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Summary. Recently we have shown how to tune length- and timescales in demixed
colloid-polymer dispersions in such a way that thermal capillary waves at the free
interface between demixed fluid phases can be studied directly by means of laser
scanning confocal microscopy [Aarts, Schmidt and Lekkerkerker, Science 304, 847
(2004)]. Here, we focus on several static properties of the interface. We show that
the probability of fluctuations of the local interface position around its equilibrium
value is Gaussian. By comparing two-point correlations of these fluctuations as a
function of distance with predictions from capillary wave theory, we obtain results
for the interfacial tension and the capillary length. The presented technique enables
us to measure also the probability distribution of the tilt angle of the local interface
normal and the vertical direction.

1 Introduction

A few years after Einstein’s famous 1905 theory of Brownian motion [1]
Smoluchowski used molecular kinetic theory to give the first correct expla-
nation of critical opalescence [2]. In the same paper Smoluchowski indicated
that due to the thermal motion of the molecules the free interface between two
fluids, like that between a liquid and a vapor, inevitably becomes rough. Us-
ing the thermodynamic fluctuation theory developed by Einstein in 1910 [3]
Mandelstam developed the ideas of Smoluchowski in a quantitative theory in
terms of thermal capillary waves [4]. The Smoluchowski-Mandelstam theory
was rediscovered by Buff, Lovett and Stillinger [5]. As remarked by Mandel-
stam it is rare that the circumstances are so favorable that the expected ther-
mal fluctuations indeed can be observed. One such case, in which nowadays
direct observations are relatively straightforward, is the Brownian motion. In
the period 1908-1915 Perrin was able to make observations in simple, brilliant
experiments that confirmed the theory of Einstein and led to the determina-
tion of Avogadro’s number [6]. The direct observation of critical fluctuations
had to wait till 1966 and was the last preoccupation by Debye [7]. Beysens
and co-workers did further work on this topic [8]. Clearly, direct observations
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Fig. 1. (a) Schematic depiction of a curved interface. A point at the interface r is
written in terms of (x, y, h(x, y)). (b) A 2D slice out of (a). The projected angle θ′

is related to the interface derivative hx via hx = tan θ

may help to answer basic questions and the direct visual observation of ther-
mal capillary waves that will be reported in this contribution proved to be
very rich indeed [9]. Here, we show that in demixed colloid-polymer disper-
sions the thermal fluctuations of the fluid-fluid interface can be seen directly
in real space and we will discuss the static properties of these fluctuations.

The article is organized as follows; We start with a brief derivation of
capillary wave theory in Section 2 deriving the relevant expressions that we
use to analyze our data, followed by a description of the experimental system
and the experimental methods in Section 3. Results are given in Section 4
and conclusions and an outlook are presented in Section 5.

2 Theoretical Background

We here follow the statistical analysis of interface corrugations, first devel-
oped by Mandelstam [4], as reviewed by Vrij [10]. The work ∆F to create a
corrugation at constant temperature can be written as

∆F = ∆Fg + ∆Fc, (1)

where we only consider gravity (∆Fg) and capillary (∆Fc) forces, resulting
from the displacement of matter against gravity and the creation of extra
interface area, respectively. Other contributions, for example arising from
bending of the interface, are ignored, the validity of which will be discussed
in Section 5. Clearly, this is a mesoscopic approach, which is justified if one
looks at distortions much larger than the particle size as is done in light
scattering studies on molecular interfaces. The local interface position with
respect to the mean interface position has coordinates r = (x, y, h(x, y)), see
Fig. 1. This Monge parameterization neglects overhang of the interface as
well as bubbles of one phase in the other. To create a corrugation of an area
dxdy over a distance h gravity contributes

δFg =
∫ h

0

h′ g∆ρ dxdy dh′ =
1
2
g∆ρ h2 dxdy (2)

with g Earth’s acceleration, and ∆ρ the mass density difference. The inter-
facial tension γ contributes
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δFc = γ∆A = γdxdy
(√

1 + h2
x + h2

y − 1
)
≈ 1

2
γ dxdy (h2

x + h2
y), (3)

with hi ≡ ∂h/∂i and i = x, y. Integrating over the total interface area L×L
gives

