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Equilibrium crystal shapes in the Potts model
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The three-dimensionalq-state Potts model, forced into coexistence by fixing the density of one state, is
studied forq52, 3, 4, and 6. As a function of temperature and number of states, we studied the resulting
equilibrium droplet shapes. A theoretical discussion is given of the interface properties at large values ofq. We
found a roughening transition for each of the numbers of states we studied, at temperatures that decrease with
increasingq, but increase when measured as a fraction of the melting temperature. We also found equilibrium
shapes closely approaching a sphere near the melting point, even though the three-dimensional Potts model
with three or more states does not have a phase transition with a diverging length scale at the melting point.
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I. INTRODUCTION

If a binary mixture of fixed composition is brought into
coexistence state it will phase-separate into two pure pha
separated by an interface with a shape that minimizes
free energy of the system@1#. The phase with the smalle
volume will typically organize itself into a compact shap
known as the equilibrium shape. If the surface tension~ex-
cess free energy per unit interface area! is isotropic, this
equilibrium shape will be a sphere. If either of the coexisti
phases is crystalline, the anisotropic surface tension will l
to an aspheric equilibrium crystal shape~ECS!. The ECS and
the orientation dependence of the surface tension are
mately related. Once the surface tension is known for
orientations, the so-called Wulff construction@2,3# allows
the generation of the ECS. The reverse is also possible,
determining the surface tension as a function of orienta
from the ECS; this is a procedure followed in this man
script.

The ECS has been the subject of experimental stu
@4–11#. One striking feature the ECS may show is a roug
ening transition: the disappearance of facets~macroscopi-
cally flat surfaces! under rising temperature. In practice equ
librium shapes are rarely seen and they are hard to prod
experimentally, but this does not mean they are without pr
tical importance. For example, the presence or absenc
facets in the ECS influences growth properties, such as
speed of growth and the growth mode, even though gro
shapes may differ strongly from the ECS. In general,
determination of the orientation dependence of the surf
tension is a tough problem. Experimentally it is very difficu
to measure, mainly due to equilibration problems. Numer
studies suffer from the same equilibration problems, and
the most common simulation techniques each surface or
tation requires a separate simulation. Theoretical results
have been obtained for simplified models like the bod
centered solid-on-solid~BCSOS! model @12#.

The prototypical model in which such properties are st
ied numerically, is the conserved-order-parameter Is
model with nearest-neighbor interactions, in which the to
magnetization is kept constant. In the two-dimensional Is
model, the ECS is a square at zero temperature, but at
finite temperature the ECS loses all flat faces. It gradu
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changes into a circle when the temperature is approac
the critical temperature. The behavior is richer in the thr
dimensional Ising model. At zero temperature, the ECS
cube. At finite temperatures below the roughening tempe
ture TR , the ECS still has macroscopically flat faces but t
corners as well as the edges are rounded. Above the ro
ening temperature, the ECS does no longer feature ma
scopically flat faces. If the temperature is increased from
roughening temperature to the critical temperature, the E
gradually approaches a sphere.

An extension of the Ising model is the Potts model, d
fined by the Hamiltonian

H52J(
^ i , j &

d~s i ,s j !, ~1!

in which J is the coupling constant,d denotes the Kronecke
delta function, and the summation runs over all pairs
nearest-neighbor sites, each having a spin with va
s51, . . . ,q. Note that the two-state Potts model is equiv
lent to the Ising model. The topic of this manuscript is
study how the ECS and related properties such as the ro
ening temperature behave with increasing number of sta
Like in two dimensions the model undergoes a phase tra
tion at a temperature we will refer to as the melting tempe
ture Tm . Below this temperature the model hasq different
phases, each of which is dominated by one of theq possible
spin values, whereas for temperatures aboveTm there is only
a single phase in which on average all of the spin values
present in equal amounts. It is known that forq>3 the melt-
ing transition is of first order@13#, in contrast to the two-state
~Ising! case where the transition is continuous. It is theref
not cleara priori whether there is a roughening transitio
when q>3, nor in how far the ECS should approach
sphere whenT approachesTR . Furthermore, one should ex
pect the surface tension to approach a nonzero limit as
melting temperature is approached from below, whereas
continuous transitions it vanishes in this limit.

