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SUMMARY

Two general parallel incomplete factorization strategies are investigated. The techniques may
be interpreted as generalized domain decomposition methods. In contrast to classical domain
decomposition methods, adjacent subdomains exchange data during the construction of the incomplete
factorization matrix, as well as during each local forward elimination and each local backward
elimination involved in the application of the preconditioner. Local re-numberings of nodes are
combined with suitable global �ll-in strategy in a (successful) attempt to overcome the well-known
trade-o� between high parallelism (locality) and fast convergence (globality). From an algebraic
viewpoint, our techniques may be implemented as global re-numbering strategies. Theoretical spectral
analysis is provided, which displays that the convergence rate weakly depends on the number of
subdomains. Numerical results performed on a 16-processor SGI Origin 2000 are reported, showing
the e�ciency of our parallel preconditionings.
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1. Introduction

Linear systems from boundary value problems like the di�usion equation can be solved
by iterative methods. The speed of convergence depends very much on global properties
(a local correction a�ects the whole solution), whereas for parallelism one wants to split
the problem into smaller (almost) independent subproblems. These two requirements are in
conict [14, 43, 45]. A critical topical question in the use of incomplete factorization based
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preconditionings on parallel environments is how to overcome the above-mentioned trade-o�
between high level parallelism and rate of convergence [14, 15]. An answer to the above question
requires to clearly identify why there is a trade-o�. To this end, Doi and Lichnewsky [9, 10]
relate this phenomenon to the number of incompatible nodes (any node i which is connected to
at least two nodes j and k along the same direction (axis), such that j 6= k and i < j < k) in the
graph of the system matrix. They observed that the fewer the incompatible nodes, the faster
the convergence, which may be explained by the fact that such nodes lead to (large) entries in
the remainder matrix. Observe that, with red-black orderings combined with ILU(0), most of
vertices are incompatible nodes. This gives rise to poor preconditioners, while higher �ll levels
ILU of red-black orderings, which reduce the number of incompatible nodes, are competitive
preconditioners [14]. Recently in [7], Bridson and Tang used the concept of reversed graph
traversal which is a straightforward generalization of the reverse Cuthill-McKee ordering. They
showed that the closer an ordering is to some reversed graph traversal ordering the better its
performance. Their analysis displayed that �ll levels higher than zero are mandatory to make
many well known orderings closer to a reversed graph traversal. In [11], Doi and Washio
advocated to combine (multi-wavefront variants of) large-numbered multicolor orderings with
a selective level-1 �ll-in strategy. In the case of three-dimensional problems, an implicit block
level-1 �ll-in strategy has been applied in [26] to improve the performance of a zebra (or line
red-black) like ordering suitable for parallel computations. In a series of papers (see [19] and
references included), Hysom and Pothen proceeded into two steps. Interior unknowns are �rst
eliminated within each subdomain. Interface unknowns are then handled through a coloring of
the graph of subdomains. Their results show that high performance is achieved with �ll levels
higher than zero. It clearly emerges from the parallel ILU literature, roughly summarized here,
that higher �ll levels are necessary to restore some globality lost with parallel orderings.

In [28, 29], we have attempted to explain why, for the parallel orderings investigated in
[24, 34, 18], the convergence deteriorates with an increasing number of subdomains. This led
us to conclusions similar to those of Doi and Lichnewsky. Most of the nodes along (or next
to) interfaces induce (rejected) �ll-in entries which are responsible for the increase of the
norm of the remainder matrix. We have also observed that including all level-1 �ll-in entries,
induced by the parallelization strategy, is not su�ciently e�ective in limiting the degradation
of the convergence. This happens because (accepted) level-1 �ll-in entries generate in turn
(neglected) level-2 �ll-in entries which are in general too big (in absolute value) to keep the
norm of the remainder matrix comparable to the one for lexicographical ordering. Accepting
all the �ll-in entries (of any level), which are generated by the parallelization strategy, would
annihilate the deterioration of the convergence rate, but unfortunately, it would seriously a�ect
the parallelism. Numerical experiments reported in [28, 29] with two-dimensional domains
show that a relative low �ll level (around 4) is enough to obtain e�cient parallel incomplete
factorization preconditionings. The portion of the physical domain, where �ll-in entries induced
by the parallelism are accepted, is termed pseudo-overlapping region. Subdomain Ps is pseudo-
overlapped by subdomain Pt if, during the construction of the incomplete factorization matrix
factor(s) and during the forward substitution of the preconditioning solve, Pt has to send
information to Ps. An explicit knowledge of the pseudo-overlapping region enables for an easy
overlap of computation with communication. Processor Pt accumulates and sends information
to Ps as soon as all the entries in the pseudo-overlapping region are updated; the actual receipt
by Ps occurs only at due time. For recent surveys of parallelization techniques, we refer to
[12, 15].
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ANALYSIS OF PARALLEL INCOMPLETE FACTORIZATIONS 3