∆Fg =
1
2
g∆ρ

∫ ∫
dxdy h2, (4)

and

∆Fc =
1
2
γ

∫ ∫
dxdy (h2

x + h2
y). (5)

The height h can be expanded in a Fourier series in a square with length L,

h =
∑
k

hk ei(kxx+kyy), (6)

with hk the Fourier coefficients and k = (kx, ky). The summation runs over
all Fourier modes kx and ky. From Parseval’s identity one readily obtains

∆F =
1
2
L2

∑
k

|hk|2
(
g∆ρ + γk2

)
, (7)

with k2 = k2
x + k2

y and k = |k|. Mandelstam made use of the equipartition
theorem which states that the work necessary to create each mode is equal to
kBT/2, with kB Boltzmann constant and T the absolute temperature. Thus,
in the capillary wave spectrum each Fourier component hk of the interface
displacement contributes

〈|hk|2〉 =
kBT

γL2

1
k2 + L−2

‖
, (8)

where the brackets on the left hand side denote a thermal average and L‖ is
the lateral correlation length. It is given through

L‖ =
√

γ/(g∆ρ). (9)

When an external wall is additionally taken into account, L‖ is the charac-
teristic (capillary) length of the meniscus [11, 12, 13]. From (8) and again
applying Parseval’s theorem the mean square interfacial roughness is found
to be

〈h2〉 =
kBT

4πγ
ln

[
k2

max + L−2
‖

k2
min + L−2

‖

]
, (10)

with kmin = 2π/L and kmax = 2π/lm. L denotes the physical system size and
lm is a microscopic length [5]. Thus, the interfacial roughness L⊥ ≡

√
〈h2〉

is proportional to
√

kBT/γ.
Since the interface is constantly subject to random forces the distribution

P (h) of the interface heights is described by a Gaussian with (10) its variance
σ2. This means the distribution is given by
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Fig. 2. Static height correlation functions gh as a function of x/L‖ in units of
kBT/2πγ. The symbols denote calculations in which k̄max = 44, the full curve is
for k̄max = ∞

P (h) =
1√

2πσ2
e−h2/2σ2

. (11)

Further information on the physical properties of the interface can be
obtained by considering correlation functions. The static height-height cor-
relation function at a given time t is constructed as

gh(x) = 〈h(x′, t′) h(x′ + x, t′)〉. (12)

The angular brackets denote averages over primed quantities. Although we
have experimental data only for the x- and not for the y-dependence, as will
be shown below, this contains the full information due to the cylindrical sym-
metry of the interface around the vertical z-direction. It is therefore possible
to obtain all information just by performing the analysis along one dimen-
sion. The correlation function is obtained by Fourier transforming (8). We
can write

gh(x) =
∑
k

kBT

γL2

1
k2 + L−2

‖
eik·s =

kBT

γL2

L2

(2π)2

∫
dk

1
k2 + L−2

‖
eik·s, (13)

where we have switched from a summation to an integration and s = (x, y).
Next, we change to cylindrical coordinates and perform the integration over
φ and obtain

gh =
kBT

γ

1
(2π)2

∫
dk

k

k2 + L−2
‖

∫ 2π

0

dφ eikx cos φ

=
kBT

γ

2π

(2π)2

∫
dk

k

k2 + L−2
‖

J0(kx).
(14)
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The symbol J0 denotes the Bessel function of the first kind. The integration
over k is performed from kmin to kmax, see just below (10). We can directly
set kmin to zero, since 2π/L ∼ 0. Setting kmax to ∞ allows performing the
integration and (14) then becomes

gh(x) =
kBT

2πγ
K0

(
x

L‖

)
, (15)

where K0 is the modified Bessel function of the second kind as a function
of x/L‖. We can test the effect of setting kmax to infinity. We change to
k̄ = kL‖ in (14) and use kmax = 2π/σc as a reasonable cutoff with σc the
colloid diameter. As will be shown below L‖ is at least a couple of microns
and here we will fix it at a minimal value of 1 µm, whereas σc = 142 nm,
such that k̄max is at least ∼ 44. In Fig. 2(a) we plot results from equation
(14) with k̄max = 44 and equation (15). Only at a distance x/L‖ < 0.05
clear differences can be observed between the two functions. Furthermore,
the curve obtained with finite cut-off shows some fine structure. We thus
conclude that (15) holds for distances x larger than a small-distance cutoff
of the order of the particle size.

