
161

A proof rule for restoring logic
circuits

J.A. Bergstra and J.W. Klop
Department of Computer Science, Mathematical Centre, 1098 SJ Amsterdam, The Netherlandr

Received 21 May 1983

Abstract. An axiomatic semantics is given for restoring logic circuits, both statically and
dynamically. As an example the Muller C-element is discussed in detail. It is shown that a
consistent circuit reacts in an unambiguous way on new inputs.

Keywords. Switching theory, Muller C-element, restoring logic, axiomatic semantics.

J.A. Berg&a received his Ph.D. in mathematics in 1976 at the Univer-
sity of Utrecht, The Netherlands. From 1976 to 1982 he was with the
University of Leiden; since 1983 he is employed at the Mathematical
Centre in Amsterdam. His main topics of interest are recursion theory,
lambda calculus, abstract datatypes, program verification, concurrent
process theory.

J.W. Klop obtained his Ph.D. in 1980 at the University of Utrecht, The
Netherlands, on a thesis about lambda calculus and term rewriting
systems. Since 1980 he is employed at the Department of Computer
Science of the Mathematical Centre in Amsterdam. His main topics of
interest are lambda calculus, term rewriting systems, program verifica-
tion, concurrency, process algebra.

North-Holland
INTEGRATION, the VLSI journal 1 (1983) 161-178

0167-9260/83/%3.00 0 1983, Elsevier Science Publishers B.V. (North-Holland)

162 J.A. Bergsrra, J. W. Klop / A proof rule for resrorinR Ionic circuits

Introduction

A perfect switch (in the notation of Rem [6] and Rem and Mead [7]) is a logic
component connecting three wires:

S (a,b;c) S(a,b;-cl

The switch S(a, b; c) connects a and b if the voltage of c is high (1) and
disconnects a and b if c’s voltage is low (0); the switch S(a, b; -c) connects u
and b if c has voltage 0 and disconnects them if c has voltage 1.

A circuit is a configuration of wires and switches, with several wires connected
to constants 0 or 1. An interesting example is the Muller Z-circuit (see Fig. 1) (see
[6] for a discussion). This circuit has a memory capacity of one bit.

In stable states the wires of a circuit will have voltages 0 and 1. Some wires
then, preferably including the ones that are used as outputs, will be restoring in
the sense that the circuit keeps their voltages firmly at 0 or 1.

To decide which wires are indeed restoring is very much a matter of the
physical implementation of the circuit. Further, the voltages of certain wires may
be changed thus invoking a process of change throughout the circuit. Describing
this is principally a matter of physics as well. Yet, in the words of Mead and
Conway [4, p. 681: “It is important to simplify our mental model of integrated
circuitry, so as to more quickly and easily analyze or explain the function of a
given circuit, and more easily visualize and invent new circuit structures without
drifting too far away from physically realizable and workable solutions.”

The present aim is to find an axiomatic semantics of circuits by providing proof
rules about restoring logic and circuit dynamics. Viewed mathematically, the rules
are plausible, and a semantical theory about much more complex circuits can

Fig. 1.

J.A. Bergstra, J. W. Klop / A proof rule for restoring logic circuits i63

probably be based on them (that theory must describe clocks, timing and
communication).

In [l, p. 461 an exercise (namely (2.1)) about analyzing a circuit occurs. The
analysis made there [l, p. 521 is inconsistent with ours; the proof rules we offer
reject that circuit as being inconsistent.

Of course, a typical question might now be posed. For which operational
semantics are these axioms and rules sound and complete? We have not the
slightest idea on how to find a plausible semantics underlying these proof rules,
apart from systems of partial differential equations that defeat any analysis.

It must be mentioned that classical switching theory (see, e.g., [5] or [3, Chapter
111) contains much information about similar types of circuits (viz. asynchronous
sequential circuits). Our axiomatic semantics, however, might be new.

This work has been inspired by reading Rem’s [6] paper. There Rem explores
formal semantics for circuits, useful as a basis for a theory of silicon compilation.

The structure of the remainder of this paper is as follows: Section 1 gives
preliminary definitions, in Section 2 a proof system called Restoring Circuit Logic
is presented, Section 3 describes circuits subject to changing inputs, in Section 4
we apply the reduction system of Section 3 to derive the behavior of the Muller
C-circuit, and Appendix A deals with input and output wires of a circuit.