In the present paper, we investigate two parallel incomplete factorization strategies in which
adjacent subdomains implicitly pseudo-overlap each other. In doing so, we obtain a simple
generalization of the so-called vdv four-processor orderings [44, 14]. The new techniques
combine local re-numberings of nodes with properly chosen �ll level, possibly with a dropping
test to exclude inappropriate connections. Our ordering can be interpreted as (a generalization
of) a reverse variant of an ordering discussed in [18]. The rather poor performance observed
in [18] accounts for the fact that, for the ordering proposed there, all the gridpoints on the
interfaces between subdomains are incompatible nodes. The ordering strategy, introduced in
[34], combines both above-mentioned orderings (nonreverse and reverse) in a sophisticated way
that results in an implicit minimization of the remainder matrix norm, provided that the grid
is well structured and the �ll level is set to zero. In contrast to [18] and [34], we include high
�ll levels. Without this, incomplete factorizations cannot compete with the additive-Schwarz
domain decomposition methods, see, e.g., [18, Section 6], [39] or [28, 29]. Our techniques,
which could be interpreted as generalizations of domain decomposition methods, may also be
implemented as global re-numbering strategies. Adjacent subdomains have to exchange data
during the construction of the incomplete factorization matrix, as well as during each forward
elimination and each backward elimination involved in the application of the preconditioner.
This di�erentiates our techniques from classical (additive Schwarz and Schur complement
based) domain decomposition methods, where both local forward and backward substitutions
apply without any communication between adjacent subdomains. We establish theoretical
relations between the spectral condition number and the number of subdomains. For a given
matrix A preconditioned by some (parallel) incomplete factorization matrix B, we obtain upper
spectral (condition number) bound of the form:

�(B�1A) � �h�2 + (�p+ )h�1 + � � �p; (1.1)

where h stands for the mesh size parameter, p denotes the number of subdomains, �, �, ,
� and � denote some parameters independent of both h and p. This clearly displays that the
convergence rate of our parallel ILU is weakly dependent on the number of subdomains.
Our exposition is organized as follows. In Section 2 we collect some terminology and notation.

Section 3 contains the main algorithm tools: the preconditioned conjugate gradient (PCG),
and a general version of standard incomplete factorization. In Section 4, we describe our two
parallelization approaches. Spectral analysis is carried out in Section 5. This results in insight
in the convergence to be expected for our parallel orderings. Results of numerical experiments,
for two-dimensional problems on a 16-processor SGI Origin 2000, are reported in Section 6.
Conclusions are drawn in Section 7.

2. Terminology and notation

2.1. Stieltjes matrices

A real square matrix A is called a Stieltjes matrix (or equivalently, a symmetric M-matrix ) if
it is symmetric positive de�nite and none of its o�diagonal entries is positive [40, 6].

2.2. Connected gridpoints

Two gridpoints i and j are connected with respect to the graph of A, if ai;j 6= 0 or aj;i 6= 0.
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4 M. MAGOLU MONGA MADE AND H.A. VAN DER VORST

2.3. Miscellaneous symbols

We will use the following notation:

A 2 IRn�n : its elements are denoted with ai;j
At : the transpose of A
�min(A) : the smallest eigenvalue of A
�max(A) : the largest eigenvalue of A
�i(A) : the ith eigenvalue of A

�min(A) = �1(A) � �2(A) � � � � � �n(A) = �max(A)
�(A) : �max(A)=�min(A) (the spectral condition number)
diag(A) : the pointwise diagonal matrix whose diagonal

entries coincide with those of A
e : the vector with all components equal to 1

2.4. LPLt-factorization

By the LPLt factorization of a nonsingular Stieltjes matrix S, we understand the (exact)
factorization S = LsPsL

t
s, where Ps is a diagonal matrix and Ls is a lower triangular matrix

with diag(Ls) = I .

3. Preliminaries

Our approach is more easily explained if there is some underlying grid. In order to make the
method more understandable, and for analysis purposes, we consider the self-adjoint second
order two-dimensional (elliptic) boundary value problem:

� (�ux)x � (� uy)y = f(x; y) in 
 = (0; 1)� (0; 1)

u = 0 on � (3.1)

@u

@n
= 0 on @
n� ;

where n is the outer normal to the boundary @
 of 
. � denotes a nonempty portion of @
. The
coe�cients � and � are positive, bounded and piecewise constant. The PDE (3.1) is discretized
over a uniform rectangular grid of mesh size h in both directions with the �ve-point box
integration scheme [32, 40]. We use the lexicographical ordering in the (x; y)-plane to number
the unknowns. The resulting system matrix A is a nonsingular block-tridiagonal, irreducibly
diagonally dominant, Stieltjes matrix. The preconditioned conjugate gradient (PCG) method,
which is given in Fig. 1, is a common method for such systems (see, e.g., [3, 17]). As a
preconditioner B, we use the standard incomplete factorization with �ll level ([30, 31]). The
algorithm for the construction of B (LPLt version) is shown in Fig. 2. The symbol D refers
to the set of discarded �ll-in entries:

D = f (k; i) j lev(lk;i) > ` g ;

where ` denotes a user speci�ed maximal �ll level. With respect to the notation of Fig. 2,
lev(lk;i) is de�ned as follows:

Copyright c 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 00:1{21
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ANALYSIS OF PARALLEL INCOMPLETE FACTORIZATIONS 5

Initialization: lev(lk;i) :=

�
0 if lk;i 6= 0 or k = i
1 otherwise

Factorization: lev(lk;i) := min f lev(lk;i) ; lev(li;j) + lev(lk;j) + 1 g :

1. r(0) := b�Au(0)

2. For i = 1; 2; : : : (until convergence)

3. Solve w(i) from

Bw(i) := r(i)

4. i := (w(i); r(i))

5. �i :=

�
0 if i = 0
i

i�1
otherwise

6. p(i) := w(i) + �i p
(i�1)

7. w(i) := Ap(i)

8. �i :=
i

(p(i);w(i))

9. u(i+1) := u(i) + �i p
(i)

10. r(i+1) := r(i) � �i w
(i)

Figure 1. Preconditioned conjugate gradient method. B represents the preconditioning matrix.