A natural extension of the above framework is to analyze the distribution
of the angle between the local interface normal and the vertical direction
[14], i.e. the tilt angle distribution. This is related to derivatives of h in
the x-direction: hx. Again, the distribution of hx is Gaussian. The derivative
stands in direct connection to the (projected) angle θ′ normal to the interface,
hx = tan θ (see Fig. 1(b)). It can be shown that the distribution in one
dimension is given by [14]

P (θ′) =
2√

2πσ′2
e−

1
2

tan2 θ′
σ′2

cos2 θ′
(16)

with σ′2 ≡ 〈tan2 θ〉 the variance. The special form of this equation is a result
of the Jacobian of the transformation of hx to θ using ∂hx(θ)/∂θ = 1/ cos2 θ.
The variance is extremely sensitive to the value of kmax [14].

In molecular fluids γ is of the order of 10 − 100 mN/m and ∆ρ is about
102 − 103 kg/m3. Therefore, the interface roughness L⊥ ∼ 0.3 nm, whereas
the correlation length L‖ ∼ 3 mm resulting in extreme ratios of roughness-to-
correlation length of 10−7, only accessible through scattering techniques. Here
we exploit the scaling up of lengths when going from molecules to mesoscopic
colloidal particles of size 140 nm in order to directly observe capillary waves
in real space.

Adding polymer to a colloidal suspension may induce a fluid-fluid demix-
ing transition that is widely accepted to be the mesoscopic analogue of
the liquid-gas phase transition in atomic substances [15, 16]. The coexist-
ing phases are a colloidal liquid (rich in colloid and poor in polymer) and a
colloidal gas (poor in colloid and rich in polymer). The origin of the phase sep-
aration lies in the entropy-driven attraction between the colloids, which is me-
diated by the polymers [17, 18]. It is known from experiment [19, 20, 21, 11, 9],
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Fig. 3. Phase diagram in (φp, φc)-representation. Indicated are state points where
gas-liquid phase separation occurs (open and filled circles) and state points in the
one-phase region (crosses). The line is an estimate of the binodal and is drawn to
guide the eye. State points I-IX (filled circles) are indicated

theory [22, 23, 24, 25, 26] and simulations [27, 28], that in such systems the
interfacial tension scales as γ ∼ kBT/σ2

c leading to ultra-low values for γ
(∼ 1 µN/m and below). This, in turn, implies that using colloidal suspen-
sions scales up the interface roughness and simultaneously scales down the
correlation length. With the current system (as detailed below) we succeed to
bring both the roughness and the correlation length in the µm-regime. In ad-
dition, the interplay between ultra-low interfacial tension and relatively large
viscosity, η, sets the capillary velocity γ/η (see for example [29]) in the range
of µm/s, as opposed to typical velocities of the order of 10 m/s in molecular
fluids. The associated characteristic time for the decay of interfacial fluctua-
tions, which we refer to as the capillary time, is given by τ = L‖ η/γ. In the
case of colloids it becomes of the order of seconds. Thus, through the appro-
priate choice of the colloid diameter we can trace the statics and dynamics of
the capillary waves at a free interface with optical microscopy [9], but here
we will restrict ourselves to the statics.

3 Experimental Methods

We used fluorescently labeled poly(methylmethacrylate) (PMMA) colloidal
spheres [30] with radius of Rc = 71 nm (obtained from static light scatter-
ing) and size polydispersity of less than 10%. The polymer was commercially
available polystyrene (Fluka) with molecular weight Mw = 2 · 106 g mol−1

(Mw/Mn < 1.2, where Mn is the number average molecular weight) and ra-
dius of gyration of Rg ∼ 44 nm (estimated from data in the literature [31, 32]).
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Thus the size ratio, Rg/Rc = 0.6, was sufficiently large to obtain stable fluid-
fluid demixing [33]. Both species were dispersed in cis/trans-decalin and since
all densities were known, mass fractions could be directly converted to pack-
ing fractions of colloids, φc = 4

