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CHAPTER I

DEGREES OF SENSIBLE LAMBDA THEORIES.

INTRODUCTION.

A A-theory T is a consistent set of equations between A-terms cloged under

derivability. The degree of T is the degree of the set of G8del numbers of

its elements. A A—theory T is |
sensible iff T F ¥, (= {M=N | M,N unsolvablel}).

In 81 it is proved that the theory # is Eg-camplete. We present Wadsworth's

proof that its unique maximal consistent extension {* (= Th(D_)) is Hg-complete.
In §2 it is proved that {n (= An-calculus + H) is not closed under the w-rule
(see [1]).

In §3 arguments are given to conjecture that Hw (= A + J0 + w-rule) 1is Hiucomplete,
This is done by representing recursive sets of sequence numbers as A-terms

and by connecting well-foundedness of trees with provability in Jw.

In §4 a sét of equations independent over n will be constructed. From this it
follows that there are 2“0 sensible theories T s.t X ¢ T C H{* and 2HD sensible
hard models of arbitrarﬂyhigh degrees.

In 85 some non-~-provability results needed in 81,2 are established. For this
purpose one uses the theory #n extended with a reduction relation for which

the Church-Rossexr theorem holds. The concept of Gross reduction is used in order

to show that certain terms have no common reguct. .

Familiarity with [2] is assumed.




§1. Degrees of I(,i* and Hw.

The A-theory H has a uniqﬁe maximal consistent extension #* ([2] 84). Let Hw
be the set of equations provable.in A + # + w-rule. Then one has

H Ccdln CHw C H* 7The first two inclusions are trivial, the last one follows
from the fact that #{* = Th(Dm)'and Qm gsatisfies the w-rule, see [6]. Moreover
the inclusions are proper. H # Hn folléws from the C-R property for Hn.

Hn # Hw is proved in 1.9. dlw # H* follows by an extension of the consistency
proof in [1] : It can be proved that if Jw b M=I, then X | ﬁ; = T where.? is
some sequence of I's. If Hw = ¥*, then Xuw F J=I, where J is Wadsworth's term
Y(Ajxy.x(jy)), since J and I have equivalent Bohm trees [2] , éh:7 . So

A J?=I, contradicting the C-R property for the chalculﬁs.

It will be proved that H(n) is ngcomplete and that H{* is Hg-complete. It

is conjectured that Hw is H:~complete.

Notation.  denotes the term (Ax.xx) (Ax.xX).
ITf —> 1s a reduction relation,——iLé denotes its transitive

reflexive closure.
—75~> w2 4are one step B~ resp.o7~reduction.

= U —— .
37 A7
1.1 Lemma. Let R(x) be an r.e. predicate (on w). Then for some term F
X F Fn =I 1if R(n)
} b Fn =@ if ~R(n).
Proof.

Let R(x) < Jy A(x,y) with A recursive. Define by the fixed point combilnator
Fx = If A(x,y) then I else F(x+l). Then F works,since if <R(n), then

Eg_is unsol#able, hence = § in <

1.2 Def. (i) Ordered tuples are represented as terms as follows:

(MO)=M0 |
(M . M ) = [MO,<M1, ..,Mn+1)],

0'"" n+1

where [ ,] is some pairing with inverses lx.(x)o,kx.(x)l_

(ii) If Mi is a definable sequence of terms (i.e. for some M, = Mi_=Mi

for all i), then the infinite sequence (M;) 1s represented as a terxm
Ao, where A is such that An 3 [Mn,An+1]. A exists by the fixed point

theoren.



i n
definable sequences (Mj)).

1.3 Lemma. There is a term MAix.m.x such that A F m (Mj) =M (for

L

Proof.
Define

ﬂix = TIf i=(0 then (x)orelse il

().

i

1.4 Lemma. If (Mi) r (Ni) are definable sequences then
Vi J* = H* . = . .
L3k Mi N:i. = - (Ml)iELlJ (N.'L)iEUJ

Proot.

= : The Bdhm tree of (Mi) is

AZ .2
/ ™\
BT(MO) Az .z
/N
BT(Mi) AZ.2Z
AN
BT(pdz)

and similarly for (Ni). By the theorem of Hyland and Wadsworth
* | p=Q <+ BT(P):mh‘BT(Q), see [2]'ZJ(U, it follows that the mentioned trees
are equivalent and the result follows.

< : By applying T, of 1.3. X

1.5 Theorem (Wadsworth [7]). ¥* is Hg-complete._
Pfoof.
(i) 3* k M=N <= ‘M=N € {* = VC| ] [c[M] is solvable <= CI[N] is solvable]
(see [2], 55), The latter is clearly Hg.
(ii) Let Va db A(a,b) be any Hg predicate; A is recursive (and has a not
explicitly mentioned parameter c).
By 1.1 there is a term F such that
. X+ Fa=I if 3b A(a,b)

| Fa =! else.
Let H=(Fo,Fl,...), H' =(I,I,...).
Now VYa 3db A(a,b)

< VYa # | Fa =I _

<> VYa JC*FFE_:I since K Cc H* and I* kI = Q

e H* |} H =4 by 1.4.
Therefore each Hg predicate can be reduced to provability in {* (since the

H,H' can be found uniformly in the parameter ¢ in A). X



1.6 Theorem. H(n) 1is Zg-c:c:mplete.

Proof.
(i) The set of axioms J€ = {M=N l M,N unsolvable} is clearly Hfl’, therefore

they generate.a Eg theory.
(ii) Let Ja Yb A(a,b) be any Eg predicate. By 1.1 there is a term F such that
K} Fa =Q if ¥Yb A(a,b)
=I  else.
Let Hia -E [ I, F_@_(H ig_-i_-_l_)] by the fixed point operator.

Let x,y be different variables.

Claim: Ja Vb A(a,b) <= ¥H(n) F Hxo = Hyo.
=: If dJa ¥Yb A(a,b), then
X}V Hxo = [1,I,..., Q]=HyQo
<! If -~da Vb A(a,b), then

Va H F Fa =I, so Hip_%[I,Hin+1]and Hi_c_:)_% [1,1,...,Hin}.
Then Hn ¥ Hxo = Hyo as is proved in 35,
SO each Zg predicate can be reduced to provability in Hin). X
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§2, n ¥ w.

2.1 Def. A A-theoxry T is closed under the w-rule, notation T k w, if

for all closed F,F’

T  FZ2 = F'2 for all closed Z2 =

TFF =F'. |

Note that Th(Z) F w iff M ° is extensional.

In [4] it is shown that An L w)

Now two proofs will be given that {n K w .

In the first proof the terms constructed play a symmetric role. Not so in the
alternative one. There a term A is constructed which in #n is constant on all
closed terms, but not constant in general.

Also in [4] a pseudo-constant term is used to prove An ¥ w. The construction
is totally different however. See also [1].

un

2.2 Lemma. Let FM = FM...M Ny . Then
. , n times

VZ closed In X F 20" = Q.

?roof.
If 7 is unsolvable, then ¥ | Z= Q.
Otherwise Z has a head normal form ([2], 4.3) Axl...xn-xiNi...N . Then

“un m
Iz = Q. &

2.3 Theorem. Hn ¥ w.
First Proof.
v 4% :
Define a term O such that Oi_I_l_? Ay« S . (O1i n+ly)

O can be constructed by the fixed point theorem and an F such that

A"
Ak Fyn = vil n. Take e.g. Fyn = If Zero n then y else Fy(n-—l)Q.

Claim 1. V2 closed I Oxo02 =0yo Z
2. Hn ¥ Oxo = Oyo.

As to 1. ¥t Oxo 2 = 20(0x12) = ... =
= ZQZON(. .. (BT (Oxn+1Z)) ) = ...
Hence by 2.1 there exists an n such that

HHF+Oxo0 2 = ZQ(...(Ean“I).;.) = QOyol.

As to 2. This is proved in 85,
By the claim in ¥ w. &

Alternative proof. Define a term A such that

Az %-ly.y(A(zQ)). Then
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j¢ + AI Azv.v(AR) = Ay.y(Ay.y(AR)) = ...

= C?(AQ) = ,.., where C,a = Ay.ya.

Claim: VY2 closed ¥ | AZ = AI . Indeed,
Az 3 Ay.y(A(ZQ) p ci(a(z@ )

S chaza™) 5 Cy(AQ) 5 AI
for n large enough by 2.2,
Hence V closed 2 ¥ } AZ = K(AI)Z.
But Mn ¥ A = K(AI) as is proved in §5. [X

§3. Conjecture: Hw 1is H;-complete.

We will give a strong argument to conjecture that #w, the A-calculus
extended by the axioms J# and the w-rule, is Hi—-complete.

Given a recursive set T of sequence numbers two terms Bo'B1 can be defined.

It will be proved that: T is well-founded = J | B0 = Bl' The converse 18

probably true.

3.1 Def. Let Ya In R(a(n)), with R recursive, be any H%-predicate.
Define by 1.1 a term [ such that M } 0= = 1 if <«R(s)

= 2 if R(s).

As in the proof of 1.5 we do not exhibit explicitly the main parameter c;
the whole construction 1s uniform in c. |
Define by the double fixed point theorem, [ 1] 3.1, terms B,A such that

Ak BiS > Ay.0° (Ais,o y)
5 % S*( II)-— un S
Ak Ai,g_?' }\y.[Bi -, ¥y (Ai,n+1 y)]

where % is the representation of the concatenation function of sequence numbers.

. 0 O ¢ ) ;
Finally set B, =B , B =3’ . Note B’ - 6] [Ba6a- ]l T,
3.2 Theorem. Va 3n R(@(n)) = A¥w F B, = B,.

Proof.
(i) R(s) = A Hw F B(::'--"--':5 = Bli . Indeed R(s) =+ []E- = {} = BQE- = ) = Blf’-.

(ii) Vn [A¥w F B-i-"(!}_)

Iﬁﬂﬂh=¢lﬂw - B2 =B .
f o T P1

Indeed the assumption implies as in the proof of 2.2 that

AHw F Bc;-s—lz = BiE-Z for all'closed Z .

Hence the conclusion follows by the w-rule.

Now it follows by bar induction from (i), (ii) and the well-foundedness

that AJ¥Cw F B<) = B(') , 1.e. Adw F B B.. [
| O i O |

e ———

It
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For the converse of 3.2, which establishes the conjecture that {w isﬁﬂi-

complete, a prooftheoretic analysis of Jlw is needed.

84, 2NU sensible hard models.

ILet T be a A-theory.

A set S of equations between A-terms is independent over T if for M=N € S

T + S - {M=N} } M=N. -

A set of terms X is independent over T if SX = {M=N | M,N & X, M#N} is indapendent

over T.
We will construct a countable set of closed terms {Bo,Bl,...} independent
over #n. Hencé the theories T_= {Bn = BO | n € A}, withacw - {o} , are

A —
all different.

Since an equation is provable 1in a A-theory iff it is true in its term model,

No

it follows that the_closed term models of J + TA are 2 sensible hard models.

N

By taking the open term models of i{n + T 2 sensible extensional models

Al’
are obtained.

A relation ——> Dbetween terms has the Church-Rosser (CR) property iff I
/\L

i.e. (M—N & M—L)=> JP (N—P & L—P). N,
| : : | \\ | JIH
4.1 Def. Let B be a term such that - 1REV;#
BX —36—9 Az .z (Bx). To be explicit

take B = W with w = Abxz.z(bbx).

It will be proved that {Engl,...} is an independent set over d#(n.
In order to do this we introduce a reduction relation satisfying the Church-
Rosser theorem, which generates the equality 1in the theoryEKnA =

dn + {BE.= BO | ne A} foraCuw - {o}.

4.2 Def. (i) §Q-reduction —= 1is defined by

Y!
1. H —§4> () for all unsolvables H
2. M -5> N = MZ-—z> Nz, ZM —5> IN, A% .M —5>Ax.N, for all z.
) —_— ) '
3 M 9 M
(ii) > = D Y —
- Bnf Bn {2
Clearly ——Ehg'b qeneraﬁes the equality in ¥n,
4.3. Lemma. “"E?]ts'-z““) has the CR property.

Proof.
see [3] §2.30 &K
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4.4 Def. (i) Red(Bx) = {Cc(x) ]Bx -—-g—-?'c:(x)}

(ii) The reduction relation T is defined by
1. C(n) T> C(o) for all n € A and C(x) € Red(B)

7. M —>N = MZ —> NZ, ZM —> 2ZN, Ax.M —> Ax.N (all Z)

A A A A
——
3. M Y M
gy T  —
(iii) AnCA an U e

Clearly W> generates the equality of HnA.

The following notation is used in order to facilitate the computation of the

reduction tree of Bx.

4.5 Def. [J:= Bx = wox. If A is a term, then
| 1A 1= ((Axz.z))x) and O0A := (Az.zh).

4.6 Lemma. BXx —>C(x) <= C(x) has the form i_...i_ [},

B 1 n
11,...1 & {o0,1} (*)
Il

Proof.

