
161 

A proof rule for restoring logic 
circuits 

J.A. Bergstra and J.W. Klop 
Department of Computer Science, Mathematical Centre, 1098 SJ Amsterdam, The Netherlandr 

Received 21 May 1983 

Abstract. An axiomatic semantics is given for restoring logic circuits, both statically and 
dynamically. As an example the Muller C-element is discussed in detail. It is shown that a 
consistent circuit reacts in an unambiguous way on new inputs. 

Keywords. Switching theory, Muller C-element, restoring logic, axiomatic semantics. 

J.A. Berg&a received his Ph.D. in mathematics in 1976 at the Univer- 
sity of Utrecht, The Netherlands. From 1976 to 1982 he was with the 
University of Leiden; since 1983 he is employed at the Mathematical 
Centre in Amsterdam. His main topics of interest are recursion theory, 
lambda calculus, abstract datatypes, program verification, concurrent 
process theory. 

J.W. Klop obtained his Ph.D. in 1980 at the University of Utrecht, The 
Netherlands, on a thesis about lambda calculus and term rewriting 
systems. Since 1980 he is employed at the Department of Computer 
Science of the Mathematical Centre in Amsterdam. His main topics of 
interest are lambda calculus, term rewriting systems, program verifica- 
tion, concurrency, process algebra. 

North-Holland 
INTEGRATION, the VLSI journal 1 (1983) 161-178 

0167-9260/83/%3.00 0 1983, Elsevier Science Publishers B.V. (North-Holland) 



162 J.A. Bergsrra, J. W. Klop / A proof rule for resrorinR Ionic circuits 

Introduction 

A perfect switch (in the notation of Rem [6] and Rem and Mead [7]) is a logic 
component connecting three wires: 

S (a,b;c) S(a,b;-cl 

The switch S(a, b; c) connects a and b if the voltage of c is high (1) and 
disconnects a and b if c’s voltage is low (0); the switch S( a, b; -c) connects u 
and b if c has voltage 0 and disconnects them if c has voltage 1. 

A circuit is a configuration of wires and switches, with several wires connected 
to constants 0 or 1. An interesting example is the Muller Z-circuit (see Fig. 1) (see 
[6] for a discussion). This circuit has a memory capacity of one bit. 

In stable states the wires of a circuit will have voltages 0 and 1. Some wires 
then, preferably including the ones that are used as outputs, will be restoring in 
the sense that the circuit keeps their voltages firmly at 0 or 1. 

To decide which wires are indeed restoring is very much a matter of the 
physical implementation of the circuit. Further, the voltages of certain wires may 
be changed thus invoking a process of change throughout the circuit. Describing 
this is principally a matter of physics as well. Yet, in the words of Mead and 
Conway [4, p. 681: “It is important to simplify our mental model of integrated 
circuitry, so as to more quickly and easily analyze or explain the function of a 
given circuit, and more easily visualize and invent new circuit structures without 
drifting too far away from physically realizable and workable solutions.” 

The present aim is to find an axiomatic semantics of circuits by providing proof 
rules about restoring logic and circuit dynamics. Viewed mathematically, the rules 
are plausible, and a semantical theory about much more complex circuits can 

Fig. 1. 
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probably be based on them (that theory must describe clocks, timing and 
communication). 

In [l, p. 461 an exercise (namely (2.1)) about analyzing a circuit occurs. The 
analysis made there [l, p. 521 is inconsistent with ours; the proof rules we offer 
reject that circuit as being inconsistent. 

Of course, a typical question might now be posed. For which operational 
semantics are these axioms and rules sound and complete? We have not the 
slightest idea on how to find a plausible semantics underlying these proof rules, 
apart from systems of partial differential equations that defeat any analysis. 

It must be mentioned that classical switching theory (see, e.g., [5] or [3, Chapter 
111) contains much information about similar types of circuits (viz. asynchronous 
sequential circuits). Our axiomatic semantics, however, might be new. 

This work has been inspired by reading Rem’s [6] paper. There Rem explores 
formal semantics for circuits, useful as a basis for a theory of silicon compilation. 