The manuscript is organized as follows. First, in Sec.
we outline the numerical procedure to efficiently determ
the ECS and show the resulting shapes for all numbers
states for which accurate numerical estimates of the mel
temperature have been reported:q52 ~Ising!, 3, 4, and 6. In
©2001 The American Physical Society25-1
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FIG. 1. Symmetrized equilibrium cluster shapes. From left to right, the boxes show the shapes for the 2-, 3-, 4-, and 6-st
model, successively. Within each box, again from left to right, the temperature increases from 0.25Tm to 0.80 Tm , in increments of
0.05 Tm .
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Sec. III we present some theoretical considerations on
behavior of the model for large values ofq. Section IV cov-
ers the measurements on the location of the roughening
sition. In Sec. V we present the orientation-dependent
face tension as extracted from the data on the ECS.
conclude with a discussion of the results and an outlook
further research.

II. OBTAINING THE ECS

Equilibrium shapes can be determined numerically for
q-states Potts model by forcing it into coexistence. This m
be achieved by enforcing a constraint on the spin densi
The richest behavior is observed in case the maximum
q21 constraints are enforced, but mostly the resulting c
figurations are still determined by the orientation depende
of the surface tension, and can thus be obtained indire
from numerical simulations with a single constraint e
forced.

The constraint enforced in our simulations is the cons
vation of the density of state 1, while the densities of
other states are allowed to fluctuate freely. To implem
this, we combined a density-conserving cluster algorith
described in a recent article@14#, with Glauber dynamics@1#,
constrained to never flip spins into or out of state 1. W
chose the ratio of cluster updates and Glauber updates
site to be unity~i.e., a comparable amount of computation
effort was spent to each!. The run-times of the simulation
varied between 400 000 and 800 000 Monte Carlo upd
per site and we typically allowed the system to thermal
for 60 000 to 100 000 time steps. The lateral system size
50 sites in all lattice directions, with periodic boundary co
ditions, and the fraction of conserved spins was typica
0.25. In order to directly obtain the ECS we repeatedly to
‘‘snapshots’’ of the evolving system, each time centering
cluster around the origin. Taking the autocorrelation tim
into account, we typically obtained 2000 independent eq
librium snapshots from one simulation. At the end we cal
lated the time-averaged density profile of the conserved c
ponent. Our results for the ECS were obtained from the 5
isodensity surface in this time-averaged density profile.
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In Fig. 1, we show the equilibrium crystal shapes for se
eral temperatures, for the case ofq52 ~Ising!, 3, 4, and 6
states, respectively. These shapes are obtained from the
isodensity surface in the density profile, after full symmet
zation, i.e., after we averaged over all 48 possible invari
mirror images of the cube.

The simulation temperatures are chosen as fractions o
estimates for the melting temperatures reported in Refs.@15–
17#; these values are given in Table I.

III. BEHAVIOR FOR LARGE q

For large values ofq the thermal evolution of the ECS ca
be understood from the following arguments. First of all n
tice that at low temperatures theq phases of theq-state Potts
model without conservation laws will be very close to t
zero temperature phases in which all spins on the lattice h
equal value. Ind dimensions the free energy per sitef of
these states therefore satisfies

f ~Tlow!'2dJ. ~2!

The high-temperature phase is completely dominated by
entropy resulting from theq different occupation options fo
each site, with a resulting entropy per site ofkB ln q and free
energy

f ~Thigh!'2kBT ln q. ~3!

The melting temperature is obtained to a good approxima
by equating these two expressions, with the result

bmJ'
1

d
ln q ~4!

for large q, with b51/(kBT). Note that ford52 this is in
agreement with the exact result@17# bmJ5 ln(11Aq). For
large q one sees thatJ@kBT for temperatures belowTm .
Therefore local excitations, typically consisting of sing
overturned spins, will be extremely rare in the low
temperature phases, as they require an energy far excee
the gain in free energy due to the entropy increase. Simila
5-2
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the tendency to form clusters of equal spin in the hig
temperature phase is very weak, as the resulting gain of
ergy by far does not compensate for the resulting loss
entropic free energy. As a result the melting transition
high q will become very sharp.

Now we can also estimate the orientation dependenc
the surface tension. In good approximation, an interface
~001!-orientation~or symmetrically equivalent! is just a flat
interface between two pure states, with a free energy oJ
~one broken bond! per unit area. Similarly, by counting bro
ken bonds, one finds that an interface ofkl1-orientation
~herek and l are not necessarily integers! has an energy pe
unit area of (11k1 l )/A11k21 l 2. For nonzero temperatur
there is an additional contribution from the entropy of t
steps required to form such an interface. For not too la
values ofk and l this may be obtained by multiplying th
step density needed to create a surface of orientationkl1
with the meandering entropy of such a step. The resul
expression is

f ~T!5
~11k1 l !J2kBT ln@~k1 l !k1 l /~kkl l !#

A11k21 l 2
. ~5!