Note that

(i) Each one step B-reduct of oA is ofA' where A' is a one step f-reduct

of A.

(ii) Each one step R-reduct of 1A is oA or 1A' where A' is a one step
B—-reduct of A.

(iii) The only one step B-reduct of [J]is 1L].

From (i)-(iii) it follows that all possible B-reducts of []are of the form (x).

Moreover all terms of the form (*) are reducts of L] e
4.7 Cor. Let Bx —-—g—} C(x). Then

(1) C(x) has no n or i redices.

(ii) The only free variable in C(x) occurs at the end.
(1ii) C(n) —§> 2 =2Z=C'(n) with BX —->C (%) .

cQ and Bx —> Q.

B

Hi

(iv) C(xX) = Ac.P = P
- Proof.

Immediate. [X

4.8 Lemma. T> has. the CR property.

Proof.

Let two terms be obtained from some term M by replacing some n by 0. Hence a

common reduct P can be found by making both changes in M.



4.9 Lemma. -—2——> is CR.
Bnia
Proof.
By 4.8 and 4.3 th> and -thi> are CR. So by the lemma of Hindley-Rosen,

[ 5] (1.2), it is sufficient to prove that they commute. For this it is

sufficient to prove

(1) (i1) (iii)
B HA { /\
N \)L N € 3L N < L
\'-.. * / ~ / \\. ’
A d | A L/JQ A ‘“‘;;,b/ M
:u_ : 2¥
P
(i) Let R = (AZ.V)W be the B-redex contracted in M — N and C(n) the

"A-redex" in M T L.

Case 1, RN C(n) = @, is trivial.

Case 2, R C C(n). By 4.7 (iii) we are done.

Case 3, C(n) C R. 3.1: C(n) C W, is easy. 3.2: C(n) C V: since C(n) is
Az.V. By 4.7 (iv)

closed this case is trivial. 3.3: C(Q)
C(n) = Az.zc'(g) where C'(x) € Red(Bx); hence N = ...WC'(n)...
.(Az.2C'(0))W... . Take P = ...WC'(0)... .

|

L

H
RE

... C(O)W...

(ii) Let H be the {i~redex and C(n) the A-redex in M,
Case 1, HNC(n)=¢, is trivial.

Case 2, H C C(n), does not occur, by 4.7 (i).
veeHoeoop N

11
Hi

Case 3, C(n) C H; H = H'[C(E)], M ..Q..;, L, = ...H'[C(g)}.

Claim: H'[C(o)] is unsolvable. So take P © N to complete the diagram.
Proof of claim (see [2] for the concepts of Bdhm-tree and solvably equivalence).
C(n) and C(o) have the same BOhm-tree, hence are solvably equivalent, i.e.
for every context D[ ] we have:

D[C(n)] is unsolvable < D[C(0)] is unsolvable.

Now take D[ ] = H' ].

(iii) Let E = Ax.Fx be the n-redex and C(n) be the A-redex in M.

Case 1, ENC(n) = @, is trivial.

Case 2, E C C(n), does not occur, by 4.7 (1i).

Case 3, C(n) C E; 3.1: C(n) = FX cannot occur by 4.7 (ii).
3.2: C(H) C P: easy. K

Bo.

4.10 Lemma. For n&€ A, n # o, HnA ¥ Bn
Proof.

If the equation were provable there would be a term Z s.t. Bn~§-§K> 7 and

Bo-—§ﬁ§£+>z . By 4.7 (ii) it would follow that n and o would occur at the

same place in Z2.
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4.11 Cor. Leto@&aA, A'Cw and A #¥ A'. Then
Hna # dnAa'.
Proof.

lLet ne A but n & A', say. Then
KnA F Bn = Bo and ¥nA' ¥ Bn = Bo by 4.10. [«

4,12 Theorem. There are ZHU theories between ¥n and #*,

Proof.

By 4.10 each XnA is consistent, hence C H* by [2],4.8. The result
follows from 4.11. (X |

o
No

4.13 Cor. (i) There are 2 sensible hard models.

(1i) There are 2 sensibie extensional models.
Proof. .
Note that for A-theories T,T' ﬁn(ﬂ)(T) =J?éo)(T') s T = T!',

The results follow by taking closed respectively open term models. [

§5. Applications of Gross-reduction.

In the preceding paragraphs we have postponed some technicalities, viz. the

proofs of
1, #n ¥ Hxo = Hyo where H is a term s.t. HX_I}_“"'E—;’ [I,F_r_l__(Hxn+1)]
and Fn 5”> I for all n. .
"
2. {n ¥ Oxo = Oyo where O is s.t. 03_1'_1_"‘5—5'" Az.z0 " (O xn+1)
3. {n ¥ Ax = AT where A is s.t. AX —> Az .z (A (x5)).

B

In all three cases the proof is similar: if an egquation were provable,

the terms would have a common reduct by the Church-Rosser theorem for Hn.
In order to prove that this is impossible one wants to show that the first
term has in each reduct the free variable x (and it is clear that for no
reduét of the second term x occurs freely in it).

The verification of the last statement is still quite intricate, since

the reduction trees of the terms involved are quite complicated due to many
detour reductions. To overcome this difficulty we use the concept of a
(deterministic) Gross—reduction chain which is cofinal in the reduction tree.

This cofinality enables us to reduce properties of the whole reduction tree

to the more easily computable Gross-reduction chain.
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5.1 Def. The Grosg—contraction of a term M, notation M*, is the complete
reduction of M w.r.t. all of its redices.
In [3] it is shown that this'definition makes sense for dn.

The Gross-~reduction-chain of M is the sequence (M)O = M, (M)n+1 =.(M);.

5.2 Lemma. For ¥n the cross-reduction-chain of M is cofinal in the
reduction tree of M.

Proof.

See [3]. [

53 pProof of 1,2,3.

1. Define [Hxo] = [I,[I,...[;, Hxn]...]]. Simple but tedious
fl n times
calculation shows: (H x o) o —g—>[ H x o] o for some m. (%)

Now ABn? K Hxo = Hyo. Suppose not, then by (5,2), (5.3), (%)

for some n,m. But

we have
X & FV([HXP_]H});
HXO ¢ . o hence
X € FV(HYE_)r
C%ﬂ contradiction.
(Hx o) Y
~ I
[Hx_q_]m
2. Define [OJ{g]n = Ay.y(yﬂ(yQQ(...(yQ%n(O}c n+1))..J)). Then

(O x 0) " -j—%[ OXx 9_] . as direct computation shows.

B

The rest of the proof is entirely analogous to that of 1.

3. AX = Wwx, W = Aaxz.z(aa(xfl)).

=Az.z2(Az.2(. .. (Az.3 (W (xQ )., . A simple

Define [Ax]n
n times

calculation shows (Ax)n Ml >[Ax]n . The rest of the proof 1is

B

(almost) analogous to that of 1. [X
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SOME NOTES ON LAMBDA REDUCTION

Introduction. In sections 1 and 2 the Church-Rosser theorem is

proved for the )q‘“s - respectively )\jgof/(ﬂ)—calculus‘.

To add another proof of this theoren
needs some motivation, especially since for thezwi-calculus there

a shorter one due to Talt and Martin-L3f (see [1]), which can be

15
extended to the Aﬂw7-calculus using the lemma of Hindley~Rosen,

see L9 J.

Foxr the)Vb-calculus a proof of the Church-Rosser theorem is given

in'??], via the finite developments (FD) theorem, which idea goes

back to Curry, see also {6]. As a byproduct [6] shows the possibility

of defining Gross-reduction and its cofinality.
We prove the FD theorem using a labeling of variables. This-method

applies also to the )ﬁ%ﬁ(f))—calculus, which is the extension of the

theory obtained by adding extensionally (and equating all unsolvable

termS)- |
Now the motivation of the first three sections of this paper is that

it gives a straightforward proof of the FD theorem which works for

a1l theories considered. Secondly, we establish the

Gross-reduction i1or thelv&qflncalculus, which result was used 1in ;2].
functions

cofinality of

In section L we consider reduction strategies; 1.€.

that assign to a term one of its reducts. Ve distinguish various

1tinds of strategies, and some known strategies are classified

accordingly. Furthermore the (non)existence of certain kinds of

(recursive) strategies is proved.
In section 5 we prove that there exdsts a recursive strategy
that finds an infinite reduction sequence 1f 1t exists.

In section 6 we prove by one method two theorems in[}{l,[sj,viz.
the postponement of 7M-reductions and the fact that /5~ andiﬁv-norma-

normalizibility are the same.
Finally in section [/ some non-normalizing S-terms are constructed.



—1 4

L. THE CHURCH-ROSSER THEOREM FOR THE AQ~CALCULUS.

1.0, The finite developments (FD) theofem states that for any set
of redices in a term M, all developments of ?Q, ére finite.

See [fi]for terminology. '

We formulate and prove FD using underlined and labeled terms.

The underlining specifies and keeps track of a set SR_ of redices.

The labeling is used to prove that underlined terms strongly

normali ze.

1.1.Def. 1ab, A® is the set of labeled and underlined A-terms,
defined by l. X € lab.Ab for every variable x and‘every ny Lle

20 M € 1abeAB == Ax. M€ lab,AD

3, M, Nelab.)B = MNE€lab.)R and (Ax. M)N € lab,AS

Remark that only variables not preceded byk are labeled.

1:2-De ’ ' ——_'—__% : | - ]
E " lab.pD is one step underlined {3 reduction
between terms € lab.i\_@_ defined by
______.———-9 - e
G [(2\_}{- M)N] lab._@_ N ¢ [ [N‘X:l Ry ] y where

N, M'Elab._)_\_'@,C[ ] & lab.&is a context with one hole, and [ | ] is
the substitution-operator daefined Dby [’l%] x' = N and the usual

other rules.

Remarik that [S—redices whose head—%.is not underlined, are not allowed

to contract.

1.3.Def. The same system without labels will be called 2\_@, tne

corresponding reduction _75—> N

vl
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1.4. Def. Let M€ 1ab.Mand N M (N is subterm of M). Then:
|N| = sum of the labels occurring in N

Remark that |N|>O.

1.5. Def. Let Meilab.hé_. The labeling of M 1s czlled decreasing 1ff

for every _@ -redex (_)_\_x. P)Q in M we have le > [Ql for all x¢€ P.
. o 6.7 2

(Ax. 34x7)(kx. 3233) is not.

l.6. Lemma. Let M{;h&, Then there is a decreasing labeling for M.
Proof: number the occurrences in M of variables from right to left,
starting with 1. Give the n~th occurrence the label o,

Example: if M = xy((Az.z)x) the result is x16y8((5z.z4)x2).

Obviously this is a decrgasing labeling, since Zn'> 2n"1 + e + 2.

1.7. Lemma. Let Me&lab.bg, such that M's labeling is decreasing,

. G, : ;
and let M Tabp N. Then (i) ,|M|:>|Nl
(ii) N's labeling is again decreasing.

Proof of (i). Let (Ax. P)Q be the [ ~redex contracted in M ——> N.

Each x € P is replaced by Q; since |x|> |Q| this means that the sum

of the labels in the contractum is getting less. Also 1f P contains

no x this holds, since Q vanishes and |Q|>'O'.E§(i)

Proof of (ii). Let (_>_\_x' . P')Q' be the L ~redex of whose residuals
we must check that they satisfy the condition for a labeling to be
decreasing. For the numbering of the cases, see the cases 1l.., in

the scheme of relative positionsrof redices.

bl -
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Schene of relative positions of redices.

|l 1 2 2
H
Rz (Ax.P)Q E = \y.Dy J e .
: —— i e e = B A e el ey | m——— —r i — e p— e e iy | A g g—— g = ——— —_—— el e
) [ 111 Rng . g | 221 RINE = § | 131 RAH =g :
e I | O O | S
T "oy
112 1121 R'c P I} 122 1221 RiC D L 132 ate= E
RIc R ‘ | ! T
R Rck 1222 peospy 133 R'=
B! = (}g ‘;P') ' | - MR '*TI T T ) _
AR S R 'LJ_]_} R! = R l 125 12351 Ec P !: 134 i 1541, e P'-
- o ' ! '
11 , 1141 R P R'DE 11232 E £ AX.p!; 1342 -
b N 4 - _ . - t1las 1 R o H H =Ax'.p
1142 R Q' 1233 B Q | 1343 EQQ
2 L | 221 SINE = ¢ 2t E'nE =g
e ea—————— . e e oo ——————
222 232
) Z/CcE (3 E'GD) ve
IF T SO
E' = Ay'. D'y It 223 ] 233 E's H
~ | B! & E , :
221 i 23 2341 RC D!
“ B'O” L
1 EtDE ( EgD') | 232 E & Dy
= e S e — — ——
3 [r 5L H'n H = ﬂ
| 332 #'c H
H 5
| 333 K'z K
| 334 B'oH
|
Of the cases 11.. (all the other cases are for use in section 2)

only two are not trivial:

M= ... (Ax.

