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Abstract: Effective pro ton  and  neu t ron  charges have been calculated for the  E2 operator  in the sd 
and  fp shells in first-order per turba t ion  theory. Second-order  correct ions  have been calculated 
for the  MI operator  a n d f t  values for A = 39 and  A = 41 nuclei. The  realistic Tabak in  interac- 
t ion has  been employed.  

1. introduction 

In the shell-model description of spherical nuclei one usually selects a small 
number of single-particle orbits near the Fermi surface. These valence orbits span 
the model space; energy spectra can be obtained by diagonalizing an effective interac- 
tion in this space, i.e., the possible excitations of particles from lower-lying orbits 
forming the core are not taken into account explicitly. The effective interaction can 
be parametrized in various ways. For such phenomenological forces, it is assumed 
that all core effects are absorbed in the adjustable parameters. 

However, there exists a more fundamental approach to the problem of the nuclear 
interaction in nuclei. From the scattering data of free nucleons in the energy range 
0-350 MeV, so-called realistic potentials have been derived. Of course, these bare 
realistic nucleon-nucleon interactions are not expected to be used directly in a spec- 
troscopic calculation for finite nuclei, e.g. one should correct for the finite size of the 
configuration space used. Numerous calculations with realistic forces have been 
performed. It was found in these cases 1,2) that a significant renormalization of  the 
two-body interaction results from polarization effects of the core. This renormaliza- 
tion considerably improves the agreement with the experimental energies. 

Similarly the electromagnetic properties that are ascribed to the valence nucleons 
must be renormalized due the presence of the core nucleons. The shell-model predic- 
tions of electromagnetic moments and transition rates in general do not very well 
reproduce the experimental values. 

Core-polarization effects on one-body operators have been investigated mostly with 
phenomenological nucleon-nucleon forces, which are designed to eliminate the ex- 
plicit influence of  the core. 

Sinceone now has realistic forces which have been applied rather successfully, it is 
desirable to investigate quantitatively the effect of core polarization on one-body 
operators with these forces. 
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Therefore, in this paper we shall consider the effect of core polarization on one- 
body operators for nuclei in the A = 39--41 region. We shall apply the Tabakin 
interaction 3) that thas been used in several shell-model calculations 2,4,5) pre- 
viously. 

It has been found 2,6) that this interaction is not smooth enough for first-order 
terms to suffice. However, if second-order corrections are included, the matrix 
elements are very similar 2) to those of the G-matrix calculated for the hard-core 
Hamada-Johnston potential. 

In sect. 2, the corrections to electromagnetic transition rates are derived in first- 
order perturbation theory; the results are applied to derive effective neutron and 
proton charges for elech ic quadrupole moments and transitions. In sect. 3, the results 
are presented of second-order perturbation theory applied to magnetic dipole moments 
and transitions as well as t o f t  values. Concluding remarks are made in sect. 4. 

2. Effective-charge operators in A = 39-41 nuclei 

It is well known that the experimental reduced transition probabilities B(E2) for 
transitions in nuclei consisting of closed shells plus or minus one nucleon can deviate 
considerably from the single-particle predictions; e.g. the B(E2) value for the transi- 
tion 7) from the lowest J~ = ½- state to the J~ = ~-  ground state in 41Ca is found 
to be two times larger than the single-proton 2p~ ~ 1 ft value if harmonic-oscillator 
wave functions are used. The ground state electric quadrupole moments 8) of 39K 
and 4°K are also approximately a factor of 1.5 larger than a pure ld~ hole state 
would yield. In some recent shell-model calculations 9,1o) effective neutron and 
proton charges have been introduced in order to fit the experimental B(E2) values. 
These calculations indicate that effective charges of approximately 0.5 e both for the 
neutron and the proton are required to fit the experimental B(E2) values. We shall 
investigate whether core polarization can account for these numbers. 

2.1.  F O R M A L I S M  

For brevity a direct-product notation will be used, where Greek symbols denote 
the quantum numbers in configuration space and in isospace, e.g. ( -  1) ~ = ( -  1 )~" ÷t'. 

Double-bar matrix elements will be used according to the convention of ref. 11). 
Matrix elements reduced with respect to both configuration space and isospace are 
denoted by triple-bar matrix elements. 

