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Equilibrium crystal shapes in the Potts model
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The three-dimensionaj-state Potts model, forced into coexistence by fixing the density of one state, is
studied forq=2, 3, 4, and 6. As a function of temperature and number of states, we studied the resulting
equilibrium droplet shapes. A theoretical discussion is given of the interface properties at large vglu&&®of
found a roughening transition for each of the numbers of states we studied, at temperatures that decrease with
increasingg, but increase when measured as a fraction of the melting temperature. We also found equilibrium
shapes closely approaching a sphere near the melting point, even though the three-dimensional Potts model
with three or more states does not have a phase transition with a diverging length scale at the melting point.
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I. INTRODUCTION changes into a circle when the temperature is approaching
the critical temperature. The behavior is richer in the three-
If a binary mixture of fixed composition is brought into a dimensional Ising model. At zero temperature, the ECS is a
coexistence state it will phase-separate into two pure phasegbe. At finite temperatures below the roughening tempera-
separated by an interface with a shape that minimizes théire Tr, the ECS still has macroscopically flat faces but the
free energy of the systefil]. The phase with the smaller corners as well as the edges are rounded. Above the rough-
volume will typically organize itself into a compact shape, €ning temperature, the ECS does no longer feature macro-
known as the equilibrium shape. If the surface tengima  scopically flat faces. If the temperature is increased from the
cess free energy per unit interface arésm isotropic, this —roughening temperature to the critical temperature, the ECS
equilibrium shape will be a sphere. If either of the coexistingdradually approaches a sphere.
phases is crystalline, the anisotropic surface tension will lead An extension of the Ising model is the Potts model, de-
to an aspheric equilibrium crystal shafieCS. The ECS and  fined by the Hamiltonian
the orientation dependence of the surface tension are inti-
mately _related. Once the surface tension _is known for all H=—JE 8(ay,0)), 1)
orientations, the so-called Wulff constructi¢g,3] allows i
the generation of the ECS. The reverse is also possible, i.e.,
determining the surface tension as a function of orientatiorin which Jis the coupling constang denotes the Kronecker
from the ECS; this is a procedure followed in this manu-delta function, and the summation runs over all pairs of
script. nearest-neighbor sites, each having a spin with value
The ECS has been the subject of experimental studies=1, ... d. Note that the two-state Potts model is equiva-
[4—11]. One striking feature the ECS may show is a rough-lent to the Ising model. The topic of this manuscript is to
ening transition: the disappearance of fac@tsmcroscopi- study how the ECS and related properties such as the rough-
cally flat surfacesunder rising temperature. In practice equi- ening temperature behave with increasing number of states.
librium shapes are rarely seen and they are hard to produddke in two dimensions the model undergoes a phase transi-
experimentally, but this does not mean they are without praction at a temperature we will refer to as the melting tempera-
tical importance. For example, the presence or absence tifire T,,. Below this temperature the model haglifferent
facets in the ECS influences growth properties, such as thghases, each of which is dominated by one ofdim@ssible
speed of growth and the growth mode, even though growtlspin values, whereas for temperatures abbyehere is only
shapes may differ strongly from the ECS. In general, thea single phase in which on average all of the spin values are
determination of the orientation dependence of the surfacpresent in equal amounts. It is known that épz 3 the melt-
tension is a tough problem. Experimentally it is very difficult ing transition is of first ordef13], in contrast to the two-state
to measure, mainly due to equilibration problems. Numericallsing) case where the transition is continuous. It is therefore
studies suffer from the same equilibration problems, and imot cleara priori whether there is a roughening transition
the most common simulation techniques each surface orienvhen q=3, nor in how far the ECS should approach a
tation requires a separate simulation. Theoretical results onlgphere whefl approache3 k. Furthermore, one should ex-
have been obtained for simplified models like the body-pect the surface tension to approach a nonzero limit as the
centered solid-on-solidBCSOS model[12]. melting temperature is approached from below, whereas for
The prototypical model in which such properties are stud-continuous transitions it vanishes in this limit.
ied numerically, is the conserved-order-parameter Ising The manuscript is organized as follows. First, in Sec. Il
model with nearest-neighbor interactions, in which the totalwe outline the numerical procedure to efficiently determine
magnetization is kept constant. In the two-dimensional Isinghe ECS and show the resulting shapes for all numbers of
model, the ECS is a square at zero temperature, but at arsfates for which accurate numerical estimates of the melting
finite temperature the ECS loses all flat faces. It graduallyemperature have been reportge: 2 (Ising), 3, 4, and 6. In
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FIG. 1. Symmetrized equilibrium cluster shapes. From left to right, the boxes show the shapes for the 2-, 3-, 4-, and 6-state Potts
model, successively. Within each box, again from left to right, the temperature increases from,0t850.80 T,,, in increments of
0.05 T,.

