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Abstract

The caging density of a d -dimensional hard-sphere solid is introduced as the density at which the average contact

number on a sphere equals the caging number, defined as the average minimal number of randomly parked neighbors

which completely arrest (cage) a test sphere. The mean-field caging density, which is consistent with random (loose)

sphere packing in d�/2 and d�/3, parallels the (always higher) d -dimensional densities of regular close packed crystals.

The gap between caging and close-packing densities is ascribed to a difference in geometric optimization. This

difference also explains the gap between sphere co-ordination in packings or glasses of colloidal spheres and the

absolute maximum for close-packed crystals. Caging numbers appear to be an important feature of random packings in

general since caging effects also account for the particle shape dependence of random thin-rod packings.

# 2002 Elsevier Science B.V. All rights reserved.

Keywords: Caging density; Hard-sphere solid; Thin-rod packings; Colloidal hard spheres; Colloidal glasses

1. Introduction

Studying the geometry of non-crystalline, amor-

phous sphere solids is of interest to better under-

stand random packings or glasses of hard-sphere

colloids. Such systems occur in a kinetic glass

transition, at which structural rearrangements in

colloidal hard-sphere fluids [1�/10] freeze rapid

enough to bypass nucleation of a crystal phase.

Instead an arrested solid-like glass state is formed

which preserves much of the fluid structure as this

structure resembles that of a random sphere

packing. This continuity of the transition from

hard-sphere fluids to amorphous solids suggests an

alternative to the usual liquid-state perspective [2�/

5] on the sphere-glass (a perspective which inevi-

tably involves complicated dynamics), namely a

solid-state viewpoint comprising a purely geome-

trical account of arrested (‘caged’) spheres. Such

an account is further motivated by the insight that

the progressive structural arrest of hard spheres on

approach of a glass transition is ultimately caused

by purely geometrical restrictions [9,10]. Usually

these restrictions are qualitatively described as

slowly fluctuating neighbor cages which trap

spheres over increasing time intervals at increasing

densities [1]. In what follows we disregard any

thermal fluctuations and consider a static snapshot

of hard spheres, or an amorphous sphere solid at

zero temperature. The idea is to find the solid

density from a geometric optimization problem
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based on a precise definition of a static sphere
cage.

This optimization problem is suggested by the

radical difference between the geometry of amor-

phous and regular close-packed sphere solids. In

the latter case each sphere is touched by the largest

possible number (the ‘kissing number’) of twelve

contacting neighbors [11]. Moreover, the density

p=
ffiffiffiffiffi

18
p

� 0:7405/. . . of the close-packed crystal is

the highest possible global density for a three-

dimensional sphere packing; Keppler’s famous

conjecture proven recently by Hales [11]. What

sort of optimization could an amorphous sphere

solid (or static glass) represent? A global density

maximization, now under the constraint that the

structure remains random, is unlikely when caging
effects dominate; in a rapid density quench spheres

simply lack time and mobility to increase contact

numbers much above what is minimally needed to

form a sphere cage (Figs. 1 and 2). Thus we

consider an amorphous sphere solid density which,

in contrast to the global maximization of the hard-

sphere crystal, derives from local minimization.

The relevant problem is to find the average volume
fraction (denoted here as the caging density)

implied by the complete arrest or caging of spheres

by the on average minimal number of contacts

with random neighbors.

2. The caging number

First we will briefly recapitulate the concept of a
caging number introduced and discussed in detail

elsewhere [16]. Caging is defined here as the

situation in which a test sphere T has no transla-

tional degrees of freedom. A cage is constructed by

placing fixed contact points at arbitrary positions

on the surface of T . A minimal cage is formed for

N contacts that cage T , whereas N�/1 contacts do

not cage the test sphere. By definition T is uncaged
whenever an equator can be chosen on T such that

all point contacts are located on the same hemi-

sphere of T . The caging number is defined as the

expectation value �Nd�, obtained from a large

number of repeated caging experiment on a sphere

in Euclidean dimension d . An analytical solution

for �Nd� has been derived for contacts, which are
completely uncorrelated due to the fact that the

spheres which contact T may overlap. The result

for arbitrary dimension d]1 is [16]:

�Nd��2d�1 (1)

When the neighbours of T are hard spheres the

contact distribution on T is subject to the con-

straint that no two spheres should overlap. There

is a trivial solution in this case for one-dimensional
spheres (Fig. 2(A)), namely �N1��/2, but no

caging numbers have been calculated yet for

higher dimension. However, computer simulation

results of caging experiment on a d -dimensional

hard sphere can be fitted accurately with [16]:

�Nd��0:046d2�1:22d�0:73 (2)

In these simulations [16] the same construction

of a sphere cage was used as in Fig. 1, namely

random parking of hard spheres and discarding

any parking which produces overlap. This con-

straint random packing is the only randomness
that enters into the caging number. Note that the

caging number for hard spheres in Eq. (2) falls

below the value from Eq. (1). This is because the

non-overlap constraint pushes contacts apart on

the surface of T , so less contacts are needed to

cage T than in the case of uncorrelated contacts.

The caging number is a well-defined expectation

value, which */ within a mean field approxima-
tion */ can be converted to a well-defined density

as follows.

3. Caging density

Consider a d -dimensional test sphere T with

diameter s and equal sized neighbor spheres S

with their center at a d-dimensional position
vector rd relative to the center of T . The function

f (rd ) equals unity when T and S have a region of

overlap and is zero otherwise: f(rd )�/0 if rd �/s ,

and f(rd )�/1 if 05/rd 5/s . The number of overlaps

on T by neighbors S is therefore the d -fold

integral:

Cd �g f (rd)r(rd)drd (3)
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where r (rd ) is the local number density distribu-

tion of neighbors near T . The mean-field approx-

imation is that the average of Cd over all spheres

only depends on the overall average number
density r̄d of the sphere system:

�Cd�� r̄dg f (rd)drd (4)

The integral in Eq. (4) is by definition the

excluded volume Vex,d , i.e. the region in which

the center of S must be located in order to overlap

T . Thus the mean-field number density is simply

the average number of overlaps counted in the
excluded volume. For the infinitely hard spheres in

this study, such overlaps shrink to zero-dimen-

sional contact points on the surface of T . For this

case we refer to �Cd� as the average contact

number, rather than an average overlap number.

The volume Vd of a hyper sphere with diameter s

is [21]:

Vd �
pd=2

(d=2)G(d=2)
(s=2)d (5)

where G (x ) is the gamma-function of x . It follows

from the definition of f (rd ) that Vex,d is a hyper

sphere with diameter 2s . Therefore, Vex,d /Vd �/

2�d and Eq. (4) leads to:

Fd ��Cd�2�d (6)

Here Fd � r̄dVd is the fraction of space occu-

pied by the hyperspheres: F2 is a surface fraction
of discs on a two-dimensional plane, F3 is the

three-dimensional sphere volume fraction, etc. We

define an amorphous solid (see also Fig. 2) to be at

its caging density when the average contact

number precisely equals the caging number �Nd�:

Fd ��Nd�2�d (7)

Fig. 1. (A) Co-ordination of a 3-d test sphere T starts with random parking of neighbors at fixed contact positions on T under the

constraint that no two spheres interpenetrate. When all contacts share the same hemisphere of T , the test sphere is uncaged, i.e. free to

translate in some direction. Cages are formed by the minimal number of neighbors which completely arrests T (which turns red). The

average of this minimum is the caging number [16] �N3��/4.79. Random parking is continued until T accommodates the maximal

number of random, fixed contacts, the average of which equals the parking number [19]. The contact number C can only be further

increased by rearranging neighbors to ordered positions, with the single-valued kissing number C�/12 of the FCC-crystal as the

absolute maximum [11,21]. (B) The gap between (I) caging number from Eq. (2) and (D ) kissing number [21] rapidly increases with

dimension d , despite the modest density gap between sphere-glasses and densest lattice packing (Fig. 3). Apparently a sphere is only

caged by a small fraction of a large number of spheres in its vicinity from which contacts are recruited to crystallize the amorphous

solid. Shown are also average contact numbers for 3-d random close sphere packings from experiments [16,17] (k) and simulations