To first order in the interaction, the corrections to the reduced single-particle 
matrix elements of an electromagnetic transition operator can be represented by 
diagrams l a and l b (exchange diagrams are omitted). The contribution of these 
first-order diagrams to the reduced matrix elements 

%111~(a)111~i) 
of  the single-particle operators f2 (a) (A denotes rank k in configuration space and 
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rank 0 or 1 in isospace) is given by 

df,)<afllll~fa)ll[~i> = ~ - 1  ( _  1)=2+~,+r(2F+l ) {cq 0~f : }  ((1 +CSlf)(l +C521)) t. 
alazF [ ~ l  ~1 0~2 

x <ai~2; FlVlafcq ; F><azlllfJea)lllax>. (1) 

Here <aa%; FI Vice:q; F> represents an antisymmetric and normalized two-body 
matrix element of the nucleon-nucleon interaction V, where the two nucleons are 

(o) (b) 

Fig. !. First-order single-particle renormalization diagrams. 

coupled to definite spin and isospin F. For diagram la the index cc 1 runs over particle 
states and ct 2 over hole states (AE = e . ,+e~2-e . t -e . , ) ,  for diagram lb the index 
~1 runs over hole states and ct 2 over particles states (AE = e.r+e. ,-e~,-e~2).  

The results for single-hole states are obtained by (i) replacing the summations over 
intermediate particle (hole) states by summations over hole (particle) states, (ii) 
interchanging initial and final states and (iii) adding an overall minus sign. 

The effective neutron (t~ = 5) and proton (t~ = - 5 )  charges are defined 12) by 

e(ji  , J f ;  tz) ---- Atl)(jr(t=)ll~(k)llji(t=)> 
< Jr( -- 5)1 la(~)ll Ji( -- ½)>' 

where <jf(-- 5)llt2(~)llJi(-- 5)> represents the single-proton reduced transition matrix 
element 

1 ( - 1 )  ''+~ 
<Jf(tz)lll"d(k)lJji(tz)> = ~-2 <Ctrll[D(k' °)[[]°~i> + ~/6 <cqlllf~ ~k' ')ll[0q). 

2.2. APPLICATIONS 

Eq. (1) has been applied to the calculation of corrections to the matrix elements 
of the electric quadrupole operator 

f](2) = er2y2(~)( 5_ t,) 

for single-particle transitions between sd (and fp) shell states. The two-body matrix 
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elements of  the Tabakin interaction required for the present calculation are obtained 
in the following way. First the matrix elements are expressed as linear combinations 
of  the matrix elements in the relative coordinate system in the customary way with 
the use of  Moshinsky brackets. The latter matrix elements are modified by the inclu- 
sion of  the second-order Born corrections 2,4). These corrections are due to the 
excitation of two nucleons to high-lying single-particle states and have been shown to 
be important  for a calculation of energy levels 2) in 18F. The evaluation of these 
corrections for the Tabakin interaction has been described in detail in refs. 2, s). 

The intermediate states in eq. (1) have been restricted to 2hoJ excitations, i.e. the 
hole states are taken in the lp  and ld2s shells and the particle states in the I f2p  and 
lg2d3s shells, respectively. 

The matrix elements of  the E2 operator have been evaluated by the use of  harmonic- 
oscillator wave functions with size parameter  mco/h = 0.286 fm -2. The energy de- 
nominators are approximated by the value of -2hco  (hco = 12 MeV). 

TABLE la  

Effective neutron charges for E2 transitions in the sd and fp shells 

d~ s½ d# z f,t- P~z fl- P½ 

d t 0.64 0.66 0.77 fk 0.50 0.43 0.66 
s, 1. 0.55 p~ 0.34 0.32 0.38 
d½ 0.61 f#x 0.50 0.34 

TABLE 1 b 

Effective proton charges for E2 transitions in the sd and fp shells 

d~ s½ dk f~ P~ f~z P½ 

d½ 0.24 0.25 0.34 fk 0.20 0.18 0.32 
s½. 0.23 p~ 0.14 0.13 0.16 
dk 0.27 f~ 0.20 0.11 

The calculated effective proton and neutron charges are given in tables la  and b. 
It  can be seen that the effective neutron charges are larger than the effective proton 
charges roughly by a factor of  2.5. This can be explained by the fact that the effective 
charge is due to proton excitations from the core. In the case of  a proton valence 
particle, only T = 1 nucleon-nucleon matrix elements can contribute to the effective 
charge; these are in general smaller than the T = 0 matrix elements. 

