =%
ol

T
|
1
T
B

Figure 8.

(iv) The left-merge g,|| g, is obtained as a subgraph or g,llg, as in the example:
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Figure 9. 1
3
i x =
It is now easy to prove the following 2
=
1.2.2.4. Theorem. a
4
(1) A™ is a process algebra (a model of PA ). S
(ii) The finite elements in A constitute a subalgebra which is (isomorphic to) A o L
1.2.2.5. Approximations of processes in A*. There is a clear sense in which a (possibly infinite) process
tree ¢ can be approximated by finite process trees (1), (n=1): (1), is t where cvcr}'thing below level n is

cut-off. (Le the branches of (1), have at most n steps.) This notion of projection induces one in A* in a
straightforward manner: writing [g] for the bisimulation equivalence class of the process graph g (so
[gleA=, if g is nontrivial etc.), we define

(gD, = [wree(g)),1

where tree(g) is a tree obtained by unwinding g. To establish the precise definition of tree(g) and the
well-definedness of the projection operation ( ),: A*—A® is a matter of routine. From now on, we write
simply g instead of [g] when dealing with elements of A®, There is the following interesting fact:

1.2.2.6. Theorem. Let gheA™. Then g = hsVn (g), = (h Y

So equality between finitely branching graphs (modulo bisimulation) is entirely determined by their finite

approximations — io.w. a finitely branching graph modulo bisimulation is determined by its finite
approximations.

The implication = in this theorem is trivial; the proof of the reverse implication consists of an appli-
cation of Konig's Lemma made possible by the condition that elements in A* are (equivalence classes

of) finitely branching graphs. (This is used as follows: construct the tree of all bisimulations between (g ), L
and (h),, for all n=>1. That is, on the n-th level are the bisimulations between (g), and (4 )y Ordering —
in the tree is: extension of bisimulations in the set-theoretic sense. Since this tree is fiitely branching and 3
infinite, it has an infinite branch which yields a bisimulation for the pair g h.) That this condition is _
essential for the proposition in the theorem. follows from a consideration of these two process graphs

which have the same finite approximations: 3




(i) (i)

Figure 10.

Although the elements of A™ are attractive objects, they are notoriously lacking in algebraic nature.
On the basis of our intuitive understanding of the graph model A®, we will now construct a process alge-
bra for PA which is algebraic in nature and which will be called:

1.2.3. The standard model 4 for PA.

Bearing in mind that an element g =A™ gives rise to a sequence ((g);.(g),. ...) of approximations
which by the previous theorem (1.2.2.6) determines g and for which we obviously have:
(g)y = ((g)n+1)n, we now define without any reference to graphs:

A projective sequence is a sequence (p1.py.p3. ..., Pn. ... ) of elements of 4, such that p, = (p, ;,),. Here
the projections ( ),: 4 ,—A, (n=1) are defined by
(@), = a
(ax)) = a, (ax),+ = a(x),
(x+y) =) T (-

Furthermore we define: the elements of A™ are the projective sequences. The operations +,. LI on 4
are defined coordinate-wise, thus:

P12 s Prs ) O (GG s Gy oois ) =

((pr O g (p2 0 922 oo (Pn U G s )

where OJe{+,.,|,IL}. Note the outermost subscripts in the RHS, necessary to ensure that the result
from applying the operation [ is again a projective sequence. (The simple proof employs the fact that

P Og)=((P)O(g)n-)

1.2.3.1. Example.
(i) The atomic action ‘a’ is represented by (a.a.a. ...).

(ii) (a.a+a% a+a*+a’, ... 2 a', ...)eA®. We will refer to this element as =% ,a'. (Note however
that except for this ad hoc notation we will not use infinite sums.)

(iii) Call a®=(a.a’d’, ..). Then a®.b*=((a+b),, (a*b?),, ..)=a".
(iv) a“llb“=((allb)y, (a®b3),, ..)=(a +b, a(a+b)+b(a+b),.)=(a+b,(a+b) ..)=(a+b)".
(v) [(@“llb®)+a*]llb®=a®|b.

Again it is straightforward to verify that 4 is a model of PA .

A natural question is how 4® and A* compare. The answer is that A™ is an extension of A™: it
contains all the processes in A* (modulo an isomorphism) but also some processes which are not finitely



branching, like £ 4" above. Strictly speaking, we have not yet defined when an element of 4, a pro-
Jective sequence, is finitely branching.

This can be done by assigning to apeA™ a process graph G(p), as follows. First we define what 4
‘subprocess’ of p €4 * is;
1.2.3.2. The collection of subprocesses of p is given by
(i) peSub(p),
(i) ax eSub(p)=x eSub(p),
(i) ax +y €Sub(p)=x eSub(p).

1.2.33. From the subprocesses of p (which may be thought of as the nonterminal states of the process)
we can assemble a process graph G (p). This process graph will be called the canonical process graph G(p )
Sor p. It is defined as follows:

(i) the set of nodes of G(p) is Sub(p)U (O},
(i) the root of G(p)is p,
(ii1) the edges of G (p) are given by:
(aeSub(p) = a 30 is an edge,
(2) axeSub(p) = ax Lx is an edge,
(3)a+tyeSub(p)=a+y 50 isan edge,
(4) ax +y eSub(p) = ax +y Zx is an edge.
(If p has only infinite branches, the termination node O can be discarded.) So now the statement that

224" (=(a,a+a’ ) is infinitely branching makes sense: it is meant that its canonical process graph
is s0. In fact, the canonical process graph of p =3 1a' is

)
(B
E

P s

Figure 11.

which is bisimilar to the process graph in Figure 10 (ii).
(Note that G (p) contains the infinite branch a“: for: p=pt+a“=p+a.a“ hence a“eSub(p).)

We conclude this section about P4 with a number of remarks which give some additional informa-

tion about PA and its models (but which are not strictly necessary for an understanding of the following
sections),

1.3. The cardinality of A and 4> is 2* for all finite 4 (as supposed throughout the paper). In contrast,
one may consider the following. If there is no condition imposed on the branching degree of process
graphs, and A is constructed as before, then even for a singleton alphabet 4 the process domain A*
would be a proper class in the sense of axiomatic set theory. This shows that in order to obtain a set-
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sized domain of process graphs modulo bisimulation one has to specify some cardinal as upper bound on
the branching degree in advance.

1.4. The finite process algebras A,. Some interesting finite process algebras (models of PA) which were
not introduced above, can be obtained as follows. Define 4, ={(p),|p €4} and define as operations
[, on the finite set A, :

x O,y = (x0y),

where the [l e{ +,. I} are the operations from A4 . Then
A+ on iy )ePA. Now A can be defined simply as the projective limit of the algebras A, (n =1).

L.5. Commutativity and associativity of merge. From the axioms of P4, the commutativity of merge fol-
lows immediately:

xly = xlly+yllx=yllx+xlly=ylx
The associativity
xl(pllz) = (x1p)llz

does not follow from PA . (Indeed one can construct a process algebra with non-associative merge opera-
tor.) However, in the process algebras introduced above (4 .4, . A% A4%) the associativity does hold. A
proof, by induction on the structure of the elements, can be given simultaneously with a proof of the use-
ful identity

(xlLy)llz = x[L(plz).

1.6. Adding a zero proces to PA. One can argue about the desirability of an element 0 in process alge-
bras. with the properties

x+0 =x
Ox = x0=x
Naive addition of such axioms to PA yields an ‘inconsistency’, though. For consider:
ab = (a+0)b=ab+0b=ab+b
contrary to our intention to distinguish ab from ab +b.
However, with the added proviso in axiom A4:
(x+y)z =xz+yz if xpy5#0

(and adding 0|l x =0, x| 0=x) this inconsistency is removed and we have a conservative extension of
PA.

