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Abstract

The mechanical contraction simulation for random dense packings is extended to binary

mixture of spheres. The volume packing density as a function of sphere composition follows a

characteristic triangular shape and resembles previous experiments on length scales from

colloidal particles to metal shots. An excluded volume argument, which qualitatively explains

trends in random packing densities of monodisperse particles, is insufficient to account for this

triangular shape. The coordination number, or the average number of contacts on a sphere,

shows a remarkable dip from 6 to 4 at the crossover from many small spheres to many large

spheres, which has not been reported earlier. An explanation is given in terms of caging effects.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Random sphere packings are useful models for the microstructure of a variety of
physical systems such as concentrated colloids [1], amorphous solids and glasses
see front matter r 2005 Elsevier B.V. All rights reserved.
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[2,3], simple liquids [4] and granular matter. Apart from this modelling the random
sphere packing (rsp)—also referred to as the Bernal packing—is of interest as a
formidable challenge in itself and many studies have been devoted to the
measurement [5], calculation [6] and simulation [7] of the rsp—density which in
the large majority of cases is a sphere volume fraction close to f ¼ 0:64. Further
densification is resisted by massive structural sphere arrest which has been described
in terms of jamming [8] and local caging effects [9,10]. However, still no quantitative
explanation has been put forward why densification of disordered spheres grinds to a
halt at or very near f ¼ 0:64.

What has, in any case, become clear is that the very notion of a random packing
(rp) density is not restricted to the sphere shape. It has been shown [10,11] for a large
variety of randomly oriented rods and sphero-cylinders that the rp-density is
uniquely determined by the particle aspect ratio. Quite surprisingly, in this landscape
of rp-densities the spheres do not represent a density maximum. It was found that the
rp-density of slightly deformed spheres is significantly above the Bernal density [10]
and that the rp-density only starts to decrease for higher aspect ratios (the random
rod packing density asymptotes to zero for increasingly thinner rods [10,11]). The
near-sphere density maximum as a function of aspect ratio was qualitatively
explained [10] as the result of a competition between contact numbers (which rapidly
increase to arrest the rotational degrees of freedom of a non-sphere) and excluded
volumes (which dominate at higher aspect ratio and drive the density down). Donev
et al. [12] confirmed the existence of a near-sphere density maximum for prolate
and oblate shapes and, in addition, showed that the local minimum of the Bernal
rp-density for equal-sized spheres is actually a singularity.

Instead of increasing the rp-density by slight deformation of equal-sized spheres, one
can also employ size-polydispersity: unequal spheres pack more densely than equal
spheres. The present work is motivated by the question whether trends in random
packing densities of particle mixtures can (at least qualitatively) also be understood in
terms of excluded volumes and contact numbers. In other words: how strong is the
similarity between the effect of particle shape and polydispersity on rp-densities?

It is obvious to start with the simplest example of polydispersity, namely a binary
mixture of spheres, also because such mixtures have been studied experimentally in the
sedimentation of colloids [13] as well as the mixing of granular particles [14]. From
such experiments it is very difficult to obtain structural data such as distributions of
contact numbers and radial distribution functions or to extract information on the
local arrest or mobility of spheres. Recently, a simulation technique has been
introduced [10] to create random packings of equal-sized spherocylinders in a wide
range of aspect ratios. Here we extend the ‘mechanical contraction’ method [10] to
binary sphere mixtures, as explained in more detail in Section 2.
2. Mechanical contraction

The aim of the mechanical contraction model [10] is to make a direct simulation of
rapid densification (by sedimentation, for example) where the pressure on the particles
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dominates over their thermal fluctuations. The particles are distributed in a large cell as
a diluted fluid in equilibrium. The particle space is then contracted repeatedly in steps.
In each step every overlap between particles is recorded and removed by relocating the
particles. The directions of these particles are relocated, where the degree of overlap
with contacting particles is reduced at the maximum rate. The relocation of particles is
repeated until no more overlaps are detected. If the program is not able to remove the
overlaps, the random dense packing of this state has been found.

The model has been useful for studying random packing of rods [10]. The
algorithm can be extended to particles of different shapes and sizes and mixtures of
these. Henceforth, this model should be suitable for studying the effect of particle
shape and polydispersity on rp-densities. For a comparison to other simulation
techniques, see Ref. [10].

Here, we note that the mechanical contraction method is similar to an existing
Monte Carlo model given by He et al. [15]. Particles were randomly placed within a
cubic box with high density. The many overlaps are relaxed by relocating the
particles together with a packing space expansion. To avoid bridging, the positions
of particles with coordination number less than 4 are randomly disturbed.