1. Preliminary definitions

In this section we will give the basic definitions of circuits, subcircuits and
labeled circuits. Our definition of ‘circuit’ is (adapted) from [6].

1.1. Definition. A circuit C is
(i) a graph (consisting of a set of nodes {a, b, c,. . .} and some arcs between

the nodes) such that
(ii) each arc is labeled by ‘a’ or ‘ - a’ for some node named a,

(iii) together with a specification of two disjoint subjects CQ, Cd of the set of
nodes.

1.2. Example

(i) a* b l b (iii) aQ -c b

(ii) a0
oa

C*
-), - "

(iv) l l l eacmb&

a b cf d e b fal

In Example 1.2(ii), (iii), (iv) the nodes in CQ are designated by writing 8 at that
place, likewise for Cd. Note that the circuit graphs may be disconnected and may
have multiple arcs between a pair of nodes.

1.3. Notation. (1) Henceforth the nodes of circuit C will be called wires; they form
the set W(C). The arcs will be called switches; S(C) is the set of switches. A

164 J.A. Bergstra, J. W. Klop / A proof rule for restoring logic circuits

switch between a, b E W(C), labeled by c E W(C), is named S(a, b; c). Likewise
S(a, b; -c) denotes the switch between a, b labeled by - c.

(It will be clear from the sequel that circuits containing more than one switch
S(a, b; c) for fixed a, 6, c are redundant. That is, we may assume that for each
a, b, c E W(C) there is at most one S(a, b; c). Likewise for S(a, b; - c).)

Note that S(a, 6; c) and S(b, a; c) denote the same switch.
(2) To conform more to our intuitions, we will (in diagrams) not represent

circuits as graphs but as networks where the wires are indeed wires and where, as
in [6], switches are denoted as follows:

,S(a, b; c) is ---&&
a and S(a, b; -c) is & a

1.4. Example. The circuits of Example 1.2 are represented by the diagrams of Fig.
2.

1.5. Definition. C’ is called a subcircuit of C, notation: C’ G C, iff
(i) W(C’) G W(C) and S(C’) 5 S(C),

(ii) S(a, b; (-)c) E S(C’) = a, 6, c E W(C’) (every switch in the subcircuit C’
is supported by wires in C’),

(iii) C’Q c CO n W(C’) and C’d c Cd (7 W(C’).

1.6. Example. In the NOR-circuit of Fig. 2(iv) the heavily drawn part (see Fig. 3)
consisting of {a, c, e,f}, { S(e,f; a)} is a subcircuit. (Note that it contains two
separate parts.) Furthermore, C’Q = 8 and C’d = { c}, if C’ is the subcircuit.

(i) S (a,b;b)

b

(ii) S(a,a;a)

@'
I I I

(iii) m m d ,

S(c,d;-b)

Fig. 2.

(iv) NOR-Circuit:
1

c

J.A. Bergstra, J. W. Klop / A proof rule for restoring logic circuits 165

Fig. 3.

1.7. Definition. Labeled circuits.
(i) The set of labels is {Q, I, 0, 1) . Here QD and d are called ‘ restoring 0’ and

‘restoring 1’.
(ii) A labeling of a circuit C is a map L : W(C) -+ (8, ll, 0, l}. A labeled circuit

C is a pair (C, L) where L is a labeling of C.
(iii) Let (C, L) be a labeled circuit. The weakening of L, written L-, is the

labeling defined by

L-(a) =
i

0 ifL(a)=QDorL(a)=O,

1 ifL(a)=ll orL(a)=l.

(iv) (C’, L’) is a labeled subcircuit of the labeled circuit (C, L) iff C’ G C and
L’ = L r S(C’) (L restricted to S(C’)).

(v) A labeling L of the circuit C is correct iff

(1) L-(a) = (0 forallaECQ,
1 for all a E Cd ;

(2)
for every S(a, b; c) E S(C):

for every S(a, b; -c) E S(C

L-(c) = 1 3 L-(a) = L-(b),

): L-(c)=0 * L-(a)=L-(b).

166 J,A. Bergstra, J. W. Klop / A proof rule for restoring logic circuits

1.8. Example

(a) (b)
Example 1.8(a) exhibits a correct labeling, while Example 1.8(b) does not.