4. ParIC(`): A Family of Parallel Incomplete Factorizations

We consider only interfaces that coincide with the grid. In �nite element terminology: each
small square of the rectangular grid is assimilated to a �nite element. The global matrix
is partitioned into submatrices as in classical domain decomposition methods with minimal
overlap [39]: interfaces between subdomains are made up of points and lines for 2D PDE
matrices; points, lines, and planes for 3D PDE matrices. We further assume that the user
wants to perform the discretization in parallel too, and that he has a complete freedom on
how to decompose the physical domain into a number of subdomains, for instance by means
of some automatic graph partitioning algorithm applied to the graph of �nite elements (the
dual graph) [13, 27].

4.1. Subdividing the gridpoints into classes

In each subdomain, the (local) unknowns are re-numbered class by class, consecutively, as
follows:

Copyright c 2001 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2001; 00:1{21
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Compute P and L (B = LPLt with diag(L) = I)

Initialization phase

pi;i := ai;i , i = 1; 2; � � � ; n

li;j := ai;j , i = 2; 3; � � � ; n , j = 1; 2; � � � ; i� 1

Incomplete factorization process

do j = 1; 2; � � � ; n� 1

do i = j + 1; j + 2; � � � ; n

pi;i := pi;i � l2i;j
pj;j

li;j :=
li;j
pj;j

do k = i+ 1; i+ 2; � � � ; n
if (k; i) 62 D lk;i := lk;i � li;j lk;j

end do

end do

end do

Figure 2. Standard incomplete factorization (IC).

1. class 1: all interior gridpoints are numbered �rst;
2. class 2: next follow all gridpoints, if any, that belong to two subdomains (see Figs. 3 and

4);
3. class 3: next follow all gridpoints, if any, that belong to three subdomains (see Fig. 4);
4. etc : : :

During the construction of the preconditioning matrix, and at each forward elimination, the
computation and the exchange of data is performed, class by class, as follows:

1. compute class 1 gridpoints;
2. exchange data for class 2 gridpoints updates; compute class 2 gridpoints;
3. exchange data for class 3 gridpoints updates; compute class 3 gridpoints;
4. exchange data for class 4 gridpoints updates; etc : : :

The ordering of computation and communication has to be reversed at each backward
substitution. Steps that involve an empty class are assumed to be skipped. At gridpoints
that are shared by two or more subdomains, each involved subdomain must hold the same
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Figure 3. Decomposition of the grid into 1�8 (stripes). Arrows indicate the progressing direction
of the line numbering per subdomain. Numbers along the y-axis give an example of a global (line)

numbering of unknowns.

value (up to round-o� errors) at the end of the incomplete factorization process, and during
the preconditioning steps. To this end, connections between gridpoints of the same class, but
that belong to two di�erent interfaces, should be avoided. It may happen that the connection
to be dropped corresponds to some entry ai;j of the original system matrix. In such a situation,
the dropped value may be added to the diagonal entries ai;i and aj;j . This technique, which is
known as diagonal compensation [1], preserves the rowsum of the system matrix. In the case
of the relaxed variants of IC introduced in [2], all the dropped values, possibly weighted, will
be automatically added to the diagonal entries.

Figs. 3 and 4 show two examples where the physical domain is partitioned into 1�8 (stripes)
and 2�4 subdomains, respectively.

De�nition 1. A standard IC(`) combined with the above parallelization strategy will be
referred to as ParIC(`).

This strategy de�nes, through the �ll-ins, implicitly a pseudo-overlap. The pseudo-overlap
width will be in general variable but bounded. Its size, which depends on the local numbering,
cannot be larger than `+ 1.

Remarks: Though the way we have chosen to explain our approach follows domain
decomposition terminology, our method is di�erent from and more e�cient than classical
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Figure 4. Decomposition of the grid into 2�4 subdomains. Oblique lines specify level-1 �ll-in entries
that are prohibited.

domain decomposition techniques. Numerical evidence may be found in [28, 29]. Moreover,
our parallelization method described above may also be implemented as a purely algebraic
global re-numbering strategy. This requires the following steps.

1. The graph of the global matrix is partitioned into submatrices by means of some
algorithm which computes a vertex separator, say any (preferably small) set of vertices
whose removal splits the remaining vertices in half or more (approximately) equal parts
(see, e.g., [13, 14, 27]).

2. All the vertices outside the vertex separator (interior vertices) are (re)numbered �rst.
Then follow the separator vertices, that are classi�ed and numbered in increasing order
according to the number of subdomains they are adjacent to.