The structure of the remainder of this paper is as follows: Section 1 gives 
preliminary definitions, in Section 2 a proof system called Restoring Circuit Logic 
is presented, Section 3 describes circuits subject to changing inputs, in Section 4 
we apply the reduction system of Section 3 to derive the behavior of the Muller 
C-circuit, and Appendix A deals with input and output wires of a circuit. 

1. Preliminary definitions 

In this section we will give the basic definitions of circuits, subcircuits and 
labeled circuits. Our definition of ‘circuit’ is (adapted) from [6]. 

1.1. Definition. A circuit C is 
(i) a graph (consisting of a set of nodes {a, b, c,. . .} and some arcs between 

the nodes) such that 
(ii) each arc is labeled by ‘a’ or ‘ - a’ for some node named a, 

(iii) together with a specification of two disjoint subjects CQ, Cd of the set of 
nodes. 

1.2. Example 

(i) a* b l b (iii) aQ -c b 

(ii) a0 
oa 

C* 
-), - " 

(iv) l l l eacmb& 

a b cf d e b fal 

In Example 1.2(ii), (iii), (iv) the nodes in CQ are designated by writing 8 at that 
place, likewise for Cd. Note that the circuit graphs may be disconnected and may 
have multiple arcs between a pair of nodes. 

1.3. Notation. (1) Henceforth the nodes of circuit C will be called wires; they form 
the set W(C). The arcs will be called switches; S(C) is the set of switches. A 
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switch between a, b E W(C), labeled by c E W(C), is named S( a, b; c). Likewise 
S( a, b; -c) denotes the switch between a, b labeled by - c. 

(It will be clear from the sequel that circuits containing more than one switch 
S(a, b; c) for fixed a, 6, c are redundant. That is, we may assume that for each 
a, b, c E W(C) there is at most one S( a, b; c). Likewise for S( a, b; - c).) 

Note that S( a, 6; c) and S( b, a; c) denote the same switch. 
(2) To conform more to our intuitions, we will (in diagrams) not represent 

circuits as graphs but as networks where the wires are indeed wires and where, as 
in [6], switches are denoted as follows: 

,S(a, b; c) is ---&& 
a and S(a, b; -c) is & a 

1.4. Example. The circuits of Example 1.2 are represented by the diagrams of Fig. 
2. 

1.5. Definition. C’ is called a subcircuit of C, notation: C’ G C, iff 
(i) W( C’) G W(C) and S( C’) 5 S(C), 

(ii) S(a, b; (-)c) E S(C’) = a, 6, c E W( C’) (every switch in the subcircuit C’ 
is supported by wires in C’), 

(iii) C’Q c CO n W( C’) and C’d c Cd (7 W( C’). 

1.6. Example. In the NOR-circuit of Fig. 2(iv) the heavily drawn part (see Fig. 3) 
consisting of {a, c, e,f}, { S(e,f; a)} is a subcircuit. (Note that it contains two 
separate parts.) Furthermore, C’Q = 8 and C’d = { c}, if C’ is the subcircuit. 

(i) S (a,b;b) 

b 

(ii) S(a,a;a) 

@' 
I I I 

(iii) m m d , 

S(c,d;-b) 

Fig. 2. 

(iv) NOR-Circuit: 
1 

c 
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Fig. 3. 

1.7. Definition. Labeled circuits. 
(i) The set of labels is {Q, I, 0, 1) . Here QD and d are called ‘ restoring 0’ and 

‘restoring 1’. 
(ii) A labeling of a circuit C is a map L : W(C) -+ (8, ll, 0, l}. A labeled circuit 

C is a pair (C, L) where L is a labeling of C. 
(iii) Let (C, L) be a labeled circuit. The weakening of L, written L-, is the 

labeling defined by 

L-(a) = 
i 

0 ifL(a)=QDorL(a)=O, 

1 ifL(a)=ll orL(a)=l. 

(iv) (C’, L’) is a labeled subcircuit of the labeled circuit (C, L) iff C’ G C and 
L’ = L r S( C’) (L restricted to S( C’)). 