2. Restoring logic circuits

We shall now present a proof system called RCL (for Restoring Circuit Logic)
which is designed to prove statements of the form

(likewise for ad). Often the subscript RCL will be omitted. Here it is important
that L is required to be a correct labeling of the circuit C under consideration.

The proof system RCL will be used to derive, from a given correct labeling L of
C, a stable labeling (as given in Definition 3.3).

The system RCL is built as a ‘natural deduction’ proof system and has the
following axioms and rules:

(1) A xioms
aQ ifaECQ, ad if a E Cd

(2) Switch rules

ad
bd

cd S(a, b; c) aQ bQ cd S(a, b; c)

ad CO
bd

S(a, b; -c)
aQ cQ

60
S(a, 6; -c)

(3) Assumption rules

al a0
-* -*
ad aQ

This rule enables us to assume that al will be
is marked by ‘ * ‘, and in the next rule we
assumption.

(4) Restoring Iogic rule

if CL*
al

v

IS a proof, then

P

al

strengthened to ad. This assumption
have the means of discharging the

$7 v is a proof

P

all

J.A. Bergstra, J. W. Klop / A proof rule for restoring logic circuits 167

(and likewise with 1, I replaced by 0,O).
Here P must be nonempty; that is, the two displayed occurrences of ‘ad’ may

not coincide. Further, it is allowed to discharge (i.e., crossing out ‘ * ‘) all
occurrences of $ * simultaneously.

A proof P is assumption rule free if it contains no undischarged ‘ *‘. If P has the
form, say,

a0 bf cl d0 ei d0 a0

where aQ, bd are axioms and P is assumption rule free, we may write

cl, do, ed t-fQ.

Finally, if L is a correct labeling such that L(c) = 1, L(d) = 0, L(e) = d , we may
write

Ll-fQ.
To ease some formulations, we will also write L kpi if L(p) = i, i E {Q, 1, 0, 1).

2.1. Remark. Note that it is not possible to give ‘redundant’ proofs; e.g. 2 is not

allowed.

2.2. Examples 1
a

3

(i> ‘NOT’ is the circuit b

+

c
s2

d
0

Now
ad bQ

cd
s1 hence 60 t-cd.

Likewise bd k cQ.

(ii) Let C be lm l? and let L(6) = 1; so L is correct. Now

bl
@# ad

bd * ad hence bd
bl bd .

Therefore bl I- bd.

(iii) Let C be and let L(c) = L(d) = 1. Then

ad &r
hence dl t- dd .

cd bd
dd

168 J.A. Bergstra, J. W. Klop / A proof rule /or restoring logic circuits

(iv) Let C be

Then cl, el I- ed, cd, dd. E.g.,

dd ad

cd

dd bd
ed

2.3. Remark. Note that the proof system RCL only restores values 0,l. It is not
possible to change values 0 to d or 1 to 0. (In the next section, however, this will
be possible.)

2.4. Definition. Let (C, L) be a correctly labeled circuit. Then the RCL-closure of
L, denoted L, is defined by

LRl--ai 0 L(u)=i foralla~W(C)andi~(O,d,O,l}.

Since L is correct, L is uniquely determined. (For, in (C, L) some of the a0, bl
in (C, L) are ‘strengthened’ to ~0, bd; values do not change sign.)

2.5. Definition. (C, L) is an everywhere restoring labeled circuit if L is correct and
L: W(C) + {Q, d).

Note that if (C, L) is everywhere restoring, then L = L. (The reverse is not
true: consider, e.g., the circuit C of Example 2.2(ii) with L(b) = 0 and L(U) = d.)

3. Circuits subject to changing inputs

We will now describe the dynamic behuviour of a circuit C, i.e., what happens
after a change of the values at some ‘input ports’. This means that Co, Cd are
modified. Since the circuit may have memory capacity (internal states), as is the
case, e.g., in the Muller C-circuit (see Section 4), the ‘old’ labeling has to be taken
into account during such a modification. However, combining the modification of
the inputs with the old labeling will, in general, result in an incorrect labeling. To
describe these transformations of incorrectly labeled circuits we use a reduction
system which closely resembles and is based on the proof system RCL in Section
2. The objective is that this reduction system enables us to ‘reduce’ the circuit,
starting from a possibly incorrect labeling and, via possibly incorrect intermediate
labelings, to a ‘stable’ final labeling, which is then the result of the input

J.A. Bergstra, J. W. Klop / A proof rule for restoring logic circuits 169

modification:

(C,L)j(C,L’)j(C,L”)j “’ j(C,Ltina().