3. Any connection between two separator vertices that are adjacent to a same number of
subdomains is cancelled whenever the vertices involved have not the same list of adjacent
subdomains.

Fig. 3 provides us with such a global reordering strategy. The vertex separator is made up of
all the vertices along lines 27 to 33.
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Prepared using nlaauth.cls



ANALYSIS OF PARALLEL INCOMPLETE FACTORIZATIONS 9

4.2. Subdividing the gridpoints into classes and subclasses

The approach described in Section 4.1 is quite general. It may be used to handle any
unstructured �nite element (or �nite volume) grid. A way to attempt to improve the
performance consists of avoiding to drop as many low level �ll-in entries as possible during the
incomplete factorization process. This could be achieved by distinguishing between gridpoints
of the same class. In the case of the partitioning described in Fig. 4, one may collect class 2
gridpoints into two subclasses according to whether a gridpoint belongs to a vertical (class 2a)
or a horizontal (class 2b) interface (see Fig. 5). It is evident that splitting classes into subclasses
is easy only for well-structured partitionings.

-

6

x

y

6

6

?

?

6

6

?

?

-

-

�

�

P0

P1

P2

P3

P4

P5

P6

P7

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

f

f

f

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

�

�

�3

�f

class 1

class 2a

class 2b

class 4

- (arrows) ows of computation

interfaces between subdomains

Figure 5. Decomposition of the grid into 2�4 subdomains, and partition into classes and subclasses.

Now, the computation and communication can be executed as follows:

1. compute class 1 gridpoints;
2. exchange data for class 2a gridpoints updates; compute class 2a gridpoints;
3. exchange data for class 2b gridpoints updates; compute class 2b gridpoints;
4. exchange data for class 4 gridpoints updates; compute class 4 gridpoints.

De�nition 2. The above variant of parallel incomplete factorization will be referred to as
ParIC*(`).
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5. Spectral Analysis

The rate of convergence of the PCG method depends on the eigenvalue distribution of the
preconditioned system B�1A. An upper bound for the number of iterations necessary to
achieve a given accuracy is bounded above by the square root of the spectral condition number
�(B�1A) (see, e.g., [1, 17, 33, 36, 37, 38, 46]). Our aim in this section is to provide simple
estimates for the extreme eigenvalues of B�1A. We consider the remainder matrix R = B�A,
and we de�ne the diagonal matrix X by

Be = Ae+ Xe : (5.1)

The matrix X denotes the diagonal (perturbation) matrix; its diagonal entries are the
rowsums of R. Therefore, any incomplete factorization preconditioning matrix may be
interpreted as a perturbed modi�ed incomplete factorization, where the perturbation matrix
is de�ned as the rowsum of the remainder matrix. Due to this observation [20, Section 3],
all theoretical results developed for (perturbed) modi�ed incomplete factorizations (see, e.g.,
[4, 20, 21, 22, 23, 25]) transfer to the standard IC. Of course, only those results that yield good
estimates are of interest. For instance, upper bounds of O(h�1) for �max(B

�1A), as in MIC
type preconditioners, are not useful for general IC.

Lemma 1. [22, Theorem 4.3] Assume that the preconditioning matrix B = LPLt is the
incomplete factorization of A with �ll level zero. De�ne:

i;i =

8<
:

pi;i
2pi;i�ai;i

if i 62 M ;
ai;i
pi;i

if i 2M ;
(5.2)

where

M = f i ; 1 � i � n ; Si = ; g ; (5.3)

with

Si = f j ; i < j � n ; ai;j 6= 0 g : (5.4)

If, for all i 62 M, 2pi;i � ai;i is positive then

�max(B
�1A) � max

1�i�n
i;i : (5.5)

Lemma 2. Set D = diag(A). There exist real numbers �h;i, which depend upon the mesh size
parameter h and i, i� n, such that

�i(B
�1A) �

�
1 + (1 + �h;i)

(e; Re)

(e; De)

1

�i(D�1A)

��1
: (5.6)

Proof The result follows from [25, Corollary 4.2], which gives

�i(B
�1A) �

�
1 +

�max(D
�1X )

�i(D�1A)

��1
:2 (5.7)

Remark: The lower bound (5.6) holds for any �ll level. The parameters �h;i are not easy to
compute. We shall use �h;i = 0, which in general gives rise to accurate estimates (see, e.g., [4]
for i = 1, and [25, Section 5] for i� n).
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ANALYSIS OF PARALLEL INCOMPLETE FACTORIZATIONS 11

In order to give more speci�c spectral bounds, we shall make use of asymptotic results (limit
matrix analysis), as in [41, 42, 8, 16, 46]. For simplicity, our study will be restricted to the case
of �ll level zero, applied to the PDE (3.1) with � = � = 1, and � = @
. There holds ([40]):

�min(D
�1A) = 1� cos � h =

�2 h2

2
+O(h4) : (5.8)

Furthermore, we have that

(e; Re) =

nX
i=1

nX
j=1

ri;j ; (5.9)

(e; De) =
nX
i=1

ai;i = 4n =
4(1� 2h+ h2)

h2
: (5.10)

We will further assume that the number of subdomains p is even.

