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Abstract—In search of a new way to attach organometallic pincer complexes to amines via an amide bond, the N-hydroxysuccin-
imide ester of 3,5-bis-[(dimethylamino)methyl]-4-(iodoplatino(II))-benzoic acid was synthesized. This compound reacts with
several primary amines to form the corresponding amides cleanly and in high yields. © 2002 Elsevier Science Ltd. All rights
reserved.

Since the first reports on the tridentate ligand [2,6-
(ECH2)2C6H3]− (E=NR2, SR, PR2), now often referred
to as ‘pincer’,1 a large variety of metals have been
incorporated into this chelating unit, providing novel
catalysts.2 These include catalytically active metals like
ruthenium, nickel and palladium, of which the resulting
organometallic materials can be applied in hydrogen
transfer reactions,3 Kharasch additions,4 and C�C cou-
pling reactions,5 respectively. Recently, it was demon-
strated that, via platinum incorporation, access can be
gained to organometallic SO2-sensors6 and biomarkers.7

Crucial to the latter application is the availability of
easy routes to the para-functionalization of the pincer,
eventually in the presence of the metal�carbon bond, in
order to perform chemistry beyond the restrictions
posed by the relatively small pincer.2 Immobilization of
the pincer on materials with complementary character-
istics seems a promising way to combine the advantages
of both. Two distinct approaches for the introduction
of metalated pincer moieties via para-functionalization
in or onto (organic) scaffolds are possible. Firstly, the
organometallic pincer moiety can be introduced by
metalation of the pincer ligand after its attachment.
This procedure, however, does not ensure a full metala-
tion of the product, especially in the case of a multi-lig-
and system (e.g. a metallodendrimer).8 Secondly,
metallated pincers can be introduced directly. This
route, however, is not always accessible because of the
limited stability of most organometallic fragments
under the (harsh) coupling conditions. Recently, we set

out to develop a gentle coupling chemistry for the
attachment of the pincer moiety, with retention of the
C�Pt bond, in order to attach it also to chemically less
inert molecules.

One of the most stable heteroatomic bonds known to
organic chemists is the amide bond. This bond is acces-
sible via several synthetic routes, one of the most gentle
being the activation of a carboxylic acid (i.e. synthesis
of an activated ester) followed by reaction with an
amine. Here, we describe the synthesis of such an
‘activated pincer’-Pt 1 and its coupling chemistry with
various amines.

Activated platinum-pincer 1 was synthesized according
to the route depicted in Scheme 1. Bromo-iodo-com-
pound 2 was obtained by a seven-step synthesis, start-
ing from 3,5-dimethylaniline in 36% overall yield.9

Platinum incorporation was accomplished via oxidative
addition of 2 to [Pt(p-tol)2(Et2S)]2 using Canty’s proce-
dure,10 which yielded 80% of 3 as a white, crystalline
solid. The carboxylic acid derivative 4 was obtained by
lithiation via exchange with the iodine and subsequent
quenching of the resulting bimetallic species with
CO2.11 In order to overcome halide-scrambling during
this reaction, the resulting solid was treated with NaI in
acetone, yielding 78% of 4 as a light yellow solid.11

Making use of N,N �-dicyclohexylcarbodiimide (DCC)
as a coupling agent, activated pincer 1 was synthesized
from 4 and N-hydroxysuccinimide (NHS) with pyridine
as a base to give a light yellow solid (98%).12,13 Spectro-
scopic evidence for the formation of 1 includes low field
shifts for the aromatic protons (7.58 ppm) compared to
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Scheme 1. Reagents and conditions : (i) [Pt(p-tol)2(Et2S)]2, C6H6, 2 h, reflux; (ii) (1) t-BuLi, THF, 2 min, −100°C, (2) CO2(g), 1 h,
rt, (3) NaI, acetone, 1 h, rt; (iii) NHS, DCC, pyridine, THF, 16 h, rt.

the parent compound 4 (7.51 ppm). To unequivocally
prove that 1 was obtained, crystals were grown by
slowly diffusing Et2O into a concentrated solution of 1
in methylene chloride. The crystal structure is shown in
Fig. 1.14–17

The scope and reactivity of 1 toward several types of
amines were investigated (Scheme 2).18 First, 1 was
reacted with n-butylamine by stirring both reagents in

CH2Cl2 at room temperature for 16 hours. After a basic
work-up, the product was precipitated from a CH2Cl2
solution with Et2O, yielding 88% of 5, without the need
for additional purification steps. The formation of 5
was clearly indicated by the appearance of NMR reso-
nances at �=7.48 ppm (br t, NHC(O)) and �=3.36
ppm (q, CH2NHC(O)) and the change of the chemical
shift of the aromatic protons from �=7.58 ppm to
�=7.36 ppm. Applying the same procedure, 6 was
synthesized using 4-methylbenzylamine as the amine.
After work-up 6 was obtained in an 80% yield as a
white solid (new NMR resonances at �=6.22 ppm (br
t, NHC(O)) and �=4.56 ppm (d, CH2NHC(O)), aro-
matic protons at �=7.28). N�-Boc-L-lysine was
attached to the platinum pincer moiety following the
procedure applied by Tampé and coworkers.19 First,
Boc-protected lysine was treated with chlorotrimethylsi-
lane to enhance its solubility in the reaction medium.
Next, 1 was added, the reaction mixture was stirred for
16 hours and after purification, including precipitation,
a white solid 7 was obtained in 56% yield (new NMR
resonances at �=7.58 ppm (br t, NHC(O)) and �=3.38
ppm (q, CH2NHC(O)), aromatic protons at �=7.38).
Activated pincer 1 was shown not to react with less
reactive amines like p-toluidine and diethylamine.

In conclusion, an organometallic active ester was syn-
thesized and was shown to cleanly react with primary
amines. The results are promising with regard to direct
incorporation of metalated (organometallic platinum)
pincer fragments in or onto large organic frameworks

Figure 1. Displacement ellipsoid plot (50% probability) of 1.
Hydrogen atoms have been omitted for clarity. Selected bond
lengths (A� ), angles and torsion angles (°): Pt1�C1 1.923(5),
Pt1�N1 2.108(4), Pt1�N2 2.102(4), Pt1�I1 2.7135(4), C4�C13
1.475(6), C13�O1 1.192(6), C13�O2 1.412(6), O2�N3 1.390(5),
I1�Pt1�C1 177.83(13), N1�Pt1�N2 162.89(15), C1�Pt1�
N1�C7 23.4(3), C1�Pt1�N2�C10 23.3(3), C3�C4�C13�O1
−9.4(7), C13�O2�N3�C14 74.0(5).
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Scheme 2. Reagents and conditions : (i) 1, CH2Cl2, 16 h, rt; (ii) (a) TMSCl, Et3N, CH2Cl2, 1 h, reflux; (b) 1, 16 h, rt.

(i.e. without stepwise ligand incorporation followed by
metalation). The reactivity of 1 towards other amines is
currently under investigation. Furthermore, the incor-
poration of metals other than platinum into the acti-
vated pincer ligand is being pursued.
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