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Field-dependent collision frequency of the two-dimensional driven random Lorentz gas
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In the field-driven, thermostated Lorentz gas the collision frequency increases with the magnitude of the
applied field due to long-time correlations. We study this effect with computer simulations and confirm the
presence of nonanalytic terms in the field dependence of the collision rate as predicted by kinetic theory.
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In a recent papefl], Panja, Dorfman, and van Beijeren E.
S . : . - p . p
used kinetic theory to derive analytic expressions for the r:E’ pP=qE—ap, a=q-—, (1)
Lyapunov exponents of the random, two-dimensional field- p

driven Lorentz gas at moderately high densities. Their ap-

proach is based on the Bogoliubov-Born-Green-Kirkwood-wherer={r,,r,} and p={py,p,} are the position and the
Yvon hierarchy equations and takes into account correlatechomentum of the moving particle, respectively. The second
collision sequences. Such “ring collisions” lead to long-time term in the momentum space part of the equations of motion
tails in the Green-Kubo time correlations functions affectingis a Gaussian thermostat designed to remove the dissipated
the transport properties of the syst¢@. Panja, Dorfman, €nergy and keep the speed-p/m of the moving particle

and van Beijeren studied the effect of ring collisions on theconstan{4]. When the point particle collides with a scatterer
Lyapunov exponents and found that long-time correlationdt is reflected elastically, i.e.,

cause a logarithmic dependence of the Lyapunov exponents

on the applied field strength. These nonanalytic terms can be Vo=V_—2(V_-u), 2
traced back to logarithmic terms in the field dependence of

:zgu(;:)ol:ilqug ftrhe Su&r;(%nlécfoer)t(téré?‘teez,s tgfeng)r:)ar;?#g:lctgog ewhereu is the unit vector in the direction from the center of
detected with current computer simulation technigi8dsin
contrast, the predicted effect on the collision frequency is E
large enough to be observed numerically. The purpose of this -

note is to verify the presence of logarithmic terms in the U
collision frequency with computer simulations.
The random, two-dimensional field-driven Lorentz gas,
shown in Fig. 1, consists of a point particle of massand OV/(
chargeq moving under the influence of an external homoge-
neous fielcE in a two-dimensional array of circular nonover-
lapping scatterers with radius The scatterers are fixed at
random positions in the plane and have a densitynof
=N/A, whereN is the total number of scatterers in the area

A. In our numerical simulations we use periodic boundary Q <
conditions as indicated in Fig. 1. When the point particle

leaves the simulation box through one specific boundary, it

reenters it through the opposite boundary. Between collisions O

with the scatterers the point particle moves smoothly accord-
ing to

*Corresponding author.
Email address: dellago@chem.rochester.edu FIG. 1. Geometry of the random, field-driven Lorentz gas.
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the scatterer to the collision point ard andv, are the pre- 04 &
and postcollisional velocities of the moving particles, respec-
tively. 03 b

In equilibrium, i.e., forE=0, and for long times, the =
phase distribution is uniform on the energy shell. In this case =
the collision frequency of the point particle with the scatter- R 0.2
ers can be obtained by determining the fraction of phase N
space available for collision in an infinitesimal time 041
interval [5]

0
2nav -7
b pp——ry 3) In(za/v)

. FIG. 2. The termdv/e? as a function of In¢a/v) for the densi-
In the presence of an external perturbation, however, thgeg n=0.008a-2 0002 2 000 2 00%] 2 002&A 2

phase space distribution of nonequilibrium steady state coly 942, 0.0&2, and 0.122 (from left to righ. The dotted
lapses onto a multifractal strange attractor with informationiines are straight lines with slopea/(2v) fitted to the data. The
dimension strictly less than the phase space dimension. As|@ear behavior ofév/e? in the weak field regime indicates the
consequence, no analytical expression for the phase spaggsence of the logarithmic terms predicted by kinetic theory.
distribution is available and the calculation of phase space
integrals becomes cumbersome. Nevertheless, Panja, Doddic boundary conditions. Only at the highest density (
man and van Beijeren succeeded in determining the effect o£0.152) we useN=5000 scatterers. By averaging our
the external field on the collision frequency by adopting aresults over various scatterer configurations we integrate
kinetic theory approacht]. over the quenched disorder of the randomly placed scatter-