We will assume that after an input modification the old labeling L lingers on in
weakened form, that is, as L-. First we define the reduction system.

3.1. Definition. Consider the class of labeled circuits (C, L) where C is fixed and
L is arbitrary (and possibly incorrect). On this class of labelings of C a relation
‘ 4 ‘, called reduction, will be defined as follows.

First we defined in (l), (2), (3) below the reduction relation on labeled
subcircuits (C’, L’) of (C, ~5). Such (C’, L’) as in the left-hand sides of (l), (2), (3)
will be called redexes, and may be conceived as ‘elementary’ parts which are
candidates for reduction.

(1) Input reduction rules

QDi4k-L (i = O,l),

diddd (i = 0,l).

(2) Switch reduction rules

T&+3-L (i = 0,l)

&Z-j- (i = 0,l)

-L--L (i = 0,l)
i

li-

al
(i = 0,l)

1 i
-k

1

(3) Restoring logic reduction rule. Let (C’, L’) be a correctly labeled subcircuit.
(So r is given as in Definition 2.3.) Suppose L’ # r. Then

(C’, L’) + (C’, q.

(4) Subcircuit rule. If (C’, L’) G (C, L) and (C’, L’) + (C’, L”), then

(c, L) + (c, L[L”/L’]).

Here L[L”/L’] is L where L’ is replaced by L”, i.e.,

3.2. Notation. (1) The transitive reflexive closure of ‘ + ’ will be denoted by ‘ --)) ‘.
(2) If (C, L) + (C, L’), we will say: (C, L) reduces in one step to (C, L’). For

brevity we will sometimes write L --) L’.

170 J.A. Bergstra, J. W. Klop / A proof rule for restoring logic circuits

3.3. Definition. (i) A labeled circuit (C, L) is in normalform iff no reduction rule
applies to it. (C, L) has a normal form iff (C, L) + (C, ~5’) for some L’ such that
(C, L’) is in normal form.

(ii) (C, L) is unambiguous if it has precisely one normal form.
(iii) (C, L) is stable if it is correct and in normal form.
(iv) (C, L) is inconsistent if it has an incorrect normal form.

We will now consider whether it is possible to reduce a labeled circuit to a
normal form, and whether such a normal form is unique. We start with a simple
observation.

3.4. Proposition. Every labeled circuit (C, L) has a normal form. Moreover, every
reduction of (C, L) must end in a normal form.

Proof. In every reduction step the number of occurrences of QD,d increases. (In the
restoring logic reduction rule, this is so because we required there L’ + r.)
Furthermore, occurrences of Q and d are permanent. Since W(C) is finite, the
proposition follow5. Cl

3.5. Lemma. Let (C, LO) be a consistent labeled circuit (not necessarily correct), and
suppose that (C, L,) + (C, L,) and (C, L,) + (C, L,).

Then there is a labeling L, such that (C, L;) +B (C, L3) for i = 1, 2.

WV 43)
CC? Jx

(CT L3)
f(CY 4)

Proof. We will distinguish redexes of type (l), (2) or (3) according to the rules in
Definition 3.1.

If the two redexes (Ri, Li) G (C, L,), which are reduced in the steps (C, L,) -+
(CT Li) ti = 192)~ are disjoint (in an obvious sense), then the statement of the
lemma is evidently true. Likewise if (R,, L,) and (R,, L2) are identical (as
subcircuit occurrences). Otherwise, the following cases arise.

Case 1. The two redexes are both (1)-redexes. This can only be the case if they
are disjoint or identical.

Case 2. (R,, L,) is a (l)-redex and (R,, L,) is a (2)-redex. E.g.,

0

T

Then the common reduct is p) m

1 -3F

7

1
A case as, e.g.,

OyY 11
cannot arise, since (C, L,) is consistent. For, this

L-
R2

J.A. Bergstra, J. W. Klop / A proof rule for restoring logic circuits 171

subcircuit reduces either to

and during every further reduction this configuration stays the same. In particu-
lar, any normal form of (C, L,) is incorrect, whence (C, L,) is inconsistent.