Yet we will not pursue this option, since we have no need for 0. One reason is found in the next
remark, another reason is the wish to adhere to an equational format for process algebra as long as possi-
ble.

1.7. The (non) existence of a suitable partial order on process algebras. It would be most convenient to
have a cpo structure for process algebras such as 4,, 4. One could think of adding an element 0 as in
the previous remark, to function as the least element in a supposed partial order < on A4 ,, A®. More-
over. such a p.o. should be ‘suitable’ in the sense of respecting substitution (i.o.w. being monotone in the
operations),
However, a partial order on A, or A* (extended with 0) with these properties:
O=p
p<=qg=s(p)=s(q)

(where s( ) is some ‘context’), does not exist, since it would yield the contradictory equation aa =aa +a:



aa = aa +0<aa +a =aa +a0<aa +aa =aa.

Also there does not exist a p-0. on 4, A™ satisfying the properties

xXsx-+ty
XSy=5(x)<s(p.

For, this would result in the contradiclory equation a(b +¢ )=a(b +c)+tab-
ab+c)y=sa(b+c)+ab =sa(b+e)ta +c) = a(b+¢).

1.8. The auxiliary operator left-merge. The theory of the initial algebra 4 (+ .11l ). that is the set of
true equations between closed terms, is finitely axiomatized by PA. Without || however such a finite
axiomatization of the theory of the reduct A (+..||) does not seem possible. Of course the main advan-
tage of [|_ is the ease in algebraical computation.

Another advantage of || is the greater defining power it gives. E.g. the unique solution of the recur-

sion equation

X =plx
(a topic considered in detail in Section 3) can be seen as the “w-merge” of p. notation: pu‘ which is intui-
tively

pliplipll...
i.e. the limit of the Sequence p, pllp, plipllp, .... (see also the next remark). Without ||_, such a uniform
definition ofp? does not seem possible.

L.9. Solving equations in 4*. In Section 3 recursion equations and systems of recursion equations will be
considered under the condition that the equations are guarded. Here, we want to mention a theorem for
the unguarded case:

1.9.1. Theorem. Ler Ex={X, =T, (X)) =1, M} be a system of equations Jor X=X\,... X,. Then E,
has a solution (p,, ..., Pn) in each of the above introduced process algebras,

In general this solution will not be unique. In the case that n =1 solutions can be obtained as fol-
lows:

1.9.2. Theorem. Ler X = T'(X) be a recursion equation for X. Then a solution Jor X can be obtained as the
limit of the iteration sequence

9. T(q). T(T(g)), .., T"(g), ...
for arbitrary g.

(Here lim, _, 7% (¢)=p means: Yn Im (T™(q)), =(2)s-) At present however we do not see applications
for the possibility of solving unguarded fixed point equations.

2. Process algebra with communication: ACP

We will now extend the axiom system PA of Section 1 with the facility of communication between
processes. The communication will be modeled by actions sharing. In PA all atomic actions were on
equal footing, and capable of being performed independently. In ACP. Algebra of Communicating

Processes, we will introduce next to this kind of independent or autonomous actions, so-called subaromic
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Using this model of shared actions, of which a particular case is ‘handshaking’, we will as an applica-
tion model the process given by a dataflow network.

As a first illustration, consider the following processes p = (abc)“ and ¢ =(efg )“.

Figure 12.

The heavy lines denote atomic actions, the steps ¢ and g are subatomic actions and need each other to
perform the action k. notation: c|g=h. (In Petri net notation, the process resulting from the co-
operation of p.g would be given by

Figure 13.

Now the process r resulting from the co-operation of p and ¢ would be:

Figure 14.

That is, r =([a(e(bf +fb)+bef )+e(a(bf +fb)+ fab)yh)”.

The axiom system ACP (Table 3) gives the means to compute the results of such communicating
processes in an algebraic way. ACP is an extension of PA (Table 2), but not only in the sense that
axioms are added; one axiom from PA (viz. M 1) is adapted: x|[y is in ACP a sum of three terms,
namely x|l y, y|l x and the new summand x|y. Here x|y is, as in PA, “like x|y " but taking its first
step from x; likewise y || x; and x|y is like x|ly but requires the first action to be the result of a com-
munication (between a first subatomic ‘step’ of x and a first subatomic step of y).



15

This new operator ’|" is called communication merge; on the set A of atoms and subatomic actions it is
a binary function, the communication function, which is given a priori. It is commutative and associative.
The precise choice of the communication function varies with the application of ACP which one has in
mind — just as the choice of the alphabet 4. Thus ACP is in fact parametrized by 4 and by the com-
munication function [:4 XA —A .

The difference between what we called ‘independent’ atoms and ‘subatomic actions’ needs, for-
tunately, not to be made explicit in the axiom system. What is atomic and what subatomic follows by an
inspection of the communication function ’|'.

Besides a new operator ’|’, communication merge, there appear two new ingredients in the signature
of ACP as compared to that of PA.

The first is a constant 8, which is a ‘zero’ for + and moreover satisfies the axiom 8.x =& (A7). The
‘process’ § exhibits some (but not all) of the features of deadlock or rather failure. The main reason for
introducing & is algebraical: by means of & the unsuccessful communications are eliminated. We will
refer to the constant § as ‘deadlock’ (without claiming that § models all of the deadlock phenomenon).
An intuitive view of § which ‘explains’ the axioms A6, 7 in Table 3 is: & is the action in which the pro-
cess acknowledges the fact that it cannot further execute actions. So, whenever the process has another
option, it will not perform this acknowledgement of stagnation: x +8=x.

The second new ingredient is formed by the encapsulation operators 8, where H CA. Putting 9, in
front of at process expression p, result dy(p), means that the subatomic actions mentioned in # and
occurring in p, cannot anymore communicate with an ‘external’ process — they have had their chance
inside p.

Summarizing, we have the following signature for ACP:

x+y alternative composition (sum)
Xy sequential composition (product)
x|y parallel composition (merge)
x|y left merge

x|y communication merge

[:A XA—A  communication function

dy(x) encapsulation

& deadlock

Note that ACP is an extension of PA in the following sense: let the communication function be
trivial, i.e. a|b =8 for all abeA. Then the models A,, A%, 4™ for PA (with signature +.. ||| ) are
Just reducts in the modeltheoretic sense of the models Ay A*, 4™ for ACP which we will construct
below and which have signature + . [I,I| /.3, .5.
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ACP
x+y = y+x Al
x+ty+z)=(x+y)+:z A2
x+x =x A3
(x +y)ez = xezty.cz A4
(Xey)ez = xe(y.z) A5
x+d=x A6
d:x =0 A7
alb = bla Cl
(alb)lc = al(b|c) C2
8la =8 C3
xly = xlly+yllx+x]y CMI
all x = a.x CM2
(ax)Ly = a(xlly) CM3
(x+y)lz = xlLz+yllz CM4
(ax)|b = (alb).x CM5
al(bx) = (alb).x CM6
(ax)|(by) = (a|b)-(x1ly) CM7
(x+y)z = x|z +y|z CM8
x|y +z) = x|y +x|z CM9
dy(a) =a ifaeH DI
dyla) =8ifacH D2

BH(.\’ +)} — EIH(.x)+aH(y) D3
SH():-_}«') = aH(.X)-aH('].»'} D4

Table 3.

2.1. Process algebras for ACP.

The development of models for ACP is analogous to that for PA, so we will be much shorter now in
its description. Again we introduce:

(1) A, the initial algebra of ACP,
(2) A, the process graph model of ACP,
(3) A™, the standard model of ACP.

Here some confusion may arise as to which signature, that of PA or that of ACP, is meant when speak-
ing about 4, A*, A™. When this confusion is not solved by the context, we will mention the intended
signature explicitly, as in 4 (+,+,[1,IL) vs. A ,(+,4,Il,L|.9;,8).

