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Summary: The susceptibility of immature rat brain to neuro-
toxicity of N-methyl-D-aspartate (NMDA) has provided a
widely used in vivo paradigm to study excitotoxicity relevant to
acute neurodegenerative diseases such as cerebral ischemia. In
this study, in vivo excitotoxicity was induced via injection of
ouabain (1 mM/0.5 !L), a Na+/K+-ATPase-inhibitor, into neo-
natal rat brain and compared with NMDA injection. The aim of
the study was to induce excitotoxicity secondary to cellular
membrane depolarization, thereby more closely mimicking the
pathophysiologic processes of ischemia-induced brain injury
where NMDA-receptor overstimulation by glutamate follows,
not precedes, membrane depolarization. Na+/K+-ATPase-
inhibition caused an acute, 40% ± 8% decrease of the apparent
diffusion coefficient (ADC) of water, as measured using diffu-
sion-weighted magnetic resonance imaging (MRI), and resulted
in infarctlike lesions as measured using T2-weighted MRI and
histology up to 2 weeks later. Localized one- and two-

dimensional 1H–magnetic resonance spectroscopy (MRS) dem-
onstrated that the early excitotoxic diffusion changes were not
accompanied by an overall metabolic disturbance. Further-
more, 31P-MRS demonstrated that energy depletion is not a
prerequisite for ADC decrease or excitotoxic cell death. Treat-
ment with the NMDA-antagonist MK-801 (1 mg/kg) attenuated
the volume of tissue exhibiting a decreased ADC (P < 0.005),
demonstrating that the ouabain-induced injury is indeed exci-
totoxic in nature. The authors argue that, compared with
NMDA-injection, ouabain-induced excitotoxicity elicits more
appropriate glutamate-receptor overstimulation and is better
suited to detect relevant neuroprotection in that it is more sen-
sitive to attenuation of synaptic glutamate levels. Key Words:
Excitotoxicity—Ouabain—Acute neuronal injury—Na+/K+-
ATPase—Magnetic resonance imaging—Magnetic resonance
spectroscopy.

In the brain, at least 40% of the energy delivered by
respiration is required by Na+/K+-ATPase to maintain
ion gradients across cell membranes (Astrup et al.,
1981). Energy deficiency and concurrent failure of
Na+/K+-ATPase function lead to dissipation of these gra-
dients, membrane depolarization, and excessive release
of excitatory amino acids (i.e., the induction of excito-
toxicity). In excitotoxicity, cell death is initiated by over-
activation of N-methyl-D-aspartate (NMDA) receptors by
glutamate, after release of the voltage-sensitive Mg2+

block from the receptor (Choi et al., 1988). Excitotoxicity
takes center stage in the pathologic sequelae of acute
insults such as stroke, status epilepticus, and traumatic
brain injury (Faden et al., 1989; Lee et al., 1999; Mel-
drum 1993). Antagonizing the NMDA-type glutamate
receptor proved to be most effective in blocking gluta-
mate overstimulation and attenuating excitotoxicity in
animal models of these diseases (Faden et al., 1989;
Hahn et al., 1988; Simon et al., 1984). Application of
glutamate-receptor agonists, such as NMDA, kainate, or
glutamate itself has been extensively used to model ex-
citotoxic cell death, both in vitro and in vivo (Lipton,
1999). In the present study, we focus on the application
of these models to the study of excitotoxicity in a setting
of cerebral ischemia. Young animals are often used in
these studies because of their intrinsic high vulnerability
to excitotoxins (Ikonomidou et al., 1989; McDonald et
al., 1989a; van Lookeren Campagne et al., 1996). A
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frequently used approach is the injection of NMDA into
neonatal rat brain to achieve overstimulation of NMDA
receptors and thus induce excitotoxicity (Dijkhuizen et
al., 1999; Dijkhuizen et al., 1996; McDonald et al.,
1989b; van Lookeren Campagne et al., 1996; van Look-
eren et al., 1994; Verheul et al., 1993). This glutamate-
agonist approach to induce excitotoxicity, however, does
not take into account membrane depolarization and the
subsequent influx of calcium before glutamate release. In
this respect it differs from the sequence of events that
occur after ischemia. In fact, by inducing depolarization
via NMDA-receptor overstimulation, it reverses the cau-
sality of depolarization causing the release of glutamate.
Furthermore, the extracellular levels of excitotoxins, es-
pecially glutamate, that are needed to induce excitotox-
icity by exogenous supply are much higher than the
glutamate levels reached when excitotoxicity is induced
secondary to ischemic depolarization (Benveniste et
al., 1992; Mangano and Schwarcz, 1983; Obrenovitch et
al., 2000).