3πR3
cnc, and polymers, φp = 4

3πR3
gnp, where

nc and np are the number densities of colloids and polymers, respectively.
Samples were prepared by mixing colloid and polymer stock dispersions and
diluting with decalin in order to control the overall packing fractions φc and
φp. The underlying phase diagram is shown in Fig. 3. Large glass cuvettes
(of volume ∼ 1 cm3) with extra thin (thickness of 0.17 mm) cover glass walls
were used. A confocal scanning laser head (Nikon C1) was mounted on a
horizontally placed light microscope (Nikon Eclipse E400). Each measure-
ment was done after one day of equilibration. The microscope was aligned
by making use of the interface which serves as a spirit level. We checked
that the system was well equilibrated by following the recovery of intensity
after bleaching a space region in the gas and/or liquid phase. The recovery
appeared to be governed solely through diffusion of particles without any in-
dications of drift (e.g. through convection). Different data sets were acquired
at many different state points following several dilution lines. The data sets
consisted of approximately 5.1 105 interface data points when images were
scanned as fast as possible (about 5 frames per second), and about 1.5 105

when a delay time between consecutive images was used (of about 10 s) to
get rid of some of the time correlation.

Pictures, such as those in Fig. 4, represent an intensity distribution of
fluorescent light, I(x, z, t), at a certain time t with x the horizontal (along the
interface) and z the vertical (opposite to gravity) components of the space
vector. The microscope records the fluorescence of excited dye within the
colloids, hence the colloid-rich (liquid) phase appears bright and the colloid-
poor (gas) phase appears dark. I(x, z, t) is a direct measure of the local
and instantaneous distribution of colloidal particles and provides the starting
point for a statistical analysis. Due to the finite resolution [34, 35] we can
access length scales ∼ 2Rc, and we neglect effects induced by the finite time
needed to scan each frame, and take I as an instantaneous snapshot (justified
by comparing the colloid self-diffusion time with the scanning time). Thus,
the real space pictures in Fig. 4 show the structure of a gas-liquid interface
practically at the particle scale. We rely on the concept of a local interface
between both phases. In the spirit of a Gibbs dividing surface we define
an interface position hb(x, t) (now with respect to the bottom of the image,
instead of the mean interface position as in Section 2) such that in one column
of vertical length Lz the total intensity can be written as∫ Lz

0

dzI(x, z, t) = Iliq(x)hb(x, t) + Igas(x)(Lz − hb(x, t)) (17)

Here, the values Igas(x) and Iliq(x) are the average bulk intensities in the gas
and liquid phase, respectively, and are taken to be functions of x to account
for the microscope objective properties. In practice, integrals in the notation
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Fig. 4. Capillary waves at the free liquid-gas interface in a phase-separated colloid-
polymer mixture imaged with laser scanning confocal microscopy (LSCM) at four
different state points approaching the critical point (from top to bottom: state
points I, VI, VIII and IX, see Fig. 3). The focal (viewing) plane is perpendicular
to the interface and only a very thin slice (of thickness ∼ 0.6 µm) is imaged (see
the inset). Gravity points downwards and the size of each image is 17.5 × 85 µm2.
Thermally excited capillary waves corrugate the interface and their amplitude in-
creases upon approaching the critical point. The bright dots at the right indicate
the surface location h(x) obtained with our method

are sums over pixels and we have checked that the results of the subsequent
analysis in correlation functions do not depend sensitively on the precise de-
finitions of Igas and Iliq. The resulting “height” function hb(x) (shown as the
bright spots in Fig. 4) describes the interface position quite accurately. From
top to bottom in Fig. 4 we approach the critical point and both the capillary
waves and density fluctuations increase, while the density (intensity) differ-
ence between the two phases decreases. For each frame the average interface
position is h̄b(t) ≡ 〈hb(x′, t)〉, in which the angular brackets denote averages
over primed quantities. We now define a new height function that describes
the deviations from the mean interface position h(x, t) = hb(x, t) − h̄b(t).