2.1.1. The initial algebra A, of ACP.

Before building A, we have fixed the alphabet 4 , a communication function |:4 XA —.1, and a sub-
set H CA (hence an encapsulation operator dy ).

Now A, contains as elements: the process expressions (in the signature of ACP) modulo the equality
given by ACP. By the following

2.1.1.1. Normal form theorem. For each closed term t there is a closed term t' not containing |l |0y such




that ACP +t =t'.

we may think of elements of A4, as built from 4 ,+,. only (just as in the case of PA), or as the finite
process trees encountered in Section 1.

2.1.1.2. Example. Let A ={a,b,c,c’d$}). Let|:A XA —A be given by c|c =c", and all other communi-
cation equal 8 (thus a|b =c|c’=d|a = 8la = .. =8|6=5). Further, let H ={c}. Then:
dyl(ab +ac)lled] =
dic\labll_cd +acll cd +cdll (ab +ac)+cd|ab +cdlac] =
dcylablied)+a(clled)+e(dll(ab +ac))+(claXdllb)+(cla)dllc)] =
d(cyla(bed +e(dllb)+(ble)d)+a(ced +e(dlle)+(c|e)d)+
+e(dll(ab +ac))+8(dllb)+8(dllc)] =
A )la(bed +c(dllb))+a(ced +c(dllc )eld)+e(dll(ab +ac))] =
ab 8+ ac’d.
2.1.1.3. Example. Consider the alphabet {a,bb%c.c"8} with the only proper communications ¢|c = ¢".
h|b =b". Now a(bh +c¢) and ab +ac behave differently in the context C[ ]=d, . (...|lc): namely:
Cla(b+c)) = ac",
Clab +ac] = ad+ac”.

2.1.2. The process graph algebra A™ for ACP. The definition of
A™(+...ILIL.J.3y 8) parallels that of A*(+,. |I,[) for P4, except for two additions.

Let g.h be finitely branching process graphs with acyclic roots. Then the merge g [l is now the carte-
sian product graph enriched with ‘diagonal’ edges =5 in the following situation:

&)

it E U isa subgraph of the cartesian product graph, then the ar-
bmb row OS50 (where ¢ =alb) is inserted; result: -,

The left merge gll 4 and the communication merge yield results which can now be guessed. An example
will suffice:

2.1.2.1. Example. Let A ={ab,c 8}, alb=c and all other communications equal §. Then ab|lbab,
ab||_bab, bab || _ab and ab|bab are the following graphs respectively:
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a b a b
b b b b C
a a a
b b b

Figure 15.

Note that we have omitted the diagonal edges labeled with &, resulting from trivial communications.
This brings us to the second addition:

2.1.2.2. Bisimulation between process graphs containing 8-steps. The old concept of bisimulation in Sec-
tion I would not do now, since it would not satisfy the laws x +8=x and §x =8. We will choose the
following solution: first define the §-normal form of the process graph g as the process graph g’ obtained
by deleting all §-steps which have a ‘brother’ step and creating for the remaining 8-steps if necessary
separate end nodes. Afterwards disconnected pieces of the graph are removed.

Now g and k& are bisimilar if their §-normal forms are bisimilar in the old sense.
Finally, the effect of 35 on the graph g is simply to replace all @ € H which occur in g, by 8.
The effect of these definitions is that A* is a model of ACP.

Using these graphs, we have an easy way to ‘compute’ the result of Example 2.1.1.2:

(ab +ac)lled = (e )l(ab +ac)lled] = ab +ac'd =
a b
WC\ ] 5
CU
d
Figure 16. Figure 17.

2.1.3. The standard model A for ACP is constructed entirely analogous to the corresponding model for
PA . An example of a computation in the standard model: Let 4 ={a b,c,d,8}, a/a=d the only proper
communication. Now let

p = (a.ababa.abab, ...)

and

q = (a,acacaacac, ...).
Then

da)pllg) = 9i4y(alla)(ab llac ), (aballaca)s, ...))=



(9yay(@lla)y,0yq4y(ab llac),, ...)=
(_BM(aa +d).0(y( .. ), )=
(dd(b+e)d(be +eb)d(be +cb)d, ...)

2.2. Process algebras with standard concurrency and handshaking.

A useful intuition about communicating processes is to postulate that || is commutative and associa-
tive. This does not follow from the axioms of ACP; pathological process algebras with noncommutative
and nonassociative || are possible. But in the process algebras A ,,A™ and 4™, || is indeed commutative
and associative. In fact these algebras satisfy the following

2.2.1. Axioms of standard concurrency:

xlUyllz = xlL(ylz)
(x)llz = x|yl z2)
xly =ylx

xlly = ylx

x|(vlz) = (x|p)z
xllpliz) = (xlly)llz

Table 4.

(These axioms are not independent relative to ACP. E.g. commutativity and associativity of || are deriv-
able from the other four plus ACP.)

Moreover, matters are greatly simplified by adopting the

2.2.2. Handshaking axiom:
x|ylz =8

which is satisfied by both CSP and CCS. The handshaking axiom implies that all proper communications
are binary.

Under the hypotheses of standard concurrency and the handshaking axiom we can prove the follow-
ing fact which is a generalization of the ACP -axiom CM I:

2.2.3. Expansion theorem (Milner).
xpll.llxe = Xx LXE+ 30 [x L XE.

1)

Here X} is obtained by merging x|, ..x; except x;, and X;” is obtained by merging xi, ...x; except
x;x; (k=3). Thus, eg. for k =3:

xlyllz = xlLyliz)+yll(zllx)+zIL(xlly)+
lz)lx +(z|x)y +H(x )l =
2.3. Networks of processes communicating by handshaking.

Imagine a process P (fig. 18) whose events have a certain spatial position a.f.y as well as a data con-

tent d — so the actions of P are pairs (a.d), (a.d’). (B.d), ..., for simplicity written as a,.a;. B,. ... . E.g
let ©D={0,1} be the data domain and let P be given by the recursion equation
P = aoByyoP.

Next, consider a network of such proceses as in Figure 19, where the nodes D M N .C are given by




D = (apBoBo+aifiB)D

M = [(By+So)vot (Bi+SimIM

C = [vo(moeo +&mo) +vi(me +Hem)IC
N = (en +€mp)N.

So D is the process which doubles an ‘incoming’ 0 into 00, likewise for 1; M is the merge process which
relays the signals 0,1 in order of entrance at B or & C is the copy process which relays an incoming sig-
nal to both 1 and e, in either order; and N is the process which inverts an incoming signal.

¢ /F‘\‘- B L ° p )
\ I \ \__;.,Z.—.__‘\ _——\\
N (o Y o)
N \
\c )
\/
Figure 18. Figure 19.

The positions a, ....{ will be called ports; By.e are internal ports. As suggested by Figure 19 with its
sharing of the internal ports, the processes DM ,C.N cannot operate freely but are constrained by each
other: an action B, of D is now only an ‘intended’ action (a subatomic action) needing the same action
By of M for the actual passing or 0 along port B. Let us denote this actual event by B likewise 3,
denotes passing a 1 at B, etc. (In fact, the word ‘passing’ is misleading since it suggests a direction of
flow which, interestingly, disappears at this level of analysis.)

Intuitively, it is clear that the example network has an operational semantics which is a process in 4>
or A* over the alphabet

A = {aq.Bava€atamald €D},
Now this process can be defined as
Ay (DIIMIICIIN)

where H ={By.Ya-€a-$a|ld €D} and where the communication function is defined by: ala =a" for all
a€H and these are the only proper communications. The operational semantics of the network can now
be computed using ACP to any desired depth. This computation can be speeded up by using the Milner
Expansion Theorem. (In fact, for this example the resulting process is regular, that is: given by a finite
process graph.)