Therefore, it is thought that inducing excitotoxicity
secondary to cellular membrane depolarization more
closely mimics the pathophysiologic processes of is-
chemia-induced brain injury, after which excessive
NMDA-receptor stimulation by synaptically released
glutamate, follows, not precedes, membrane depolariza-
tion. In this study, secondary excitotoxicity was induced
via injection of ouabain, a Na+/K+-ATPase-inhibitor, in
neonatal rat brain. Our aim was to characterize secondary
excitotoxicity in neonatal rat brain and to compare it with
the widely employed NMDA model.

Magnetic resonance imaging (MRI) and spectroscopy
(MRS) were chosen as the primary read-out modalities,
because (1) they have been extensively used to study
NMDA-induced excitotoxicity; (2) they sensitively de-
tect tissue changes related to excitotoxic injury, both in
animal models and in human disease; and (3) they are as
such commonly applied in the clinic to diagnose and
study human acute stroke. The latter is especially true for
diffusion-weighted (DW) MRI, which is applied world-
wide for the diagnosis of acute stroke. A decrease in the
apparent diffusion coefficient (ADC) of water, as mea-
sured using DW-MRI, occurs early after the onset of
cerebral ischemia and is thought to correlate to acute,
excitotoxic tissue changes (Benveniste et al., 1992;
Moseley et al., 1990). Therefore, in the present investi-
gation we used DW-MRI to assess the acute ADC de-
crease elicited by ouabain-induced excitotoxicity in neo-
natal rat brain. We investigated the contribution of
synaptic glutamate release to the ADC decline using the
NMDA-receptor antagonist MK-801. Furthermore, be-
cause mitochondrial damage may contribute to excito-
toxicity, we studied the possible metabolic disturbance
and occurrence of energy failure, using one- and two-
dimensional COSY 1H-MRS and 31P-MRS. T2-weighted

MRI and histology performed 7 days later served as end-
point measurements to determine the fate of brain tissue
exhibiting decreased ADCs in the acute phase after
Na+/K+-ATPase inhibition.

MATERIALS AND METHODS

Animal model
Wistar rats (U:Wu/Cpb, 7- or 8-day-old) were anesthetized

with ether and immobilized in a stereotaxic frame. A small burr
hole was drilled in the cranium over the left hemisphere, 2.5
mm lateral of bregma. A 1-!L syringe was lowered into the left
striatum to a depth of 4.0 mm (Dijkhuizen et al., 1999). Oua-
bain (0.5 !L, 1 mmol/L; n ! 22), NMDA (0.5 !L, 20 mmol/L;
n ! 9) or vehicle (0.5 !L 40-mmol/L Tris-HCl buffer, pH 7.4;
n ! 3) was injected at a rate of 0.125 !L/min using a micro-
drive. The dosage of excitotoxins was chosen on the basis of
doses earlier reported to induce extensive neuronal depolariza-
tion and tissue injury as defined by ADC decreases of "40%
(i.e., comparable to ischemia-induced ADC decreases). For
NMDA, these data came from neonatal rat brain (Dijkhuizen et
al., 1999; van Lookeren et al., 1994; Verheul et al., 1993); for
ouabain, they were extrapolated from literature on adult rat
brain (Benveniste et al., 1992). After injection, the needle was
left in situ for 2 minutes to avoid leakage of injection fluid from
the needle tract. To assess the role of glutamate release, four
additional animals received systemic treatment with the
NMDA-receptor antagonist MK-801 (1 mg/kg; intraperitoneal-
ly) 15 minutes before ouabain injection. Body temperature was
maintained at 37°C using a water-filled heating pad and an
infrared heating lamp. Animals were then positioned in the
magnet and anesthesia was continued using a mixture of halo-
thane (0.4% to 1%) in N2O/O2. The Animal Experiment Ethical
Committee of the Utrecht University approved all animal ex-
periment protocols.