[18] (m), and for random 2-d disc packings[14] (k). These results show that contacts in random packings are close to caging numbers.
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This result can be seen as a geometrical equation

of state for an amorphous solid of caged spheres:

the caging number only depends on the Euclidean

dimension d which therefore completely fixes the

caging density. For the case of uncorrelated

contacts we find

Fd �
2d � 1

2d
(8)

This is an exact result for the caging density for

interpenetrating spheres, where each overlap

blocks a translation direction of a test sphere.

Due to such overlaps the density Fd may be larger

than unity. For non-overlapping hard spheres we

substitute the nummerical result from Eq. (2):

Fd �
0:046d2 � 1:22 � 0:73

2d
(9)

which equals unity for the one-dimensional

spheres in Fig. 2(A).

4. Discussion

The strong decrease of caging densities from Eq.

(9) with Euclidean dimension, paralleling the trend

in densities of lattice packings (Fig. 3), results from

the competition between the nearly linear increase

Fig. 2. (A) Contacts are placed on a d -1 dimensional sphere surface so for d�/1 no distinction exists between ‘caging’ and ‘kissing’; the

caging density corresponds to one row of spheres that are all caged by the maximum of two neighbors except for the dark, uncaged

boundary spheres. (B) At higher dimensions caging co-ordination numbers become distributed and also uncaged dark spheres may be

present away from the boundary. A schematic is shown for an amorphous solid of 2-d discs at the caging density, i.e. the average

contact number equals the caging number �N2��/3.35. Since a 2-d cage requires at least three contacts, and four contacts virtually

always cage a disc, the disc cage in a plane contains either 3 or 4 contacts. The caged discs form a 2-d queue (see text); collective

vibrations would nevertheless crystallize the solid to the densest 2-d packing.
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of the caging number with dimension in Eq. (2)

and the exponential growth of the excluded sphere

volume. The latter produces the term 2�d in Eq.

(9), which always brings down the caging density

at higher dimensions. Such a decrease also occurs

for experimental amorphous solids in the form of

random sphere packings; the random packing (rp)

density of static spheres is in 3-d substantially

lower than in 2-d . This previously unexplained

dimensionality effect agrees actually quite well

with Eq. (9), see insert of Fig. 3. Berryman’s

review [12] of rp -densities of discs on a two-

dimensional plane yields an average surface frac-

tion of F2�/0.835 (9/0.025), whereas Eq. (9)

predicts a two-dimensional caging density of

F2�/0.839. Further, the three-dimensional caging

volume fraction F3�/0.601 equals the experimen-

tal value of F3�/0.60 for the ‘loose’ rp-density

first found by Scott [13].

It is somewhat unexpected that a local caging

analysis would reproduce global packing densities.

Moreover, in our analysis the only excluded

volume effect is that for a pair of spheres in Eq.

(4), which is a severe approximation. Therefore the

agreement as shown in the insert of Fig. 3 should

be viewed with some caution. There is, never-

theless, no doubt that local caging effects are
important in sphere packings; the question is

how far they determine the final density irrespec-

tive of the packing preparation. Scott in his

classical experiment [13] poured large numbers of

uniform steel balls, which obviously ‘settle’ at an

infinite rate on their diffusion time scale, into

various containers and extrapolated densities to

infinite container size. This pouring of spheres
clearly is a complicated collective process that no

more than the dynamics of glassy colloids can be

modeled by a local geometrical caging analysis.

However, the reproducible outcome of the process

may well be a geometric state determined by

minimal cage sizes, in the sense that the contact

number of poured spheres jumps to the caging

number, with boundary spheres caged due to
container walls, keeping the spheres in a three-

dimensional queue (see below). The non-thermal

spheres remain in this queue when left undisturbed

and only densify (to random close packing) due to

external vibrations [20].