Before discussing the operational semantics of dataflow networks through networks with channels
(which were not considered above; there processes are ‘directly’ connected), we will make some remarks
on the present definition of the operational semantics of networks communicating by handshaking.

2.3.1. Handshaking, implicitly introduced above by the example network, is understood here as follows. A
network consisting of nodes P).....P, communicates by handshaking if each port a of P; (i=1..n) is
either external (i.e. not connected to any other port) or connected to precisely one port of another pro-
cess. Here ‘a is connected to 8/ means that a; only communicates properly with By (so if ayy, 58, then
v=p and e =d).

2.3.2. Symmetrical handshaking was used in the example above; here a port a is either external or con-
nected to a. By the handshaking convention, a port a can be shared by two processes at most.



The example network can just as well be treated using asymmetrical handshaking, as in

Figure 20.

where B7f, etc., and communication is given by Bd|Bd = PB4. etc. This is the format used in Milner [14].
where many examples of networks communicating by handshaking are given. One can prove an adequacy
theorem for asymmetrical communication, in the sense that communication by handshaking can always
be taken to be 1-1 and asymmetrical without loss of defining power. This statement will be made more
precise in Section 3.8.

Our example network was phrased in terms of symmetrical handshaking, to minimize the notational
overhead. For regular processes (the property ‘regular’ is the subject of the next section), as all the nodes
DM .C.N in the example are, this works perfectly well. If the nodes are not regular and given by recur-
sion equations containing ||, then asymmetrical communication must be chosen: otherwise undesired
‘auto-communications’ may occur when evaluating the recursive definition.

The condition in our definition of handshaking is a bit severe. One can safely allow a port to be
shared by more than two processes, still requiring proper communications to be binary.

2.3.3. Example. Let ©0={0}, Iop=agBol up, likewise I, I.,. Let T=a, Let communication be given
by ala =a" for a e H = {ay.Bo.70 )

Figure 21.

In the resulting total process Ay (T opll1 gy ll1 ) the datum O is inserted by 7' and then cycles clockwise
through the ring of processors (which are buffers with capacity 1).

A more interesting and fundamental deviation of the handshaking requirements is introduced by
Milner [15]:

2.3.4. Synchronous versus asynchronous processes. Process co-operation as described above is asynchro-
nous, in the sense of Milner [15] where a study is made of synchronicity vs. asynchronicity. and where it
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is argued that synchronous co-operation is the more fundamental of the two.

A synchronous network of processes is one where at the pulses of an (imaginary) universal clock all
ports exhibit activity simultaneously. As an example consider the following network consisting of two
NOR circuits; the example is from Milner [15] with a slight adaptation and serves to demonstrate our
claim that synchronous networks can be treated to a large extent within ACP. The NOR circuit (Figure
22) is defined by

NOR(k) = 3 (a|B,[vi)NOR( ]j) (k=0.1)
ije(0l)
Here i |j =1 ¢ i =j =0, and the o, |B, |y, are actions which can be perceived simultaneously at the ports
a.By. E.g ag|Boly is the simultaneous passing (or rather, occurrence) of 0 at a, 0 at Band I at y.
Now consider the network as in Figure 23, where NOR' is a copy of NOR obtained by renaming the
indicated ports. So
NOR (k) = 3 (B[v,I\)NOR'(i |j).
101}
Communication is given by (a,|B;|v )|{E_f [vx [N =e; vk |B;|A;: all other communications result in 8.
Further, H = {e|B, |vx. Yi|B; I\ | 1.7,k €{0,1}}.

;Fﬁf““_- >
— .-
NOR o :

L ,./’ m.__\_-
¥ f' = ~
| NoRt e

Tl 8

Figure 22. Figure 23.

Then the network of Figure 23 has as semantics: d;;(NOR (k)IINOR'(l)), in the initial state k./. Abbre-
viating this expression by X (k ./) we compute using the axioms of ACP:
X(kJ) = 0,4(NOR(K)|_NOR'(1)+ 0, (NOR'(DI_NOR (k))
+3y (NOR(k)INOR'(1))=8+8+0y(NOR (k) NOR'(]))=

= 05 (S, B [ INOR (i 1) | (BT [\ )NOR (i |j)=
i I
= 8 (e |B/ vk A INOR (i IDINOR (K |j)]=
Iy
= Sy Bivi )X G UL K L)
iy

which is a system of four recursion equations, describing the intuitively expected process. The difference
with Milner’s approach via SCCS (see [15]) is the use of 8: not only does it serve to remove the undesired
interleaving results, also it is used to express that certain composite actions are incompatible.

A more direct axiomatization of synchronous processes, related to Milner’s SCCS, can be given by
omitting the interleaving part of ACP, that is: replace CM 1 by x|ly =x|p, and erase CM2-4. We will
not study this axiomatization here. however.

2.4. Dataflow networks. We will return now to the case of networks communicating by handshaking.
Above, the connections between ports were directionless and thought of as relaying the data instantane-
ously. These port connections are nor channels as used in dataflow networks; e.g. a channel like Queue
does not relay its messages instantaneously. So let us consider networks such as the one in Figure 24,
where the arrow-shaped figures denote channels. We will consider as channels: Queue, Bag and Stack.




Now an important realization is that channels and nodes are in fact the same type of entities: both are
processes.

Hence this simple form of dataflow is nothing more than a network communicating by handshaking
as treated above. The only difficulty is that the processes Queue, Bag and Stack are rather complicated:
they are not regular. In the next section we will consider recursion equations within ACP (in fact, even
within PA ) for Bag and Stack, and discuss some of their properties.
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Figure 24.

2.4.1. For Queue the situation is essentially more complicated. If one admits infinite systems of equa-
tions, Queue can be defined in PA as the first component of the solution of such an infinite system of
equations.

One can prove (see [10]) that Queue cannot be defined recursively by a finite system of recursion
equations over PA.

If one allows extensions of the PA formalism, there are two ways of specifying Queue. The first
method is via auxiliary operators /A and A, that can be axiomatized by finitely many equations (like || is
finitely axiomatized). Then Queue can be recursively defined over PA extended with these new opera-
tors. (See [10].) The second method uses process graphs defined by means of abstract data types; see [7].

3. Recursively defined processes

In the previous sections we have used, occasionally, some processes which were defined as the solu-
tions of recursion equations; namely, the iteration p* of p (as the solution of X =pX) and the w-merge

p"J of p (as the solution of X =p || X; see 1.8.).

In this section we will consider this important specification method for processes in a more systematic
way. This will produce some criteria as to which processes in 4 can be defined recursively; also it will
give us some other process algebras.

In the course of these considerations the concept of a finitely generated process algebra will prove to
be an important concept. Likewise, the concept of a regular process plays a prominent role: this is a pro-
cess corresponding to a finite transition diagram (i.e. having a finite canonical process graph), possibly
with cycles. First we need two technical concepts.

—————
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3.1. Linear terms and guarded terms. Let X,...X, . be variables ranging over processes. Given the signa-
ture of PA or that of ACP, two kinds of terms containing variables X ... X, are of particular impor-
tance:

(i)  Linear terms. Linear terms are inductively defined as follows:
- atoms a0 and variables X, are linear terms,
-if Ty and T, are linear terms then so are 7', + T, and al’ (foraeA).

An equation T\ =T, is called linear if T',,T, are linear.

(11) Guarded terms. The unguarded terms are inductively defined as follows:
- X, is unguarded,
-if T is unguarded then so are T+ 71", T.T", 9,(T), TIT", T\ T". T|T" (for every T").

A term T is guarded if it is not unguarded.

Note that we introduced “formal” variables X,.....X, : they are meant as the ‘unknowns’ in recursion
equations. The formal variables should not be confused with the metavariables x s +.. which occur in the
axioms of P4 and ACP.