Nuclear magnetic resonance protocol
All nuclear magnetic resonance (NMR) experiments were

performed using a 4.7T horizontal bore spectrometer (Varian
Instruments, Palo Alto, CA, U.S.A.) with a 220-mT/m gradient
insert. For proton detection, radio-frequency excitation and sig-
nal detection were accomplished by means of a Helmholtz
volume coil (9-cm diameter) and an inductively coupled sur-
face coil (2-cm diameter), respectively. For phosphorous spec-
troscopy, a double-turn surface coil (2-cm inner diameter) was
used for excitation and detection.

Magnetic resonance imaging. A single-scan diffusion-trace
MRI sequence (de Graaf et al., 1999) [4 b values ! 100–1,300
s/mm2, diffusion-gradient duration (#) ! 3.15 milliseconds,
gradient separation ($) ! 13.50 milliseconds, diffusion time
($-#/4) ! 12.71 milliseconds, repetition time (TR) ! 3 sec-
onds, echo time (TE) ! 100 milliseconds, number of transients
(nt) ! 2] was used to generate quantified images of tissue
water-trace ADC. Diffusion-trace and T2-weighted (T2W) im-
aging (TE ! 18, 40, 62 and 84 milliseconds; TR ! 2 seconds;
nt ! 2) were performed in all animals (2.2 × 2.2 cm2 field-
of-view; 64 × 64 data-matrix), starting 15 minutes after injec-
tion on day 0. As expected, at the early time point no changes
in T2W-MRI were detected. Both types of imaging were re-
peated on day 7. To assess further lesion evolution, MRI scans
were obtained again on day 14 in five ouabain- and three
NMDA-treated animals. Both the T2W and the diffusion-
weighted (DW) datasets consisted of seven consecutive,
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1.5-mm-thick slices, with a 0-mm slice gap. To minimize in-
terference at the slice boundaries, slices were acquired in al-
ternating order. For the DW imaging, we used a double spin-
echo pulse sequence with four pairs of bipolar gradients with
specific predetermined signs in each of the three orthogonal
directions, as recently described elsewhere (de Graaf et al.,
1999). The combination of gradient directions leads to cancel-
lation of all off-diagonal tensor elements, effectively measuring
the trace of the diffusion tensor. This provides unambiguous
and rotationally invariant ADC values in one experiment, cir-
cumventing the need for three separate experiments.

31P–magnetic resonance spectroscopy. The 31P-MR spec-
tra were acquired starting 1.5 hours after ouabain injection (n
! 5) using a two-dimensional ISIS sequence (TR ! 10 seconds,
nt ! 128). Sagittal slices (4.0 mm) were positioned in the ipsi-
lateral and contralateral hemispheres as guided by DW images and
limited to the hemisphere in the rostrocaudal (z) dimension as
guided by a rapid transversal scout imaging experiment. After
acquisition, the 31P-MR data were zero-filled to 4k and 15-Hz
line broadening was applied before Fourier transformation.

