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Abstract. A class of parallel incomplete factorization preconditionings
for the solution of large linear systems is investigated. The approach may
be regarded as a generalized domain decomposition method. Adjacent
subdomains have to communicate during the setting up of the precon-
ditioner, and during the application of the preconditioner. Overlap is
not necessary to achieve high performance. Fill-in levels are considered
in a global way. If necessary, the technique may be implemented as a
global re-ordering of the unknowns. Experimental results are reported
for two-dimensional problems.

1 Introduction

Krylov subspace based iterative methods are quite popular for solving large
sparse preconditioned linear systems

B�1Au = B�1b ; (1)

where Au = b denotes the original system, and B denotes a given preconditioning
matrix (see, e.g., [2, 10]). The main operations within Krylov subspace methods
are following:

1. sparse matrix{vector multiplication(s);
2. vector updates;
3. dot products;
4. setting up of the preconditioner;
5. application of the preconditioner: solve w from Bw = r, for given r.
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As in well-known, the handling of steps involving the preconditioner may
be problematic on parallel platforms. In general, there is a trade-o� between
high level parallelism and fast convergence [8], especially when B is taken as
an incomplete Choleky (IC) factorization of A [16, 17]. We shall not review all
commonly used techniques for achieving parallelism. We refer to [6, 9] for such
surveys. Till recently, most of works (if not all) on parallel global IC type methods
concentrate on �ll level zero preconditionings, for which the sparsity structure
of A is preserved (see, e.g., [11, 12, 19]). We propose two techniques that allow
high �ll levels in a global preconditioner. A key feature of our approach is that
adjacent subdomains have to exchange data during the computation of the pre-
conditioning matrix factors, and during the application of the preconditioner.
In contrast to classical domain decomposition methods, there is no overlap. A
special treatment of interior boundary layers (interfaces) allows to alleviate the
degradation of the convergence rate. In each situation, there exists an implicit
global (re-)ordering of the unknowns. Experimental results are reported for two-
dimensional problems, on a 16-processor SGI Origin 2000, showing that our
methods compare favourably with classical overlapping domain decomposition
methods.

2 Background

We consider the following self-adjoint second order two-dimensional elliptic PDE

� (p ux)x � (q uy)y = f(x; y) in 
 = (0; 1)� (0; 1)

u = 0 on � (2)

un = 0 on @
n� :

� denotes a nonempty part of the boundary @
 of 
. The coe�cients p and q are
positive, bounded and piecewise constant. We discretize (2) over a uniform rect-
angular grid of mesh size h in both directions with the �ve-point box integration
scheme [18]. The lexicographical ordering in the (x; y)-plane is used to number
the unknowns. The resulting system matrix A is a nonsingular block-tridiagonal,
irreducibly diagonally dominant, Stieltjes (that is, symmetric positive de�nite
and none of its o�diagonal entries is positive [22]) matrix. A popular method for
solving such a system is the preconditioned conjugate gradient (PCG) method,
combined with an incomplete factorization as preconditioning technique (see,
e.g., [1, 2, 10]). Fig. 1 shows an incomplete LPLt factorization algorithm, where

D = f (k; i) j lev(lk;i) > ` g

stands for the set of discarded �ll-in entries. The integer ` denotes a user speci�ed
maximal �ll level. With respect to the notation of Fig. 1, lev(lk;i) is de�ned as
following:

Initialization: lev(lk;i) :=

�
0 if lk;i 6= 0 or k = i
1 otherwise

Factorization: lev(lk;i) := min f lev(lk;i) ; lev(li;j) + lev(lk;j) + 1 g :



Compute P and L (B = LPLt with diag(L) = I)

Initialization phase

pi;i := ai;i , i = 1; 2; � � � ; n

li;j := ai;j , i = 2; 3; � � � ; n , j = 1; 2; � � � ; i� 1

Incomplete factorization process

do j = 1; 2; � � � ; n � 1

compute parameter �j

do i = j + 1; j + 2; � � � ; n

li;i := li;i �
l2
i;j

lj;j

li;j :=
li;j
lj;j

do k = i+ 1; i+ 2; � � � ; n

if (k; i) 62 D lk;i := lk;i � li;j lk;j

end do
end do

end do

Fig. 1. Standard incomplete factorization (IC).

Any gridpoint j that is connected, with respect to the graph of L, with two
gridpoints i and k such that j < i < k (say, li;j 6= 0 and lk;j 6= 0) gives rise to a
�ll-in entry (or a correction) in position (k; i) of L.