The other cases of the type (l)-redex vs. (2)-redex are analogous.
Case 3. (R,, L,) and (R,, L,) are both (2)-redexes.
A typical example is given below:

;RIT

which leads to the common reduct consisting of the same circuit with 0 replaced

by 1.
Cases like

cannot occur since such a configuration reduces to a permanent (i.e., in every
further reduction) incorrect labeled circuit (viz. the same subcircuit where 1 is
replaced by either Q or 1).

The other cases of this type, (2) vs. (2), are similar.
Case 4. (2) vs. (3).
(a) If the (2)-redex (R,, L,) is part of the (3)-redex (R2, L2), there is no

problem, due to the correctness requirement in a (3)-redex.
(b) Otherwise, we have, e.g., the situation given by the following diagram:

‘R,------ _ R2

-
Several subcases arise according to the values of a and L2(a). We will treat some
typical subcases. The most interesting case of this proof is subcase (iii).

(i) i = 0 and G(a) = 0: the circuit is inconsistent.
(ii) i = 0 and G(a) = 1 or 1: this cannot happen, since in a correct labeling (in

casu L,) values can only be restored. -
(iii) i = 0 and &(a) = 0.

Claim. The common reduct is

172 J.A. Bergstra, J. W. Klop / A proof rule for restoring logic circuits

Proof of the claim. Let (RT, Lt) be the subcircuit of (R,, L,) obtained by
removing a and the switches connected to a; Lz is L, restricted to RT. Clearly,
(Rz, g) is also a (3)-redex, that is, L; is correct. Reducing this (3)-redex yields
(RT, Lz). Adding a, the switches connected to u and the labeling a0 again, results -
in (R,, LJ, because in the proof L, !- & the value a0 cannot be used, and also
switches S(6, c; (-)a) cannot appear in the proof L, I- &.

To reach the common reduct we only have to replace in (R,, G) the value a0
by ad.

The remaining cases for this type (2) vs. (3), are similar.
Case 5. (1) vs. (3).
If the (l)-redex (R,, L,) is a part of the (3)-redex (R,, L,), there is no

problem, since L, is correct. Otherwise we have a situation like the one given in
the diagram below:

and this is analogous to subcase (iii) above.
Case 6. (3) vs. (3).
This (last) case is easy: let (R,, L,) and (R,, L2) be both (3)-redexes. Let

(R, U R,, L, U L,) denote the result of combining the two subcircuits into one
subcircuit. Clearly, L, U L, is again correct. Then (R, U R,, L, U L,) is a com- -
mon reduct of (R, U R,, L, U L2) and (R, U R,, L, U G). 0

3.6. Remark. Proposition 3.4 can be rephrased, in a well-known terminology, as
stating that the reduction ‘ + ’ has the Strong Normalization (SN) (or Strong
Termination) property. Lemma 3.5 says that ‘ -+ ’ is weakly confluent, or has the
weak Church-Rosser property (WCR).

Combining these two properties we have the following theorem.

3.7. Unique Evaluation Theorem. Let (C, L) be a consistent labeled circuit. Then
(C, L) is unambiguous. Moreover, every reduction of (C, L) terminates eventually in
the unique normal form.

Proof. A direct consequence of SN and WCR for ‘ + ‘, via ‘Newman’s Lemma’
(see, e.g., [2]). 0

3.8. Example. This example shows that an inconsistent (C, L) may have several
correct normal forms. Let C be the circuit given by the diagram at the top of page
173. Now let (C, L) be

(a, b, c, d, e) = (0, d, d, 0,0), a correct initial labeling.

J.A. Bergstra, J. W. Klop / A proof rule for restoring logic circuits 173

b d

I !

c e

a

I 0

Then (C, L-) is

(a, b, c, d, e) = (0, 1, 1, 0, 0), the weakened labeling.

Let (C’, L-) be

(a, b, c, d, e) = (1, 1, l,O, 0), change of input a.