One-dimensional 1H–magnetic resonance spectroscopy.
One-dimensional 1H MRS was performed starting 1.5 hours
after injection of NMDA (n ! 5) or ouabain (n ! 9), using a
point-resolved spectroscopy (PRESS) sequence (TE ! 144
milliseconds, TR ! 2 seconds, nt ! 128). Spectra were ac-
quired from 36-!L voxels positioned in the ipsilateral or con-
tralateral hemisphere. Chemical-shift-selective (CHESS)
pulses and dephasing gradients were used to suppress the water
signal. Positioning of the ipsilateral voxel was guided by the
DW images acquired just before the MRS experiment. The
contralateral voxel was placed in a position symmetrical to the
ipsilateral voxel, using the midline as a reference. After acqui-
sition, the data were zero-filled to 8k and 4-Hz line broadening
was applied.

Two-dimensional 1H–magnetic resonance correlation
spectroscopy. To overcome the problem of spectral overlap
between lactate and lipid resonances at 1.33 ppm in one-
dimensional 1H spectra, two-dimensional 1H spectra were ac-
quired at 1.5 hour after ouabain injection in four additional
animals. Repetition of the measurement during a 20-minute
anoxic stimulus served as a positive control for lactate detec-
tion. Spectra were acquired from two 100-!L voxels positioned
in the ipsilateral and contralateral hemispheres with acquisition
times of 2 × 20 minutes starting at 1.5 hour after ouabain
injection, and 2 × 10-minute acquisition times starting on re-
moving the oxygen from the breathing mixture. Acquisition
time for two-dimensional spectra was longer than for one-
dimensional spectra. Therefore, localization of two-
dimensional spectra was done using Hadamard encoding, en-
abling the acquisition of data from the two voxels
simultaneously (Delmas et al., 2001; Hennig, 1992), thus
avoiding differences in starting time for data acquisition from
ipsilateral and contralateral voxels. Localization was performed
with a double spin-echo volume selective sequence (TE1 !
7.65 milliseconds, TE2 ! 4.85 milliseconds, TR ! 2 seconds,
nt ! 8). Simultaneous acquisition of the Hadamard-encoded
signal arising from the two voxels was done with nt ! 4 for
each encoding step. The final pulse of the double spin-echo
sequence was applied for two-dimensional polarization trans-
fer, resulting in correlation spectroscopy (COSY)-type spectra
(80 t1-increments, np ! 512). Water suppression was obtained,
before the localization sequence using three gaussian CHESS
pulses followed by crusher gradients. The third CHESS pulse
was optimized to yield minimal water signal at the start of the
localization sequence (i.e., to account for T1 relaxation during
the last crusher gradient) (Webb et al., 1994).

Histology
After the last NMR measurements, animals destined

for histology (n ! 8) received an overdose of pentobar-
bital and were transcardially perfused with 4% paraform-
aldehyde in 0.1 mol/L phosphate buffer. Dissected brains
were postfixed overnight by immersion in the same fixa-
tive, cryoprotected in 10% sucrose in phosphate-buffered
saline (PBS) for 24 hours followed by 25% sucrose in
PBS for 72 hours, and snap-frozen in liquid nitrogen–
cooled isopentane. Coronal sections (10 !m) were cut
and stained for glial fibrillary acidic protein (GFAP) with
Nissl-substance or with hematoxylin–eosin using stan-
dard procedures. The position of the histologic slices was
matched to the position of the MRI images by known
position relative to bregma, after which a gross correla-
tion was done.

Data analysis
The ADC and T2 maps were generated by monoexpo-

nential fitting using the Interactive Data Language soft-
ware package (Research Systems, Boulder, CO, U.S.A.).
Parametric images were analyzed in anatomic regions of
interest using the same software package. Voxels in the
ipsilateral hemisphere were considered pathologic if
their ADC or T2 value differed more than 20% (corre-
sponding to a "2× SD difference) from the mean value
in the contralateral hemisphere. The ventricles were seg-
mented out in the average ADC and T2 measurements.