(v) A labeling L of the circuit C is correct iff 

(1) L-(a) = ( 0 forallaECQ, 
1 for all a E Cd ; 

(2) 
for every S(a, b; c) E S(C): 

for every S( a, b; -c) E S( C 

L-(c) = 1 3 L-(a) = L-(b), 

): L-(c)=0 * L-(a)=L-(b). 
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1.8. Example 

(a) (b) 
Example 1.8(a) exhibits a correct labeling, while Example 1.8(b) does not. 

2. Restoring logic circuits 

We shall now present a proof system called RCL (for Restoring Circuit Logic) 
which is designed to prove statements of the form 

(likewise for ad). Often the subscript RCL will be omitted. Here it is important 
that L is required to be a correct labeling of the circuit C under consideration. 

The proof system RCL will be used to derive, from a given correct labeling L of 
C, a stable labeling (as given in Definition 3.3). 

The system RCL is built as a ‘natural deduction’ proof system and has the 
following axioms and rules: 

(1) A xioms 
aQ ifaECQ, ad if a E Cd 

(2) Switch rules 

ad 
bd 

cd S(a, b; c) aQ bQ cd S(a, b; c) 

ad CO 
bd 

S(a, b; -c) 
aQ cQ 

60 
S(a, 6; -c) 

(3) Assumption rules 

al a0 
-* -* 
ad aQ 

This rule enables us to assume that al will be 
is marked by ‘ * ‘, and in the next rule we 
assumption. 

(4) Restoring Iogic rule 

if CL* 
al 

v 

IS a proof, then 

P 

al 

strengthened to ad. This assumption 
have the means of discharging the 

$7 v is a proof 

P 

all 
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(and likewise with 1, I replaced by 0,O). 
Here P must be nonempty; that is, the two displayed occurrences of ‘ad’ may 

not coincide. Further, it is allowed to discharge (i.e., crossing out ‘ * ‘) all 
occurrences of $ * simultaneously. 

A proof P is assumption rule free if it contains no undischarged ‘ *‘. If P has the 
form, say, 

a0 bf cl d0 ei d0 a0 

where aQ, bd are axioms and P is assumption rule free, we may write 

cl, do, ed t-fQ. 

Finally, if L is a correct labeling such that L(c) = 1, L(d) = 0, L(e) = d , we may 
write 

Ll-fQ. 
To ease some formulations, we will also write L kpi if L(p) = i, i E {Q, 1, 0, 1). 

2.1. Remark. Note that it is not possible to give ‘redundant’ proofs; e.g. 2 is not 

allowed. 

2.2. Examples 1 
a 

3 

(i> ‘NOT’ is the circuit b 

+ 

c 
s2 

d 
0 

Now 
ad bQ 

cd 
s1 hence 60 t-cd. 

Likewise bd k cQ. 

(ii) Let C be lm l? and let L( 6) = 1; so L is correct. Now 

bl 
@# ad 

bd * ad hence bd 
bl bd . 

Therefore bl I- bd. 

(iii) Let C be and let L(c) = L(d) = 1. Then 

ad &r 
hence dl t- dd . 

cd bd 
dd 
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(iv) Let C be 

Then cl, el I- ed, cd, dd. E.g., 

dd ad 

cd 

dd bd 
ed 

2.3. Remark. Note that the proof system RCL only restores values 0,l. It is not 
possible to change values 0 to d or 1 to 0. (In the next section, however, this will 
be possible.) 

2.4. Definition. Let (C, L) be a correctly labeled circuit. Then the RCL-closure of 
L, denoted L, is defined by 

LRl--ai 0 L(u)=i foralla~W(C)andi~(O,d,O,l}. 

Since L is correct, L is uniquely determined. (For, in (C, L) some of the a0, bl 
in (C, L) are ‘strengthened’ to ~0, bd; values do not change sign.) 

2.5. Definition. (C, L) is an everywhere restoring labeled circuit if L is correct and 
L: W(C) + {Q, d). 

Note that if (C, L) is everywhere restoring, then L = L. (The reverse is not 
true: consider, e.g., the circuit C of Example 2.2(ii) with L(b) = 0 and L(U) = d.) 