2.1. Details of the model

A diluted equilibrium fluid of the mixture of spheres is prepared, in a cubic cell
with periodic boundary condition, using standard Monte Carlo techniques. The
starting point of the cubic cell is with 4l3 particles, where l is an integer. In order to
prevent statistical errors in our study of binary mixtures we choose the number of
particles large enough so that there are at least 225 particles of the type containing
fewer particles, and at least 256 particles in total. For binary mixture we used at least
2048 particles, and up to 23,328 particles.

Then we start an iterative process of reducing the particle space by reducing the
volume of the cubic cell by small amounts DV . All of the particle positions are scaled
accordingly by the factor:

b ¼ 1�
DV

V

� �1=3

. (1)

The volume reduction starts usually with DV=V ¼ 10�4. After a volume reduction
some spheres may overlap. These spheres need to be moved apart. Let two spheres of
radius ri and rj be in the vicinity of each other, and define k as the vector that
connects the centres of these spheres. If jkjoDij , where Dij ¼ ri þ rj, then the two
spheres overlap. The extent of the overlap is given by d ¼ Dij � jkj. If there are C

spheres which overlap with sphere i, and sphere i is moved with constant
translational velocities, then the speed at which sphere i is changing its overlap
with contacting sphere j may be quantified:

qkj

qt
¼ kj � a , (2)

where a is centre of mass velocity of sphere i.



ARTICLE IN PRESS

K.d.L. Kristiansen et al. / Physica A 358 (2005) 249–262252
The speed s for which a given particle is breaking contacts with its C overlapping
particles is defined as,

s ¼
XC

j¼1

dj

qkj

qt
, (3)

where the factor dj is included in order to bias the rate at which the particles break
contact in favour of those which are overlapping most. Introduction of an additional
factor for the mass of particle j is found to have no significant effect for size ratio less
than 5. Therefore, we have neglected the effect of different masses of spheres of
different sizes.

To obtain the direction in which to move particle i we introduce, following
Ref. [10], a kinetic energy-type constraint on the velocity of particle i:

a2 ¼ 1 . (4)

A Lagrange multiplier is then used in Eq. (3) with the constraint Eq. (4). The
directions of the velocity vector with arbitrary speed is given for each of the
Cartesian coordinates n ¼ 1, 2, and 3.

an ¼
XC

j¼1

dj

k
ðnÞ
j

kj

. (5)

Moving the particles in the direction given by Eq. (5) will reduce the degree of
overlap with the C contacting particles at the maximum rate.

How far should each particle be moved? The particles need to move a small
distance in order to not generate more contacts. In Ref. [10], this distance was
decided to be just further than half the distance necessary to break the first contact.
This means that if two and only two particles are in contact, then they are moved just
far enough to break contact.

The direction and distance each particle needs to be moved is calculated and then
they are all moved. This is repeated a large number of times (�5000) until there are
no more overlapping pairs of particles. If the cutoff number is reached, DV is scaled
down, typically by a factor of 0.5.

The simulation procedure is stopped when DV has reached a threshold value and
the maximum number of attempts to remove overlaps has been performed, but failed
to remove all overlaps. The densest packing for our system is taken as the packing in
the previous step. A version of Verlet the neighbour list [16] is used to speed up the
simulation.
3. Results and discussions

For the monodisperse case the mechanical contraction method forms a random
dense packing with volume fraction fmono ¼ 0:628, consistent with previous
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experimental [14] and simulation [7] studies. The same method is used to study
the random dense packings of binary mixture of spheres with size ratio g ¼ 2:6.
This g was chosen in order to compare results directly with experiments on
the rapid sedimentation of colloidal particles [13]. The experimental data are
expressed in terms of the mixture of composition of the volume density of small
spheres:

x2 ¼
fsmall

ftotal

¼
NsmallVsmall

NsmallV small þ NbigV big

(6)

and in the following we will also use this variable. Ni is the number of particles of
type i, Vi is the volume of one particle of type i, and fi is the volume fraction. First,
we will find the packing densities as function of x2, and try to explain qualitatively
these densities by an excluded volume argument. In experiments on colloidal
particles the coordination number is hard to find, while in numerical simulations this
can be easily read out. We will discuss our numerical results with experiments on
steel ball bearings and also relate the average number of contacts on big spheres with
the parking number.