The lesion volume per slice was calculated by multi-
plying the number of pathologic voxels in that slice by
the voxel volume. The total lesion volume was obtained
by summation of the lesion volumes for all slices. The
absence of a slice gap makes interpolation of lesion areas
between slices unnecessary, reducing systematic errors
to within-slice “averaging” of signal intensity.

One-dimensional 1H- and 31P-MR spectra were ana-
lyzed using the VARPRO (variable projection) nonlinear
least-square time-domain fitting method. Intracellular pH
(pHi) was calculated from the chemical shift difference
between the inorganic phosphate (Pi) and phosphocre-
atine (PCr) resonances (Decorps et al., 1984). All chemi-
cal shift values were referred to the methyl proton reso-
nance of NAA at 2.02 ppm or the PCr resonance at 0
ppm for 1H and 31P spectra, respectively.

Data postprocessing of two-dimensional 1H-MR spec-
tra, including Hadamard decoding, was performed
with GIFA software (ftp://www.cbs.univ-montp1.
fr/pub/gifa_v4). The two-dimensional dataset was apo-
dized with a standard sine function and zero-filled in
both dimensions. Decoding was obtained by addition and
subtraction of the two Hadamard-encoded spectra, which
corresponds to the multiplication of the data by the
Hadamard matrix. Two-dimensional spectra are shown
as contour plots. All chemical shift values were referred
to the methyl proton resonance of NAA at 2.02 ppm.
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Statistical analysis was carried out using SPSS 10.0
(SPSS Inc., Chicago, IL, U.S.A.). Data are presented as
mean ± SD. Differences between groups were analyzed
using Student’s t-test; reported P values correspond to
two-tailed significance.

RESULTS

Diffusion- and T2-weighted MRI magnetic
resonance imaging after Na+/K+-ATPase inhibition
in neonatal rat brain

In all animals, we first acquired DW-MR images start-
ing 15 minutes after ouabain injection. DW-MRI can
report on excitotoxic tissue changes, as evidenced by a
decrease in the ADC of water that accompanies a relo-
cation of part of the extracellular water into depolarized
cells (Benveniste et al., 1992; Mintorovitch et al., 1994;
van der Toorn et al., 1996). Ouabain injection resulted in
a 40% ± 8% drop in ADC (from 1.09 × 10−3 mm2/sec to
0.66 × 10−3 mm2/sec, mean value of all pathologic vox-
els; P < 0.0001; Fig. 1A, Table 1). Injection of vehicle
did not result in ADC reduction (data not shown). The
extent of the ADC decrease correlates to the severity of
tissue injury (Desmond et al., 2001). Therefore, we com-
pared the ADC decrease caused by ouabain-induced ex-
citotoxicity with that caused by NMDA. Injection of
NMDA resulted in a 45% ± 9% ADC drop (from 1.12 ×
10−3 mm2/sec to 0.62 × 10−3 mm2/sec; P < 0.0001; Table
1), which was slightly more than the ouabain-induced
decrease (P < 0.05). The values found for NMDA are in
agreement with previous findings (Benveniste et al.,
1992; Dijkhuizen et al., 1999; van Lookeren Campagne
et al., 1996).

The total volume of tissue exhibiting an ADC decrease
of 20% or more (corresponding to a "2× SD difference)
was calculated from the multislice DW-MRI datasets and
is shown in Fig. 1E. At this acute time point, 15 minutes
after injection, the volume of the affected brain region
was 67% smaller (P < 0.0001) in the ouabain-injected
animals compared with the NMDA-injected animals.
The caudate-putamen and the dorsally situated motor-
and forelimb-sensory cortex were invariably affected in
both groups, whereas in the NMDA-treated animals the
dorsal hippocampus and more frontoparietal cortex were
also included in the lesion (Figs. 1A and 1B). Seven days
after toxin injection, lesion volumes were again deter-
mined from T2W-MRI data sets (Figs. 1C and 1D). The
hyperintense signal on these maps corresponds to ex
vacuo ventricular dilatation and vasogenic edematous
and necrotic tissue (Fig. 2A) (van Lookeren et al., 1994;
Verheul et al., 1993). Hypointense areas on T2-maps cor-
responded to areas of extensive reactive gliosis on
GFAP-stained histologic sections (Figs. 2A and 2E) and
formed part of the area defined as a lesion in Nissl-
stained sections (Figs. 2D and 2E), which is in excellent
agreement with previous findings after NMDA-induced