The rather large variations in the calculated effective charges do not support the 
assumption 9, 10) that the effective charge may be approximated by an overall con- 
~tant effective charge independent of  the configurations considered. 

From an examination of  the various contributions to the effective charges we find 
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that they mainly derive from some particular particle-hole combinations f#~- i ,  
ftP~" t, g~rd~l or g~rd~ t . This appears to be caused both by larger radial overlaps in 
the two-body matrix elements and by larger matrix elements of the one-body operator. 

It should be remarked that the corrections of the type considered above, cannot 
be expected to be the only contlibutions to the effective charge. For instance, the 
deformed many-particle-many-hole configurations will also contribute. In a recent 13) 
calculation for the Ca region the admixing of these deformed (Nilsson) states with 
the spherical single-particle shell-model states has been evaluated explicitly. One 
should expect that the use of such mixed wave functions combined with the present 
effective charges will constitute a sensible comparison of the calculations with the 
experimental data. 

Further corrections could be expected to come from iterations of the bubble 
diagrams of fig. 1. However, it is claimed 12) that these corrections are quite small. 

In a recent calculation i9) very large contributions to the isoscalar effective charge 
were obtained from the RPA diagrams. 

2.3. ELECTRIC QUADRUPOLE MOMENTS OF S°K AND 4°K 

The electric quadrupole moment of 39K has the experimental value a) 9 + 2  e • fm 2. 
The value associated with the pure ld~ hole state, of course, depends on the choice 
of the ld~ radial wave function. If a harmonic-oscillator wave function is used, the 
zero-order quadrupole moment is found to be 4.9 e • fm 2, whereas a Woods-Saxon 
wave function of comparable size yields 5.1 e .  fm 2. 

Upon application of the effective ld~ proton charge as obtained in subsect. 2.2, the 
value of the quadrupole moment only increases to 6.3 e • fm 2. Therefore it is likely 
that the remaining discrepancy should come from admixtures of two-particle-three- 
hole states, which are ignored in the present calculation. 

The electric quadrupole moment of 4°K has the experimental value 8) of  
-9.3___2.5 e •fm 2. If one assumes that the ground state of 4°K is described by a 
pure l f t ld~ -1 configuration, one obtains a value of - 2 . 4  e • fm 2. The wave function 
obtained from a recent diagonalization 4) within the lhco particle-hole space with the 
Tabakin interaction yields a value of - 4 . 4  e .  fm 2 for free neutron and proton 
charges. With the effective single-particle charges calculated in subsect. 2.2, the value 
of the quadrupole moment becomes - 8 . 6  e .  fm 2. 

In addition to the single-particle renormalization diagram, there are diagrams that 
may be considered to represent two-body renormalization processes. The relevant 
diagrams are shown in fig. 2. 

It is seen that diagram 2a contains exclusion-principle-violating terms as shown in 
fig. 3a. However, as the single-particle renormalization diagrams have been used, 
also the exclusion-principle-violating diagram 3b has been in fact included. As the 
contributions of diagrams 3a and b cancel, all contributions of diagram 2a (and 
similarly for diagram 2c) must indeed be taken into account. 

We note that other possible variants of these diagrams do not contribute in the 
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4°K case, as the E2 operator can act only on the proton line. Evaluation of fig. 2a 
yields 

A(l)(0Cp,~h, 1 ; F'lllfJCa)lll%~hx; F> 

= -- E 1 (_  1)~.+~,(2F,,+ 1)((2F + 1)(2F'+ 1)) ~ 
At,, 

× (1 _b~lp,), 1 , F F '  
~h 0~1 ~p~ ~ h '  ~p'  / " "  

x (~p, 0q ; F"I Vl~p~h' ; r")K~lll~<a>lll~t >, (2) 
where the index =~ runs over particle states; for fig. 2d the index =1 runs over hole 
states, and an overall minus sign should be added to the right-hand side of  eq. (2). 

(o) 

I 
T 

(b) (c) (d) 

Fig. 2. First-order two-body renormalization diagrams for 40K. 

!h 

i•h'Ih (b) 

Fig. 3. Exclusion-principle-violating two-body diagrams for 40K. 

The contribution of fig. 2b (and 2c) can be obtained from expression (2) by appro- 
priate changes of the labels on the right-hand side. 

Again the energy denominators are taken to be -2hco. 
The contributions of these two-body renormalization diagrams are relatively small 

because there exist only few intermediate states. The diagrams 2a and b with inter- 
mediate particle states contribute +0.3 e • fm 2, whereas the diagrams 2c and d, with 
intermediate hole states contribute -0 .1  e • fm 2. 