3.1. Packing densities

The random packing density clearly depends on the mixture composition.
Small spheres may fill the empty space between larger spheres and thus make the
structure denser. Or in another view, replacing a cluster of small spheres by a large
sphere has the same effect. Fig. 1 shows a typical example of random dense pack-
ing of a binary mixture of spheres with size ratio g ¼ 2:6. With x2 ¼ 0:528,
the volume fraction is f ¼ 0:675 clearly above the value of the volume fraction for
monodisperse spheres. The visual result from the numerical simulation (Fig. 1 (b))
Fig. 1. Sedimentation and random dense packing of a binary mixture of spheres with size ratio of 2.6. (a)

experiment from [13] with x2 ¼ 0:63 (96.8% of small spheres) and (b) the numerical simulation with the

mechanical contraction model with x2 ¼ 0:53 (95% of small spheres).
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Fig. 2. The packing volume density f as function of the composition of the binary mixture x2. The square

dots are from experiment on colloids [13] and the solid line is derived [17] from experiment on spherical

metal shots [14]. Our simulation, star dots, resembles the characteristic triangular form found in these two

experiments. Another characteristic is the maximum around x2 ¼ 0:275 and monodisperse case where f
should be between 0.62 and 0.64.
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resembles the scanning electron microscope (SEM)-picture of colloidal particles
(Fig. 1 (a)).1

The volume fraction f as function of x2, Fig. 2, follows a characteristic triangular
shape with maximum fmax at x2 ¼ 0:275. This behaviour is also found in
experiments on binary mixture of spheres, regardless of the size ratio g [17,18].
The high values of f reported on colloidal particles may originate from ordering
effect near the boundaries and also within the sample [13]. On the other hand, for
metal shots f are generally lower [17]. For g ¼ 2:6 we found fmax ¼ 0:691. The
simulation data reported by He et al. [15] found fmax for x2 equal to 0.340 and 0.400
for size ratios 2.0 and 1.5, respectively, which significantly differs from x2 ¼ 0:275
found in our results.

3.2. Contact numbers

Almost every sphere is connected to the percolating cluster of contacting spheres,
as expected for a dense system of randomly packed particles. For a stable
configuration of this system, a necessary condition is that each sphere needs to have
at least four contacts with its neighbouring spheres. Fig. 4 shows that the average
number of contacts on a sphere, the coordination number, hCi is indeed greater than
4 for all x2. The monodisperse case has hCi ¼ 5:812, in agreement with previous
studies [4,7]. In this monodisperse case it is believed that the average number of
contacts is close to six contacting spheres [4]; each sphere is resting on three spheres
and are supporting three other.

Let two spheres of radius r1 and r2 be in the vicinity of each other. The spheres are
in contact if distance jkjoðr1 þ r2Þ þ �, where � is a small parameter. We have used a
1Reprinted from [13] with permission from Elsevier.
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(a) (b)

(c)

Fig. 3. The distribution of the number of contacts on small Csmall and big spheres Cbig for case (a)

x2 ¼ 0:024, (b) x2 ¼ 0:273, and (c) x2 ¼ 0:852. In each case Csmall has a peak around 4 contacts, while the

Cbig shift to higher values as the fraction of small spheres increases.
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strict criterion � ¼ 0:0005 relative to the smallest radius. We have checked that
increasing this criterion by a factor 10 does not increase the number of contacts
substantially, while decreasing by a factor 2 gives no contacts.

The stabilization criterion of at least four contacts is reflected by the contacts on
small spheres. For three different values of x2, Fig. 3 shows a peak at four contacts in
the distribution of the contacts on small spheres, while the average number of
contacts on small spheres hCsmalli is increasing continuously as the fraction of small
particles increases until the monodisperse case where hCsmalli ¼ 5:812 (Fig. 4). The
theoretical limit of number of contacts on small spheres is 12 spheres, and in Fig. 3(c)
the maximum number of contacts is 10. For low fraction of small spheres the number
of contacts on big spheres is also constrained by this limit, Fig. 3(a). However,
contacts on big spheres will exceed this limit because small spheres exclude less area
on the surface of a large sphere than equal sized large spheres do. As the x2 increases
hCbigi increases, as can be seen in Fig. 5. In the limit x2 ! 1, we can imagine the big
spheres lying in a sea of small spheres. Since spheres are distributed randomly, this
situation is similar to pack small spheres on a big sphere. The average maximum
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Fig. 4. The average coordination number hCi and average contact number on small spheres hCsmalli as

function of the composition of the binary mixture x2. For the monodisperse case hCmonoi ¼ 5:8, as

reported by other experiments and simulations. Experiments on steel ball bearings [20] yield a constant

value of hCi ¼ 6:2, regardless of size ratio and composition. This is in contrast with what we observe in our

model, as function of composition x2.