:

(Here Q'(§) = [Q

1121

il
.

x| Q')

> Q] for all xeP, IQ'(Q)I& IQ'

ceeQoo. (AR,

P1(Q))a"(Q)...

a &

Ol

., Also Ix'l > IQ'I for all

n
o

Since

x'e P'.: Hence ‘x‘l > ‘Q'(Q)l for all x'¢ P'.

1142. i'= v (Axt. PYY L (Ax. P(és)ﬂ Tf] .+« where[ = Q'
N = Qxt P -+ where[T]= o'

> IP(Q)I , SO

> e X

Now l(_)‘_\_x. P(x))Q Q'[ S IQ' '] , hence in N for all

w!'e P' we have l\'




1.8. Coroll. (Finite developments theorem: FD) .
If Me AR, then every -rcduction segucnce starting with M fterminates.

Proof. By'1.6 and 1.7 since in a reduction labels can be taxen along. P4

1.9. Def. Let -3 be an arvitrary binary relation. Then
(1) ¥ 5 4is the transitive and reflexive closure of —— .
(11) #2#% sy is the transitive closure of ——>.

(iii) ———> has the Church-Rosser property (is CR) iff

Y

’
4
’,

L
., ~
"

”
\‘-‘L:f

(iv) , has the weak Church-Rosser property (is weakly CR) 1ff

/\

NN *;'*f
* F 3

.

LY -
N

(v) if M > N, N will be called a successor of M.
(vi) an endpoint is a point without SUCCESSOrs.
(vii) M has an endpoint N iff M —*> N where N 15 an endpoint.

1.10. Lemna. —px— is weakly CR.

Proof: A trivial analysis of a few cascs, using
My M, N N == [NIx]¥ — SN xM LB

1.11. Lemma. Let > be a reduction relation such that

(1) every reduction sequence terminates and (2) —— is weakly CR.

Then every term has a unigue endpoint.

Proof. (Bar induction)
A term is bivalent if M has at least two different endpoints,

otherwise univalent.

Claim: if M is bivalent, then M has a bivalent successor.

Indeed, let M—> M, >N and M—>M, LMY

be two reduction sequences terminating in different

endpoints Mi, Mé, po3sibly with Ml = MZ'

By the weak CR property there exists a term N
such that M,—>N, M,—> N. Let N' be an
endpoint of N. If, say, Ml were univalent,

then M:'L = N', therefor I\*'-.'."2 £ ', and hence

Ma.is bivalent, which proves the claim.
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By the claim 'aj bivalént term would yield a non-terminating

reduction-sequence, contradicting; (1). Hence each term is univalent.[X

1.12. Cor. (FD').Let Me ND. Then every maximal f-reduction sequence

starting with M, terminates in a unique result N, which will be

called the complete reduct of M.

1.13%. Notation. (i) If M'e _>_~=_@ we v:rill also write ' = (M,V) where
MeA and v is the underlining of M, i.e. the set of occurrences of _)_\_
(id) (M; p) where § is the empty underlining, will be identified with
Me)\ . (ME)\ means: M 1is a >\—term, vithout underlining.)

(111) If N = (N, ) is the complete reduct of (M,V )& b_@, we will write

(M, U) 3l N.

Proof: 1l.l12. [X

1.15. Def. (i) (M,V) = M,V') iff v C U .

(1) O, U) + (M, U') = (MU uU')

1.16. Lemma. (M, V) Proof: it is sufficiént to

N ﬁ consider the case where

N
*\\\ (M,U')%—%(N,U")

M,

p XK - '
;}' (N, U ) 1s one step; and for this case
/
/ C o
the lemma is trivial. [
/’k
//
(N, u')
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1.17. Def. Let (,N < A . Then

M——T->N e (I\I,U)—-—EI—)-]-_—%N for some underlining v of Ifi.

Remark that —T7‘> = ——[3—9 (the usual one step ff-reduction between

)\-—-terms). This follows by considering the underlining of just one

ﬁ-—redex.
Al e | ofl |
1.18. Lemma Pro (M! s
(M;\J ) as 1emma 1-16- - //
/
.K.
(1) ¢: def. 1.17. . ,,/73/
1 3
] - X a /P
o, |
' x X(NI ,U' ") cpl
N ﬂ KX
. P \
(NY 2) 2 \ cpl
N=
N | ’ \\\ c \\
\\\ \\
. \
RSN
M - ‘\\..‘;*
1.19. Lenma. —-——1-—> is CR. N _ ‘ Y
AL e m
Proof: . , \
| . 1 [’A‘ | \P‘\ . 1
a’ a': def- 1-17- | . a I, b \\ ? ')
/ - (M,V
b: def. 1.15. M) A
| _-=¢pl \, | = €pi~_
& \A [A 1
C, C':Ilemma l- 18- « \ I/ //
N \\ c \ ,! ct! ° p
@ N \ /7 ; /
| AN (M,WH(I‘,U)/
N ! /
1 \ l /
“\ I /
N t //
\, ) /
N4
P

1.20. ;I‘heorem (CHURCH - ROSSER): —%——9 is CR.

"

hence ——5—9 = ——?——}' .

;__'_l-—> is CR, hence -—119 is CR. X

*
Proof. —> & —> (see remark at 1.17) and —7—= - ——75—-—)* ;
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2, THE CHURCH-ROSSER THEOREN FOR THE AA7(())-CALCULUS

5.0, Introduction. The concept of underlining and underlined reduction

in the Ap-calculus generalizes directly to the Apn-calculus, so we
want to use the method of section 1 for the Aim-=-calculus. But then
there is a problem when one tries to define the analogon of —-Ta-;
using the method of the labels as in section 1, the FD theorem 1is

still valid, but 1.10 fails, as is shown by the example in[ﬁ}]p.ll9:
Here _ denotes a specified [3-

(&x- (AU' M)x)N redex and . & specifiedfg—redex,
* in our notation.
A//ff/ \\Eb\il That FD is still valid can be
(Ay; M) (AY' MIN easily verified, but we will not
| ié' do this because by a simple
[NIXJM restriction (on what sets of

specified redices, i.e. what

underlinings, are allowed) we have moreover FD+ (see 1.12) for the
Aﬁﬁ—calculus.

:H:is the A-theory in which all unsolvable terms are equated.
As with ordinary conversion, it is useful to have a reduction relation
satisfying the Church~Rosser theorem which generates equality in J{L
This will Dbe ﬁqf}-reduction which is defined by adding {)l-contraction

defined b
ned by c[H] —— cl .
where (= (\x. xx)(Ax. xx) and H is unsolvable.
The CR theorem is proved first for a restricted form of {)-reduction

(the ()-redices have to be maximal w.r.t. inclusion of subterms;
this is called (M'-reduction) from which the theorem is proved for
the general form. While [3- and 7)-redices interfere_in a nasty way,

there is no interfercnce ofﬂ@-,'7-redices and (J'-redices.
The CR theorem for the,M®n—calculus can be proved more easily

than below by using the lemma of Hindley-Rosen [9] lL.2.
The benefit of the method here is that it gives an easy proof for

the theorems in section 3.



~21-
2.1. Def. (i) To the language of the lab.._)§_@>_ ~terms we add an extra
symbol .~., which will be used to indicate fq—redices, relative to
which M -reduction is allowed. ~, will be written under the head --)\

of an frz-redex: 2\_’y. My (y & FVQI) )

Formally: extend def. 1.1 with the extira rule for term—~{formation:

¥ g

[. Me Lab M = \y. My & lab.AAY (y ¢ FVQ4) )

Ad7 is the corresponding set of terms without labels.

Remark. In a -(lab.)}\ﬁzz-term a )\ can be underlined with if 1t is a

f-redex A and with ~ 1f it 1s an 7)-redex }\, but no A can be underlimed

by both _ and .

2.2. Def. Let M, N€ AB7. Then M —>—> N is defined as follows.

Let (_>_\_x.. P)Q ¢ M be the P -redex to reduce'.

" Case 1. M = C [ﬁ)_\_'y (Ax. P(x))y] , .. Q =y, y& FV(P), and C[ ]

is some context (with one hqle). Then
M ’—/'3—} C D\y.P (y)}
Case B,IIf not case 1, £hén

M

. C[‘ (b};. P(k))Q]—W C [ P(Q):I .

2.5. Def. Let M, N¢& Z\_@l Then MT_)N is defined as follows.

.t

Let&y. Dy < M be the m-redex to reduces.

™)

Case 1. M = C [ﬁy (Ax. P)y] , i.e. D\Y. = (Ax. Py, y & FV(P), and

C[ ] sone context. Then

MTC[AX- P] |

Case 2. If not case l, then

* M = CD\\)' Dy]—-—-q-y% C[D]
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are the corresponding

2.4, Defs ——p- and TR >

L N

reduction relations in the presence of labels.

2.5.Remark. The underlinings and underlined reductions formalize

" the same concept of residual of [5- and m~redices as in [4 ] page |17, 8.

2.6. Def. (1) Let Mc N\ and N M. The subterm N is a maximal unsolvable

subterm iff 1. N is unsolvable

and 2. (all L) NclLeM & L unsolvable =N = L.

(11) (Qab IABN(L is (lab.))\@ where maximal unsolvable subterms caxn

. Such underlined maximal unsolvable

!
(1ii) ————_r—:i%*, one step d-reduction in %ﬁfln, is defined by

¢ 0 &

c[ H]—-——~————-> cl[.L
B> Ll
where (L= ()\}:. xx)O\x. xx) and C[ ] is some context with one hole
| - e - . ' ) .
—-————————>- Tab. (1 is the corresponding reduction in lab m;;ﬂ defined by
o[ ]y ol ]
C[.IE.] lab. ()’ i@}

1 .
where _O_E' ()\}:. xixi)(f\x. :xl xl) and C[ ]is some context in lab.>\ff)

£

—————"‘> from

Cole _D_@_f_- Extension of (i) (lab)ﬁ) 3 (ii) ’ (1ab.)/r7

(1ab NPT to (1ab ML

(1) Let M'E (lab..)}\ﬂ"?ﬂ, then M! can be considered as.a pair (M, U)

'
where HMC (lab.))f}ﬂ and U is the set of occurrences of () ~redices.

* 0 O

Let M ———=> N, and let V be the set of descendants of the

subterms in U,

suggested by lkeeping track of underlinings during the reduction.)
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Further, let W be the set of maximal unsolvable subterms of N generated
by V as follows: HE W <—» 1. H is maximal unsolvable subtern

and 2. L H such that Le V.

Now define '—(W in (lab;)kﬁzznlby
' * (M, U) W (N, W).

Example: (Ax. x(02x)) () ————3> QUQD

¢ O & 4 & & 8 9 82

(11) Similar definition for W in (1ab.)>\/5;20:

(Remark: in "this case V = W)

‘ — 3 U > U ——>
2.8. Def. (Lab.)B3nY - (lab.)B - (1ab.)2 U (lab.)ﬂ?

® @

| ’
2.9. Def. Let HMc¢ 1ab.)\6ﬂn. Again, M's labeling is called decreasing
ifr a1l its O -redices (Ax..P)Q are decreasingly labeled, i.e. for all
xeP: |[x{>]Q

| 2.10. Lenma. Let M€ )\Eﬂ:zﬂ. Then there is a decreasing labeling for lM.

Proof: same as of lemma 1.6. X

2.11. Lemnma. Let M€ lab.)\&ﬂﬂl, such that M's labeling is decreasing,

and let METE_I'?H' Tﬁen (i) Im> INI

(ii) N's labeling is apgain -decreasing.
Proof of (i). In M—@I‘I is contracted 1) a O -redex, 2) an 7 -redex,
or 3).an [) -redex.
Case 1) was considersed in the previous scction.
2) Let the 7 -recex be }y.Dy", y¢ FV(D). Then

|2..\.y-Dyk|

= k1+ IDI > IDI since' k>O0.
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. | 1
%) Let H be this () -rcdex. Then H-—mu—aa-()x. % ) (Mx. X x ).
a s 8 oo AL& EZ-O-
A simple analysis shows that if i is unsolvable, then H = () ,
containing 4 variables, or H contalins more than 4 variables.
In the latter case, |H| > 5, since the labels are },1; SO

indeed lHi :> |contractum of Hl.

llllllllllllllll

but this case does not occur since the labels in the initial
labeling, i.e. the labeling in the preceding lemma, are > 2.
Hence if a label of some x is 1, then x occurs in (Ax. k’x1)(AxJ£E§

|
which can only be a contractum of an f). -redex and has thereforc

no underlining. X (1)

Proof of (ii). We have to check that all residuals of the A -redices
in M are again decreasingly labeled. To do this we use the first
row of the scheme of relative positions of redices, i.e. the cases
l... Here R, E or H are the redices contracted in Mﬂ—_,g_l_l:gN,.and Rf
is the é -redex in M whose residualc in N we have to check. Only the
non-trivial cases will be mentioned.
Case l1l222. Remark that R' has no underlined residual:
,\)_gy. Dy = _>_gy. Qx'.‘ P')y-m) Ax'. P!
1232 does not occur, since _ and _, are not allowed to coincide.
1233. Here Q' = C[E] for some contexf C[ ] . Now if x'€ P!,

then x'|:>ICE§] by the hypothesis of the lemma, and

‘E’ > |D| , hcnce in the residual of R': Ix'l) IC[D:I , SO
this _@ -redex is again cecrecasingly labeled.
132, 133. R' has no underlined residual.