4 Results and Discussion

The distribution of heights is shown in Fig. 5 for three different state points.
The width of the distribution for state point I is about twice the particle
diameter, the order of which is in good agreement with (10). As one ap-
proaches the critical point the distributions get broader up to 7 times the



Microscopy on Thermal Capillary Waves 23

-3 -2 -1 0 1 2 3
0.0

0.3

0.6

0.9

1.2

1.5

h ( m)�

P (h)

Fig. 5. Distribution of height values, P (h), for three different state points: I (open
circles), V (plusses) and VIII (triangles). Full curves are Gaussian fits (11)

particle diameter for state point VIII, but the shape remains that of a nor-
mal distribution. However, the physical interpretation of this figure is limited
due to the finite resolution of the confocal technique as well as our inter-
face location procedure. Each height h(x, t) appears to consist of the actual
height plus a delta correlated “noise” term ∆(x, t) with properties such that
〈∆(x′, t′)〉 = 0, and 〈h(x′, t′)∆(x′, t′)〉 = 0 averaged over either x′ or t′. Fur-
thermore, 〈∆(x′, t′)∆(x′ + x, t′ + t)〉 = σ2

∆δ(x)δ(t) with δ the delta function.
Thus, from Fig. 5 we see that the interface roughness is Gaussian, but the
actual physics – although present as can be observed from the trends in the
figure – is blurred by the small noise term. To cope with the delta-correlated
noise we construct a correlation function, which clearly does not suffer from
such noise, except when both x = 0 and t = 0.

The static correlation function (equation (15)) describes the experimental
data points very well, as can be seen in Fig. 6 for various state points with
only two physical parameters γ and L‖. No bending term in (8) was needed
in the analysis. Note that in the original paper [9] the y-axis was given in
units of pixel area and not (as indicated) in µm2, but the analysis was not
affected by this. Results for the interfacial tension and the capillary length
are displayed in Fig. 7(a) and (b).

To further explore the properties of the interface we examine derivatives
of h(x, t) [14]. In Fig. 8 histograms are plotted of the absolute value of θ′

for three different state points (as in Fig. 5). One can either use (16) to fit
to the data with the variance as fitting parameter or obtain the variance
directly from the experiment. In Fig. 8 both methods are plotted. The agree-
ment is yet another confirmation that the interface can be described within
a Gaussian interface model. As the critical point is approached the peak in
the angle distribution shifts from 0◦ to 75◦, since the interface roughness
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I, V, VI and VIII (see Fig. 3) approaching the critical point from bottom to top.
Experimental results (symbols) are compared with predictions from the capillary
wave model (lines)
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Fig. 7. (a) Interfacial tension γ as a function of the overall colloid packing fraction
φc obtained from gh(x) (crosses: slow frame rate, pluses: fast frame rate). (b) The
capillary length L‖ as a function of φc obtained from gh(x). Results stem from state
points on the same dilution line as state points I-IX. The dashed lines are to guide
the eye
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Fig. 8. Angle distributions for three different state points: I (open circles), V
(plusses) and VIII (triangles). We either fitted the variance in (16) (full curves) or
obtained the variance directly from experiment (dashed curves)

increases and the correlation length decreases. As σ′2 depends strongly on
the molecular interactions, it is in principle possible to obtain the interfacial
tension more accurately and to determine the microscopic cut-off kmax, i.e.
the microscopic length lm in (10) [14]. It could be interesting if on the par-
ticle level a wave-vector dependent surface tension can be detected due to
molecular interactions, as predicted for simple liquids [36], and observed in
various liquids [37, 38].

5 Conclusions

Using a colloid-polymer mixture allows to carefully tune the interface prop-
erties and as a result the thermal capillary waves at a free interface are
observed visually by means of LSCM. From the fluorescence intensity dif-
ference between the two phases the interface can easily be located and the
height functions are constructed. By analyzing the height fluctuations of the
interface position as well as the derivatives of these we see that the interface
roughness can be described within a Gaussian model. To deal with small
noisy contributions to the height function correlation functions are deter-
mined. The quality of the fits to describe the correlation functions validate
the capillary wave model practically down to the particle level.

The present work opens up a wide range of possibilities, e.g. to study
the interface at a particle level by using even larger colloids, explore tem-
perature gradients and mass transport across the interface, and the effects
on droplet coalescence [9] and snap-off, on heterogeneous catalysis, freezing
of capillary waves at the gel-line, the effects of thermal capillary waves on
wetting properties etc.
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