Sec. lll we present some theoretical considerations on the In Fig. 1, we show the equilibrium crystal shapes for sev-
behavior of the model for large values @f Section IV cov-  eral temperatures, for the case@¥ 2 (Ising), 3, 4, and 6
ers the measurements on the location of the roughening trastates, respectively. These shapes are obtained from the 50%
sition. In Sec. V we present the orientation-dependent surisodensity surface in the density profile, after full symmetri-
face tension as extracted from the data on the ECS. Weation, i.e., after we averaged over all 48 possible invariant
conclude with a discussion of the results and an outlook tenirror images of the cube.
further research. The simulation temperatures are chosen as fractions of the
estimates for the melting temperatures reported in R&fs-
L. OBTAINING THE ECS 17]; these values are given in Table I.

Equilibrium shapes can be determined numerically for the lIl. BEHAVIOR FOR LARGE q
g-states Potts model by forcing it into coexistence. This may )
be achieved by enforcing a constraint on the spin densities. FOr large values od the thermal evolution of the ECS can
The richest behavior is observed in case the maximum OlPe understood from the following arguments. First of all no-
g—1 constraints are enforced, but mostly the resulting contice that at low temperatures tiggohases of ther-state Potts
figurations are still determined by the orientation dependencBodel without conservation laws will be very close to the
of the surface tension, and can thus be obtained indirectl§€" temperature phases in which all spins on the lattice have
from numerical simulations with a single constraint en-€qual value. Ind dimensions the free energy per sftef
forced. these states therefore satisfies

The constraint enforced in our simulations is the conser-
vation of the density of state 1, while the densities of all

other states are allowed to fluctuate freely. To implementrp,q high-temperature phase is completely dominated by the

this, we combined a density-conserving cluster algorithmeqny resulting from the different occupation options for
described in a recent articjé4], with Glauber dynamickl],  gach site, with a resulting entropy per sitekgfin g and free
constrained to never flip spins into or out of state 1. Wegpergy

chose the ratio of cluster updates and Glauber updates per
site to be unity(i.e., a comparable amount of computational f(Thign) ~—ksTIng. ®)
effort was spent to eag¢hThe run-times of the simulations

varied between 400000 and 800000 Monte Carlo updatefhe melting temperature is obtained to a good approximation
per site and we typically allowed the system to thermalizeby equating these two expressions, with the result

for 60 000 to 100 000 time steps. The lateral system size was
50 sites in all lattice directions, with periodic boundary con-
ditions, and the fraction of conserved spins was typically
0.25. In order to directly obtain the ECS we repeatedly took
“snapshots” of the evolving system, each time centering thefor large g, with 8=1/(kgT). Note that ford=2 this is in
cluster around the origin. Taking the autocorrelation timeagreement with the exact resiit7] B,J=In(1+/q). For

into account, we typically obtained 2000 independent equifarge q one sees thai>kgT for temperatures below,.
librium snapshots from one simulation. At the end we calcu-Therefore local excitations, typically consisting of single
lated the time-averaged density profile of the conserved conwverturned spins, will be extremely rare in the low-
ponent. Our results for the ECS were obtained from the 50%emperature phases, as they require an energy far exceeding
isodensity surface in this time-averaged density profile.  the gain in free energy due to the entropy increase. Similarly,

f(Tiow)~—dJ. @

1
Brd=~5Ing @
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TABLE . Inverse transition temperature, ratio of the roughen-disappear when the temperature increases, at a characteristic
ing and transition temperatures, and inverse roughening temperatugemperature known as the roughening temperafiref the
of the g-states Potts model. The references in the first column pOingpecific-facet orientation. At this temperature the inverse ra-
to the sources we used for the data on the transition temperaturegiys of curvature RC)*l of the crystal surface at the center
For comparison we added the critical interaction paramgtgy, of the facet jumps from zeréwhen a facet is presento a
=In(1+1/q) for the two-dimensional Potts model in the last col- honzero value. Using renormalization-group calculations,