'1342ldoes not occur, since Xx', P! is not maximal unsolvable.

c[H]|> k[0

1343. Let Q°

v E_HJ,Now if x'e P! then Ix'\>
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!

2.12.Coroll. If Me /Z}Q

| l
, then every@ﬁfl ~reduction sequence starting

with M terminates.

Proof. By 2.10 and 2.11 since in a reduction

_ M

labels can be taken along. [X , .

()

211 . Lemma., { ol CR «8, /377 ‘)7
5 enma ——Bi(i-,—) 1s veakly , L.e ‘
N & N L
e ,f?";’)ﬂ'
“nmf

P

Proof. See the scheme of relative positions of redices. Let R', L', H!

be the redex contracted in M-7?7§>N and R, E, H the redex contracted

in M "“fﬁ?’L' Only the non~trivial cases will be mentioned.
The cases 1l.. are analogous to the corresponding cases 1n §1.

case 1222, M = ClAy. (', P'(x! ))y:l where C| |is some context,

I

N = L.

I

N

it

CD\y. P'(y)]' and L = C Ex' ‘ P'(}:’ﬂ. Take P

1

12%2. M = C [(/\my. Dy)Q':] . However, _ and ., are not allowed to
coincide (see 2.1.(1i) ), so this case does not occur.

1%2, 133. Notice that the set of unsolvables is closed under
5 -=reduction.

2%2, 23%3. Notice that the set of unsolvables 1s closed under
7 ~reduction. 1341 and 2341- follow by 2.29(3).

1342, 2342, 332 and 3%4 do not occui‘ bécau:—::e an Q—réd.ex 1s

definecd as a maxim~l unsolvable suoterm. R

!

r

2.14, Coroll. Let Me¢ Xﬁﬂfl. Then every maximal Bﬂfl -~reduction
sequence starting with M, terminates in a unique result, which will
be called the complete reduct of M.

Proof. 2.12, 2.13 and 1.11. K

2.15. Notation. Analogon of 1l.15 for bﬁg(l and -7??Y>~in stead of b@g
T D2 |

and ——————— ,
£

A, a set of 2{5, and a set of maximal ungsolvable subterms.,

Uis now a triple consisting of a set of occurrcnces of
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2.16. Coroll.Analogous to coroll. l.lh.

2.17. Def. Let M, N E>\. Then I—‘I——/I—->I‘I e (M,VU) —-—C—P—f—> N for some

underlining v of M.

2.18. Remark. Up to here we generalized the reduction 1 > from the

>\/b- to the )\/57]Q‘-calculus. The ne_xt' step, as in §l, is to prove

that ——1——,‘» is CR. In §l this was done by taking the union of two
underlinings of M. In the present case this would result in

coincidences oi"_ and,__(i.e. é) which is forbidden; hence the definition
of a 'union' of two underlinings requires more consideration.

Suppose we are given a A=term with an underlining in which two lines

( orM) occur. These two lines allow two reduction-steps; except

in the followling case!: <. Ay. (2\_:{. MDY e

This motivates the definition of a chain and its energy.

2.19. Def. (i) Let }\1, )\2 be two occurrences of >\ in Me >\

>\l and >\2 are connected, written /\lW)\a, 1ff they occur in a context
)\l}{. (>\2y. N)x for some N such that x ¢ FV(IT).

(ii_) A naximal sequence of connécted }\'s is called a chain.

The length of the chain is its number of )\'s.

Example: Aa.(Ab.(Ac.(Ad.¥)c)b)a

(iii) A non-connected X forms a chain on its own.

5.20. Notation. Let Me€A . Then (1), & M

(M)n+l >\:x (I*I)nx where }:g.?;[ FV( (M)n) .

2.21. Remark., Sometimes we will identify a chain of length n+l
with its corrcsponding%-term, which can be written as (Aa-A)n,

where n2 O, (ka.A)n does not occur in a context )\b.()\a.A)nb, and

A # ()\a’ .A' )a.
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2,22, Def. Let (C,U) be a chain with underlining V. The enerpy of
)

(c,v), II(C, ‘U)“, is the number of occurrences of _,, ., in (C, U _ .09

wnere U results from U as follows: whenever 2.\_.."““"‘)_\ occurs it

normal
(C, V) then it is replaced by XWZ\_ . (Remark: it is also possible

to delete _ in stead of  .)

2.2%, Def. (i) M,u) <L (M, V') & 1. H(C,"U)n < ||(c, u')| for
‘o l r . ! _
every chain ¢ in M, and Z2. —Q(N U ) C_ Q(M, U ) where Q-(H,U) 1S
the set of occurrences oOf Ql-redices in (M,V).
(1i) M,VU) + (M, U') = (M, U'") where U'' is some
underlining such that 1. [(C, u'")l = max.( lce,udl, I, v

for every chain C in M, and 2. § 2(1_1, Uty = Q(M,U) 9 -O'(M, Uty

>.2L. Coroll. (M,U) + (M, U") = (M,VU), (M, VU").

2.25. Lemnma. (M V)
\\ I
Yt
(M, V) Y (W,Y)
,r',
*- /]
il o
(N, ')
Proof. It is sufficient to consider the case that (M’U')'ﬁ%‘ﬁ (I\I,ly')
is one step. There are > cases: L. a @_-recl'e:-:, 2. an m-redex, Or 2.

oy

an _O_'-rede}: is contracted.
Case 1,2. Consider the chain C in (M,V') of which the head—)\ of the
contracted B- orm-redex is a part. We will distinguish two subcases: a.

the lenght of C is >1, b. the length of C is 1.

Il

a. Let C = )\an.()\a ...(/\al.(AQ.A)al)...)an (>\a.A)n, nyl

n-1°
and let |[(c,u)| = m'y 1. By def. 2.23, [(c,W = mym' )1, hence

(C,V) has an underlined >\ (A or,}\\;). After contraction of such a }_\_ or >\

oyl

('it does not matter which underlined )\ of the chain is contracted),
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the descendant of C in (N;?) is clearly a chain C' such that
|k0|’+0H - m-1. Because “(C';y')“ = m'-1 we have indeed ”(C';W)“;}
ct )

contraction.

The other chains in M are clearly not affected by the

. In this case there is the problem that new chains can be created,

by concatenation of two (or in one case even three) chains.

Example. Let C; = (Aa.za) and C, = (No.B) ; then

(_}_\_z.Cl)C2 Q:>(kb'3)m+1+n

...WA and 02 E}_\W.-.

The problem is as follows: suppose that Cl

concatenate to wn)\#mz\_w. , then there would be a 'loss of energy’
of 1, and the lemma would fail. This situation cannot happen, however.
For suppose Cl = (Aa.Aa)n wnere a¢ FV(A) and A # Aat, A (¢), and

= Ab;B. Then C, must occur in (CZD) for some D. Let (&b.B')D' be

02 2
the residual of 02D after the contraction that causes tne concatenation.
The concatenated chains must have the form (b@.(&b.E')a)n. Hence

a, pbut this can only be the case if Cl = (Aa.(ﬁb.B)a)n, in

D!
contradiction with ().

| f
Case 3. Suppose HC (M,V') is the contracted g:l-redex. Let (N,QD

pe the result of the contraction of the homologous Ho (,V).

Let CC N be a chain and let us compare |(C,Y)| and [[(c,y1)].
By the maximality of _fi—redices thefe_aré only the following two
possibilities: 1) CC N is the descendant of the 'same'! chain 1in

(M, V) (although the corresponding subterms can be different),

1i) € is the result of concatenation of some chains
in (M,V).
In case i) there is no problem. In case ii) we prove by the same

arcument as above that there is no loss of energy.
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> 26. Lewrma. Analogous to lemma 1.103.

2.27. Lemma, —— /I -> 1is CR.,

Proof: analogous to the proof of 1.19. [X

2.23. Lemma. __.ﬁ_,_>*' is CR.
[39L2
Proof: analogous to the proof of 1.20. X

Now we will prove that ,nﬁﬁa_ as defined in 2.0. 1is CR.
2.29., Lemma.

(1) AP Ny = N,= JL N g b éﬁ?ﬁ i,

(3) M —=—> M => L M- L ¢ M

Proof: (1) is the sténdard reformulation of the Church-~Rogser
theorem 2.28. (2) follows directly from the definltions.

(3). Let H' be the () =redex in M and let H be the maximal unsol-

vable subterﬁ of M containing H'. Then contraction of H gives the

reqguired L.

2.30. Theoremn. -M_"fﬂ% is CR.

X X
Proof. Suppose that N, {-W NOW N,

Then by 2.29 (3) )\/M]Ql l— Nl = NZ and hence by 2.29 (1)

N., N. have a common ?E,——) -reduct N

1?72 -/3/ 3"

. - * 3 }
By 2.29 (2) N3 is also a common 75?5} reduct of N,, N,.

Hence —%— 1is CR. [X
finLl
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%, THE COFINALITY OF GROSS - REDUCTION

—__-—_-——_____—_‘_.————-‘—-_————'-—-—__m.

3,0. For the )\{3-calculus the reduction strategy introduced in this_
section and its cofinality were communicated to us by professor Gross,

see also [6]. Due to the result in the previous sectlon we can intro-

duce a similar strategy for the )\ﬂq}(Q)-—calculus.

2.,]l. Gross-reduction in the )\ﬁ-calculus.

3.1.1. Def- —»-——GE-> , one step Gross-reduction, is defined by:

M——GF—>N —= (M, 'Utot) "‘E}:‘f‘") N

where V... is the total underlining of all /b—redices in M.
3.1.2. Lemma. M Proof{:
RN
AN
\ (MY
T ——
% \ ,.-'H CP! -‘)-_..-r L
)«""77 -
/I(H)vtnt) ,,..-'f#
The proof is a direcct consequence Jfepl !/{'
/ g
of def. 3.1.1 and 1.17, and nad
N
lemma 1118- E
| Ly *
3.1.3. Theoremn Proof: —5 2 & — %2, 80 —p2> &% —717
x * — He
e — 3
1 .> ; /3) ) SO 1 C.::.:;. ﬁ, y
+: _ ¥
So we have to prove: E\\;\\\
Gh !
3 :"" *;#,f
. L,."'1

and this follows immediately from 35.1l.2, idlgj

and a simple diagram~chasing argument as

5uggested by the figure: E@
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3.2, Gross - reduction in tne >\ (fl) - calculus.

32,2,1. Def. (i) “““E*"*>' , one step Gross-reduction, is defined by:
— o
M — —> N &=y (M, U ) ——————> N , where

tot cpl

(1) "Uy,.» the total underlining, is defined as follows:

a. Underline all maximal unsolvable subterms of M with .

& &% »

b. Underline all non—connectedfn~redex >J$ vith _ .

unless such a

— I

¢. Underline all non-connected fj-recex AN's with
is allready underlined by b. -
d. If C = (Aa.A)_ is a chain of length ) 2, we distinguish three
cases. 1. C 1s active, ji.e. occurs in a context (CD) for some D.
- Then the underlining will be bhwvxbﬂﬁwu..xnmbmummé,
2. C is not active, and A = A'a for some A' s.t. a¢ FV(A').
Then the underlining will be As~~A~~... wr{\J A
3. Neither 1. nor 2.

Then the underlining will be AM»&\M' . WAWA-

In this way we have given each chain in M a maximal amount of

energy. Clearly (M,“Utot) > (M,U) for all U,

2.2.2. Lenma. M

B

-
”
'_'..f
Lﬁ f
-
-
-
4

L]

Proof: similar to that of 3.l.c2. X

3,2.3%. Lemma. y Proof: similer to that of 3.1.3. [X
| ﬁvff
I
| x
96rzh¢ L
P -
\ -~
: AR
i - Ll
%/f.
N
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3.2.4. Theorem.,.

| nsL
: ¥
Gy X > L
ﬁ'r)ﬂ. i -‘l‘,-__,.."#
-
\.:'(/f'”ﬂmn
N

Proof. M_B%*I? L = ApQ LM=1Lby 2.29.(3). By 2.29.(1)

M and L have a common -7?%?9r~reduot P. So by 3.2.3. there is an

N such that

By 2.29(2) N is as required. [X



L. TREDUCTIO: S5TRATVGILS

Lsl. Def. Let A be the set of all /\—-terms.