FIG. 1. Consecutive parametric apparent diffusion coefficient
(ADC) maps acquired 15 minutes after ouabain injection (A) and
N-methyl-D-aspartate (NMDA) injection (B). (C and D) Consecu-
tive parametric T2 maps of the corresponding slices of the same
animals 1 week later. (E) Lesion volumes as determined from
ADC maps on day 0 and T2 maps on days 7 and 14. (F) Relative
contribution of hypointense and hyperintense signals to lesion
volume on T2 maps. *P < 0.05, **P < 0.0001 vs. ouabain.
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excitotoxicity (van Lookeren Campagne et al., 1996; van
Lookeren et al., 1994). Neuronal loss, defined by hypo-
intensities and hyperintensities on day 7, was similar in
the ouabain- and NMDA-injected animals (Fig. 1E). The
hypointense, gliotic tissue usually surrounded the hyper-
intense tissue (Figs. 1C and D; Figs. 2B and C), and its
contribution to the total lesion volume on T2-maps was
comparable between ouabain- and NMDA-injected ani-
mals (Fig. 1F). From day 0 to 7, the size of the lesion was
stable in ouabain-injected animals but had decreased by
more than twofold in NMDA-injected animals. To assess
further lesion evolution, MRI scans were obtained again
on day 14 in five ouabain- and three NMDA-treated
animals. These data showed that from day 7 to 14, the
volume of the lesion volume had not significantly
changed in either group, although the volume in ouabain-
injected animals was now significantly smaller than in
NMDA-injected animals (P < 0.05, Fig. 1E).

1H–magnetic resonance spectroscopy
During cerebral ischemia, oxygen depletion impedes

mitochondrial respiration. The ensuing energy failure
and standstill of the Na+/K+-ATPase lead to dissipation
of the membrane potential. The resulting loss of the volt-
age-sensitive Mg2+ block of the NMDA receptor and
stimulation by synaptically released glutamate greatly
enhance calcium influx. The resulting increase in intra-
cellular calcium levels activates many deleterious pro-
cesses, including further disruption of mitochondrial
function. To assess whether mitochondrial failure is as-
sociated with excitotoxic cell death in our model, 1H
MR-spectra were obtained in the acute phase after
Na+/K+-ATPase inhibition to search for increased lactate
production and metabolic derangement. Single-voxel 1H
spectra were acquired from affected tissue in the ipsilat-
eral hemisphere (Fig. 3B) and from the corresponding
region in the contralateral hemisphere (Fig. 3A) using the
PRESS technique. The spectra obtained from the unaf-
fected contralateral hemisphere showed the typically low
total creatine (tCr), low N-acetylaspartate (NAA), and
high taurine (Tau) levels characteristic of P7 brain as

FIG. 2. (A) Coronal T2 map and corresponding glial fibrillary
acidic protein (GFAP) staining for astroglial intermediate fila-
ments of rat brain after ouabain injection. Markedly increased
staining was observed in the thalamus (Th), external capsule
(ec), and cortex (Cx) of the injected hemisphere, whereas normal
staining was seen in the contralateral hemisphere. Increased
staining corresponds to hypointense areas on T2 maps. (B and C)
Transversal T2 map showing that the hyperintense, edematous
tissue is surrounded by hypointense, astrogliotic tissue. (D) Nissl
and (E) GFAP staining of an ouabain-injected rat both demon-
strate a sharp line between affected and healthy tissue. The hy-
pointense, astrogliotic area forms part of the area defined as a
lesion in Nissl-stained sections. V, ventricle; CP, caudate puta-
men; ic, internal capsule. (Adapted and reprinted with permission
from van der Stelt, et al. Neuroprotection by $9-tetrahydrocan-
nibinol, the main active compound in marijuana, against ouabain-
induced in vivo excitotoxicity, J Neurosci 2001;21:6475–6479;
and van der Stelt, et al. Exogenous anandamide protects rat
brain against acute neuronal injury in vivo. J Neurosci
2001;21:8765–8771. Both copyright 2003 by the Society for
Neuroscience.)