umn. Jayaprakastet al. [19] (see also van Beijeren and Nolden
[12]) showed that the size of this jump satisfies the universal
q Pr A Tr/Tm  AIn(2D)  relationship
2[15]  0.84(2) 0.443309(2) 053(3)  0.8813
3[16]  086(2)  05505(1)  0.64(3) 1.0051 2ok T
4[17)  0.89(2) 0.631(2) 071(3)  1.0986 Re="%,, ©
6[17]  0.93(2) 0.751(2) 0.81(3) 1.2382

wherez, is the distance from the tangent plane at the facet to
the center of mass of the crystal apglis the surface tension

the tendency to form clusters of equal spin in the high )
y N au pin ! '9 f the 001-facet al =Tg. The latter is not known exactly

temperature phase is very weak, as the resulting gain of e

ergy by far does not compensate for the resulting loss o rany of t_heq-state_ POHS models in three dimensions. An
entropic free energy. As a result the melting transition foraPProximation consisting of the ground-state value plus the

high q will become very sharp. first correction term in a Iow-temperature expansion Is

Now we can also estimate the orientation dependence of
the surface tension. In good approximation, an interface of yo=PBJI—2e" ¥ (7)
(00)-orientation(or symmetrically equivaleptis just a flat
interface between two pure states, with a free energy of It will turn out that this approximation suffices for our goal:
(one broken bondper unit area. Similarly, by counting bro- even for the smallegt values the contribution of the correc-
ken bonds, one finds that an interface IdfL-orientation  tion term atT=Tg is already smaller than the estimated
(herek and! are not necessarily integgrisas an energy per systematic error in the curvature measurements.
unit area of (3 k+1)/y/1+k%+12. For nonzero temperature If the center of mass of the ECS is placed at the origin, the
there is an additional contribution from the entropy of thecenters of the facets that are present below the roughening
steps required to form such an interface. For not too largéemperature are located on the principal axes. To estimate the
values ofk and| this may be obtained by multiplying the location of the roughening transition, we first measure the
step density needed to create a surface of orientdtldn curvature at the six points where the E@®tained as in the
with the meandering entropy of such a step. The resultingrevious sectioncuts a principal axis, in the two principal

expression is directions tangential to the surface. The curvature was ob-
tained by fitting a quadratic functiop=y,— 3y;x?; the fit-
(L+k+1)JI—kgT In[ (k+ D (kKN ted result fory, /y, is the normalized inverse radius of cur-
f(T)= N - ) vature. Since we use a nonzero fitting range, the slope of the

curve cannot become infinite and consequently we do not

This result is independent of the valuegpfespecially it also  Observe a jump in curvature; in fact we find quite smooth
holds for the Ising model. Excitations creating spins not bedependence of curvature on temperature, as a result of finite
longing to the two phases that coexist at the interface are sze, round-off and fluctuation effects. However, we made
rare that they may be neglected completely. Rtror I/k ~ Sure that our procedure to estimatgis not very sensitive to
<exp(-BJ) the entropy becomes dominated by thermal Steﬁhls. N_otably, our estimate of the _roughen_lng temperature for
fluctuations, but this concerns an extremely small range ofhe Ising model is close to previous estimates: AdR],
orientations onlyHowever, it does set the distance betweenreported Tg/T,=0.55-0.02, Mon etal. [21] reported
facet edges Blote and Hilhors{18] give expressions for the Tr/Tm=0.54=0.02, and Holzer and Wortif22] reported
free energy from which the low-temperature ECS may belr/Tm=0.545+0.004.
obtained for all orientations. The resulting measurements of the normalized inverse
The unimportance of all but the two coexisting phasescurvature are plotted in Fig. 2. The error bars indicate the
implies that for largeq the (001)-facets do not roughen, as Statistical error; additional simulations for some points indi-
T, is well below the roughening temperature of these facet§ate that the systematic errors arising from the effects of
in the Ising modelsee Sec. Y. The equilibrium shape then thermalization, cluster shape deformations, long lived ther-
remains nearly cubic for all temperatures upTtg. mal excitations, etc., are larger. In the same plot, the curves
described by Eq(6) are also plotted. The intersection points
of these two curves are estimates of the location of the
roughening transition. The resulting values for the roughen-
Roughening transitions of crystal surfaces are characteing temperature can be found in Table I; the error indications
ized by the disappearance of macroscopically flat regions, aare our estimates of the statistical and systematic errors com-
facets, in the ECS. Facets existing at low temperatures oftepined.