This result is independent of the value ofq, especially it also
holds for the Ising model. Excitations creating spins not
longing to the two phases that coexist at the interface ar
rare that they may be neglected completely. Fork/ l or l /k
!exp(2bJ) the entropy becomes dominated by thermal s
fluctuations, but this concerns an extremely small range
orientations only~However, it does set the distance betwe
facet edges!. Blöte and Hilhorst@18# give expressions for the
free energy from which the low-temperature ECS may
obtained for all orientations.

The unimportance of all but the two coexisting phas
implies that for largeq the ~001!-facets do not roughen, a
Tm is well below the roughening temperature of these fac
in the Ising model~see Sec. IV!. The equilibrium shape then
remains nearly cubic for all temperatures up toTm .

IV. LOCATION OF THE ROUGHENING TRANSITION

Roughening transitions of crystal surfaces are charac
ized by the disappearance of macroscopically flat regions
facets, in the ECS. Facets existing at low temperatures o

TABLE I. Inverse transition temperature, ratio of the roughe
ing and transition temperatures, and inverse roughening temper
of theq-states Potts model. The references in the first column p
to the sources we used for the data on the transition temperat
For comparison we added the critical interaction parameterbJm

5 ln(11Aq) for the two-dimensional Potts model in the last co
umn.

q bJR bJm TR /Tm bJm(2D)

2 @15# 0.84(2) 0.443309(2) 0.53(3) 0.8813
3 @16# 0.86(2) 0.5505(1) 0.64(3) 1.0051
4 @17# 0.89(2) 0.631(2) 0.71(3) 1.0986
6 @17# 0.93(2) 0.751(2) 0.81(3) 1.2382
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disappear when the temperature increases, at a characte
temperature known as the roughening temperatureTR of the
specific-facet orientation. At this temperature the inverse
dius of curvature (Rc)

21 of the crystal surface at the cente
of the facet jumps from zero~when a facet is present! to a
nonzero value. Using renormalization-group calculatio
Jayaprakashet al. @19# ~see also van Beijeren and Nolde
@12#! showed that the size of this jump satisfies the univer
relationship

Rc5
z0kTRp

2g0
, ~6!

wherez0 is the distance from the tangent plane at the face
the center of mass of the crystal andg0 is the surface tension
of the 001-facet atT5TR . The latter is not known exactly
for any of theq-state Potts models in three dimensions. A
approximation consisting of the ground-state value plus
first correction term in a low-temperature expansion is

g05bJ22e24bJ. ~7!

It will turn out that this approximation suffices for our goa
even for the smallestq values the contribution of the correc
tion term at T5TR is already smaller than the estimate
systematic error in the curvature measurements.

If the center of mass of the ECS is placed at the origin,
centers of the facets that are present below the roughe
temperature are located on the principal axes. To estimate
location of the roughening transition, we first measure
curvature at the six points where the ECS~obtained as in the
previous section! cuts a principal axis, in the two principa
directions tangential to the surface. The curvature was
tained by fitting a quadratic functiony5y02 1

2 y1x2; the fit-
ted result fory1 /y0 is the normalized inverse radius of cu
vature. Since we use a nonzero fitting range, the slope of
curve cannot become infinite and consequently we do
observe a jump in curvature; in fact we find quite smoo
dependence of curvature on temperature, as a result of fi
size, round-off and fluctuation effects. However, we ma
sure that our procedure to estimateTR is not very sensitive to
this. Notably, our estimate of the roughening temperature
the Ising model is close to previous estimates: Adler@20#,
reported TR /Tm50.5560.02, Mon et al. @21# reported
TR /Tm50.5460.02, and Holzer and Wortis@22# reported
TR /Tm50.54560.004.

The resulting measurements of the normalized inve
curvature are plotted in Fig. 2. The error bars indicate
statistical error; additional simulations for some points in
cate that the systematic errors arising from the effects
thermalization, cluster shape deformations, long lived th
mal excitations, etc., are larger. In the same plot, the cur
described by Eq.~6! are also plotted. The intersection poin
of these two curves are estimates of the location of
roughening transition. The resulting values for the rough
ing temperature can be found in Table I; the error indicatio
are our estimates of the statistical and systematic errors c
bined.
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In the previous section we noted that for largeq there is
no roughening transition. Obviously,q56 is not large
enough to observe this, but the increase ofTR /Tm is very
clear. It would be interesting to know the largestq value for
which a stable roughening transition does exist. The val
of bJR quoted in Table I combined with the estimate ofTm
of Eq. ~4! suggest a value between 20 and 40. With
present method this would make simulations very slow, a
it would also require an accurate measurement of the me
temperatures, since no literature values exist.