5.1. Stripes (or 1� p) partitionings

We will compute the limit value of the diagonal entries pi;i of P by means of the rules given
in Fig. 2. Four cases may be distinguished:

Case 1. pi;i ! ~� along the starting lines (lines 1,4,7,10,14,17,20,and 23, in Fig. 3), where
~� � 3:7320508 is the larger root of the quadratic equation ~� = 4� 1

~� .

Case 2. pi;i ! � at the remaining interior (class 1) gridpoints, where � � 3:4142136 is the
larger root of � = 4� 2

�
.

Case 3. pi;i ! �̂ along the middle line (line 33 in Fig. 3), where �̂ � 3:0906579 is the larger
root of �̂ = 4� 1

�̂
� 2

�
.

Case 4. pi;i ! �� at the remaining interface (class 2) gridpoints, where �� � 3:1184895 is the
larger root of �� = 4� 1

�� � 1
�
� 1

~� .

Here, M is the set of all gridpoints i such that i is the last (numbered) gridpoint of an
interface (lines 27{33 in Fig. 3) between two adjacent subdomains. Therefore, due to Lemma 1,
it follows that

�max(B
�1A) <

�

(
1:20711 if p = 1 ;

1:41698 if p � 2 :
(5.11)

Turning to the lower spectral bound, we �rst point out that all the rejected level-1 �ll-in
entries, which correspond to the nonzero entries of the remainder matrix R, are of the form
1
pi;i

. Taking limit values (i!1), it follows that:

(e; Re) �

8>><
>>:

2(nx � 1)
�
1
~� + (ny � 2) 1

�

�
if p = 1 ;

2(nx � 1)
�
3p�4
~� + (ny � 2p+ 1) 1

�

�
if p � 2 :

(5.12)
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12 M. MAGOLU MONGA MADE AND H.A. VAN DER VORST

Hence, by Lemma 2, we obtain the following lower spectral bounds:

�min(B
�1A) >

�

8>>>><
>>>>:

�
1 +

(nx�1)( 1~�+(ny�2)
1
� )

2nxny(1�cos
�

nx+1 )

��1
if p = 1 ;

�
1 +

(nx�1)( 3p�4~� +(ny�2p+1)
1
� )

2nxny(1�cos
�

nx+1 )

��1
if p � 2 :

(5.13)

With some elementary algebraic calculations, taking into account that h = 1
nx+1

= 1
ny+1

and

1� cosx � x2

2 , and neglecting O(h3)-terms, one obtains the following estimates:

�min(B
�1A) >�

8>>>>>><
>>>>>>:

�2�h2f1 � (5� �

~�
)h

+ (�2�+ 6� 2 �
~�
)h2g�1

if p = 1 ;

�2�h2f1 + [(3p� 4) �
~�
� 2(p+ 1)]h

+ [��2 � 2(3p� 4) �
~�
+ 4p]h2g�1

if p � 2 :

(5.14)

The symbol \>�" denotes that we have neglected O(h3)-terms. Substituting � � 3:4142136
(case 2) and ~� � 3:7320508 (case 1), one gets

�min(B
�1A) >

�

8<
:

33:697
1�4:085 h+37:867h2 h

2 if p = 1 ;

33:697
1+(0:745 p�5:659)h+(41:016�1:489 p)h2 h

2 if p � 2 :
(5.15)

Therefore

�(B�1A) <�

8
<
:

0:036 h�2 � 0:15 h�1 + 1:36 if p = 1 ;

0:042 h�2 + (0:03 p� 0:24) h�1 + 1:72 � 0:06 p if p � 2 :
(5.16)

Note that for these bounds, we have ignored the initial convergence behavior of the pi;i. This
has only a small e�ect on the eventual results (see [46]).

5.2. 2�m-partitionings

There is no di�erence between ParIC(0) and ParIC*(0). The computations are similar to the
partitioning by stripes. The letter m denotes the number of subdomains along the y-direction.
The total number of subdomains is p = 2m.

Case 1. pi;i ! ~� � 3:7320508 at the �rst nx
2 (if nx is odd) or nx

2 �1 (if nx is even) interior
gridpoints of each subdomain.

Case 2. pi;i ! � � 3:4142136 at the remaining class 1 gridpoints.

Case 3. pi;i ! �̂ � 3:0906579 along the middle (horizontal line and vertical line) class 2
gridpoints.

Case 4. pi;i ! �� � 3:1184895 at the remaining class 2 gridpoints.

Case 5. pi;i = �� � 4� 4
�̂
� 2:7057772 at the central class 4 gridpoint.