3 Parallel Incomplete Cholesky Preconditioners

3.1 Explicit Pseudo-Overlap

For simplicity we assume that the grid is divided into p stripes, as illustrated on
Fig. 2. We impose the following conditions:

(c1) for each subdomain the computation starts at the bottom layer gridpoints,
and �nishes at the top layer gridpoints. The actual computations start from
two sides: for the subdomains in the upper side of the physical domain, the
ow of computations is downward;

(c2) immediately after the computations at the bottom layer gridpoints of a sub-
domain (Pj , j 62 f0; p�1g) have been completed, the relevant corrections for
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Fig. 2. Decomposition of the grid into stripes,and assignment of subdomains to proces-
sors, for nx = 32, ny = 33 and p = 8. Arrows indicate the progressing direction of the
line numbering per subdomain. Numbers along the y-axis give an example of global
(line) ordering, which satisfy all the required conditions. Within each horizontal line,
gridpoints are ordered lexicographically.

the top layer gridpoints of the (appropriate) adjacent subdomain are packed
and sent (preferably by means of some nonblocking communication);

(c3) the numbering decreases or increases in the same way for neighbouring
points, for the bottom layer gridpoints and the top layer gridpoints of ad-
jacent subdomains. This facilitates the implementation (communication).
Each top layer gridpoint has \to know" where corrections come from.

De�nition 1. Given that communication only involves the gridpoints in the bot-
tom and top layer, the union of adjacent layers is referred to as the pseudo-
overlapping region (or simply the pseudo-overlap). Equivalently, if Pr has to
send data to Ps during the incomplete factorization process, we will say that Ps

is pseudo-overlapped by Pr.

The rate of convergence of a parallel IC(0), executed under the conditions
as described above, will degrade as the number of subdomains increases (p > 2



for stripes type partitionings [3, 15], and p > 4 for more general partitionings
[8, 23, 24]; see also [11, 12, 19]). In order to explain why this occurs, we make,
in Fig. 3, a zoom of an interface between two adjacent subdomains. We use a
stencil graph notation [13]: a diagonal entry ai;i is represented by circle number
i; the edge fi; jg (here horizontal and vertical lines) corresponds to a nonzero
o�diagonal entry ai;j . Oblique line represent (rejected) level-1 �ll-in entries that
are not signi�cantly di�erent from the case of p = 1. Thick lines (the arcs) are the
(neglected) level-1 �ll-in entries that would not arise if a global natural ordering
(or some other equivalent ordering) were used. Such level-1 �ll-in entries are
responsible for the deterioration of the convergence. For IC(0), rejected level-1
�ll entries determine the remainder matrix R = B � A. In the terminology of
Doi and Lichnewsky [4, 5], the bottom layer gridpoints of Ps+1 (see gridpoints
marked with ? in Fig. 3), which induce the additional level-1 �ll entries, are
called incompatible nodes.
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Fig. 3. Part of graph of matrix A assigned to two adjacent subdomains (Ps and Ps+1). Oblique
lines and thick lines are (rejected) level 1 �ll-in entries.

A way to improve the performance consists in accepting enough �ll-in entries
generated by the parallelization strategy: increase both the pseudo-overlap width
($ = h; 2h; 3h; : : :) and the �ll level (`$ � 0; 1; 2; : : :) in the pseudo-overlapping
region(s).

De�nition 2. We denote by ParIC(`;$; `$) any standard IC(`) combined with
the parallelization strategy as described above. This reads parallel IC with inte-
rior �ll level `, pseudo-overlap width $, and pseudo-overlap �ll level `$. In the
speci�cation of $, k will stand for kh, in order to include variable mesh size
problems and (graphs of) matrices that do not stem from discretized PDEs.



3.2 Implicit Pseudo-Overlap

The parallelization technique discussed so far may be rather tedious to ap-
ply, when some subdomains have a high number of neighbours and the grid is
not well structured. The alternative method, with an ordering induced pseudo-
overlapping strategy, that we shall describe now may be easily used to tackle
intricate geometries and partitionings.

For the purposes of our exposition, let us think of each small (grid) square
of Fig. 2 as a �nite element, and assume that the �nite elements have been
partitioned into p subdomains by means of some automatic mesh partitioning
algorithm [7]. Then, in each subdomain, the (local) unknowns are re-numbered
class by class, consecutively, as following:

1. class 1: all interior gridpoints are numbered (�rstly);

2. class 2: next follow all gridpoints, if any, that belong to two subdomains;

3. class 3: next follow all gridpoints, if any, that belong to three subdomains;

4. etc : : :

In doing so, we obtain a (generalization of a) reverse variant of an ordering
discussed in [11] (see also [19]). A global renumbering of the gridpoints may
be achieved in a similar way. The computation and the exchange of data is
performed, class by class, as follows:

1. compute class 1 gridpoints;

2. exchange data for class 2 gridpoints updates; compute class 2 gridpoints;

3. exchange data for class 3 gridpoints updates; compute class 3 gridpoints;

4. exchange data for class 4 gridpoints updates; etc : : :

Any step that involves an empty class must be skipped. The computation and
the exchange of data should be organized in such a way that, at each gridpoint
shared by two or more subdomains, each subdomain involved obtains the same
value, up to round-o� errors, during the incomplete factorization process, and
during the preconditioning steps. This requires to drop any connection between
two gridpoints of the same class, but which belong to two di�erent interfaces.
An illustration is provided in Fig. 4 where we give a partitioning of the physical
domain into 2�4 boxes. In the case where the connection to be dropped corre-
sponds to some entry ai;j of the original system matrix, the dropped value may
be added to the diagonal entries ai;i and aj;j . This technique, which preserves
the rowsum of a matrix, is known as diagonal compensation [1].