V. ORIENTATION DEPENDENCE OF THE
SURFACE TENSION

In general, the surface tensiong can be written as
g5g0g(n̂), whereg0 is the surface tension of an interfac
oriented in the~001!, or symmetrically equivalent direction
@12#. In experiments with Pb crystals in equilibrium wit
their vapor, Heyraud and Me´tois used the inverse Wulff con
struction ~see Ref.@12#! to obtain the angular part of th
surface tensiong(n̂) as a function of orientationn̂ and the
same method has been employed by Surnevet al. @10#. Here
we use it to obtain the orientation dependence of the sur
tension for each ECS as obtained in Sec. II.

The surface tensiong(n̂) is proportional to the distanc
from the center of the cluster to the tangent plane perp
dicular to n̂, touching the isosurface in the pointXW . If the
ECS is scaled such that the distance to the surface from
center of the shape along the lattice axes is unity, then

g~ n̂!5max
I

n̂•XW , ~8!

whereXW is an element of the scaled isosurfaceI. Thus, for
every directionn̂, we have to find the pointXW in the isosur-

FIG. 2. Normalized inverse curvature for the Potts model w
q52 ~pluses!, 3 ~crosses!, 4 ~stars!, and 6 states~squares!. The
intersection points of the lines, described by Eq.~6!, and the data
points are estimates for the roughening temperatureTR .
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face, for which the numbern̂•XW is maximal. This procedure
works in both two and three dimensions.

Using ECS’s obtained from fully symmetrized densi
profiles, we measuredg(n̂) along the arc in the 11k zone,
which connects the~100!, ~111!, and~110! directions. Figure
3 shows the results.

These figures show that the angular dependence of
surface tension becomes nearly constant at increasing
perature, for all numbers of statesq considered here. Thus

FIG. 3. Angular part of the surface tensiong(n̂) as a function of

orientationn̂, measured along the arc that connects the 001~at Q
50), 111~atQ50.955), and 110 directions~atQ5p/2, whereu is
the azimuthal angle!. From top to bottom the plots show the 2, 3,
and 6 states results. In each plot, from the uppermost curve do
wards, the temperature ranges from 0.25Tm to 0.80 Tm , in incre-
ments of 0.05Tm .
5-4
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for q<6 the ECS approaches a sphere. For the Ising mo
(q52) this was to be expected, since this model undergo
continuous phase transition at the melting point. On the o
hand, it is also clear that aspheric deviations become la
with increasingq. As we saw in Sec. III the ECS become
nearly cubic for largeq. Obviously, q56 still should be
considered a smallq value in this context.

If the ECS is not faceted, the angular part of the surfa
tension will approach the pointQ50 with zero slope. If,
however, the ECS has~001! facets, the approach to the poi
Q50 will occur with a nonzero slope, resulting in a cusp
the slope along the arc through this point@12#. Looking for
the temperature where these cusps first appear is an alt
tive way to measure the roughening temperature. We fo
this to be less accurate than the procedure described in
IV. The results were, however, consistent.

VI. DISCUSSION AND FUTURE RESEARCH

We studied the Potts model withq52, 3, 4, and 6 states
forced into coexistence by fixing the density of one sta
f.

.

rf
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The resulting ECS was studied as a function of tempera
and number of states.

We found that the roughening transition, which is we
known for the Ising model~equivalent to the two-states Pot
model!, persists for higher numbers of states, at least up
six states. The temperatureTR , at which this roughening
transition occurs, measured as a fraction of the melting te
perature, tends to increase with increasing number of sta

In the future, we want to study the more general a
richer behavior of the ECS in case more than one quantit
conserved. For instance, in the three-state Potts model c
to its melting point, with the constraintr1@r2>r3, the ECS
resembles the shape of two soap bubbles with a comm
interface; this changes under variations of temperature
the ratior2 /r3.

We also want to look at equilibrium shapes in constrain
geometries, like fluids between parallel plates, or syste
with grain boundaries.

Finally we are investigating the behavior for largerq val-
ues with the aid of different Monte Carlo techniques.
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