A ;_@__duction\istrateﬁz is a map F >\ - })\ U {@} such that

(i) M —7—>F(¥) if M is not in normal form.

(1) (M) =® «= M is in normal form (nf).

A strategy is a l-strategy (or one step mtrategx) 1f for all M not in

nf M Ya}WFUﬁ)- In contrast to standard use —Eré is not reflexive.

A strategy is recursive if it is recursive after coding of the terms.

4.2. Examples of recursivel-strategies arc
(i) Gross-reduction, defined in 3.1.l.

(ii) Normal reduction (see |4-] p.140).

Note that both strategies only depend on the skeleton of terms., (The
skeleton of e.g.,yth. xx) is[](AE].EJE).)

4.3, Def. Let F be a strategy.

(15 F is normalizing if for all M having a nf, an FF(M) = Do
(1i) F is cofinal if for all M and N such that M ——> N, —In N-ge»Fn‘(M).

(1ii) F is perpetual if for all Ms M has an infinite reduction_se—
quence —> Vn F (M) #® . '

Remarks. (i) Let A have no nf, Then KIA is a term with a normal form

which also has an infinite reduction sequence (KIL 5 KIA =2 v s ) .
Thus in order to show that a term has no nf 1t 1s not sufficient to
show that a term M has an infinite reduction sequencc. Therefore a nor-

malizing strategy F is useful, since it shows that a term M has no nf

if F does not terminate on M. |
' (1i) There are even terms I such that each subterm has a nf, but.M

does have an infinite reduction sequence, e.ge. PP, with P = Nz.(Axy.y)(zz).
(iii) In 5.18 it is proved that a perpetual strategvy cannot depend only

on the skeleton of a term.

: 4.4, Proposition. (i) Any cofinal strategy is normalizing. (ii) Gross-
reduction is a recursive cofinal strategy. (iii) Normal reduction is a
recursive one step strategy.

Proof. (i) Obvious. (ii) See 3.1.3. (iii) See "4 ] p 142. R
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In the next sectlon a recursive perpetual strategy will be constructed.

.

L.5. Definition. Let ¥ be a sirategy. Then
Ny _
LF(M) =/un.(.F (M) = ®)

B.(M) = max.{length(F" (M) ncw & e ¢ n =y F () 4 ®}_
LF(M), BFCM) are possibly oo.

4.6. Def. Let F and G be normalizing strategies.
F :{L Ges VM [ M has a nf = LF(M) < LG(M)]
P gy, Ge=> VN [ M hae a nf = By(H) < B, (1) |

F is L(B)~better than G if F <L(B) G and not G -<L(B) F.

F is L(B)-optimal if no strategy is L(B)-better than F.

F is L(B)-1-optimal if F is a 1-strategy and no 1-strategy is L(B)~
better than F.

4.7.Propogition, There exists

1. an L-optimal strategy

ii. a B-optimal strategy

ili. no recursive L-optimal strategy

iv. no recursive B-optimal strategy

Ve an I—i=optimal strategy

~ Vie 8 B-1-optimal strategy.

Proof., i,ii are trivial. iii: let F be a recursive L-optimal stratergy.
Then for all M having a nf F(M) is a nfor ® » hence M has a nf iff F(M)

is a nf or . This makes 'M has a nf' decidable which is impossible,

iv: similar to the p'roof of thm. 4.8. v and vi are trivial. [

4.8. Theorem. There is no rccursive B-i~optimal strategy.

Proof. Let ¥ be a partial recursive function with index e such that
the Wi = {x ’ka) = i} for 1 = 0,1 are recursively inseparable.

We can find terms Al and A2 which have the following properties

(which are stated in a very informal way):

i) The terms Aiﬁ can reduce in at most one way. Their reducts have the

same proverty and so on. Let (Aix) be the n-~th reduct (i.e. n times
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one step reduction) of A x if it exists.

11) If f(x) # O and f(x) # 1 the length of the (Ai;.;_)n depends as

¢ -

1th(Al§)n

follows on n:

T

n
Lth(ALx)

n— n—
In this case both AO; aﬁd Al§ have no normal form.
iii) If %Tx) = 0 then the dependence is as follows.
(Let k be the length of the computation {e}(x).)

|
I

1th((Aogc_)n)H

k+1l

Further (Aog) are in normzal form.

iv) Finally if ?Cx) = 1, then the dependence of lth((Aiz)g)on n is as

in iii) but with the pictures interchanged.

Let C = Xy. y(Aog)(Alg). Normalizations of C ’consist just of mixtures
of normalizations of AOE and Alg. Suppose F is a {ecursive strategy
which minimalizes breadth.'dbviously there exists a recursive f

such that f(x) = O if F says that first A x has to Dbe reduced

and f(x) = 1 if the reduction has to start with Alz.

We claim that f gives a recursive separation of VW, and W,.

Supﬁose xezwl, then ?(x) = 1. In this case for some n,(Alg)n+l is in

k)

nf and lth((Alz)n+l) = 1. Further lth((AOE) 'stabilizes!'! on a high

level, It is clear that the smallest breadth is reached if we first

‘reduce A x to a normal form (of length 1) and then A X. So f(x) = 1.
Similarly xe€ VW, implies f(x) = 0. &
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L.9. Theorem. There is no recursive L-l-optimal l-strategy.
Proof. In the same spirit as the proof of the previous theoren,

ogo.in. using a pair of recursively inseparable Tr.e. sets. )

4 10. Theorem. .There is no on step strategy which is both L-] and B-1]
optimal.,

Sroof. Consider the term 2 = (Axy.pxx(yI))((Ax. pxx)A)I
v .

. S,
e

where A is in nf and very long. We show tﬁat i1f LF(Z) is minimal,
F(Z) must result from Z by a reduction of redex 1, whereas nminima-
lization of BF(Z) requires first to reduce redex 2. The first fact
is obvious as reducing redex 2 first results in duplication of redex 1.
On the other hand if we just compare the breadth of normalizations
starting with a reduction of_l and 2 we see that starting with redex
2 minimalizes the breadth. Reduction of 2 yields:
(Ay +p (s pxx) 8) (At pxx) A) (yINT —p>

p((Ax.pxx)A) ((Ax.pxx)A) (II) —5—>

p((Ax.pxx)A) ((Ax.pxx)A) I >
p((Ax.pxx)A) (pAA)T ad
p(pAA) (pAR)I .

First reduction of 1 yields:

(Axy.pxx(yI))(pAA) I —

(\y.p(pAd) (pAd) (I .

This term is longer than the final result in the previous reduction. [
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5, A RECURSIVE PERPETUAL STRATEGY

5.0, Introduction. In this section we will construct a recursive
perpetual one step strategy F_. As an appliCation of F_ we show
that the contraction of a redex (Ax.P)Q where xe¢ FV(P) in a term

with an infinite reduction segqgence yields a similar term.

5.1. Definition. (i) Let M¢€ A Then the predicate oo 1s defined by

o{M) &= M has an infinite reduction sequence.

(i1) Let R = (Ax.P)Q. If xec FV(P) we call R an I-redex, otherwise
R is called a K-redeX.

(iii) If M is not in nf, the left-most redex of M is the redex
of which the head-A.is not preceded by the head—k of any
other redex.

5.2. Definition. Let the reduction strategy Ex}be defined as follows
by induction onthe length of the terms:

4 ® if M is in nf.
: .
Otherwise, let M = C|(Ax.P)Q] where R = (Ax.P)Q
FM(M) = ﬁ 18 the left-most redex of M. Then:

c[ [q|x]P| 1f R is an I-redex.

]

Otherwise(if R is aK-redex);

| ¢[P] if Q is in nf.

G.:(Ax.P)(Fm(Q) )] if Q is not in nf; I

5.%. Definition. (i) Let R be the redex (Ax.P)Q. The re of R is
(Ax.P) and the dex of R is Q. |

(ii) Let M be a term.not in nf. The derived term of M, notation M+,

s the dex of the left-most redex in M,

(1iii) let M be a term. Tts derived sequence MO, Ml, ...,Mn is

+
defined by M° et

M, M
otherwlise Mk+1 is not defined. Clearly each derived séquence is

finite.

= (Mk)+, as long as ME is not in nf,

[
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(iv) Ri, the left-most redeX of_Mi, is called the special redex
of order i of M (Ogi<n). See figure:

M= M°
I
rRC= ( xO.PO)Ml
U
R = (Mx..P )M2
171
U
n-1 _ n B ! .
R = (Xxn_l.Pn_l)M where M~ is in nf.

5.4, Remark. As can be seen from def. 5.2 and 5.3. E, contracts the

first I-redex in the sequence RO, Rl"f'l Rn—l

redex, otherwise k. contracts Rn"l.'

if there is such a

5.5. Lemma. Let M = C[()\}:.P)Q] where R = (Ax.P)Q is the left-most
redex. Suppose that

(1) R is a K-redex, (ii) oo(M) and (iii) not oo(Q).

" Then oo(C[P]) .

Proof. Let M = MO—E—-; Ml ~7> M2 -—-(3—).... be an infinite reduction
sequence. There are two cases. '
1. (Ax.P)Q is never contracted in thea reduction sequence. |
Then for all i, MiE Ci [(kx.Pi)Qi] -w.vhere' Pi‘T':’ Pj_#1 . Qi—T-g Q‘.i.-a—‘l
and Ci[ :] are contexts (with one empty place) such that
Clz]—> Ci+l[z] (z is a fresh variable). That the reductions of M
are separated in this way, follows because (Ax.P)Q is left-most,
‘hence nothing can be substituted in P or Q. Moreover (Kx.Pi)Qi _
stays left-most in Mi for the same reason.
Now because not oo(Q), there is an m such that @ , £ Q f{for all
' - 1.
m'sm, i.e. for all n in the reductioan+n——1g—9Mm+n+l is a redexX

outside Qm+n contracted. Hence for sone few* there is an infinite

- reduction sequence {Cf(i)[Pf(i)] iew} where Cooiy[Po(yy] —5—

fpiuieiily

Cocae1) [ Pe(a+1))°
2. In the reduction sequence{Mi} the redex (Ax.P)Q is contracted:

by the same argument as in case 1. we have

Mo—5> «o s 5 My n+1
Hence for some gew” there is an infinite reduction sequence

{Cg(i)[Pg(i): iecw) . =

{}
!

!

Cn[(Xx.Pn)Qn > M = Cn[Pn] —5> +++ for some n.
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5.6. Theorem. EF,_ is a recursive pefpetual one step strategy.

Proof. From def. 5.2.it is clear that F__ is a recursive one step
strategy. Now we prove that F_ is perpetual. Let M C[KXX.P)Q]
where R =(Ax.P)Q is the left-most redex. Let co(M) and let

= Mg~ 7M; —57?M,—7> ... be an infinite reduction sequence.
The proof that oo (FE_(M)) uses induction on the length of M (in the
case 2.2.2). |
L. R is an I-redex,

1.1. There is an n such that in Mn—7?e.M Rn is contracted,

n+l
where R (— Mn is the residual of R. Because R is left-most it is

kel

evident that M, = C, [()\x P )Q] for i< n where R, = (Ax.P,)Q, is
the residual of R and R ia left-most in M . Moreover

P—g>P. 1y & 77, and C Jz) e, [z] (i+1 ¢ n).
c[q]x]P /bécI_LQnPP M_,q -

l.2. Here for all i, IV Ci (>\x P. )Qi__] where P. i 75 P:L+l’ .
Ql 5> Q 4, and C. [z]-39 Cl+l[z] This gives the infinite reduction
sequernce {C [Q1|:] |1Eu&-. That this sequence is indeed infinite,

Now oo(F_(M)) because Foo (M)

follows because X €& Pi

2. R is8 a K-redex.
2.1. Q is in nf. Then F.(M) = C[P] and because not co(Q) we have
by 5.5 oo (C[P]). |
2.2. Q is not in nf. Then F.(M) = C|(\x.P)(E.(Q))]
2.2.1.*n0t<>D(Q) By 5.5 o< (C[P] ), hence o=(E_(M)) because
(M) = C[(Ax.P)(Ra(Q))] —5— C[F] .
2.2.2. ©2(Q). By induction hypothesis OO(F (Q)), hence

OO(F,.(M) ).

5.7. Remark. The proof of 5.6 is non-constructive; however realizing

the explicit action of F,, (see 5.4) a constructive proof of 5.6 can

be given.

As an application of the perpetuity of F _ we will prove the

'fqllowing theoren.

5.8. Theorem. If M—>M' by contracting an I-redex in M, then
o(M) = oo(M').

As a corollary we obtain two known results of the AI-calculus.



5.9, Corollg;x. In the Al-calculus one has
(1) If M has a nf, then M strongly normalizes, i.e. each reduction

sequence of M terminates.
(1i) If M has a nf, then all subterms of M have a nf.