Qualitatively, it is evident that the external field increasesers. Computing time is saved by dividing the simulation box
the collision frequency. In the presence of the field, the veinto cells such that at each time only a few scatterers need to
locity of the particle tends to be aligned in field direction be considered as possible collision partners. For each density
before a collision. Immediately after the collision the veloc-and field strength we typically carry out a total of more than
ity of the particle will therefore point against the field. Due 10° collisions obtaining collision frequencies accurate to bet-
to the action of the field the particle will turn around and ter than 0.01%. This high accuracy is needed to detect the
possibly hit the same scatterer again after a time shorter thagmall changes in collision frequency in the weak field re-
the average equilibrium collision time. The typical time scalegime.
for such a reorientation is of the order wiv/gE [6]. Such For analysis it is convenient to rewrite E@) as
correlated collisions enhance the collision frequency.

This argument was made quantitative by Panja, Dorfman, v a ) a ea
and van Beijereii1]. As a consequence of correlated colli- = %In(Zna )—%m?, 5
sions, i.e., multiple collisions of the particle with the same &
scatterer, separated by sequences of intermediate collisions,
field dependent contribution appears in the collision fre
quency

where sv is the deviation of the collision frequency from its
“equilibrium value. Accordingly,dv/e? should behave lin-
early when plotted as a function of k&/v). Figure 2 shows
Svle? as a function of Infa/v) for the densitiesn
Lo 2nav  as” 2nav (4 =000m 2 0002 % 0008 % 00= 2 0022

1—mna? 2mv & ' 0.04a"2, 0.0& 2, and 0.1% 2. In Fig. 2 densities increase

from left to right. Each data point is obtained as an average

wheree =q|E|/(mv). The first term on the right hand side of over 50-500 runs with different scatterer configurations. The
the above equation is the collision frequency in equilibrium.error bars are estimated from the variation of the collision
The second, nonanalytic field-dependent term is responsiblequency in these sets of runs. The solid lines connect data
for the nonanalytic dependence of the Lyapunov exponentgoints corresponding to the same density and the dotted lines
on the field strength. are straight lines with slope-a/(2mv) fitted to the data in

To verify the logarithmic term in Eq(4) we have per- the low field regime.
formed extensive simulations of the driven random Lorentz For all densities but the highest or®/s? is a linear
gas at various densities and field strengths. The collision frefunction of Ine in the low field strength range with slope
guency is obtained in a straightforward way by following the —a/(27v) in agreement with Eq(5). This confirms the ex-
time evolution of the system for a long time and counting theistence of the nonanalytic field-dependent term predicted by
number of collisions. For this purpose we use an analyticakinetic theory.
solution of equations of motiofill) and determine the colli- From Fig. 2 we can also infer the range of validity of the
sion point and the collision time of the moving particle with theory in then-g plane. Clearly, Eq(5) breaks down for
the scatterers numerically]. Typically, we study systems densities larger than aboot=0.08 2. For densities below
with N=10° scatterers in a square simulation box with peri-n=0.0831‘2 Eq. (5) holds for field strengths below a certain
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critical values.. The intercept of the fitted lines with the  diffusion equation, as described in the Appendix of R&f.

axis can be used as a measure of this critical value. Thi order to check this in detail one would have to explicitly

critical valuee, is an approximately linear function of the SOlve the Lorentz-Boltzmann equation in presence of the

density growing frome.~0.006/a at n=0.00la % to &, field and thermostat. ,

~0.5/a atn=0.08 2. In summary, we have unequivocally detected the appear-
However, the agreement between numerical results an@c€ Of nonanalytic terms in the collision frequency and

analytical theory is not perfect even for low densities andl€nce. indirectly, in the Lyapunov exponents of the random

weak external fields. While the lines corresponding to(sy.  feld-driven Lorentz gas. Our numerical results agree quanti-

have the correct slope, their intercept with thaxis is lower ~ t@tively with the kinetic theory predictions of Panja, Dorf-

by about 0.2/v than the value obtained numerically. This Man, and van Beijeren.

discrepancy is essentially constant in the density range we

have studied. It must be due to the approximation of the J.R.D. thanks the National Science Foundation for support

probability of return to a given scatterer by a solution of theunder Grant No. PHY-98-20824.
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