Mostly, we will be interested in finite systems E of equations. In this section we will always require
that £ is a guarded system of equations. (Le. the RHS’s of the equations in E are guarded.) We will
first consider the case of linear E ., which gives us the regular processes.

3.2. Regular processes. As defined in Section 1, an element p €A™ has a canonical process graph, with
the subprocesses as nonterminal nodes and ‘0’ as terminal node. Now we define:

(i) peA™is regular if Sub(p) is finite
(ii) r(A*)is the collection of the regular processes in A .
The next fact is immediate.

3.2.1. Theorem The following are equivalent:

(1) p is regular

(i) Sub(p) is finite

(iii) G(p) is finite

(iv) p is the first component of the solution vector of a finite, guarded, linear system of equations.

Moreover, r(A %) is closed under all operations (in the signature of PA as well as that of 4CP ); it is a
process algebra whose position relative to the previous ones is as follows: 4, Cr(4*)CA*CA®,

3.2.2. Example. (1) Let X be the solution of X =a +bX. Then G(X) is as in Figure 25, with a tree
repreentation as in Figure 26. Note that Sub(X)={X}. As a projective sequence,
X=(a+b.a+bla+b),a=b(a+b(a +b))...). X is a regular process.




Figure 25, & /\(K ;

Figure 26.

X = a¥Y +c
(2) Let Ex.y be 1y — px 4 ay +e

Then the regular solution X has the canonical process graph

Figure 27.
(3) The following process X is not regular.
b b b
< N FoNE =
@ a }[\3(_1./1\ a 2 a “3 T
Figure 28.

[t is the first component of the solution vector of the infinite system of linear equations
X = XU:aX]
Xo+1 = aX,,+bX, (n=0)

That X is indeed not regular follows from the realization that there are infinitely many subprocesses (all
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the X, . n =0, are pairwise different).

3.3. Recursively defined processes. We now define in full generality the concept of a recursively defined
process. Let X ={X,,..,X, ) be a set of process names (formal variables). We will consider terms over X
composed from atoms a €4 and the operators in the signature of PA or that of ACP.

A sytem Ey of guarded fixed point equations (or guarded recursion equations) for X is a set of n equa-
tions {X, =T, (X....X,)|i = 1...,n } with T,(X) a guarded term. There is the standard result:

3.3.1. Theorem. Each system Ey of guarded fixed point equations has a unique solution in (A )",

We define p €4 to be recursively definable if there exists a system Ey of guarded fixed point equations
over X with solution (p.gi,...g,-1). With R(A™) we denote the subalgebra of recursively defined
processes. The relative position of this second new process algebra R (4 *) is as follows:

A,Cr(A®)CR(A*)CATCA™

both for PA and ACP. All inclusions are proper.

There is an algebra of some interest which is strictly intermediate between r(4*) and R(A®): it is
the process algebra of uniformly finitely branching processes. These are processes having canonical process
graphs where all the nodes have a uniformly bounded outdegree.

3.3.2. Example. (i) The following is a system of nonlinear guarded recursion equations:

X = aX(X+b)
Y = bYXY
Likewise X =a(b|lX) is a nonlinear equation. (The process graph of the solution X is the one in Figure
28.)
A useful fact is the following. Call a process perperual if all its traces are infinite. Then:

3.3.3. Theorem. Let Ex be a system of guarded recursion equations using only + and .. Suppose the solu-
tions X are perpetual. Then they are regular.

An example suggests the simple proof:

X =aYX(X+Y)+bYYZ
Ex_y‘z Y = bYY +cZX
Z = e(ZX +dZX)

Now a short inspection of Ey y 7 reveals that the solutions X .Y .Z are perpetual. So in products in

Ex yz one can erase every factor following X,Y,Z (since for all p, X.p = X, etc.) Le. the system of
equations

X =aY +bY
Ei»‘ylz Y=p4Y TiEZ
Z=c(Z+dZ)

has the same solutions X, ¥, Z. But since .E_;(_y‘z is a linear system, these solutions are regular.

We will now consider recursion equations for the processes corresponding to Bag, Stack and Counter.

34. Bag. Let a.—= B be a bag with input port @ and output port fB. (Here ‘bag’ is considered as a
channel which does not preserve, like Queue does, the order of the incoming data. So the contents of Bag
can be imagined as a multiset or bag,) Consider a finite data domain D. Then the actions to be per-
formed by Bag are, in our earlier notation, a; and B8; (d D). For notational convenience we write d




instead of a; and d instead of ;.

Let B be the initial state of Bag: the empty bag. Now let action d be executed, that is: ¢ is added to
the bag. The result is a bag with the commitment of eventually giving d as outpu, i.e. performing action d.
We claim on intuitive grounds that this bag-with-commitment-d is d ||B. This leads to the equation for
B:

B = Y d(d|B).
deD
Alternatively: consider the process 2,dd . Then it is (again intuitively) clear that B is the w-merge:
B = Ndd || Sdd | Sdd || ... = (Sdd )"
d d d d
So
B =(3dd)lB
deD
which indeed is equivalent to the first recursion equation for B, by using the axioms of PA for || .

A third definition:
B; = dd || .B,;=d(d ||By)

B = ﬂBd (dED,\

How can one verify that these equations for B indeed describe the intended Bag? (a) By computing the
corresponding canonical process graph and ‘validating this against the intuition’; (b) by the more
rigorous method employed in [7], which consists of giving a specification of B in terms of abstract data
types and proving the equation given here correct w.r.t. that specification. Here we will not discuss that
method.

We proceed with (a). First, consider the singleton data domain D = {d}. Then B =d(d ||B). and now
writing
By, = B.B,,,=d|B,=d"|IB

one proves immediately

Bg == d81
B,i\ = dB,,,+d B, (n=0).
{PI‘OO[ Bn+l:_d ”Bn :d”_Bn +‘Bﬂ u—‘_i:iBn +(dBn ¥l+£‘f Bn - I)l-l f_f :_(! Bn n dBn B I\L(_i +d Bu I'l d

=dB,+d(B,ld)+d (B, \lld)=d B, +dB, ,,+ d B,.) This yields the canonical process graph

¢ 4
% B W,
d d
Figure 29.

The general case B=2,d(d ||B) is, as process graph, obtained by merging these ‘singleton-bags’ B,. So if
D ={a b}, the canonical process graph of B =a(a IB)+b(b IIB) is:
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Figure 30.

We will return to Bag later in this section.

3.5. Stack. For convenience, let D ={a.b}. As with Bag, ‘a’ denotes the event of pushing ‘a’ on the
stack, ‘a’ of popping ‘a’ from the stack: likewise for b. Now Stack can be defined thus:

=TS
T = aT, +bT,
T, =a+T1,
T, =b +TT, .

Here T is Termmanng Stack, which must terminate as soon as it is again empty. Further, T, is T con-

taining an ‘a’, T, likewise. S is the iteration T of 7'; so S is the intended perpetual process Stack.
Essentially, this recursive definition of Stack occurs also in Hoare [12].

The recursive definition of Stack above involves the definition of a non-perpetual process, in casu T
This is essential: Stack S cannot be derived recursively (over + and .) without a non -perpetual auxiliary
process. For, if it could, then Theorem 3.3.3 would entail that S is regular, an obvious contradiction. A
consequence is that S cannot be defined recursively (over + and .) in one equation.

The canonical process graphs of S and 7" are as in Figure 31 and 32.
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3.6. Counter. We will consider a simple counter C without test for zero. The equation for C is obtained
by the one for Stack, with D ={a }:

‘C =TC

T = aT,

lTa = a +717,
or, after eliminating 7" and writing D =T,:

](" = aDC

lD = a +aDD.