Fig. 5. Average contact number on big spheres hCbigi as function of composition x2. hCbigi is upper

bounded by the parking number of Mp ¼ 28:3.
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number of randomly placed small spheres on a big sphere is the so-called parking
number, which is found to be [19]:

Mp ¼ Kpðg� 1Þ2 , (7)

where Kp ¼ 2:187 and g ¼ r2=r1 is the size ratio between the big sphere with radius r2
and the small sphere with radius r1. For g ¼ 2:6 we have Mp ¼ 28:3. We can expect
that the average number of contacts on big spheres hCbigi is upper bounded by this
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Fig. 6. The fraction of non-caged spheres as function of the composition x2, together with the fraction of

small spheres as function of the composition x2.
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parking number. The hCbigi in Fig. 5 near x2 ¼ 1 is somewhat lower than Mp

because some small spheres will not touch.
The coordination number hCi, or the average number of contacts on a sphere, is

fairly constant for 0:275ox2o1:0, with a value close to 5.8, Fig. 4. In the region
0:0ox2o0:275, there is a remarkable dip in hCi which approaches four contact
points at x2 ¼ 0:182, which is the critical value for a stable packing system. This dip
is not observed in the packing experiments of steel ball bearings [20]. We note that
the crossover from the low dip to the plateau of hCi occurs at x2 ¼ 0:275, which is
the value with maximum close packed density. At this x2 value it is reasonable to
have a high value of hCi since we have maximum volume fraction. This also
coincides with the transition from large fraction of small spheres to large fraction of
big spheres, as indicated in Fig. 6.

3.3. Caging

The neglection of gravity in the model implicates that there is no preferable
sedimentation direction in the system. In an ideal case, this is the situation for
colloidal systems. For these systems on nanometer scale the coordination number
hCi and caging effects are hard to quantify [13] and not yet explored. On larger
length scales, however, as in experiments on ball bearings, preferable sedimentation
direction is present. In this length scale there exist different methods to find hCi and
to determine the caging effect [4,20]. The difference in packing procedure may cause
different restructuring rules during the contraction and changes thus the caging
procedure.

The notion of caging a sphere is closely related to the number of contacts. A
sphere is caged if it is surrounded by contacting spheres such that the sphere is
unable to move [21]. A surprisingly high percentage of the spheres is non-caged in the
range 0ox2o0:4, Fig. 6, and they are thus able to move. This range coincides with
the transition from a low fraction of small spheres to a high fraction of small spheres,
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Fig. 6. In this mixed state of spheres with two different sizes, the non-caging spheres
are dominated by small spheres which are able to rattle in a jammed network of the
caged spheres. The non-caging spheres have low number of contacts, and can explain
the profound fall on the coordination number from above five to near four.
3.4. Excluded volume

In a hard sphere potential, a sphere cannot come closer to another sphere than the
sum of their radii. The volume around a sphere restricted by this distance is called
the excluded volume Vex. For a polydisperse sphere system Vex is a function of the
radii involved. The excluded volume is then a statistical average over the number of
each component, hV exi. In a binary mixture of spheres:

1

8

hV exi

hV pi
¼

f 2
þ ð1� f Þ2g3 þ 1

4
f ð1� f Þð1þ gÞ3

f þ ð1� f Þg3
, (8)

where f is the number fraction of small spheres, V p is the volume of a sphere, and g is
the size ratio between the two sphere types.

For monodisperse spherocylinders, the orientationally average excluded volume E

is proportional to the aspect ratio a for large a [22,23]. In the same limit of a, it has
been shown by simulation [10] that the packing volume fraction is proportional to a,
and hence E:

f�
hCi

a
�
hCi

E
. (9)

The equivalence for the volume density of a binary mixture of spheres would be

fex ¼ rV p�
hCi

hV exi=hV pi
, (10)
Fig. 7. The packing volume fraction f of random distributed spheres together with an excluded volume

argument. The square dots and the star dots display our simulation result and results from packing of

colloids [13], respectively. The circular dots show the behaviour of Eq. (10), while the triangular dots show

the excluded volume only.
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where r is the density of the particles in the excluded volume argument and hCi is the
coordination number, or the average number of contacts on each sphere. Fig. 7
shows that Eq. (10) is not representing f as function of x2 very well due to the strong
dip in the hCi for low x2 values. With a constant hCi as reported by [20], fex gives a
triangular shaped function, seen in Fig. 7, but with unphysical high value of
maximum packing volume fraction.