Proof. (i) immediate by 5.8.
(41i) If M had a subterm without nf, then M would have an infinite

reduction sequence and hence by (i) no nf. K

The proof of 5.8 for the AK-calculus is more complicated than
that of 5.9 for the XI-calculus.'The latter proof runs as follows:

Let M = C[(AX.P)QJ and M!' = C:[le] P:| . Let M= My—> Ml—ﬁ be
an infinite reduction sequence of M, Underline in M as follows
C[}Ax.P)Q] . Then each term Mi in the sequence can be provided with
lines which indicate the residuals of (Ax.P)Q in Mi' By taking the
complete developments of the resulting underlined sequence an
infinite reduction sequence is obtained, which will be .called the
projeption of the reduction sequenced{Mi}. The following example
shows that this method of proof is false for the AK-calculus:

Let 0@(()), then
- (Ax.(KIx)))

KIS}

Therefore the sequence
(A% KIx)Q— (Ax. I —(Ax. 1)) — ...
is said to be non-projectible.

We will prove.5.8 Iqr observing that if

o>o(M), then Fx(M) is an infinite reduction of M, which is projectible
and hence oo (M'). The proof occupies 5.10 - 5.16.

5.10. Definition. (i) M€ I_X\_& iff Mc Z\__@_,see l.2, and only I-redices
in M are underlined. '

(id) Let.Mfiﬁé, The special redices of M are defined analogously to 5.3,
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ell. Definition. The reduction relation —> contracts oniy
underliged redices. Another reduction relation —:Eré for terms in A&
is defined as follows:

C [()\X.P)Q_ —-—m‘—) C[[QI}C] P]

where C[-:] is a context with one hole.

5.12. Lemma. A special redex R of M (being underlined or not) is not
part of the re of any redex in M.

Proof. Induction on the order i of R.

i = 0. Then R is the left-most redex of M. If R would be in the re of

some redex of M, then R would not be the left-most redex of M.

i+l. Then R is the special redex of order i of M+. By the induction

hypothesis, R is not part of the re in a redex in M+. Hence 1f R were
O

part of some re in M, then also M+ is part of this re. But then R
(see 5.3) would not be the left-most redex in M. [X

5.13., Lemma. Let M, Ne M, If (1) M —— N or (ii) M ——> N by
contracting a special redex, then Mc INS = N e IN. |

Proof. An underlined I-redex (Ax.P)Q can degenerate to a K-redex only if

(¥) inside P all free occurrences of x are erased.
In case (1) (%) cannot happen since the contracted redex is an I-redex.

In case (ii) (%) cannot happen since no special redex is part of P,
by 5.11. X

5.14. Lenma. Let M, NE)\ and 1et.M-7g>M"by contraction of a special
redex. Let (M,U)€ I_?_\_’}_ Then there exists a (M',v')é& I>_\_6_ such that
(M, V) —> (M',U'), where

Hu-f Bu-p 2 —
(M,U)E I\A
N
M ' /-} (M',U') € IAD
special //'é;
M1

Proof, The underlining v' for M! follows from that of M by making
the contraction in (M,U) homologous to that in M. That (M', V') & Iﬁ@
follows by 5.3. _
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5.15. Lemma. Let M, N€AD, then

Moreover if M&€ I_>_\_[_5_, then M! —:)%ép—% N' in the diagram.

Proof. Let (/\X.P)Q be the redex contracted in M—_(B_)N' Underline

this redex as follows: (AxX.P)Q.

M——f?‘»N s then the complete reduction of M as 2\_{_5_ term and hence

M —7 N —-——EI% N' is a complete reduction of M as ___and _ underllned
term. By FD , L.12, it follows that I\"——%N' which is in fact

a complete reduction w.r.t. the underlining ___.. |
Now suppose M¢ IAb . Then by D. 13(i) each term in the _-complele

reduction of M is an IAﬁwuerm. Hence each of these terms contalins a

2@__ ~-redex. Therefore M —%9——} N!', X

5.16. Proof of 5.3.
Suppose oo(M) and M = C[(.A}:.P)Q] ——> M! = C[[QI}{_}P] is the contraction

of an I-redex. We have to show co(M!'). Let M = k. B M), By the
PBTPEtUity of Fm 3 M = MO'—JZ“)Ml"T;-li By 5-1-[-; 3 7;'>M1+1 iS the
result of contracting a speclal redeX.

Let (M, U) be C[(Ax P)Q:l €I>\f5 By 5.14 there are Ui such that

M, < (M U )€ IM and (My,V;) o (M0 Vi)

Let M! be the result of a complete reduction of (M ,U)
! G\

If (Mi,ui) —5 (Mi+1, Ui+l) then by 1.1l4 Mi = Mi+l.

Hence we have
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By FD a sequence of consecutive —p—> is always finite.

Therefore a subsequence of the Mi is an infinite reduction for M',

1e€o OO(M')-

5.17. Remark. Note that by 1.18 in the figure in the proof of 5.1

one has Mi %ﬁ;M{. This observation is the essence of the proof of

the Church-Rosser theorem in D%].

-

5.18. Remark. A perpetual strategy F cannot depend only on the
skeleton of a term,
Proof. Let M= (\x.x(la.aa))@y.(Apa.qq)(Az.vv)) and

M' = (_)_\_x.v()\a.aa))(’)\y.(b_pq.pp)(/\z.zz))..
Both terms have the same skeleton and only two redices (the underlined
ones). To obtain an infinite reduction sequence F must contract in

M the first and in M' the second redex.
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6. ﬁ)- VERSUS @_32- REDUCTIO!N.

In [5] p.1l24 it is proved that: M has a ﬂfr?-normal form <> M has a

/5 ~-normal form. The implication <& 18 trivial, but == gilves sone
problems. The authors remark that while it seems as 11 the proof
should be trivial, they did not know a shorter proof than the one they

give there.

The proof that we present here is more straightforward and has

the advantarge of proving something more: viz. the theorem of Postpone-
ment of 7 -reductlons [4¥]p.132, Thm.2. This is useful because the

proof presented there contains an error, as noted by Nederpelt in [f}]
n.65. He also gives a proof of this theorem of which we will give a

brief sketch. There is a simple connectlon betwcen his proof and ours.

6.1. Notation. Let M be a >wterm. Then (M)0 = M, (M)n+1 =Xx. (M)nx

where x & FV(1) ).

6.2. Remari. The‘Mn are f7-exPansions of M and one easily verifiea:
(1) (a0 ) o= (M),
(11) (1) —5—> (),
(111) (M) N —7—> MR
6.%. Definition. A labeling L of’a %wterm M is a map which assigns

2 natural nunber to each occurrence of a subterm of M.

Remark: the labelings in this paragraph nave nothing to do with those

in 61,2 and 3.

6.4, Notation. (i) If M is labeled by L we write ML. Also we write
the labels as superscripts; example:'ML = (xl(Ay.(yayo)i)a)o.

!
L )1'5'.

Sometimes a self-explaining notation like (MLN is used.

(ii) ML~1§%vM means that M is the result of omitting the labels in ML.

6.5, Definition. Let %’be the mapping which changes superscripts into

subscripts. By our notation 7’ maps labeled.Auterms to X-terms.
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1l

M, = xlcky.<y2y0>l)2 =
(Xf.xf)()e-(Xd.(ky.(kc.((%b.()a.ya)b)y)c))d)e)

Example. LetT ML be as in 6.4. Then ‘f I-IL)

£.5. Notation. In stead of A = T(BL) we will write B ——{}-0———9 A.

L

£.7. Lenma., (i) A<—1F—B =% A ,'f]' > B

(12) (e P90 —F—>(9,| x| P

Hy—

Proof of (i) is evident.

6.,2.(iii) _
X 5 ((Ax. PP) Qq)s ——

(11)  ((Ax. PP)r Qq)s

(@J{f) = }I{P

p° s pts
6.8. Definition of labcled (5 -reduction Toh /3 :
. DAL ~Qy\S |: al .| pp*+sS
(1) (O BT QD® —g> | x| P
! [ [ ""' |
(ii) If ML Tab > NL then C:__ML:] Tah C_NL | for every
| 1

labeled context with one empty place. Here [ is the usual sub-

J——

stitution operator, plus the extra rule: Qq x| x° = Qq+n N
& .9. Lemna. A AL i.e. 1f A“‘jg‘%“’B and L is a labeling
= -
- of A, then there is a labeling L' of
' lab '
/5 | & B such that AL—-—-——-—% BL :
| * Llab o
 %mmar-- Vgl

Proof. Clecar. El

'
6.10. Lenna. | i.e. BL—~—>CL' = ﬁO(BL) N (]D(CL )
I 128D A
A < B
R
Bl 1ab./3
v M4
p % c

Proof. Immediate from 6.5, 6.8 and 6;?(ii). X




6.12. I—“iéin lemma. A BL

Proof. Immediate from 6.10.

As a first corollary we prove: if M has a [,’m-normal form, then M

has a ﬂ-normal form. We need two lemma's to do this:

_Proof. The class Bill¥ of @-nf's can be inductively defined by:
1) x e BUF
1 9 i" d TJ: P JE - |
ll) }ll,lii,}ine .....u..‘IF .._9}511 MHGBNF
iii) M € BNF = Ax.M € BiF.
Now we apply induction on tnis definition.
r Ye M = Re - %
Case i): M = x, f(x) = (x) —5 (x), = A\y. xy by &2(ii), hence
SD(:{H) has a f3-nf.

Case ii): for simplicity suppose M = xAB. Then ?"(I«IL = f((}:AB)L) =

(A $30) = (G, ) B Y - BY 6201440, i) —5—>

(:{ALi BLz 83,__6—'—> (XAL']_BLL)l . the last reduction if 13>O.

By induction hypothesis AL“.L’ B have a [j-nf., hence XAL BL and .
| 1 *2

(xA. B. ) also.
A.T.tl Lll

Case iii): M = Ax. N LF(ML) = Lf( (>\}:. NL')E) = ()\x. NL')Q ifﬁ&)O >

Ly,

(A}{. L') = >\y. ()V.X- NL,)y ——E—) Ay' [yl}:] NLl E.>\x' NLI

By induction hypoth_esis NL' has a ﬂ-nf. , hence also Ax. NL' and (f(}«;L).

£.1%. Lemma. If P-,’—y-a-Q and @ has a f3-nf., then P has a f3-nf.

Proof. (See diapgram) Let Q%R. Let the 7)-redex contracted in

P—/O——)Q he Ax. Mx. Then we label Q by giving the resulting M label 1
L

and every other subtern (occurrence) label O, This is Q . Evidently
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L Lt L *- LT
Q B P- B 6- R 3! } T - e 4
?ﬁ Y Q an uch that Q lab./ﬁ>R

K can be found.

._.;
I

'
RL

By the main lemma we have P—%—; Lf)(I:e S and by & .7(i) 5 %>R
Suppose moreover that R is the /ﬂ,—-nf. of . Then by 6.12 S has a/ﬁ-—nf.,

hence P has a /j-nf'. 5

6.14. Corollary. M has a f3-nf. &= M has a /57-111".

Proof. (<==) Induction on the numbers of steps necessary to reduce
M to /5’)7-nf., using 6.1%. XK
(=) Trivial, since 7)-contractions of a 3-nf. do not create

new /l)-redices. X

6{.15. Corollary. (Postponement of fq-reductions)

X o _x ¥ s
M & SH = L M —7> L ,,?m

Proof. In the first part of the proof of 6.13 we proved

P X » & from which P - f;‘““"‘“‘h Q@ directly follows.
: I

I | |
3 1% |/ ' /3 1% x|[3

| - | '

| v l *
§ Yo m =~ R gV - ¥ R

7 77

The rest of the proof is routine. [




Now we compare our method of proof ofg 1L with thatl of [7]?.28.

Nederpelt defincs a new reauction —rr-—> as follows:

1. A-—>A

[
II. K (x
- — x & FV(A))
Ax Ax ——>B 2
ri7. A—=»B O —=x>D
AC - ~R_-->BD
IV. * i“_tsz._____
AX A -K.—-am:.B

x> has the following properties:

i) A—> B ﬁ»A—%—%B

ii) A —5B = A —>B

iii) A —% B
|

/3 1% A3
I
|

p¥ o~ C

from which the theorem of Po.sstponefnent of /ﬁ-reductions follows.
Remark that ——Kﬁis not transitive; example:
AX . A()\y. Xy) - h))\x. Ax . > A but not

M! A(Ayl Xy) - “R,. — .-_.> A.

Now there is a simple connection between Nederpelts and our method:

A T>B ) A(-—-——-(F,---BL for some L.

Properties i) =-iii) about -——> follow from properties of -—?—} .



T . NON-NORMALIZI!IG S~TER'S

An S-tern 1s an appiicatiﬁé corbination of S's.
At the Rome conference on A-calculus (rarch 1975) the question was

raised whether there are S-t{erms without a normal form (nf).
Several pecople, including ourselves, provided independently solutions.
We vill treat three examples. In each case the proof that the term has

no nf is rather different. '
The interest in the examples is that they provide terms with a rather

unusual reduction pattern.