3. Circuits subject to changing inputs 

We will now describe the dynamic behuviour of a circuit C, i.e., what happens 
after a change of the values at some ‘input ports’. This means that Co, Cd are 
modified. Since the circuit may have memory capacity (internal states), as is the 
case, e.g., in the Muller C-circuit (see Section 4), the ‘old’ labeling has to be taken 
into account during such a modification. However, combining the modification of 
the inputs with the old labeling will, in general, result in an incorrect labeling. To 
describe these transformations of incorrectly labeled circuits we use a reduction 
system which closely resembles and is based on the proof system RCL in Section 
2. The objective is that this reduction system enables us to ‘reduce’ the circuit, 
starting from a possibly incorrect labeling and, via possibly incorrect intermediate 
labelings, to a ‘stable’ final labeling, which is then the result of the input 
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modification: 

(C,L)j(C,L’)j(C,L”)j “’ j(C,Ltina(). 

We will assume that after an input modification the old labeling L lingers on in 
weakened form, that is, as L-. First we define the reduction system. 

3.1. Definition. Consider the class of labeled circuits (C, L) where C is fixed and 
L is arbitrary (and possibly incorrect). On this class of labelings of C a relation 
‘ 4 ‘, called reduction, will be defined as follows. 

First we defined in (l), (2), (3) below the reduction relation on labeled 
subcircuits (C’, L’) of (C, ~5). Such (C’, L’) as in the left-hand sides of (l), (2), (3) 
will be called redexes, and may be conceived as ‘elementary’ parts which are 
candidates for reduction. 

(1) Input reduction rules 

QDi4k-L (i = O,l), 

diddd (i = 0,l). 

(2) Switch reduction rules 

T&+3-L (i = 0,l) 

&Z-j- (i = 0,l) 

-L--L (i = 0,l) 
i 

li- 

al 
(i = 0,l) 

1 i 
-k 

1 

(3) Restoring logic reduction rule. Let (C’, L’) be a correctly labeled subcircuit. 
(So r is given as in Definition 2.3.) Suppose L’ # r. Then 

(C’, L’) + (C’, q. 

(4) Subcircuit rule. If (C’, L’) G (C, L) and (C’, L’) + (C’, L”), then 

(c, L) + (c, L[L”/L’]). 

Here L[L”/L’] is L where L’ is replaced by L”, i.e., 

3.2. Notation. (1) The transitive reflexive closure of ‘ + ’ will be denoted by ‘ --)) ‘. 
(2) If (C, L) + (C, L’), we will say: (C, L) reduces in one step to (C, L’). For 

brevity we will sometimes write L --) L’. 
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3.3. Definition. (i) A labeled circuit (C, L) is in normalform iff no reduction rule 
applies to it. (C, L) has a normal form iff (C, L) + (C, ~5’) for some L’ such that 
(C, L’) is in normal form. 

(ii) (C, L) is unambiguous if it has precisely one normal form. 
(iii) (C, L) is stable if it is correct and in normal form. 
(iv) (C, L) is inconsistent if it has an incorrect normal form. 

We will now consider whether it is possible to reduce a labeled circuit to a 
normal form, and whether such a normal form is unique. We start with a simple 
observation. 

3.4. Proposition. Every labeled circuit (C, L) has a normal form. Moreover, every 
reduction of (C, L) must end in a normal form. 

Proof. In every reduction step the number of occurrences of QD,d increases. (In the 
restoring logic reduction rule, this is so because we required there L’ + r.) 
Furthermore, occurrences of Q and d are permanent. Since W(C) is finite, the 
proposition follow5. Cl 

3.5. Lemma. Let (C, LO) be a consistent labeled circuit (not necessarily correct), and 
suppose that (C, L,) + (C, L,) and (C, L,) + (C, L,). 

Then there is a labeling L, such that (C, L;) +B (C, L3) for i = 1, 2. 

WV 43) 
CC? Jx 

(CT L3) 
f(CY 4) 

Proof. We will distinguish redexes of type (l), (2) or (3) according to the rules in 
Definition 3.1. 