Case 6. pi;i = _� � 4� 2
�̂
� 2

�� � 2:7115524 at the remaining class 4 gridpoints.
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HereM is the set of all class 4 gridpoints (see Figs. 4 and 5). This implies with Lemma 1 that:

�max(B
�1A) <

�

(
1:41698 if p = 2 ;

1:47832 if p > 2 :
(5.17)

Now, one has that,

(e; Re) �

8>><
>>:

2(nx � 1)
�
1
~� + (ny � 2) 1

�

�
if p = 2 ;

2(nx � 1)
�
3p�8
2~� + (ny � p+ 1) 1

�

�
+ p�4

�0
if p > 2 ;

(5.18)

where �0 = 4� 2
~� � 3:4641016, whence it follows that,

�min(B
�1A) >

�

8>>>><
>>>>:

�
1 +

(nx�1)( 1~�+(ny�2)
1
� )

2nxny(1�cos
�

nx+1 )

��1
if p = 2 ;

�
1 +

(nx�1)( 3p�82~� +(ny�p+1)
1
� )+

p�4
�0

2nxny(1�cos
�

nx+1 )

��1
if p > 2 :

(5.19)

By dropping O(h3)-terms one gets

�min(B
�1A) >�

8>>>>>><
>>>>>>:

�2�h2f1 � (5� �

~�
)h

+ (�2�+ 6� 2 �
~�
)h2g�1

if p = 2 ;

�2�h2f1 + [( 3�
2~�
� 1)p� 2(1 + 2�

~�
)]h

+ [(2� �( 3
~�
� 1

2�0
))p+ �(�2 + 8

~�
� 2

�0
)]h2g�1

if p > 2 ;

(5.20)

or, approximately,

�min(B
�1A) >

�

8<
:

33:697
1�4:085 h+37:867h2 h

2 if p = 2 ;

33:697
1+(0:372 p�5:659)h+(39:044�0:252 p)h2 h

2 if p > 2 :
(5.21)

This, together with (5.17), and (5.16) for the case of p = 1, gives

�(B�1A) <�

8>><
>>:

0:036 h�2 � 0:15 h�1 + 1:36 if p = 1 ;

0:042 h�2 � 0:17 h�1 + 1:59 if p = 2 ;

0:044 h�2 + (0:016 p� 0:248) h�1 + 1:713 � 0:011 p if p > 2 :

(5.22)

It emerges from our analysis that, the convergence strongly deteriorates only if the number
of subdomains p is such that p � O(h�1) = O(pn). This is clearly a very bad choice: the
overall communication time will (strongly) dominate the overall computation time. In Figs. 6
and 7, we give the evolution of the eigenvalue lower bound estimates (5.15) and (5.21), which
we denote by low(h,p), and the evolution of the spectral condition number estimates (5.16)
and (5.22), which we denote by k(h; p), in function of the number of subdomains p (p � 32).
Three values of the mesh size h have been considered: 1=h = 481; 721; 961. As the number
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Figure 6. Evolution of the eigenvalue lower bound estimates (5.15) and (5.21) (low(h,p)) as a function
of the number of subdomains p (p � 32), for ParIC(0); 1=h = 481; 721; 961. m = p=2.

of subdomains increases, the decrease of the lower eigenvalue estimate low(h; p), and the
increase of the spectral condition number estimate k(h; p) are remarkably slow. The curves for
low(h; p) (Fig. 6) display that, for very large problems, 2 �m-partitionings would be better
than partitioning by stripes. This seems to be contradicted by the evolution of k(h; p) in
Fig. 7. This, as well as the jumps of k(h; p) between p = 1, p = 2, and p = 4, comes from the
largest eigenvalue estimates (5.11) and (5.17). These estimates are somewhat pessimistic for
p � 2 (see Table I in Section 6). It is a shortcoming of the theory (Lemma 5.1). One makes
use of a Gerschgorin disk Theorem (see, e.g., [40]) type argument in order to estimate the
minimal value of a parameter � such that the matrix (2� 1=�)P � diag(A) is positive de�nite
[22, Theorem 4.3]. Observe also that, the i;i, de�ned by (5.2), are inversely proportional to
pi;i. Now, for p � 2, and for class 2 gridpoints (class 2 and class 4 gridpoints in the case of
2�m-partitionings), the values of pi;i are smaller than the corresponding values for p = 1. In
contrast to the case of p = 1, the above-mentioned gridpoints are connected to more than two
gridpoints with smaller number, which together with the rules given in Fig. 2, explains the
decrease of pi;i, and hence also the increase of k(h; p).
It is worthwhile to stress that, for 2�m-partitionings, where class 4 gridpoints are connected

with 4 gridpoints, the actual largest eigenvalues also (slightly) increases when the (total)
number of subdomains extends 4 (see Table I in Section 6). For p = 2; 4, the involved orderings
are equivalent to the lexicographical one [14], whereas for p > 4, incompatible nodes appear.
For the partitioning by stripes, only the 1�2-ordering is equivalent to the lexicographical one.
The appearance of incompatible nodes seems to mostly inuence the smallest eigenvalues.
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Figure 7. Evolution of the spectral bound estimates (5.16) and (5.22) (k(h,p)) as a function of the
number of subdomains p (p � 32), for ParIC(0); 1=h = 481; 721; 961. m = p=2.

More general PDEs may be handled by adapting our argument, as in [22, Section 5] or
[25, Section 5] for perturbed MIC type preconditioners. Upper spectral bound, which extends
[22, Theorem 4.3] to higher �ll levels, has been obtained in [21, Theorem 3.5]. This bound
only involves the entries of the original system matrix, and the ones computed during the
incomplete factorization process. It should be noticed that (e; Re) would decrease as the �ll
level increases. Lemma 2 then suggests that the smallest eigenvalues of B�1A will very likely
increase.