Thus in the case of 4°K the first-order corrections give already a satisfactory 
agreement with the experimental electric quadrupole moment.  

This may indicate that the 4°K ground state contains less deformed components 
than the ground state of  39K. 
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3. Second-order corrections to magnetic dipole transitions and f l  values 

Thus far first-order corrections to matrix elements of the electric quadrupole 
operator have been considered. It is well known that there are no first-order correc- 
tions to the matrix elements of the magnetic dipole operator for the case of one 
nucleon outside ajj and LS closed shell. 

Second-order calculations for the magnetic moments of A = 39 and A = 41 nuclei 
have previously been performed by Ichimura and Yazaki z4), who used a phenome- 
nological interaction, and Mavromatis, Zamick and Brown 15,16), who used the 
(semi-realistic) Kallio-Kolltveit interaction. 

The latter calculations gave a very satisfactory result for the magnetic moment 
of 41Ca; however, in the case of 39K the inclusion of second-order corrections on 
the Schmidt value for the magnetic moment resulted in an increased discrepancy 
with experiment. 

In this section, we shall calculate second-order corrections to the magnetic moments 
of the same nuclei with the Tabakin interaction. Moreover, we shall investigate how 
the/-forbidden 2s~r --* 1 d~ M 1 transition will be enhanced by core polarization correc- 
tions. Finally, the effect of core polarization on t h e f t  values of the lf~ --* lf~ and 
ld~ 1 --* ld~ "z beta transitions is studied. 

3.1. F O R M A L I S M  

The second-order corrections to the reduced matrix elements of a single-particle 
operator which does not connect a single-particle state ]c t> with any core-excited 
state, are given by 

zl(2)<@ll (a)lllmi> = <aflllV P 1 "/<a)-f-P- Vlllmi> 
E -  H o E -  Ho 

P 
-½<~flV ( E - H ° )  2 vloq><cqll[f2(a)lllcq> 

-½<~ilV P (A) V[cti><~fll[12 II1~>, (3) 
(E-Ho)  2 

where P projects off the single-particle states 1~>. 
Expression (3) is easily obtained with the Rayleigh-SchriSdinger perturbation ex- 

pansion. The last two terms arise because the wave functions up to second order are 
not normalized to unity. The same result can be represented diagrammatically in 
terms of Brandow's linked valence expansion t. The diagrams for the latter expansion 
are shown in fig. 4. Loops around the valence lines in figs. 4f and g indicate 17) that 
these lines carry a factor ( -  1). 

Explicit expressions for the second-order corrections to the nuclear moments of 
nuclei with j j  and LS closed shells plus (or minus) one nucleon are given in ref. 15). 

t See ref. ~'), eq. (7.43). 
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Since we also need expressions for the non-diagonal  matrix elements o f  the electro- 
magnetic operators,  the general formulae for these cases will be given. Diagrams 4a  
and c contribute to eq. (3) 

1 ( -  1) + 1)(2r  + 1)(1 + 
=, ...~4 AEI AE2 

F I F 2  

g4. ~i ~f 0¢1 F1 F2 

x (cq ~2; FllVlati~,t; r l ) ( c t t  t~2; F2IVI~e~4; r2)(ctalllt2(a)lll~t2). 

(a) (b) (c) (d) (e) 

(f) (g) 

Fig. 4. Second-ordcr renormalization diagrams for magnetic dipole operator. 

For  fig. 4a, the indices ct I , ct 2 and ct 3 represent particle states and ct 4 a hole state, 
whereas for fig. 4c, the indices ~t 1, ~2 and 0~ 3 stand for holes states and ct 4 for a 
particle state. 

Diagrams 4b and d contribute 

_½ ~ 1 (2r+l)(_l)r+~,+~,(l+6~,~2)((l+f13)(l+6r,)) ~ 
. . . . . . .  r AE1AE2 

~ 3  . . X (~1 0¢2, FI Vi i i  0~3, F ) ( ~ I  0~2 ; F[ Vl0rfm4; F>(~3lllf~ta)lll~4>. 
Ct i 0~f 

For fig. 4b, the indices cq and :t 2 represent particle states and ct 3 and ct,, hole states, 
whereas for fig. 4d, the indices ~ and u2 represent hole states and ~s and ct, particle 
states. 