G(C) is determined as follows: writing C,, =D" C one easily computes
CU - (J(“|
Cn+| = E(n +a(1ﬂ+}'_

which determines the same process graph as for the singleton-bag above. So we have the interesting fact
that C is also the solution of

C =a(@lC)

Thus leads to the question whether it is also possible in the case of the general bag (over an arbitrary but
finite data domain D) to eliminate || in its recursive definition in favour of + . (and possibly using more
equations). The answer is no, if D contains at least two elements. For the lengthy proof see [8].

3.7. Criteria for recursive definability.

3.7.1. Theorem. A process which is recursively defined only with + and ., and which has an infinite branch,
must have an eventually periodic infinite branch.

TIT T ———y

T T
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3.7.2. Example. The process babaabaaabaaaabaaaaab... cannot recursively be defined over + and ..

3.7.3. Theorem. (i) If peR(A™)N+...|.IL ). that is: p can recursively be defined in the signature of PA,
then Sub(p) is finitely generated (in the usual algebraic sense) over + . |||
(i1) Likewise for the reduced signature + ..

The last fact (ii) can be used to prove that Bag over a non-singleton domain cannot be recursively
defined by + and . alone; one must prove that Sub(Bag) (i.e. the collection B,, in Figure 30, if
D ={a.b}) cannot be finitely generated using +.. only.

3.8. 1-1 communication. We conclude this section with a theorem stating that binary communication may
always be supposed to have a certain simple form.

Consider the alphabet A =EUH where H is the set of communication actions, 50
H ={a€A|3b a|lb538}. Let communication be binary: a|b|c =8 for allab.ceA.

We claim that without loss of defining power (on the external processes, where ‘external’ refers to
E™), the communication mechanism H,| can be replaced by a 1-1 communication mechanism H" | .
This means: there is a map —:H —H ", such that @ =a and such that all proper communications have

the form a|a =b.

Let us be more precise about the phrase ‘without loss of defining power on external processes’. The
situation is as in Figure 33:

A (a*)" where A* = EuH*
o .r‘/ / o
O y R(A ) / [P /5 R(A* )
/\'\‘— | / -4 /
Wﬂﬂ_-_, R(E ) 3_(R(A ))
= e - v
£ 3, (R(A ) i .
Bgu (R(A* 1))
Figure 33. Figure 34.

In the original setting with H and | (see Figure 33), the communication mechanism is able to define the
‘external’ processes (i.e. in £*) contained in 04 (R (A4 *)). This d;(R(A4 ™)) is a subalgebra of 4™ it con-
tains a subalgebra R(E®), the external processes recursively definable without communication. Here the
difference d, (R(A4*))— R(E™) is nonempty; i.e. communication yields more expressive power.

Now it is possible to replace H | by H',|' such that the situation in Figure 34 is obtained. That is,
the new communication mechanism given by H", | recursively defines at least as many processes as the
old mechanism.

It is not hard to obtain as a next step an 1-1 asymmerrical communication function without impairing
the expressive power. (A communication function is asymmetrical if for all @: ala =46.) In fact, this is
the communication format chosen in Milner [14].

4. Hiding internal steps in finite proceses

In this last section we will discuss the very fundamental problem of abstraction of internal steps (‘hid-
ing’). In a process one may wish to distinguish internal and external behaviour and to abstract from the
former; obviously the availability of adequate abstraction mechanisms is of crucial importance for a
hierarchical construction of systems.
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In trace semantics, which may be viewed as the theory of ACP augmented with the axiom
x(y +z)=xy +xz, the abstraction problem seems easy: abstracting from the internal (or silent) steps 7
(in Milner’s notation) from a trace such as abractra results simply in abaca.

Also for synchronous processes as described in Milner [15] abstraction from internal steps is easy: in a
composite action (i.e. a simultaneous action of al/ ports, internal and external, of the network in con-
sideration), say e |e;|e;|i|i; where i,i, are internal, the result after ‘hiding’ the internal steps is e |e;|e .
(The point here is that each composite action has a nonempty external part, so that hiding does not hide
the whole action — therefore the choice structure is left intact.)

However, trace semantics does not respect and reflect deadlock behaviour; and synchronous process
co-operation is in our view a special case of the more general mechanism of asynchronous process co-
operation, cf. subsection 2.3.4. (Milner [15] argues the reverse point of view, though.)

For asynchronous processes the initial temptation to treat internal or silent steps r as above, like the
unit element in group theory, that is via equations x7=7x =x, leads at once to difficulties in the pres-
ence of communication. Namely, the processes a(th +¢) and a(b+c¢) have different deadlock
behaviour: let ¢,c’ be communication atoms such that c|e’=c¢" is the only proper communication (so
ale’=1le"= .. =8). Then for the context

Cl1=8ccnl-lle’]
we have
Cla(th +¢)] = a(rd+¢")
Cla(b +c¢)] = ac’.
In this section we will treat abstraction of internal steps for asynchronous processes. We will deal
only with finite processes; here the theory exhibits some clarity. For infinite processes the situation is at

present much less clear — for some comments see our ‘concluding remarks’ (4.3) at the end of this sec-
tion.

4.1. Hiding internal steps in finite processes without communication: PA .
4.1.1. Bisimulation modulo internal steps. From now on, we consider the alphabet 4 U {1}, where 7 is the

silent or invisible step. A frace o is a possibly empty finite string over 4 U {7} (thus o=(A4 U {r]"). With
e(o) we denote the trace o where all T-steps are erased.

Consider a finite acyclic process graph g over A U{r}. A path 75, >, in g is a sequence of the
form
A b b
Sg =28 2w — 5
hll ] kl hl ]

(k =0) where the s5; are nodes, the A, are edges between s, and s, , ;. and each /, is the label of edge ,.
(The A, are needed because we work with multigraphs.) The trace rrace (m) associated to this path is just
Lol dy .

4.1.L1. Definition. A bisimulation modulo 7 between two finite acyclic process graphs g, and g, is a rela-
tion R on NODES(g) X NODES(g,) satisfying the following conditions:

(1)  (ROOT(g,). ROOT(g,))ER,
(i) Domain (R) = NopES(g,) and Codomain(R ) = NODES(g5),

(iii) For each pair (s;.5;)€R and for each path m: s, —>>¢, in g, there is a path m: 5,—>> 1, in g,
such that (1,,r,)eR and e(trace(m)))= e(trace(m)). (See Figure 35.)

(iv) Likewise for each pair (s,,5,)€R and for each path my: 5, —> 1, in g> there is a path 72 5, —> 1,
in g such that (1y,r;)eR and e(trace(m)))= e(trace(m;)). (See Figure 26.)

S —
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Figure 35.
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Figure 36.

Process graphs g.g; are bisimilar modulo 7 if there is a bisimulation modulo 7 between g,.g,. Notation:
21+ 82

The notion of bisimulation modulo 7 specializes to the notion of bisimulation = introduced in Sec-
tion 1, where 7 is not around. For technical reasons it is convenient to work with rooted bisimulation
modulo 7: here a root cannot be related to a non-root node. If g,.g, are bisimilar in this sense, we write

—

£1=,.,82 Also this notion of bisimulation specializes to = in Section 1 (see 1.2.2.1).

4.1.1.2. Examples. ath =, _ab (see Figure 37); ab =, ar(th +77b) (see Figure 38); a(th +b)=, .ab
(see Figure 39); c(a +b)*=, ,c(r(a +b)+a) (see Figure 40).

A negative example: see Figure 41. This was the example in the introduction to this section. The
heavy line denotes where it is not possible to continue a construction of the bisimulation.

Another negative example: a(7h +c¢) ?E,_,a(b +c¢)+ab.
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Figure 41.

4.1.1.3. Theorem. Rooted bisimulation modulo = is preserved by the operators +..,0L. Il on finite acyclic

process graphs.