So, we have to conclude that an excluded volume argument explains trends in
packing densities of anisotropic particles much better than for asymmetric sphere
mixtures. The reason is very likely that in the case of anisotropic shapes, contact
correlations asymptotically vanish in the limit of very high aspect ratio [10,11], which
is the justification for the scaling f�hCi=E. However, when varying size ratio or
composition in a sphere mixture there apparently is no such limit: contact
correlations are always important and, consequently, higher-order terms must be
included in Eq. (8).
4. Conclusion

We have shown that the mechanical contraction method can be extended to
simulate the random dense packing of a binary mixture of spheres. In this study we
have used g ¼ 2:6 and the volume fraction recovers the triangular behaviour as
function of the sphere composition, also found in experiments on colloids and metal
shots.

The coordination number hCi is important to determine the structure of the
packing. In our simulation results, which may resemble rapid sedimentation of
colloidal particles, we observe a remarkable dip in hCi in the region 0ox2o0:275.
The fall in hCi from a value above five to near four at x2 near 0.275 may be explained
by the high percentage of non-caged particles and by the transition from a majority
of small spheres to a majority of large spheres.

The conversion of hCi to packing densities using an excluded volume argument is
much less straightforward for sphere mixtures than for anisotropic particles, very
likely because contact correlations for spheres are always important, in contrast to
contacts between high-aspect ratio rods. Including higher order terms in the
excluded volume seems to be necessary.

Further investigations are in progress to study other size ratios and also non-
spherical objects. For this purpose the mechanical contraction method seems to be
very suitable.
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Appendix A. Randomness, homogeneity, and isotropy

The model was tested for its randomness, homogeneity, and isotropy for a system
of particles in random close packed state. These tests are similar to the tests in Ref.
[15]. The system we will present below consists of 10,976 particles where 80% of the
particles are small spheres (x2 ¼ 0:18). For randomness the cell was divided into 40
slices with equal spacing and without boundary. On each slide the area density Fa

was calculated, as seen in Fig. 8. The autocorrelation coefficient, defined as

Pk ¼

Pm�k
j¼1 ðsj � s̄Þðsjþk � s̄ÞPm

j¼1ðsj � s̄Þ2
, (A.1)

where k is the lag which should be smaller than m=4, is calculated as seen in Fig. 9. If
a time series is completely random, then Pk obeys Nð0; 1=mÞ normal distribution,
Fig. 8. The area densities Fa for the 40 equi-spaced slides. The mean value, indicated by the line, is 0.679.

Fig. 9. The autocorrelation coefficient Pk, Eq. (A.1), of Fa for the first 8 lags. Nearly every point is within

the 95% confidence interval.
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Fig. 10. The volume in each of the 27 cells the system is divided into. The mean is 546.
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and over 95% of Pk is supposed to lie between �2=
ffiffiffiffi
m

p
. For m ¼ 40 we have

2=
ffiffiffiffi
m

p
¼ 0:316. From Fig. 9 we see that most of the autocorrelation coefficients up to

8 lags is within this 95% acceptance, and supports our assumption of a random
system.

For homogeneity we divide the cubic volume into 27 equal cubic subcells and
calculate the volume in each subcell, Fig. 10. Thereafter, we calculate the mean and
the standard deviation. For this case we found the mean volume of 546:6� 21:1. The
standard deviation of the volume is 3.9%, and is well within accepted boundary for
homogeneity.

If the system is isotropic, then the relative projections of two contact particles
defined as Dxij ¼ jxi � xjj=ðri þ rjÞ, Dyij ¼ jyi � yjj=ðri þ rjÞ, and Dzij ¼ jzi � zjj=ðri þ

rjÞ should obey uniform distribution over ð0; 1Þ. With uniform distribution over ð0; 1Þ
the mean hxi ¼ 0:5 and standard deviation s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2i � hxi2

p
¼ 1=2

ffiffiffi
3

p
� 0:288675.

We found 0.499158, 0.500126, and 0.500720 as mean for projections onto x-, y-, and
z-axis, respectively, with standard deviation 0.28886, 0.288917, and 0.288253,
respectively. This clearly supports the assumption of an isotropic system.
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