The contr ibut ion f rom diagram 4e (which equals - 2 times the contr ibution o f  diagram 
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4g) can be combined with the contributions from the folded diagrams 4f and g to give 

{,~2 1 2/ '+l( l+6,3)(l+6, , ,2)<a,  a2;rlVl=,a3; F> 2 
- ½  (dE)2 2 a l + ~  

~t3F 

+ , , ~ a r  (ALE) 2 2~tf2F +1+ 1 (1 + 6f3)(1 + a=m)(oq =2; F[ V[~ra3 ; F )  2} (at[][fa(a'[[[~i). 

The contr ibution f rom the one-nucleon excitation diagram 4f is obtained when ct l 
and ct z run over particle states and aa over hole states; for the diagrams which involve 

two-nucleon excitations, ct 1 and ct 2 run over hole states and ~a over particle states. 
Finally it should be remarked that for nuclei in which one nucleon is removed 

f rom a doubly  closed shell, the proper  results are obtained if (i) the summations 
previously restricted to particle (hole) states are now restricted to hole (particle) 
states, (ii) initial and final states are interchanged, and (iii) an overall minus sign is 

added. 

3.2. CALCULATION OF CORRECTIONS TO MAGNETIC DIPOLE MOMENTS 

The second-order corrections to the matrix elements o f  the magnetic dipole operator  

g = g~P)I(½-- t~) + g~P)s(½ - t,) + g~n)s(½ + t~) 

are calculated separately for the spin and orbital parts. This is also useful since the 

spin part/~, (the last two terms of  the r ight-hand side) o f  the magnetic dipole operator  
is closely related to the Gamow-Teller  operator  in fl-decay, for which corrections 
will be calculated below. 

TABLE 2 

Second-order contributions to magnetic dipole moments (n.m.) 

Zero Second-order corrections second-order 
order two-particle one-particle total # /*exp correction 

excitation excitation correction MZB as) 

*°K /-part 1.80 --0.07 --0.21 --0.29 
a-part -- 1.68 0.03 0.08 0.12 
/.t 0.12 --0.04 --0.13 --0.17 --0.05 

s°Ca /-part 0.00 0.08 0.18 0.26 
s-part 1.15 --0.03 --0.03 --0.06 
/~ 1.15 0.05 0.15 0.20 1.35 

*tCa /-part 0.00 0.11 0.14 0.25 
s-part -- 1.91 0.02 0.05 0.07 
# --!.91 0.13 0.19 0.32 --1.59 

4~Sc /-part 3.00 --0.13 --0.14 --0.27 
s-part 2.79 --0.02 --0.06 --0.08 
p 5.79 --0.15 --0.20 --0.35 5.45 

0.39 --0.26 

0.26 

--1.60 0.28 

--0.28 
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The various second-order contributions to the magnetic moments of  39K, 39Ca 
4~Sc and 41Ca obtained with the use ofeq .  (3) are listed in table 2. 

It is surprising to find that the corrections to the magnetic moment rather derive 
from contributions to the orbital part than to the spin part. The fact that almost all 
magnetic moments are found to lie inside the Schmidt values is usually ascribed to 
the fact that core polarization quenches the spin part. In the present case, this does 
not appear to be the most important effect. It was found that the contributions to 
the orbital part are mainly (for approximately 80 ~ )  caused by excitations into inter- 
mediate states in which the / -opera tor  acts on the lg~ or lg~ subshells. This indicates 
that the final correction is sensitive to tbe choice of  the single-particle energies of 

the g-shell. 
It is seen that in the case of A = 39, an appreciable cancellation occurs between 

the corrections to the s- and / -par t s  of the p operator. The correction ( - 0 . 1 7  n.m.) 
to the Schmidt value of the moment  of  39K (+0.12 n.m.) is somewhat smaller in 
magnitude than the correction obtained 15) with the Kallio-Kolltveit interaction, but 
again it possesses the wrong sign (experimental value +0.39 n.m.). 

Recently Chemtob ~7) has evaluated the contribution of the one-pion exchange 
currents to the magnetic dipole moments of 39K and 4~Ca. For 39K he obtained a 

mesonic correction of  0.18 n.m., which largely removes the discrepancy. However, 
for 41Ca, the mesonic correction -0 .18  n.m. re-introduces a deviation. 