If the two redexes ( Ri, Li) G (C, L,), which are reduced in the steps (C, L,) -+ 
(CT Li) ti = 192)~ are disjoint (in an obvious sense), then the statement of the 
lemma is evidently true. Likewise if (R,, L,) and (R,, L2) are identical (as 
subcircuit occurrences). Otherwise, the following cases arise. 

Case 1. The two redexes are both (1)-redexes. This can only be the case if they 
are disjoint or identical. 

Case 2. (R,, L,) is a (l)-redex and (R,, L,) is a (2)-redex. E.g., 

0 

T 

Then the common reduct is p) m 

1 -3F 

7 

1 
A case as, e.g., 

OyY 11 
cannot arise, since (C, L,) is consistent. For, this 

L- 
R2 
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subcircuit reduces either to 

and during every further reduction this configuration stays the same. In particu- 
lar, any normal form of (C, L,) is incorrect, whence (C, L,) is inconsistent. 

The other cases of the type (l)-redex vs. (2)-redex are analogous. 
Case 3. (R,, L,) and (R,, L,) are both (2)-redexes. 
A typical example is given below: 

;RIT 

which leads to the common reduct consisting of the same circuit with 0 replaced 

by 1. 
Cases like 

cannot occur since such a configuration reduces to a permanent (i.e., in every 
further reduction) incorrect labeled circuit (viz. the same subcircuit where 1 is 
replaced by either Q or 1). 

The other cases of this type, (2) vs. (2), are similar. 
Case 4. (2) vs. (3). 
(a) If the (2)-redex (R,, L,) is part of the (3)-redex (R2, L2), there is no 

problem, due to the correctness requirement in a (3)-redex. 
(b) Otherwise, we have, e.g., the situation given by the following diagram: 

‘R,------ _ R2 

- 
Several subcases arise according to the values of a and L2( a). We will treat some 
typical subcases. The most interesting case of this proof is subcase (iii). 

(i) i = 0 and G(a) = 0: the circuit is inconsistent. 
(ii) i = 0 and G(a) = 1 or 1: this cannot happen, since in a correct labeling (in 

casu L,) values can only be restored. - 
(iii) i = 0 and &(a) = 0. 

Claim. The common reduct is 
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Proof of the claim. Let (RT, Lt) be the subcircuit of (R,, L,) obtained by 
removing a and the switches connected to a; Lz is L, restricted to RT. Clearly, 
(Rz, g) is also a (3)-redex, that is, L; is correct. Reducing this (3)-redex yields 
(RT, Lz). Adding a, the switches connected to u and the labeling a0 again, results - 
in (R,, LJ, because in the proof L, !- & the value a0 cannot be used, and also 
switches S( 6, c; ( -)a) cannot appear in the proof L, I- &. 

To reach the common reduct we only have to replace in (R,, G) the value a0 
by ad. 

The remaining cases for this type (2) vs. (3), are similar. 
Case 5. (1) vs. (3). 
If the (l)-redex (R,, L,) is a part of the (3)-redex (R,, L,), there is no 

problem, since L, is correct. Otherwise we have a situation like the one given in 
the diagram below: 

and this is analogous to subcase (iii) above. 
Case 6. (3) vs. (3). 
This (last) case is easy: let (R,, L,) and (R,, L2) be both (3)-redexes. Let 

(R, U R,, L, U L,) denote the result of combining the two subcircuits into one 
subcircuit. Clearly, L, U L, is again correct. Then (R, U R,, L, U L,) is a com- - 
mon reduct of (R, U R,, L, U L2) and (R, U R,, L, U G). 0 

3.6. Remark. Proposition 3.4 can be rephrased, in a well-known terminology, as 
stating that the reduction ‘ + ’ has the Strong Normalization (SN) (or Strong 
Termination) property. Lemma 3.5 says that ‘ -+ ’ is weakly confluent, or has the 
weak Church-Rosser property (WCR). 

Combining these two properties we have the following theorem. 

3.7. Unique Evaluation Theorem. Let (C, L) be a consistent labeled circuit. Then 
(C, L) is unambiguous. Moreover, every reduction of (C, L) terminates eventually in 
the unique normal form. 