(This would not be true for bimulation modulo 7 without the ‘rooted’ condition. E.g. a =,a, 7h =.b
but a +7h #_.a+b. Note that th #, . b))

4.1.1.4. Corollary. The relation ‘bisimilar modulo " is a congruence on A (+,. JLL )
4.1.2. A beautiful result in Milner [14] is that the semantical notion of =,  congruence on finite

processes can be treated algebraically, namely by three simple equations: Milner’s r-laws T1, T2, T3.
Added to PA we obtain PA. as in Table 5, where the abstraction operator 7; serves (o ‘internalize’ steps.

PA .

x+y = y+x Al | x7=x Tl
x+(@y+z) = (xt+y)+:z A2 T +x = X T2
Xx+x = x A3 a(rx +y) = a(tx+y)+ax T3
(x +y)z = xz+yz A4
(xy)z = x(yz) AS

T(a)y =a if ael TI1
xlly = xlLy+ylx Ml | ry(a) =17 if ael TI2
all x = ax M2 | m(x +y) = 7 (x)+7(p) TI3
(ax)lLy = a(xlly) M3 | 7(xy) = 7 (x)7(p) Ti4
(x+y)lz =xlLz+yllz M4

Table 5.

4.1.2.1. Theorem. (i) PA, is conservative over PA (the latter with actions from A). (ii) The initial algebra
of PA, is iomorphic to A,/ =, . (the initial algebra of PA modulo the congruence of rooted bisimulation
modulo 7). Stated differently: the t-laws T1-3 are a complete axiomatization of rooted bisimulation modulo .

Part (i) of the theorem states that PA, does not identify processes not containing 7 which differ w.r.t.
PA.

4.1.2.2. Example. If the 7-laws constitute a congruence, then since PA rat=a we must also have
PA.vrart|l b=al b. Indeed:

arlL b = a@rllb)=a(rh +br)=a(th +b)=arh=ab=all_b.

The following derivable identity is often useful:
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4.1.2.3. Proposition. PA_rr(x +y)+x = 7(x +y).

Proof. 7(x +y) = n(x +y)tx+y=nx +y)+x+y+tx=rx+y)+x.

In [6] a proof of Theorem 4.1.2.1 is given along the following line. On the set of finite acyclic process
graphs a reduction procedure is defined which simplifies the graph (lessens its number of edges and
nodes) and which is sound for =, .. A normal proces graph is one in which no further reduction steps are
possible. A rigid process graph is one which admits only the trivial rooted bisimulation with itself. (E.g.
ath +ab is not rigid since it admits the nontrivial *autobisimulation” as in Figure 42.)

Figure 42,

Now one can prove that (i) normal process graphs are rigid and (ii) rigid bisimilar process graphs must
be identical. This together with the soundness yields the confluency property for the graph reduction pro-
cedure (the explicit confluency proof in [6] is in fact superfluous), which in turn implies the completeness

-—

of the graph reduction procedure w.r.t. =, .

An example to see how the graph reduction procedure translates into the axioms T1-3: one of the
reduction steps consists of replacing in a graph a part as in Figure 43 (i) by the part in Figure 43 (i1) (1.e.
deleting an a-step).

3 ‘% a 3
j; 5
Y I'. \{ zfyi V\t\
[x :\ ;; ® \‘\
Figure 43. (i) (i)

In terms of terms this amounts to a(rx +y)+ax =a(rx +y).

We remark that the confluency result mentioned above only holds for the graph reduction procedure:
when T1-3 are viewed as reduction rules (in whatever direction), together with a restatement of PA as a
rewrite system (i.e. choosing the direction left to right in all but the axioms for commutativity and associ-
ativity) confluency does not hold.

Before extending the PA.-formalism with communication, we mention the following curious fact
(which is significant for some choices in the development of the present theory):

4.1.2.4. Proposition. The equation X =a +7X has infinitely many solutions in the initial model of PA .




Proof. If p is a solution, then also m(p +¢) is a solution for arbitrary g:
atrrp+q) =a+rptq)=atp+rptqg)=atatmptrpt+q)=
atiptrptq)=pt+rpt+q)=rp-+q)
Therefore. since ta is a solution (by Tl and T2), 7(ra +¢q) solves the equation for arbitrary ¢. This
proves the proposition.

Although we do not treat infinite processes here, we note as a corollary from this proposition that
recursion equations, guarded by atoms from 4 U {7}, are no longer an adequate specification mechanism
for infinite processes as they do not have unique solutions.

4.2. Hiding internal steps in finite processes with communication: ACP..

The virtue of the 7-laws T1-3 is not yet fully realized in PA_; it is more realized in the presence of
communication — indeed the motivation for rejecting some alternative to the r-laws as in the example in
the introduction to this section was stated in terms of communication behaviour. Therefore we want to
combine ACP with the r-laws; the result is the axiom system ACP_ in Table 6.

It turns out that (apart from the 7-laws) the atom 7 must also in the axioms concerning ‘|" be treated
differently from the a €4 ; otherwise some desirable congruence properties are lost. Namely, a term as
rra|rrh will be evaluated in ACP, as a|b (and not as (7|7) (ta |ltth) as ACP would prescribe).

ACP,

x+ty =y+x Al XT =X Tl
x+(+tz)=(x+y)t:z A2 ™+x = T2
x+x = x A3 a(tx+y) = a(rx +y)+ax T3
(x+y)z = xz+yz A4
(xy)z = x(yz) A5
x+6 =x A6
6x = 0 A7
alh = bla Cl
(alb)le = al(b|c) 2
dla = & C3
xly = xly +ylLx +x|y CMI
all x = ax CM2 | 7llx = 7x ™I
(ax)lLy = a(xlly) CM3 | (mx)lLy = 7(xlly) ™2
x+ty)llz =xlLz+yllz CM4 |71]x =6 TCl
(ax)|b = (a|b)x CMS | x|t =28 TC2
al(bx) = ( alb)x CM6 | (mx)|ly = x|y TC3
(ax)|(by) = (alb)xlly) CM7 | x|(ry) = x|y TC4
(x+y)z = x|z +y|z CM§
x|y +z) = x|y +x|z CM9

aH(T):T DT

T(t) =17 TI11
dyla) =a if agH CA DI (@) =a if agl CA—{8} TI2
dyla) =6 if acH D2 T(a) =7 if ael TI3
dy(x+y) = dy(x)+dy(y) D3 T(x+y) = 7 x)+1() TIi4
A (xy) = 3u(x). 94 (y) D4 T(xy) = 1(x). 7 (y) TI5

Table 6.

Here the alphabet is 4 U {7}; and a b in Table 6 vary over 4 only. In the renaming operators dy, T We
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require 7¢ H and 8¢/, since these constants should not be renamed.
In order to discuss some properties of ACP ., we begin with establishing a graph model for 4CP,

4.2.1. The model of finite acyclic process graphs for ACP,. Consider, as in 4.1.1, the collection ¥ of finite
acyclic process graphs over 4 U {7}. In Theorem 4.1.2.1 (ii) it was stated that N/ =, .. ie. the collection
of finite acyclic graphs modulo rooted r-bisimulation. is (isomorphic to) the initial algebra of PA_. (In
fact. we used a loose formulation there by not distinguishing X from 4 _.) We will now do the same n
the context of ACP..

The operations |,[| .[.d,7, on X are defined as follows. The definition of 8, and 7, is clear — their
effect is merely renaming some atoms (labels at the edges) into § resp. 7. The definition of || and || is
also easy: it is analogous to that for ACP (see 2.1.2) with the additional communication 7la =8 for all
a €A and 7jr=8. The communication merge g,|g, is different now:

gilg2 = D{(s—>5")(gllg2)|s —> 5" is a maximal

communication step in g[lg,}.
Here (g), denotes the subgraph of g with root 5 (€ NODES (g)) and ‘maximal’ refers to the accessibility

ordering on EDGES(g) (i.e. 5,—> s, is greater in this ordering than s:—> 5, if 55 can be reached from s.).
. . P . . g ¥ alk .