The length of an S-term is the number of 1tz S's. If a, i1is the number

of S-terms with length n, then by the formula of Catalan (cf. [f;] p. 64)
S S (En-l)
n 2n-1 ¢

The first values of a_ are indicated in fig. 1.

Let b+ be the nunber of S-torms of length n without a nf.

Mr. Duboue has calculated by computer upper bounds for b , for n< 10,

see fig. L.

n "1 2 3 L 5 6 7 8 9 10
a |1 x 2 5 1L 42 132 429 1430 4362
b |0 0 0 00 0 2 <39 (251 (fig. 1)

The bounds are not exact, since the computer only reduced a term a

(Larpge) findite numb“r of times in order to conclude that it might be

non-nornal. For n = 7, theorem 6.4 proves that the bound is exact.

T .1. Notations. C[::] is a context containing onc or more holes.
FOx = x: FRTL oo F(FTX).
M-8 3N & CL+M—> C[N] for some context c[ 1, and M #Z CN .

T .2, Lemma. If M is an S-term having an infinite ~® 5 reduction path,

then M has no nf (in combinatory logic, nor its translation My 1in the

A -calculus) .
Proof. Since S-terms are AI-terms this is a well-known property, cl.

5.9.(i). K ' ’
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7.%. Theorem. (Petorossi) Let A = SSS, W= SAA, M =WwW .
Then M has no nf.

Proof. Note that Axy—gmaxy, hence by induction Anxy.“_ﬂ:_mg.xy.

Claim: AnLJ(AnuJ)-_——E—-_a-An+l&)(An+10J). _
Indeed, A"w (A%w) 2 & w(A"w) = saa(afwy — An+1(u (An+lo)).
By the claim M has an infinite ———L———> path, hence no nf. X

7..4. Theorem. The shortest S-term without nf is of length 7.
In fact there are exactly two such terms: Xl = S5(85)5385S5 and

x2 = $S5S5(55)5S.

Proof. (A different proof has been given by Monique Baron.)

Mr. Duboué has shown by computer that all S-terms of length < 6 are
normalizable, as well as all other S-terms of length 7.

Now we will prove that Xl 5 have no nf.
3

Let B = S(8S), C = S(BS)S and ¥ = BC.

Then Bxy 5 S{xy)(y(xy)), Bxyz ——> y(xj)z,

Cx —>—> x(8x)(Sx), and

(1) vx % 5 x(sx)(sx).
Now |

(2)  X;—>X,—> BSSC—> BBC —2 5 c(BC) —2—> v(s8Y)(sY).

Def. ug is the set of S~terms inductively defined by

sy e H
Me A = smMef

M, NEﬂ"—:ﬁ’MN éut?' |
(3) Lemma. For all Meﬂ: Mxy —2 >y Cl;_l [ %,y] Cg x,y]
where C?, Cg are contexts such that (after reduction)

cli‘,z[:P,Q]e ﬂ for all P, Qe .

Proof. Induction on the structure of M(EJQ).
M = 8Y: SYxy ——>Yy(xy)

H

M = SN: SNxy —> Hy(xy) —2> ¥ Cg_l[y,xy:] cg [y,xy] by the
induction hypotnesis. |

M = PQ: PQxy——Lé POX —-—9—9 Y Ci[q,x] C}; [Q,:{] N
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v 11 ! . d f
(4) Cor. Y IIl,M26ﬂ Iy, my Y M, M, —>Y M ML .

Proof. Let M EQQ. Then by (1) and (3)

1,2
Y M. M. —>> M. (SM.)(sM,) _°® S5y ch SM. ., SM. cHlam. , gM.d=
1 2 1 1 1 1 1 U1 T2 1? 117

! |
Y Ml M2. b

Now it follows by (2) and (4) thatlxl 5 have an infinite ﬁnni——g-path.
)

Therefore by F.2 X, , have no nf. [X
b

Now we present a third method of proving that an S-term has no nf.

FeDo Theorem. Let A = S5S. Then AAA has no nf.

Proof. (den Hartog)
1. Def. Let SA be the calculus with terms built up by application from

constants S, A.

2. Fact. Each SA-term M is of the form gﬁl...Mn or éﬁl...Mn.

The M, are called the i component of M.

3, Def. Reduction in SA is defined by
AM ——> SSSM

SPORM —> PR(QR)H

L. Lemma. Let M be a subterm of an SA-reduct M' of AAA . Then the

components of M all end with the letter A exccpt possibly the 1St

nd : Lo
and 2 components, in which case they are S.

Proof. By induction on the SA-reduction sequence AAA—>M'. [X

5, Def. If M——>N is an one step SA-rcduction, then M 1s a
predecessor of N.

6. Theorcm. AAA has in SA.an infinite reduction path.

Proof. The SA-reduction of AAA only can terminate in a term of the

form S, SP or SPQ.
Clearly S and SP have no predecessors. The only possible predecessor

of SPQ is SSYP. The only possible predecessor of S3SYP is SSXSP.

But this term does not satisfy the condition of lemma 4. X

7. Cor. The S-term AAA has no nf.
Proof. Since AAA has an infinite reduction chain, so has AAA.

X
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7T.6. Fact. Let A = 558, B = 8(SS). Then the following terms have no nf:
SAA(SAA) ' '
BSSSS
AAA
SAAA
SBBB
AA(SS).

The first three were treated above. Proofs of the non-normalization of
the other terms were given by Hindley and Gerd and Aleid Mitschke.

Other examples were provided by Duboué,and Borger and Carstens.

Te7 Ouéstion. 1. Is convertibility between S-~terms decidable?
2. Is the set of S-terms having a nf decidable?

7 .8. Exercise. Prove that S(55)(SS)(S5)SS has a nf.
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CHAPTER III

REPRESENTABILITY IN LAMBDA ALGEBRAS

Acknowledgement. The authors would like to thank the referee for carefully

reading the manuscript and making several improvements in the text,

Introduction. Let M = < M,+> be a A-algebra (i.e. a model of the

A-calculus). Elements of M are thought of as functions. Arbitrary

f:M - M are called external functions. Such a function 1g re-

P S N

presentable (by an element a € M) if Vb € M £f(b) = a*b. f is

definable in M if £ is representable by HFFM'for some closed term F.

M

denotes the value of F in the model .

Here | F]

Other notations:

X, ¥, ... denote variables of the X—calculus._

a, b, ... denote variables ranging over the elements of a A—algebra.
Fqy Gy oo denote A-terms.

The numerals O, l,,;, se e denote some adequate representation of

the natural numbers as X-terms e.g. those of Church:

= Ax. £2(x).

If T is a consistent extension of the X-calculus,xj%ﬂo)(T) 15 the

1=

closed) term-model of T, i.e. all (closed) A~terms modulo provable
equality in T.

A A-algebratﬂlislgggg 1f its domain consists exactly of the images
of closed terms. In such an J{ a function 1s representable iff it
1s definable.

For other terminology see Barendregt [19?6].
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The three 'sections of the paper treat different aspects of the

notion of representability.

In 81 attention 1is restricted to the standard extensional term model
M= MAn),
- Church's § 1s an external function satisfying
(«) MM =9 if M is in normal form (nf)
§MM' = 1 if M,M' are different nf's.
In Bohm [1972] it is proved that VN,...Nn different Bn nf's

HP’F-.FNi.==;i. As a consequence it follows that for every finite set

of nf's there is a term % satisfying (*).

At the Orléans logic conference (1972) the question was raised
whether the general Church's 6 is definable as a A-term.
We will give a negative answer which was already established in
Barendregt [1972] and independently in Wadsworth [1972] (see also
Hindley and Mitschke [19?5])‘ All three proofs of the non-exisience

of 6 are different.

Furthermore it is proved that the only definable functions from the
terms into the numerals are the constant functions.

In §2 it will be proved that definable functionS'in various -
algebras have a range of dardinality 1 or N, . For representable

functions this is not true in D and Puw.

Two external functions { and g onhﬁ.are dual, notation frj&g,
if £(a).b = g(b).a for all a, bel.
A modelJlisrich if for all f, g:

{ f\_}tg —_—D> f and g are representable in ﬂ-

The results of §3 are: D_ and A(An) are richj; rich models are exten-

"sional; hard sensible models (e.g., the interior of D) are not rich.

We would like to draw the proof of 3.6 to the readers attention.
There variables of the A-calculus are not just used in the

usual way, but also serve as separate entities.
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§1. Non definability results.

P W W W

The main tool in this section is the "Bdhm out" technique 1.4,

This result is also of use in §2.

1.1 Def, Let BT(M) be the Bohm tree of M, see Barendregt [1976],
55. x € BT(M) iff x € FV(M) and occurs as a head variable in some

label at a node of BT(M).

1.2 Def, (i) A selector is a term of the form U = Axl...xn.xi. A
permutator 1s a term of the form C = Xxl;f.xn-xﬂ(i)...x“<n) for
some permutation T,

(ii) Simple terms are inductively defined by: Any variable, selector

or permutation is a simple term. If P,Q are simple terms, so is PQ.

1.3 Lemma, Simple terms have a normal form (nf).

Proof. Realizing that each simple term is of the form xg; U?, CP
with g'simple U a selector and C a permutator, it can be shown by

induction on the term length that they have a nf. R

1.4 Theorem. Let FV(M) = {x} and x € BT(M). Then

> -
(i) TFor some P,0, with x & FV(B), A F MP = xQ ("x is B&hmed out").

(ii) Moreover ﬁlcan be chosen as a sequence of simple terms.

Proof. Let x occur in BT(M) at depth k> O. By a similar construction

as in Barendregt [1976] 6,14, 6.15 for some Bohm-transformation 71, X

occurs in BT(M') at depth k-1. Iterating this leads to MT = A?lxag
T —

hence My = XxQ.

Checking the details of the construction of m one verifies that

-

Mﬂy EEM,..xi...[xj/ij]... [xk/ka]...y = Mﬁrfor some simple terms B

with xj{FV(ﬁ) (where C is a permutator and U a sélector).Eﬂ
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i.5 Lemma. If F is not constant, i.e. f FX = IX; for some X;,X2,
and for some M, FM has a nf., then xe¢ BT(Fx) for all x.

Proof. Note that if P, P' have equal finite (l-free Bohm-trees,

then A -P = P'. Now suppose x% BT(Fx) for some x¢ FV(M). Then BT(Fx) '=
BT(FM). But since FM is in nf, BT(FM) is finite and {)l~free and

hence - Fx = FM, i.e. F is constant. This contradiction shows

:xé FV(M) = xe BT(Fx). But then by substitution xe€ BT(Fx) for all x.[J

P e

1.6 Def. 0 = I, ntl = K n.

1.7 Lemma. The function sg is not A-definable with respect to
{n|n € w}, i.e. for no A-term F +FF 0 = 0, FF n+l = 1.

Proof. Suppose I exists. Then by 1,5 x € BT(Fx). Hence by 1.H

[T
e

—) - — —> —>
FxP = xQ for some P,Q = Ql...Qm. But then for all n > m, F 1P =
F n'§ =n Q«..Q = Nn-m contradicting the Church-Rosser theorem

m e

since the k are different nf's., K

1,8 Def. A system of terms {Mnln € p} is an adequate system of

numerals 1ff

(1) Each Mn has a nf.

(ii) Fach recursive function can be A~defined with respect to the M .

In Barendregt [197¢]is shown that the secondlcdndition can be re-
placed by (ii'): The successor, predecessér and sg functions can be

A-defined with respect to the Mn'

The following corollary was proved independently by Barendregt [1972]

and Wadsworth [19?2].

1.9 Cor. (Babendregt). (i) {n|n € w} is not an adequatesystem of
numerals. (ii) Church's § 1is not A-definable,
Proof., (i) Immediate. (ii) If &§ were A—definable; then so would be T

in 1.7 since I = Ax+* ¢éx 0 0 1, X
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1.10 Let w = {E|n C w} be an adequatesystem of numerals and let { be

a map into (W definable by F. Then f is constant.

Proof. First assume w is Church's system of numerals, 1i.e.

Wil

AExe £ (x) (= Afxef...(fx)). Suppose F is not constant, then
- n times N
by 1.5 x € BT(Fx). Hence for some simple P

Il

W

—> . —~

and Q,A F IxP = xQ.
—> —> > )

Hence A + FMP = MQ for all M. But MQ can take arbitrary values

is always in nf by 1.3.

i

Il
PI'(P,)P,...P

—> _ -
and not FMP, since n P

K

Now let w be an arbitrary system of numerals. It 1s wellknown
how to define a term G such that Gp = n.
Suppose a non constant f+ terms » w would be definable, then

et

Go f were a definable non constant mapping into w.