Proof. A direct consequence of SN and WCR for ‘ + ‘, via ‘Newman’s Lemma’ 
(see, e.g., [2]). 0 

3.8. Example. This example shows that an inconsistent (C, L) may have several 
correct normal forms. Let C be the circuit given by the diagram at the top of page 
173. Now let (C, L) be 

(a, b, c, d, e) = (0, d, d, 0,0), a correct initial labeling. 
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b d 

I !  

c e 

a 

I 0 

Then (C, L-) is 

(a, b, c, d, e) = (0, 1, 1, 0, 0), the weakened labeling. 

Let (C’, L-) be 

(a, b, c, d, e) = (1, 1, l,O, 0), change of input a. 

(C’, L-) reduces to (a, 6, c, d, e) = (1, d, d, d, 0), a correct normal form. (Apply 
the restoring logic reduction rule on the left ‘cycle’, followed by an application of 
a switch reduction rule.) Likewise, (C’, L-) reduces to (a, b, c, d, e) = 
(d, 1, Q, Q, Q) by applying the restoring logic rule first on the right ‘cycle’. Finally, 
by a simultaneous application of this rule on both cycles, we obtain the incorrect 
normal form (a, b, c, d, e) = (d, d, d, 0, 0). 

3.9. Example. Let circuits ‘AND’ and ‘OR’ be defined as follows: 

(the ‘ + ’ arrows denote input and output ports). 
Let C be the circuit given by the following diagram: 

Now (a, b, c, d) = (Q, d, 0, d) is a stable labeling. After weakening to (0, 1, 0, 1) 
and simultaneously changing the inputs (a, b) to (d, Q), we obtain (d, 0, 0, l), an 
incorrect normal form. 

(If the inputs (a, b) are changed sequentially to (d, Q), the result is either 
(d, 0, d, d) in case a is first changed, or (d, 0, Q, Q) in case b is first changed. Both 
labelings are stable.) 

3.10. Example. This example occurs in [l, Exercise 2.1, p. 46, solution on p. 521, 
where it is asked to analyze the dynamic behavior. However, the circuit with the 
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i----------------l 
Fig. 4. 

correct labeling as displayed in Fig. 4 is inconsistent after weakening and 
changing the value of the input Q to 0. We then have the labeling as in the 
diagram shown in Fig. 5. This labeling is an incorrect normal form. In [l, p. 521 
an intuitive procedure is sketched to reach from this labeling a correct normal 
form: take the value for yl, yz (i.e., 0, 1) and ‘compute further’ till stabilization 
occurs. Then (y, yZ, zi, z2) will be (1, d, 0, 1). However, if zi, zz is taken as 
starting point for this intuitive stabilization, then the result is (0, 0,&O). Our 
reduction procedure does not suffer from this ambiguity, since the labeled circuit 
in Fig. 5 is rejected as being inconsistent. 

The essential difficulty of this circuit is already present in the subcircuit 
indicated by the rectangle above, which was considered in Example 3.9. 

We are now in a position to describe the effects of an input modification: 
(1) Let circuit C be given with a correct labeling L. 
(2) Weaken L to L-. 
(3) Modify CQ, Cd. Results: a circuit C’ with C’Q, C’d. (Note: the underlying 

circuit, i.e., C without specification of 0, Cd has of course remained the same in 
C’.) 

0 0 
a 

0 

I----- 
-O&------, Yl 

0 0 

I 

1 I a 
I 
I Y2 

I 
L-------------- 1 

Fig. 5. 
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(4) (C’, L-) is now an incorrectly labeled circuit, which is not in normal form. 
If (C’, L-) is inconsistent, i.e., has an incorrect normal form, the circuit is 
disqualified. Otherwise: 

(5) Reduce (C’, L-) to the unique correct normal form (C’, L’). 
In the next section we will apply the reduction system and the procedure 

defined above to analyze the behaviour of the Muller C-circuit. We will close this 
section with two definitions, for which we need the concept of an I/O-circuit. Up 
to here, it was (deliberately) not specified for a circuit which channels where the 
input and output channels. (In Appendix A we will deal with this question.) Let 
us assume in advance that an I/O-circuit is defined. Then we have the following 
definition. 