(C’, L-) reduces to (a, 6, c, d, e) = (1, d, d, d, 0), a correct normal form. (Apply
the restoring logic reduction rule on the left ‘cycle’, followed by an application of
a switch reduction rule.) Likewise, (C’, L-) reduces to (a, b, c, d, e) =
(d, 1, Q, Q, Q) by applying the restoring logic rule first on the right ‘cycle’. Finally,
by a simultaneous application of this rule on both cycles, we obtain the incorrect
normal form (a, b, c, d, e) = (d, d, d, 0, 0).

3.9. Example. Let circuits ‘AND’ and ‘OR’ be defined as follows:

(the ‘ + ’ arrows denote input and output ports).
Let C be the circuit given by the following diagram:

Now (a, b, c, d) = (Q, d, 0, d) is a stable labeling. After weakening to (0, 1, 0, 1)
and simultaneously changing the inputs (a, b) to (d, Q), we obtain (d, 0, 0, l), an
incorrect normal form.

(If the inputs (a, b) are changed sequentially to (d, Q), the result is either
(d, 0, d, d) in case a is first changed, or (d, 0, Q, Q) in case b is first changed. Both
labelings are stable.)

3.10. Example. This example occurs in [l, Exercise 2.1, p. 46, solution on p. 521,
where it is asked to analyze the dynamic behavior. However, the circuit with the

174 J.A. Bergstra. J. W. Klop / A proof rule for restoring logic circuits

i----------------l
Fig. 4.

correct labeling as displayed in Fig. 4 is inconsistent after weakening and
changing the value of the input Q to 0. We then have the labeling as in the
diagram shown in Fig. 5. This labeling is an incorrect normal form. In [l, p. 521
an intuitive procedure is sketched to reach from this labeling a correct normal
form: take the value for yl, yz (i.e., 0, 1) and ‘compute further’ till stabilization
occurs. Then (y, yZ, zi, z2) will be (1, d, 0, 1). However, if zi, zz is taken as
starting point for this intuitive stabilization, then the result is (0, 0,&O). Our
reduction procedure does not suffer from this ambiguity, since the labeled circuit
in Fig. 5 is rejected as being inconsistent.

The essential difficulty of this circuit is already present in the subcircuit
indicated by the rectangle above, which was considered in Example 3.9.

We are now in a position to describe the effects of an input modification:
(1) Let circuit C be given with a correct labeling L.
(2) Weaken L to L-.
(3) Modify CQ, Cd. Results: a circuit C’ with C’Q, C’d. (Note: the underlying

circuit, i.e., C without specification of 0, Cd has of course remained the same in
C’.)

0 0
a

0

I-----
-O&------, Yl

0 0

I

1 I a
I
I Y2

I
L-------------- 1

Fig. 5.

J.A. Bergstra, J. W. Klop / A proof rule /or restoring logic circuits 175

(4) (C’, L-) is now an incorrectly labeled circuit, which is not in normal form.
If (C’, L-) is inconsistent, i.e., has an incorrect normal form, the circuit is
disqualified. Otherwise:

(5) Reduce (C’, L-) to the unique correct normal form (C’, L’).
In the next section we will apply the reduction system and the procedure

defined above to analyze the behaviour of the Muller C-circuit. We will close this
section with two definitions, for which we need the concept of an I/O-circuit. Up
to here, it was (deliberately) not specified for a circuit which channels where the
input and output channels. (In Appendix A we will deal with this question.) Let
us assume in advance that an I/O-circuit is defined. Then we have the following
definition.

3.11. Definition. (i) Let C be an I/O-circuit. C is called fully consistent if for every
possible assignment of values 0, d to the input channels and every correct labeling
L extending this input assignment, the resulting labeled circuit (C, L) is con-
sistent.

(ii) Let (C, L) be a correctly labeled I/O-circuit. Then (C, L) is fu& restoring
if it is consistent and the values of the output channels in the unique normal form
(C, L’) are 0 or d.

4. An example in detail: The Muller C-element

We will now apply the reduction system in Section 3 to derive the behavior of
the Muller C-circuit, as shown in the Introduction. The circuit has inputs a, b and
outputs c, d.

Fig. 6.

176 J.A. Bergstra, J. W. Klop / A proof rule for restoring logic circuits

Fig. 7.