IV. LOCATION OF THE ROUGHENING TRANSITION
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FIG. 2. Normalized inverse curvature for the Potts model with
g=2 (pluses, 3 (crossey 4 (starg, and 6 stategsquares The
intersection points of the lines, described by E), and the data
points are estimates for the roughening temperafigre

In the previous section we noted that for larg¢here is
no roughening transition. Obviouslyg=6 is not large
enough to observe this, but the increaseTgf T,, is very
clear. It would be interesting to know the largegstalue for
which a stable roughening transition does exist. The values
of BJr quoted in Table | combined with the estimateTof
of Eq. (4) suggest a value between 20 and 40. With the 14
present method this would make simulations very slow, and
it would also require an accurate measurement of the melting 13t
temperatures, since no literature values exist.

12 |
V. ORIENTATION DEPENDENCE OF THE
SURFACE TENSION 11t

In general, the surface tensiop can be written as 1

y= yoy(ﬁ), where vy, is the surface tension of an interface
oriented in the(001), or symmetrically equivalent direction
[12]. In experiments with Pb crystals in equilibrium with
their vapor, Heyraud and Meis u_sed the inverse Wulff con- FIG. 3. Angular part of the surface tensigfin) as a function of
struction (Se? Rei.[lZ]) to Obt"f"n the ellngula_\r Apart of the orientationn, measured along the arc that connects the @D®
surface tensiony(n) as a function of orientation and the  =0), 111(at®=0.955), and 110 directior(at ® = 7/2, where# is
same method has been employed by Sumeteal. [10]. Here  the azimuthal angle From top to bottom the plots show the 2, 3, 4,
we use it to obtain the orientation dependence of the surfacand 6 states results. In each plot, from the uppermost curve down-
tension for each ECS as obtained in Sec. Il wards, the temperature ranges from 0.25 to 0.80 T,,, in incre-

The surface tension(n) is proportional to the distance Ments of 0.05Ty.
from the center of the cluster to the tangent plane perpen- L
dicular ton, touching the isosurface in the point If the  face, for which the number-X is maximal. This procedure
ECS is scaled such that the distance to the surface from th#orks in both two and three dimensions.

0 02 04 06 08 1 12 14 16
6

center of the shape along the lattice axes is unity, then Using ECS's obtained from fully symmetrized density
R . profiles, we measuregl(n) along the arc in the Kizone,
y(n)=maxn-X, (8)  which connects thé€100), (111), and(110) directions. Figure

! 3 shows the results.
L ) These figures show that the angular dependence of the
whereX is an element of the scaled isosurfdcdhus, for  syrface tension becomes nearly constant at increasing tem-
every directionn, we have to find the poinX in the isosur-  perature, for all numbers of statgsconsidered here. Thus,
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for =<6 the ECS approaches a sphere. For the Ising modélhe resulting ECS was studied as a function of temperature
(g=2) this was to be expected, since this model undergoes and number of states.

continuous phase transition at the melting point. On the other We found that the roughening transition, which is well
hand, it is also clear that aspheric deviations become largénown for the Ising modelequivalent to the two-states Potts
with increasingg. As we saw in Sec. Il the ECS becomes mode), persists for higher numbers of states, at least up to
nearly cubic for largeq. Obviously,q=6 still should be six states. The temperatuf;, at which this roughening

considered a smatj value in this context. transition occurs, measured as a fraction of the melting tem-
If the ECS is not faceted, the angular part of the surfacgerature, tends to increase with increasing number of states.
tension will approach the poin® =0 with zero slope. If, In the future, we want to study the more general and

however, the ECS had€0)) facets, the approach to the point yicher hehavior of the ECS in case more than one quantity is

tGr)1:0I will oi;cur \mth a n?rr:zerohsick)]pe, renslglt”lig Irll'a C‘fJSp N conserved. For instance, in the three-state Potts model close
€ siope along the arc through this poﬁ . Loo NG 10T 5 its melting point, with the constraimpt;> p,=ps, the ECS
the temperature where these cusps first appear is an alterna-

tive way to measure the roughening temperature. We foun(r]esembles the shape of two soap bubbles with a common

this to be less accurate than the procedure described in Semterface; this changes under variations of temperature and

IV. The results were, however, consistent. tﬁe ratiop,/ps. _ . .
We also want to look at equilibrium shapes in constrained

geometries, like fluids between parallel plates, or systems
with grain boundaries.

We studied the Potts model with=2, 3, 4, and 6 states, Finally we are investigating the behavior for largpval-
forced into coexistence by fixing the density of one stateues with the aid of different Monte Carlo techniques.

VI. DISCUSSION AND FUTURE RESEARCH
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