3.11. Definition. (i) Let C be an I/O-circuit. C is called fully consistent if for every 
possible assignment of values 0, d to the input channels and every correct labeling 
L extending this input assignment, the resulting labeled circuit (C, L) is con- 
sistent. 

(ii) Let (C, L) be a correctly labeled I/O-circuit. Then (C, L) is fu& restoring 
if it is consistent and the values of the output channels in the unique normal form 
(C, L’) are 0 or d. 

4. An example in detail: The Muller C-element 

We will now apply the reduction system in Section 3 to derive the behavior of 
the Muller C-circuit, as shown in the Introduction. The circuit has inputs a, b and 
outputs c, d. 

Fig. 6. 
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Fig. 7. 

(1) Start with (a, b) = (0, 0) and the correct labeling L, shown in the diagram 
given by Fig. 6 (the value of f is arbitrary). Replace (a, b) by (0, d) after 
weakening L, to L,, as in the diagram given by Fig. 7. 

(2) The enclosed subcircuit (C’, L;) in Fig. 7 is correctly labeled. Using the 
restoring logic rule (4) of Section 2 we prove: 

$-# iQD 

CO bd 
mQ kd 

dd aQD 

Likewise we prove that all values in the subcircuit C’ are made restoring in L;. 
Now the restoring logic reduction rule enables us to substitute these restored 

values instead. This yields (C’, G). From this labeling we prove 
gd bd 

and 
mQD aQD 

fd nQ 

thus arriving at a stable position L,. 

(3) Now change (a, b) to, say, (d, d), after weakening L, to L; . Then we arrive 
at the stable position L, in the diagram given by Fig. 8, without using this time 
the restoring logic (reduction) rule. Note the non-restoring no. 

Continuing this analysis we find the (expected) behavior of the Muller C-circuit 
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al 

ai 
Fig. 8. 

Fig. 9. 

as in the transition diagram given by Fig. 9. Here the 4-tuples indicate the value 
of (a, b, c, d). (The dashed lines denote a simultaneous change of the input values 
a, 6.) Note that the circuit is fully restoring, i.e., the output values are always 
restoring. Also the circuit is fully consistent. The circuit has six stable positions, 
not taking into account the values of f and n which are irrelevant in some 
labelings. 

Appendix A. Inputs and outputs 

For a circuit C we are interested in deciding which wires can serve as inputs 
and which ones can serve as outputs. Already in the simple case of one switch 

a 

it is clear that the situation is not straightforward: 
(i) if a is an input, then b is not, 
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(ii) if b is an input, then a is not, 
(iii) c is not an output. 
Let (C, a, b) be a circuit C together with a specification of disjoint sets 

a, b E W(C). Here a = a,,. . . ,a, and b = b,,. . . ,b,,,. Furthermore, we employ the 
following notations. 

A.l. Notations. (i) 22 is the set of correct (0, 1}-labelings of C. 
(ii)f= (0, d}” is the set of n-tuples of restoring values 0, d (which will serve as 

assignments to a = ui,. . . ,a,). 
(iii) For L Eland (Y = (a(l),. . . , a( n)) EY we write L[ a] to denote L relabeled 

by (Y on a, that is 

(L[a])(u;)=cu(i) (i=l,...,n), (L[a])(c)=L(c) ifcPu. 

(iv) If L[a] is consistenr, it has a unique normal form which is denoted by 
NF( L, a). Further, F( L, (Y) = NF( L, a)-. Note that F: L?X/+p (i.e., F( L, a) 
is again correct). 

Now we can state the definition of input and output ports. 

A.2. Definition. Let (C, a, 6), bip,,8 be as described above. Suppose, for all L E 2, 
a Ef: 

(i) L[a] is consistent, 
(ii) NF(L, a)(bi)~ (0, d} (j= l,..., m). 

Then (C, II, 6) is called a restoring I/O-circuit with input ports a and output 
ports b. 
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