3.3. CORRECTIONS TO THE2s½-~ ld] /-FORBIDDEN MI TRANSITIONS 

In the sd shell, many Ml transitions are strongly inhibited because of the /-for- 
biddenness of the s-d transition. We investigate to what extent second-order con- 
tributions may enhance the single-particle 2s½ --, Id~ transition. 

The corrections to the reduced transition probabilities for a single-particle (hole) 

transition 

B ( M I ; j i  ~ Jr, tz)  - 1 i ( j r ( l z ) l l i . 2 ( l ) l l j i ( t z ) ~ ] 2 ,  
2j~+l  

can be simply obtained from expression (3) for the correction to the reduced matrix 
elements. In this case, there is no contribution from fig. 4f or g since the zero-order 
M l matrix element vanishes. Evaluation of the core polarization contribution for 
the 2s½ --, ld~ proton transition yields a very small contribution B ( M l ;  2s~ --, ld~, 
t z = - ~ ) ~  0.0004n.m. 2. A measurement of  the lifetime and E2/M1 mixing 
ratio for the ½+ - ,  ½+ transition in 39K could provide a possible check on this cor- 

rection (calculated width F ( M I )  = 70 peV). 

3.4. BETA DECAY OF 41Sc and a°Ca 

T h e f t  values ~8) for the fl-decay of the ground states of  4~Sc and 39Ca to the 
mirror nuclei are slightly larger than the values predicted by the single-particle 
model. 
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The corrections to the squares of the Gamow-Teller matrix elements (~x = 2tx) 

IMGT[2 __ 1 [(jf(+½)llo'c,,llJ~(-T- ½))12 
2 j i + l  

can be obtained in terms of the second-order corrections to the spin part of the 

magnetic dipole operator. 
It can be seen that 

A(2)( Jr( --- ½)lloz~ll ji( T- 3)) 

2 A(2)((jf(½)lll~sllJi(½))_(jr(_½)lll~sllJi(_½)))" 
= --~(p) ^(n) 

~s --~s 

For the 39Ca decay, the value of [MGr[ 2 for the single-particle ld~ ~ ld~ transition 
is 0.60. Inclusion of second-order corrections reduces the latter value to 0.52. This yields 
an f t  value of 3526 s to be compared with the experimental value 18) of 4150_ 300 s. 

For the 4aSc decay, the value of ]MGT[ 2 for the single-particle transition is 1.29. 
Second-order contributions reduce this value to 1.18; the corresponding f t  value is 
2302 s to be compared with the experimental value ~s) ot 2560_+ 160 s. 

4. Summary and conclusion 

It is one of the attractive features of realistic nuclear forces that no parameters 
are to be fitted to the spectroscopic data. One still has to take the single-particle 
energies from experiment; and also one assumes that the harmonic-oscillator wave 
functions provide a self-consistent basic set of radial wave functions. When the effect 
of  core polarization is taken into account, the calculated level schemes near doubly 
closed shells are very encouraging. A more critical check consists in the calculation 
of  nuclear electromagnetic properties. The results of the present paper show that in 
general the effects of core polarization improve the agreement with experiment. In 
the case of the magnetic dipole operator, at least some of the remaining discrepancies 
could be due to exchange-current effects that appear to be non-negligible. As has 
been remarked already, the renormalization of the M I operator derives largely 
from the/-par t  of the operator. If one would introduce effective #~ factors, the value 
of  9t for a proton would be somewhat smaller than 1 and for a neutron somewhat 
larger than 0. However, the magnitude of the correction depends on the configura- 
tion involved. 

As for the case of the electric quadrupole moments, it would be interesting to 
calculate all second-order contributions to the effective charges in order to investigate 
whether the rule-of-thumb effective charge of 0.5 e will be approached somewhat 
more closely. However, the number of second-order diagrams is appreciable. 

Furthermore, it is worthwhile to study the problem of effective charges for nuclei 
far from closed shells. 
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T h e  a u t h o r s  wou ld  l ike to  t h a n k  P ro fe s so r  P. M.  E n d t  fo r  r ead ing  the  manusc r ip t .  

Th is  i nves t iga t ion  was s u p p o r t e d  by the  j o i n t  p r o g r a m  o f  the " S t i c h t i n g  v o o r  F u n d a -  

men tee l  O n d e r z o e k  der  M a t e r i e "  and  the  " N e d e r l a n d s e  O r g a n i s a t i e  v o o r  Z u i v e r  

W e t e n s c h a p p e l i j k  O n d e r z o e k " .  
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