6. Numerical Results

The computations have been carried out, in double precision Fortran, on a 16-processor
SGI Origin 2000 (195 MHz), using the MPI library for interprocessor (nonblocking)
communications. The PCG was executed with the zero vector as initial approximation, and the
relative residual error kr(i)k2 = kr(0)k2�10�6 as convergence criterion. To avoid computing the
residual norm kr(i)k2 at each iteration, the test was performed only when the preconditioned

residual i (see Fig. 1) satis�es
q

i
0
�10�6. We have considered the 1 � p (stripes), and the

2�m-partitionings (m = p=2). The preconditionings include: ParIC(`) and ParIC*(`).

Problem 1. � = � = 1, � = 
, u(x; y) = x(x � 1)y(y � 1)exy, and h = 1=(ny + 1).
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16 M. MAGOLU MONGA MADE AND H.A. VAN DER VORST

To assess the quality of the bounds obtained in Section 5 we give in Table I the extremal
eigenvalues, as computed by the PCG process, their theoretical estimates, and the spectral
condition number, for ParIC(0). We have used h�1 = 481, so that the global number of
unknowns is n = 230400. The estimates have been computed by means of (5.11) and (5.13)
for the 1� p-partitionings; and by (5.17) and (5.19) for the 2�m-partitionings. We have also
included the number of PCG iterations, the overall computation (wall-clock) time, as well as
the parallel speed-up, which is de�ned as the ratio between the execution time of the parallel
algorithm on one processor and the time on p processors.

Table I. Problem 1. h�1 = 481; n = 230400. Extremal eigenvalues (�min and �max), and their estimates

(�
(e)
min and �

(e)
max); spectral condition number (�) for the preconditioned matrix B�1A associated with

ParIC(0); number of pcg iterations (iter), overall elapsed time (time) in seconds. \Part" denotes the
partitioning.

Part �min �
(e)
min �max �

(e)
max � iter time speed-up

1 1456E-7 1463E-7 1.207 1.207 8289 372 128.72 1.00

1� 2 1456E-7 1463E-7 1.207 1.417 8289 372 64.53 1.99

1� 4 1452E-7 1458E-7 1.207 1.417 8315 408 28.79 4.47

1� 8 1443E-7 1449E-7 1.207 1.417 8364 409 13.04 9.87

1� 16 1426E-7 1432E-7 1.207 1.417 8465 411 7.38 17.44

2� 1 1456E-7 1463E-7 1.207 1.417 8289 372 64.53 1.99

2� 2 1456E-7 1463E-7 1.207 1.478 8289 374 27.46 4.69

2� 4 1452E-7 1458E-7 1.217 1.478 8382 409 12.71 10.12

2� 8 1443E-7 1449E-7 1.217 1.478 8433 411 7.15 18.00

All our theoretical bounds, in particular the estimates for the smallest eigenvalue, are in
general accurate. They display that, for constant (or smoothly variable) PDE coe�cients,
the rate of convergence weakly depends on the number of subdomains p. This explains the
high speed-up observed. This is also borne out from numerical experiments performed in
[28, 29], even for some PDEs with strong jumps in the coe�cients. Observe that the upper
spectral bounds (5.11) and (5.17), which are independent of both the mesh size parameter
h and the number of subdomains p, reect the behavior of the actual largest eigenvalues.
From the comparison of (5.14) and (5.15) with (5.20) and (5.21), one should expect that
2 �m-partitionings give better performance than stripe-partitionings. This is in general the
case, at least in terms of number of iterations; see, in particular, Example 2 in [29]. The overall
communication time for 2�m-partitionings may be higher than for 1�p-partitionings, because
in the former case, the subdomains have more neighbors. Further numerical evidence may be
found in [29, Section 4].

It should be emphasized that, for very di�cult problems, the convergence rate of level zero
incomplete factorization type preconditionings would degrade as the number of subdomains
increases (see, e.g., [11, 18, 24, 34]). To resolve this inconvenience, it is mandatory to accept
su�cient many �ll entries induced by the parallelization renumbering strategy [28, 29].
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To compare ParIC(`) and ParIC*(`), we take ` = 4; 8. We also consider the following more
di�cult boundary value problem.

Problem 2. � = f(x; y); 0 � x � 1; y = 0g, h = 1=ny,

� = � =

8<
: 100 in (1=4; 3=4)� (1=4; 3=4) ;

1 elsewhere ;

f(x; y) =

�
100 in (1=4; 3=4)� (1=4; 3=4) ;
0 elsewhere :

In Tables II and III, we give the extremal eigenvalues, the spectral condition number, the
PCG iteration counts, the overall computation time, and the parallel speed-up. For Problem 2,
where �min(B

�1A) is strongly isolated from the rest of the spectrum, we include the second
smallest eigenvalue �2 = �2(B

�1A) as well, and the e�ective spectral condition number

�(2) = �(2)(B�1A) =
�max(B

�1A)

�2(B�1A)
; (6.1)

which governs the superlinear convergence of the PCG method (see e.g. [33, 36, 37]).
We make the following observations.