First alternative proof (due to the referee).
Suppose F is not constant, i.e. let ny £ nzegRa(F). Define G as the
A-defining term of the recursive function g(x) = 0 if x = n,, and

1
g(x) = 1 else. Then the range of GeoF is'{g, ;} contrary to 2.3.

Second alternative proof. By Barendregts lemma in de Boer [i975]
it follows that if () is unsdlvable and N a nf, then

FQL = N = Fx = N for all X.
(General genericity lemma.) Néw if ﬁhe values of F are numerals

it follows that P{l has a nf, i1.e. ¥ is constant. X

1.11 Cor. There 1s no F such that
FM = 0 if M is a numeral (i.e. F M = n for some n)

&. else

for any adequatesystem.

1,12 Question: Is there a term F such that
FM has a nf (is solvable) i1f M 1is a numeral

has no nf (is unsolvable) else,
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§2. The range property

2,1 Def., Let #,= <M,* > be a A~algebra. For each f € M, we
define Radt(f), the range of f intfﬁ, as follows:
Ra®(£) = {f+x|x € M}. |

Notation. REK(F) = RaV%([Fﬂd%) for terms F.

When possible, the superscript /), will be dropped in Ravb .

2.2 Def, A A—algebraift satisfies the range property if for all

f € M, the cardinality of Ra’t (f) is 1 or No

2.3 Range theorem: (Barendregt; Myhill), Let T be a r.e. A~theory.
Then M (T) (and also HA°(T)) has the range property,

Proof. Suppose f € M and Ra(f) = {m .»m }, k > 0. Define

0"'

Ni = {x|fex = mi} C M. Every such Ni 1s r.e. Therefore

k
N = Kf Ni’ the complement of N, is also r.e.. Hence N, is

Trecursive.

On the other hand Ny 1is non-trivial and closed under equality, which

contradicts Scott's. theorem, (Barendregt [1976] 2.21).

The proofl for J{O(T) is the same. [X

2.4 Cor. J%ﬂo)(ACO)) has the range property.

The range property, however, ighot satisfied 1in every A-algebra.

2.5 Theorem. Pw and D__ do not satisfy the range property.
Proof. Since the proof is similar in both cases, let 4 = (§,<)

denote either (P_,C) or (D_,C). We define the following function

f1 S—5 by f(x) =T if x£ 1 else.L (T and L are the largest

respectively smallest element of Sﬁ)'
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Claim f is continuous. Then by Scott [1972], [1975] f 1s represen-

table and since f has range of cardinality two we are done.

For open O in S one has: xeO and xKy == Yye&O.
See Scott [197@,[1973] for definition of the topologies involved.
Hence for open 0, ..e0 == 0 = S,and 0 ;lﬁj == | & 0.

-1 _
Now for every open set 0, £ (0) 1s open:

Case 1« .Ll.€ 0. Then 0 = S s0 f_1(S) =3 which is open.
Case 2. L € 0., If O = ¢, then we are done. Else T € 0 and hence

£l (o) = S-{L} = {x|x ¥ 1]}

U, .
def L

U, 1s open in I, ,see e.g. Barendregt [1976] 4.2.

Uj 1s open in Pw : Let Ok = -{xl e C ;}. Note e, = @ =1 and that the

*

Ok form a base for the topology on Pw .

§ x = x € U Q

Now: X €U, = x £ 0 < 3k e U o,
k#0

k#0 K

which 1s, as a union of elements of a base, indeed open. K

The following theorem was announced in Wadsworth [ 1973] for the

D case,.

00O

2,6. Theorem. Let 4 be D or P, Then 4 satisfies the range property.

Proof. Let F be a closed term. Consider BT(Fx).

Case 1. x & BT(Fx). Then BT(FM) = BT(FM') for all M,M'. Since terms
with equal Bdhm trees are equal in®, see Hyland [1975], Barendregt
| 1976}, 1t follows that Raﬁg(F) has cardinality 1.

Case 2. x € BT(Fx). Then by 1.4 A F FxP = xﬁl

Since-[[N—a]]f can take arbitrary values in ¥ when N ranges over the

closed terms, RaS (F) is infinite. K
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2.6 Conjecture. M (H) satisfies the range property.

2.7 Question. Does every hard A-algebra M (i.e. M = M )

satisfy the range theorem?



-2 -

3 1 Def. Let f,g be two external functions on a A-algebra

M o= < M, 2
f,g are dual 1ff Va,D € M: f(a)*b = g(b)ea. Notation

frj&gg or simply f~vge

Remarks. (i) Let f be an external function on J% f is locally re-

Ereﬁentable 1ff for each b & M the function h defined by h(a) =

f(a).b is representable.
5 dual. A model is rich iff all

Then f is locally representable iff € haﬁ

locally representable functions are

representable.

(ii) If f is representable (vy £,€ M, say), then f has a dual g

which is also representable ( by &, = Aab.f ba)

(iii) Let M bve extensional. Then f has at most one dual. Hence

if f'ﬁhg and f is representable, then by (11) g ig representable.

3.2 Def. M is rich iff all dual functions on M are representable

in M

3.3 Theoren. If M is rich, then N is extensional.

Proof. suppose /M 1is not extensional, Then there exist b,b' € M

such that for all c € M bec = b'esc and b # b'.

Define f(a) ={b' if a=D>
b else

and H:Mf I‘\»(_}’)]]
then for all a, a'e M: f(a).a' = be.a' = e#(a').a , hence £ ~u g,

But f cannot be representable since it has no fixed point. Thus M
is not rich. X

3.4 Cor. The following A-algebras are not rich:

Pu i PPuwy HMIA) 5 MO (A5 A (An).



Prdof.

1. Pw 1s not extensional:

Take for example a = {(0,0)} and
b = {(0,0),(1,0)}
Then V¢ € Pw a*c = bec but a # b,
2. P is not extensional: Let 1 = Axyexy, then
PO E Ixy = 1xy, but P°w £ I = 1._.for otherwise
Po £ I = 1, so Pw F VYxy x = Ayexy which implies that Pw were

extensional.

3. By the Church Rosser property A £ I = 1. So M(A), H (LX) are

not extensional.
b, M°(An) is not extensional because the A-calculus is w-

incomplete, see Plotkin [ 1974],

3.5 Theorem. D__ is rich.
Proof., Suppose that f,g are dual 1.e.:
Va,b € D_: f(a)«b = g(b)-a.
We have to show that f,g are representable.
Tt is sufficient to show that f,g are continuous. Take a directed_
X CD_. For all b € D f(LUX)+b = g(b)UX = U{g(b)-aja € X} =
LI{f(a)+bla € X} =1i{f(a)]a € X}+b by the duality condition and the
continuity of application.
Thus by extensionality in D_: for all directed X f(UX) =U{f(a)|aCGX]}

i.e. f is continuous. The proof for g is dual. X

3.6 Theorem. M(An) is rich.

N and x €

Proof. Define M =an iff An F M

one has x € FV(M'").

: . .
lnM 1ff for all M 'an

Let f,g be dual functions on M (An).
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3.6.1 Lemma. (1) X Eknky*P = X EknP. (ii) Let x ¥ y, then

v € nM = X E)\nMyr

A
Proof, (1) Let X Elnly-P. Suppose N :AnP’ then Ay<*N =Anky-P.

Therefore x € FV(Ay+N) C FV(N).
. . _ _ c _ :
(ii) = : Let x EAnM' Case 1. M Anly P. Then X Anky P, so by (1)

) X => X is not of the formAy.P.
")
Suppose N = My. By the Church-Rosser

theorem there is a Z such that An+ N > Z, My > Z. Then Z = M'y and

M! = nM. Therefore x € FV(M') C FV(Z) € FV(N).

A
< : Let X Eany. Suppose N =AnM' Then Ny =AnMy' Therefore x € FV(Ny)

and hence (x # y) x € FV(N). ¥,

3,.6.2 Lemma. If 3y F x x Exnf(y), then Vy # x X Ekng(y) (and hence

Yy # x x Eknf(y))'

Proof. Suppose X Elnf(y), y # x. Let y' # x, Then by 3.6.1 (11)

R ' Ve ' + 3 |
X Eknf(y) y Ang(y )ey. Hence, 3.6.1 (ii), X Exng(y ). (The rest

follows by applying the statement to xekng(y)).lﬁs w

3.6.3 Main lemma. There 1s -a variable X such that for all terms

M: f(x)[x/M] = £(MD.
Proof. Let v be any variable. Choose X # v such that x ¢Anf(V)'

"Tﬁeﬁ X ¢Ang(2) for all z ¥ x, by the dual of 3.6.2.

Given M, one can find a y such that y éng, fF(M),x,f(x). Hence
x¢xng(y). Now since v # x and X ¢Ang(y),(f(x)[x/M])y -
(F(x)ey)[x/M] = (gly)ex)[x/M] = gly)+M = £(M)-y.

Since v € £(x),M,f(M), extensionality yiélds,f(x)[x/M] = f(M). E@ :

Now it follows Dby 3.6.3 that f can be represented by the term

Axesf(x) and similary for g. ©
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The following construction is needed for the proof of 3.10,

ﬁ

3. Def. Let -7-/}(: be a Godel numbering of terms. ™' is the numeral 7 o

A sequence of terms M_ is recursive if )\n.#mn is a recursive function.

I

3,8 Lemma. (Coding of infinite sequences ). Let {Mn}be a recursive

sequence of terms such that FV(MH)Q; {x} for all n., Then there

existis a term X such that piX = M,, for all i, where p is some closed

i

term. Par abus de langage we write <hn> netu for X.

E_I'OOfﬂ: |

As in Curry et al., [1972], 13 B3 there is a term E which enumerates
all terms with x as only free variable:. .

E(s#M) = M, for M with FV(M) = {x}.
Let [M,N| be a pairing of terms defined by Mz.zMN. Then [M,N]K = M
and [M,N](KI) = Ne Define ordered tuples as follows: [M] = M,

My e i ] e [, w1
Let Mn with FV(Mn)g; .{x} be a recursive sequence of terms, 1l.e.

f‘=;AnJ;¢Mh' 15 recursive., We want to code the sequence Mn as a
A-term. Let S be such that S+_§-E'9n+1 and let b = )\xy.[E(F‘y),(x(S+y)):lj
where f A-defines T, and B = FP b. Then

Bn ;g; bBn —ﬁ§f}LE(EE),Bn+1_~ﬁ§~% th,Bn+1 . S50 BO = [MO,B{] =

-|mM_,M,B,| = ... . Hence by setting (M )

coding for infinite sequences of terms with one fixed free variable.

='3g we have a

It is easy to construct a term p such that pm (M = My

1"1> new
if zero x then aK else p(x-1)(a(KI)), using the

fixed point theorem). K

1

(take e.g« pxa

3.9 Lemma. For all closed Z there is an n such that ZQn:JC P

(20" is short for Z00...0)

._u-——_“-u-u—-—..___-j

n times
Proof.
Case 1. Z 1s unsolvable; then Z =4 1, so n = 0,
' -
Case 2, Z 1s solvable; then Z has a HNF, Z = Axe¢x.A, ...A (x.

1 1M 1

Take n = 1, sO 7ot = k;fQAl...A =q0 $2, <]

m

3.0 Theorem. If /{ is hard and sensible, then /{ is not rich.
proof. If ,{ is hard, then /{ is isomorphic to ,{°(T), where T = Th(/)

We reason 1in J%?(T). Since J% 18 sensible,kﬁf c. 1.

-..}
€ x).



by =
\ |
Let h:y)—> W be a function not definable inw/ﬁ h exisnts since a hard

model is countablc.

Let A (x,y) be the term xﬁlp(yg (hﬂ)), nec) . For closed M the
sequence AO( M,y), A (M,y) ces is by 3.9

My (ho ), m(l(yﬂ(h_l)), ey MOy (), 1, £, N

where n i3 such that M Qn+-1 = .Q Thus )\n.A (M,y) is a recursive
SEQUENce contalnlnp one fixed free variable and hence representable
as a term. Define f(M) = Ay. <h.(F,y)> e Simllarlyfor closed N
)\n. An(x,N) is recursive and it is possible to define

2(N) = Ax. <A (x, N;>(5 Then for all closed M, N: f(M) and g(¥)

are well defined and T(M).N = g(N).M = <A (M, N)njﬁpy construction.

So £ and g are dual. |

Suppose now that(/i is rich, i.e. f were representable by some
closed F. Then for all closed M,N: TN = f(M)N = (AnM,N>
But then pn(F(K I)(K'I)) = pn {h(n) = h{(n), hence h were

definable, contradiction. Thus ,f'[ is not rich. [X

¢

ne oo

3.11L Corollary. Q; and M°(T) for T 2 ¥ are poor.

3.12 Questions. (). Is every extensilonal term model N(T) rich?

(i), Is M° (Aw) rich?

Here-lw is the A-theory obtalned Dy adding the w=-rule to the

theory, see Barendregt [ 1974] .
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