If the majority of spheres in a packing or (static)

glass are indeed locally caged, one could imagine

that the contact number averaged over all spheres
in a packing equals (or at least approximates) the

average of a large number of individual caging

experiments as depicted in Fig. 1(A). In that case

the spheres in a packing would sample all possible

outcomes of a repeated, single caging experiment.

Contact numbers of sphere packings actually

support this idea. For discs randomly packed in

a plane an upperbound contact number of 3.416
has been reported [14] which is slightly above the

two-dimensional caging number �N2��/3.35. Si-

mulations of random disc packings of Hinrichsen

et al. [15] produce an average contact number

�C2��/3.02 and a density such that �C2�/82�/3.9

(9/0.2), which agrees very well with the value of

22�/4 from Eq. (6). The three-dimensional caging

number [16] is �N3��/4.79, which should be
compared to the average contact number for the

loose sphere packing found from simulations [22]

to be �C3��/5.28, which increases [22] to 5.68 at

the random close packing density of 64%.

It should be noted that the 3-d contact- and

caging numbers are substantially below the 3-d

random parking number [19] of about 8.7 (Fig.

Fig. 3. Comparison between mean-field hard-sphere caging

densities (I) from Eq. (9) for amorphous sphere solids and the

densest possible sphere lattice packings[21] (D) as a function of

dimension. Drawn lines are eye-guides. The insert compares

caging densities (drawn line) to densities of (1) Scott’s random

loose sphere packing [13], (2) a simulated random close sphere

packing [18], (3) a simulated random disc packing [15] and the

average (4) from 12 studies on random disc packings [12].
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1(A)), which illustrates once more that an amor-
phous solid of caged spheres does not efficiently

fill space. The solid does not maximize the number

of parking places but instead */ to stay in traffic

jargon */ employs minimal contact numbers to

form a d-dimensional queue in which each caged

sphere has to wait for one (and only one)

particular contact to disappear and open its cage

(Fig. 2). Whether such queue */ when thermal
motion is switched on */ will form a long-lived

state depends on the mobility of particles at the

boundaries (Fig. 2), as in any traffic jam, and any

frictional or cohesive forces between queuing

colloids. Such effects, of course, cannot be derived

solely from the geometry of hard-sphere cages

composed only of central (point) forces between

spheres.
Here we have explored the caging density for

amorphous spheres as a function of Euclidean

dimension. One can also change the particle shape

at a given dimension, keeping the system amor-

phous both with respect to particle position as well

as particle orientation. An interesting limiting case

is a solid composed of randomly oriented thin

rigid rods. The mean-field caging density for such
a solid, based on Eq. (3) but now with the

orientationally averaged excluded volume of a

thin rod, is discussed elsewhere.[23�/25], including

an exact solution for the caging number for a thin

cylinder [24]. It turns out that this caging density

for thin rods predicts the correct aspect-ratio

dependence of experimental random rod packing

densities [23] in the limit of high aspect ratio’s.
This agreement, which we also found in accurate

computer simulations of random non-sphere pack-

ings [26], confirms that local caging effects are

important for the calculation of random packing

densities

5. Conclusions

It is possible to assign an approximate caging

density to a static amorphous sphere solid, based

on a precisely defined minimal cage size, which

forms a contrast to the maximization represented

by kissing and parking numbers. Caging densities

and caging numbers at least qualitatively agree

with known densities and contact numbers for
random (loose) sphere packings in two and three

dimensions. Also in view of the correct prediction

for the aspect-ratio dependence of random thin-

rod packings it can be concluded that minimal

cages are an important feature of random packings

in general, and mutatis mutandis of systems such

as sphere (or rod) glasses in as far as their static

structure mimics such a random packing. The
conversion from cage sizes to caging densities

clearly needs to be improved beyond the mean-

field approximation to further quantify the com-

parison to experimental sphere systems.
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