1. As in the case of level zero incomplete factorization preconditionings (see Table I), the
performance depends weakly on the number of subdomains. This is remarkable, because
it is achieved without the addition of any coarse-grid correction [35].

2. A high �ll level (here ` = 8) is not necessary to achieve better performance, for ParIC and
ParIC*. However, note that the linear system is solved only once, so that the gain in the
iteration counts is o�set by the increase of the incomplete factorization costs. Very ill-
conditioned systems may require higher �ll level, and/or more elaborated partitionings,
for instance, 4� 4-partitionings instead of 2� 8-partitionings.

3. The speed-up observed is high for both preconditioners. ParIC* is not signi�cantly more
e�cient than ParIC, as one would expect from the fact that ParIC* keeps more low
level �ll entries. The cancellation of some �ll entries does not dramatically degrade the
convergence. The rather small gain in the number of iterations, observed with ParIC*,
is amortized by the increase of the synchronization phases.

7. Conclusions

We have investigated two general approaches for the parallelization of incomplete factorization
type preconditionings. The gridpoints are collected into classes, or classes and subclasses,
according to the number of subdomains to which they belong. The computation and
communication then proceed class by class, and subclass by subclass, if any. Analytical spectral
bounds, which agree very well with the actual eigenvalues of the preconditioned systems, have
been derived. They show that, for PDEs with constant (or smoothly variable) coe�cients,
the convergence rate only weakly depends on the number of subdomains. This also holds for
some PDEs with strong discontinuities in the variation of the coe�cients; and, by ample
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18 M. MAGOLU MONGA MADE AND H.A. VAN DER VORST

Table II. Problem 1. h�1 = 481; n = 230400. Extremal eigenvalues (�min and �max); spectral condition
number (�); number of pcg iterations (iter), overall elapsed time (time) in seconds. \Precond" and

\Part" denote the preconditioning and the partitioning, respectively.

Precond Part �min �max � iter time speed-up

1 1828E-6 1.146 627 115 62.69 1.00

2� 1 1787E-6 1.177 659 119 34.46 1.82

ParIC(4) 2� 2 1740E-6 1.391 799 125 16.56 3.79

2� 4 1720E-6 1.448 841 127 7.07 8.87

2� 8 1630E-6 1.448 888 134 4.33 14.48

2� 2 1785E-6 1.184 663 119 15.88 3.95

ParIC*(4) 2� 4 1734E-6 1.190 686 123 7.03 8.92

2� 8 1643E-6 1.190 725 126 4.12 15.22

1 6791E-6 1.145 168 62 61.38 1.00

2� 1 6357E-6 1.214 191 66 35.25 1.74

ParIC(8) 2� 2 5459E-6 1.425 261 69 18.26 3.36

2� 4 5683E-6 1.549 273 77 9.39 6.54

2� 8 5106E-6 1.549 303 81 5.17 11.87

2� 2 6351E-6 1.218 192 67 18.06 3.40

ParIC*(8) 2� 4 5946E-6 1.254 211 69 8.69 7.06

2� 8 5294E-6 1.254 237 74 4.68 13.12

experimental evidence, for any PDE, provided that enough �ll-in entries, induced by the
parallelization strategy, are accepted [28, 29]. It would be interesting to choose the �ll level
proportional to the number of subdomains, for a �xed mesh size problem. This requires further
investigation. Another point which deserves to be explored is the usage of other variants of
the basic IC (see, e.g., [1, 2, 4, 5, 20, 25]).
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Table III. Problem 2. h�1 = 480; n = 230880. Extremal eigenvalues (�min, �2, and �max); e�ective

spectral condition number (�(2)); number of pcg iterations (iter), overall elapsed time (time) in seconds.
\Precond" and \Part" denote the preconditioning and the partitioning, respectively.

Precond Part �min �2 �max �(2) iter time speed-up

1 1254E-8 2291E-6 1.167 509 174 90.26 1.00

2� 1 1226E-8 2279E-6 1.220 535 146 41.53 2.17

ParIC(4) 2� 2 1194E-8 2261E-6 1.391 615 148 19.35 4.66

2� 4 1159E-8 2217E-6 1.448 653 163 8.83 10.22

2� 8 1097E-8 2098E-6 1.448 690 170 5.22 17.29

2� 2 1223E-8 2272E-6 1.221 537 146 19.11 4.72

ParIC*(4) 2� 4 1163E-8 2226E-6 1.350 606 160 8.64 10.45

2� 8 1104E-8 2106E-6 1.350 641 166 4.84 18.65

1 4721E-8 8612E-6 1.168 136 94 84.79 1.00

2� 1 4425E-8 8482E-6 1.258 148 79 40.14 2.11

ParIC(8) 2� 2 3843E-8 8060E-6 1.425 177 87 21.51 3.94

2� 4 3861E-8 7746E-6 1.549 200 96 10.83 7.83

2� 8 3413E-8 6903E-6 1.549 224 102 5.75 14.75

2� 2 4408E-8 8407E-6 1.259 150 80 20.27 4.18

ParIC*(8) 2� 4 3928E-8 7977E-6 1.423 178 89 10.24 8.28

2� 8 3516E-8 7072E-6 1.423 201 94 5.65 15.01
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