(1) Start with (a, b) = (0, 0) and the correct labeling L, shown in the diagram
given by Fig. 6 (the value of f is arbitrary). Replace (a, b) by (0, d) after
weakening L, to L,, as in the diagram given by Fig. 7.

(2) The enclosed subcircuit (C’, L;) in Fig. 7 is correctly labeled. Using the
restoring logic rule (4) of Section 2 we prove:

$-# iQD

CO bd
mQ kd

dd aQD

Likewise we prove that all values in the subcircuit C’ are made restoring in L;.
Now the restoring logic reduction rule enables us to substitute these restored

values instead. This yields (C’, G). From this labeling we prove
gd bd

and
mQD aQD

fd nQ

thus arriving at a stable position L,.

(3) Now change (a, b) to, say, (d, d), after weakening L, to L; . Then we arrive
at the stable position L, in the diagram given by Fig. 8, without using this time
the restoring logic (reduction) rule. Note the non-restoring no.

Continuing this analysis we find the (expected) behavior of the Muller C-circuit

J.A. Bergstra, J. W. Klop / A proof rule for restoring logic circuits 177

al

ai
Fig. 8.

Fig. 9.

as in the transition diagram given by Fig. 9. Here the 4-tuples indicate the value
of (a, b, c, d). (The dashed lines denote a simultaneous change of the input values
a, 6.) Note that the circuit is fully restoring, i.e., the output values are always
restoring. Also the circuit is fully consistent. The circuit has six stable positions,
not taking into account the values of f and n which are irrelevant in some
labelings.

Appendix A. Inputs and outputs

For a circuit C we are interested in deciding which wires can serve as inputs
and which ones can serve as outputs. Already in the simple case of one switch

a

it is clear that the situation is not straightforward:
(i) if a is an input, then b is not,

178 J.A. Bergstra, J. W. Hop / A prooj rule /or restoring logic circuits

(ii) if b is an input, then a is not,
(iii) c is not an output.
Let (C, a, b) be a circuit C together with a specification of disjoint sets

a, b E W(C). Here a = a,,. . . ,a, and b = b,,. . . ,b,,,. Furthermore, we employ the
following notations.

A.l. Notations. (i) 22 is the set of correct (0, 1}-labelings of C.
(ii)f= (0, d}” is the set of n-tuples of restoring values 0, d (which will serve as

assignments to a = ui,. . . ,a,).
(iii) For L Eland (Y = (a(l),. . . , a(n)) EY we write L[a] to denote L relabeled

by (Y on a, that is

(L[a])(u;)=cu(i) (i=l,...,n), (L[a])(c)=L(c) ifcPu.

(iv) If L[a] is consistenr, it has a unique normal form which is denoted by
NF(L, a). Further, F(L, (Y) = NF(L, a)-. Note that F: L?X/+p (i.e., F(L, a)
is again correct).

Now we can state the definition of input and output ports.

A.2. Definition. Let (C, a, 6), bip,,8 be as described above. Suppose, for all L E 2,
a Ef:

(i) L[a] is consistent,
(ii) NF(L, a)(bi)~ (0, d} (j= l,..., m).

Then (C, II, 6) is called a restoring I/O-circuit with input ports a and output
ports b.

References

[l] Hopcroft, J.E. and J.D. Ullman, Introduction to Automata Theory Languages, and Computation
(Addison-Wesley, Reading, MA, 1979).

(21 Fop, J.W., Combinatory reduction systems, Mathematical Centre Tracts 127, Mathematisch
Centrum, Amsterdam, 1980.

[3] Kohavi, Z., Switching and Finite Automata Theory (McGraw-Hill, New York, 1970).
[4] Mead, C. and L. Conway, Introduction to VLSI Systems (Addison-Wesley, Reading, MA, 1980).
[5] Miller, R.E., Switching Theory Vol. 2 (Wiley, New York, 1965).
[6] Rem. M., Partially ordered computations, with applications to VLSI design, in: Proc. 4th

Advanced Course on Foundations of Computer Science, Part 2, Mathematical Centre Tracts 159
(Mathematisch Centrum, Amsterdam, 1983).

[7] Rem. M. and C. Mead, A notation for designing restoring logic circuitry in CMOS, in: C.L.
Seitz, ed., Proc. 2nd Caltech Conf. on VLSI, California (Institute of Technology, Pasadena, CA,
1981).