De�nition 3. Now the pseudo-overlap will be implicitly determined by the local
numberings of unknowns, and the �ll level taken inside each subdomain. We shall
denote this more general parallel IC simply by ParIC(`). It can be easily extended
to include the case of subdomains with di�erent �ll levels.
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Fig. 4. Decomposition of the grid into 2�4 subdomains, assignment of subdomains to
processors, and partitioning into classes. Oblique lines correspond to forbidden level-1
�ll-in entries.

4 Numerical Experiments

The zero vector is used as initial guess, and the PCG is stopped as soon as the
residual vector r satis�es krk2 = kbk2 � 10�6. The test is performed only once
kB�1rk2 = kB

�1bk2�10�6 is satis�ed. The computations are carried out in dou-
ble precision Fortran on a 16-processor SGI Origin 2000 (195 MHz), using the
MPI library for communications. The preconditionings include: ParIC(`;$; `$),
`$ � $� 1, with the stripes (or 1� p) partitionings; ParIC(`) with 2� p parti-
tionings; and the additive Schwarz with overlap AS(`;$), each local problem is
handled with one IC(`) solve, $ stands here for the actual overlap width. We use
$ = h0; h; 2h, where h0 means that only one line of nodes is shared by adjacent
subdomains. No global coarse grid correction has been added, as suggested in
[20, 21]), to improve the performance of the preconditionings involved.

Problem 1. p = q = 1, � = 
, u(x; y) = x(x�1)y(y�1)exy, and h = 1=(ny+1).



Problem 2. � = f(x; y); 0 � x � 1; y = 0g, h = 1=ny ,

p = q =

(
100 in (1=4; 3=4)� (1=4; 3=4)

1 elsewhere ;
f(x; y) =

(
100 in (1=4; 3=4)� (1=4; 3=4)

0 elsewhere :

We �rst collect in Figs. 5 and 6, and in Table 1, the results of our numerical
experiments performed with the stripes partitionings. We use the parallel speed-
up, which is the ratio between the execution time of the parallel algorithm on
one processor and the time on p processors.
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Fig. 5. E�ects of pseudo-overlap width $ on the number of pcg iterations, for 1� 8 processors and
ParIC(0;$;$ � 1). Horizontal lines display the number of pcg iterations for sequential IC(0).

Table 1. Speed-up for stripes partitionings (1� p).

Problem 1 Problem 2

Numb. of procs. 2 4 8 16 2 4 8 16

Precond.

ParIC(0;1,0) 2.04 4.57 10.66 19.94 1.98 4.73 10.99 19.66

ParIC(4;5,4) 1.88 4.15 9.24 17.96 1.76 3.86 8.37 15.92

AS(4,h0) 1.32 3.08 7.19 13.12 1.30 2.96 6.46 12.21

AS(4,h) 1.56 3.56 7.38 14.99 1.32 3.11 6.53 11.96

AS(4,2h) 1.58 3.56 7.29 15.46 1.35 3.08 5.78 12.26

From all the observed results, the following trends are evident.

1. It is advantageous to use increased pseudo-overlap. In particular, for di�cult
(large size) problems (see Fig. 5), the degradation of the performance is
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(more than) mastered when one accepts some �ll-in entries generated by the
parallelization strategy.

2. ParIC(4; 5; 4) is in general twice as fast as ParIC(0; 1; 0). For both methods,
the speed-up is high, and in general better than for AS methods.

3. AS methods must be applied with a su�ciently large overlap width, in order
to achieve performance comparable to ParIC methods, which dramatically
increases the computational complexity. This holds even if each local problem
is solved exactly. Observe that, for p = 2, ParIC(1;$max;1), which is
equivalent to ParIC(1), becomes a direct solver, whereas AS remains an
iterative one.

Table 2 shows the performance of ParIC(4) combined with various partition-
ings. For stripes (or 1� p) partitionings, ParIC(4) is mathematically equivalent
to ParIC(4;5,4). It appears that, for di�cult problems, it would be interesting
to use partitionings better than the simple stripes ones.

Table 2. Problem 1, h�1 = 513, n = 262144. Problem 2, h�1 = 512, n = 262656. Comparison
of various partitionings (part). Number of PCG iterations (iter); elapsed time in seconds for: the
computation of the preconditioning matrix (fact), the solver, and overall time; for ParIC(4).

Problem 1 Time Problem 2 Time

part iter fact pcg overall iter fact pcg overall

1 122 4.76 80.59 86.20 185 4.84 106.17 111.61

1 � 2 122 2.48 42.84 45.82 187 2.48 60.60 63.45

2 � 1 122 2.44 42.97 45.88 150 2.34 47.54 50.14

1 � 4 128 1.24 19.30 20.78 200 1.22 27.48 28.88

2 � 2 127 1.42 19.68 21.32 159 1.44 23.05 24.61

1 � 8 131 0.65 8.50 9.32 205 0.62 12.60 13.33

2 � 4 135 0.74 9.23 10.09 167 0.74 10.59 11.40

1 � 16 137 0.37 4.26 4.80 219 0.33 6.49 7.01

2 � 8 137 0.41 4.54 5.18 172 0.40 5.11 5.61
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