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A method previously employed to determine the binding energy of a three particle system using the Fad-
deev equations is extended to calculate the bound state wave function. It is applied to the three-nucleon
bound state and as result the Coulomb energy and the S'-state probability are calculated using local cen-~

tral Yukawa type interactions.

In a recent paper [1] we described a simple
method to compute exactly the binding energy of
the ground state of a three particle system within
the framework of the Faddeev equations. We used

the method to study the triton with central Yukawa-

type interactions in both the singlet and triplet
channels of the two-particle sector. The effect of
a repulsion in these channels was also considered.
As a result we obtained a reasonable agreement
with experiment.

However, up to now nothing has been said in
this method about the corresponding three-parti-
cle bound-state wave function which can be used
to compute among others, the Coulomb energy
in first order perturbation theory and the S'-
state probability. We shall now show that the
method of ref. [1] is also well suited for the de-
termination of the bound-state wave function.

Adopting the same notation as in ref. [1] the
reduced Faddeev equations can formally be re-
presented in the form

F(s) = Fo(s) - A K(s)F(s) (1)
Here the parameter A has been added for con-
venience and it should be taken to be equal to
one in order to get the Faddeev equations. As
described in ref. [1] the solution of eq. (1) can
be written at a given energy s as

B
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Ag(s) -2
where R()\,s) is a meromorphic function of X as
a result of the compactness of the kernel K.
Furthermore if we suppose that Ao(s) is the
smallest eigenvalue of the corresponding homo-
geneous equation the binding energy sq of the
ground state is given by the value of s for which

Xo(s) = 1. This value can simply be obtained as
shown in ref. [1] from the condition

Fn+1(S0) _

lim =1 (3)
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where F,_ are the coefficients of the Neumann
series solution of eq. (1).

Having found the binding energy s, we are
now able to determine the corresponding bound-
state wave function in the following way. Note
from eq. (2) that near s = S, we may write for F

F(s) ~—Bolso) ' @
(5= s )(drg(s)/ds)s =,

As a result of this we shall get a pole in the full
T-matrix at the porition s = s;. The residue A of
this pole can now simply be expressed in terms
of the only unknown function B,

On other hand 4 can also be related in a well-
known way to the corresponding three-particle
bound state wave function y; as follows

A = const (P2 + g% - s) (paBlyy. (5)

Here we have only exhibited the dependence on the
relative momenta p and ¢ and the label 8 which
stands for the quantum numbers of spin and iso-
spin. From eq. (5) we see that in order to deter-
mine y; we have to calculate the residue 4 or
equivalently the residue B,(so) in eq. (2). One
easily convinces oneself that in view of eq. (2) B,
can be found by

Byfsg) = lim _ Fylso)- (6)

So assuming that the set of F,,'s converges ra-
pidly enough which is actually so in the case con-
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sidered , we have a practical way for computing
the bound state wave function y(p,q,8) =
=(paBlyy-

Following the analysis of Schiff {2] we make
the following symmetry decomposition.

Wt(.b,q,ﬁ) = (7)
= ¢, (B)ulp, ) + [#1(B(1,9) ~ 05 (B)vy(£,9)]

where ¢,(B) is completely anti-symmetric and
o (B), ¢(B) are symmetric and anti-symmetric
respectively for inter-change of the particles
2 and 3. The second term on the right hand side
of eq. (7) corresponds to the state of mixed sym-
metry (S'-state) and the other one is the "dom-
inant" S-state. The numerically obtained values
of Yy and sou] vg andvy, were fitted to functions
with simple analytic structure as suggested in
ref. [2].

Consider firstly the S-state. Fits were made
with the Irving and Gaussian type wave functions

1(p,q) =A[1+B(p% + ¢)]3 (®)
G(hq) =A"' exp [-B'(p2 + g2)]

where the first one is found to be the best one
(x2 < 1%). The result for the Coulomb energy
are given in table 1. The experimental value as
well as those obtained by several authors using
separable type potentials are also included in the
table for comparison. For local potentials the
only results available at this moment are those
resulting from variational calculations [3] which
suggest that there could be a charge asymmetry
in the two-nucleon interaction because of the
rather big discrepancy they found with the ex-
perimental value [4]. Our result does not allow
already a definite conclusion concerning the
charge dependence of nucleon forces but gives
an indication that there may be no problem. As
one can see from the results of table 1 the inclu-
sion of a repulsion in the singlet interaction is of
considerable importance not only for the binding
energy but also for the Coulomb-energy, while
introducing repulsion in the triplet interaction
does not have any effect at all on the Coulomb-
energy.

To compute the S'-state probability Pg+ we
used wave functions of the Gaussian type. It
turned out that they are not appropriate to obtain
reasonable fits with it and as a consequence the
corresponding S'-state probability contains a
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Table 1
3y binding energies (MeV) and results for the Coulomb
energy E, (MeV),

B(H) E, Ref.
11.1 0.79 5
9.1 0.68 5
8.7 0.73 6
12,1 0.85 1 and present
calculation
8.4 0.72 1 and present
calculation
8.3 0.72 1 and present
calculation
8.48 0,764 Exp,

farge uncertainty. The results of this calcula-
tion give Pq, ~ 2% which is roughly in agree-
ment with other authors.

We conclude that the inclusion of a repulsive
term in the singlet interaction is important in
order to obtain reasonable agreement with ex-
periment both for the binding energy and the
ground state wave function.
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