A ‘cammumcat}){)n step” in glig, is one obtained as a ‘diagonal’ edge ~>. resulting from the communica-

P a

tion of — and —.

The structure X =X(+,..Il,IL,|.04,7,.8,7) is not yet a model of ACP,. It has a homomorphic image
which is a model of ACP,, and which is obtained by dividing out =, . rooted r-bisimulation. To define
=, on the elements of ., we must extend the definition of =, given before, such that the presence of
&'s in graphs is taken into account: this is done as above in 2.1.2.2, so that in effect we work with ‘6-
normal graphs’.

Now one can prove the important fact:

4.2.1.1. Lemma. (i) Rooted t-bisimulation is a congruence on X. (il) X/ = _rACP .

To prove this, we use results in [6] stating that =, . can be analyzed into some elementary graph
reductions which have the confluency property. Denoting the subset of axioms A1-7. 713 of ACP.
by AT, we have, also essentially from [6], the following

4.2.1.2. Proposition. Let t.s be terms built from A U {r) by + and . only. Then:

X2, et=5=AT =5

Now consider Z=ACP,— AT, the set of axioms of ACP, minus AT. This set of axioms gives rise Lo
a rewrite system (in fact on equivalence classes of terms modulo the as:suciali\gity and commutativity
axioms, 4 1,2,5) by choosing in every axiom the direction from left to right. Let —>be one step reduction,
and =>> be the transitive reflexive closure of 5. The reductions in £ are confluent and terminating. Let
Ssdenote reduction to the unique normal form. (Note that these normal forms are built by + .. only.)
Then, applying Proposition 4.2.1.2 on 73,4 in the diagram of Figure 44, (together with Lemma 4.2.1.1
(ii)) we have immcdiately:

4.2.1.3. Lemma. (i)

e

i
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t, e ————— ot
1 [ ACP, | 2
| |
ACP; -AT | ACP, -AT
v ] ‘
3 L= —— | t.‘!
AT
Figure 44,

Le. if ACP_+1,=t;, then t| and t, can be reduced by means of the rewrite rules (from left to right) associ-
ated to the axioms in ACP . — AT to normal forms (3,14 which are convertible via the AT -axioms.
(i1) Every term t can be proved equal in ACP . to a term t' built from A U {r} by + and . only, moreover, t’

is unique modulo =,

4.2.1.4. Example. The following examples illustrate Lemma 4.2.1.3 (i):
(ta +a)lb = ralb
T2

l
talb +alb (i)

i
alb +alb = alb

artll b all b

i

a(rllb)

l (ii)
a(rlLb+bll7+7b)

l

a(th +br+8) = a(tb +br)=a(th +b)=arh= ab

(ra +a)ll b = Tal b

l l

rall b+all b allb)

l

allb)+al b (iii)
l

mallb+bllatalp)tal b

!

nab +ba +alb)+ab = 7(ab +ba +alb)

Here (*) is an instance of the (from A4T) derivable rule 7(x +y)+x =7(x +y) as in Proposition 4.1.2.3.
A further corollary of 4.2.1.1 - 4.2.1.3 is:

4.2.1.5. Theorem. (i) X/ =, _is isomorphic to I(ACP,), the initial algebra of ACP .
() ACP, is conservative over ACP (the latter over the alphabet A). lLe., for t-less terms (.15
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ACP vt =1,=ACPH =1,

A corollary of Theorem 4.2.1.5 (i) and the fact that || in ACP, behaves like || in ACP is the associa-
tivity of ||:

4.2.1.6. Proposition. 1(ACP )rx|(yllz) = (xlly)llz

4.2.1.7. In fact, I(ACP,) satisties all ‘axioms of standard concurrency’ as in 2.2.1 (Table 4) except the
second one. Although this second axiom (x|y)[l z =x|(y || =) does not hold in I(ACP ). as can be seen
by evaluating (a|rb)ll ¢ to (alb)e and a|(rh | ¢) to (alb)c +(a [c)b +alble. a restricted form does hold
in I(ACP,), namely:
(xlay)ll_z = x|(ay z).
In view of the linearity of | and || this can be rephrased as follows: 1(ACP,) Ex[)llz= x|l z) for
stable y . Here y is stable, in the terminology of Milner [14]. il y admits no 7-stap as a first step.
Some other useful identities in 7(ACP.) are:
xlly = =xlly ==(xly)
xlwy =xlly. xlLr=x
For a binary communication mechanism (so that the handshaking axiom 2.2.2. x|v|z =8 holds) we
have analogous to the Milner Expansion Theorem 2.2.3:
4.2.1.8. Expansion Theorem for ACP,. Ler alble =8 for all ab.ccA. Then, in the notation of Theorem
2.2.3:

HACP)exqll e = 3 x X+ > eIl X

I=i<k l=i<j=k

This is not a straightforward generalization of Theorem 2.2.3. since our proof of that theorem
employed the axioms of standard concurrency (in Table 4) of which, as remarked above. the second one
does not hold in I(ACP,).

4.2.1.9. The diagram in Figure 45 give an impression of the modular construction of ACP,. Here X, <X,
means that X, is a conservative extension of ¥, for each axiom system part of the signature (viz. the
alphabet) is mentioned.

T T T

b EEA o I . i it ot 2, 1T T T
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Figure 45.

4.3. Concluding remarks. In [6] we have described an abstraction mechanism that is at least able to deal
with the following situation: suppose two channels (say, bags B.B;) are connected in series:

Figure 46.

The result, clearly, is again a bag B; however in B there are internal steps visible, viz. the passings of the
data through the port connection f—f’. Now a minimal requirement for an adequate abstraction
mechanism is that it can deal with such a simple situation: the mechanism should be able to hide the
internal data transmissions and allow a proof that the connection of B.B; yields again a bag.

It is hard to find the ‘canonical’ extension of the above algebraic framework for finite processes with
internal steps to infinite processes. This has to do with the possible presence of infinitely long traces of
internal steps. E.g. the notion of bisimulation can be extended to the infinite case in several none-
quivalent ways whose consequences are by no means immediately clear. One possibility, which is (for-
mally) the straightforward generalization of =, ., admits the possibility of collapsing infinite 7-traces:
thus equating ‘the’ solution X of the recursion equation X =a +7X (which one would expect to be as in
Figure 47) with the finite process 'ra’.

Figure 47.

Two difficulties arise here, one technical, one conceptual. The technical problem was mentioned in the
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remark after Proposition 4.1.2.4: X is not uniquely determined by X =a +7X. The conceptual problem
is that equating X' with "ra” implies a certain fairness assumption, viz. that X will not always take the
option 7. Interestingly, this built in fairness assumption can be used to attack the problem of protocol
verification (where the fairness assumption is that a defective channel will not always be defective), as
was pointed out to us by C.J. Koomen [13].

It is also possible to extend =, ; in another way, such that infinite r-traces cannot be collapsed. In
that case "ra’ and X are different. It might be that here is a bifurcation point in the development of the
theory.

However, for many purposes such as the one explained above (proving that composing two bags
yields again a bag), one can work within the restricted algebra of finitely branching processes which are
bounded in the sense of not having infinite 7-traces. Here all ‘reasonable’ extensions of the concept of
bisimulation coincide. In [6] an abstraction mechanism was worked out which essentially resides i this
algebra of bounded processes.

Even though, maybe, the real interest is for infinite processes with invisible steps, it is certainly safe
to say that an adequate algebraic framework to deal with them presupposes a clear understanding of such
a framework for the finite case; and that was the subject of this last section.
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