TABLE 1. Mean values of apparent diffusion coefficient of water and T2, for lesions and
contralateral tissue

Group

Mean ADC (10−3 % mm2 % s−1) and T2 (ms) values

Day 0 Day 7

ADC ± SD
lesion

ADC ± SD
contralateral

T2 ± SD
hyperintensities

T2 ± SD
hypointensities

T2 ± SD
contralateral

Ouabain 0.66 ± 0.051† 1.09 ± 0.056 149.8 ± 42.6† 53.5 ± 2.7† 73.3 ± 2.6
Ouabain + MK-801 0.65 ± 0.046† 1.04 ± 0.045 114.8 ± 11.9*‡ 53.4 ± 0.7† 73.4 ± 0.6
NMDA 0.62 ± 0.057† 1.12 ± 0.079 197.7 ± 33.2†‡ 54.2 ± 2.2† 75.0 ± 1.4

Values for apparent diffusion coefficient of water (ADC) and T2 calculated from ADC and T2 maps, respec-
tively.

* P < 0.01 or †P < 0.001 versus contralateral ADC or contralateral T2, respectively; ‡P < 0.01 versus
ouabain-induced mean lesion T2 value.

NMDA, N-methyl-D-aspartate.
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FIG. 3. 1H–magnetic resonance spectra acquired 1.5 hours after ouabain injection from the unaffected contralateral (A) and ouabain-
injected ipsilateral (B) hemisphere. Note that the relative signal intensities of NAA and Tau reflect the typically low NAA and high Tau
concentrations of neonatal brain. The lactate peak, if detected, is inverted because of the echo time of 144 milliseconds. Shown below
the one-dimensional spectra are the two-dimensional correlation spectra from the same animal, acquired from the contralateral (C) and
ipsilateral (D) hemispheres during normoxia. (E and F) Two-dimensional spectra acquired over a 20-minute period during which the
oxygen was removed from the breathing mixture. Arrow denotes location of the lactate crosspeak. NAA, N-acetylaspartate; Tau, taurine;
tCr, total creatine; PE, phosphoethanolamine; Cho, choline-containing compounds; Myo, myo-inositols; Glx, glutamate/glutamine; Lac,
lactate; Lip, lipids.
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compared with adult brain (Burri et al., 1988). The ex-
citotoxic tissue damage witnessed by DW-MRI directly
after ouabain injection was not accompanied by a major
disturbance in the levels of 1H-MRS–detectable metabo-
lites 1.5 hours after injection (Fig. 4). Seven days after
injection, spectra acquired from the unaffected contralat-
eral hemisphere showed the expected increase in the
intensity of the peak from the neuronal marker NAA,
related to continuing brain development. This increase
was strongly diminished in the ipsilateral hemisphere (P
< 0.05, Fig. 4C), indicative of the neuronal loss also
witnessed on T2-maps and Nissl histology. 1H-MRS
measurements in five animals in which excitotoxicity
was induced by NMDA injection yielded similar results
(Fig. 4). Occasionally a small peak was observed at the
lactate resonance frequency, which could indicate lactate
formation (Fig. 3B). The spectral overlap with lipid
resonances, however, hampered the accurate detection of
small amounts of lactate. To overcome this problem,

two-dimensional 1H-spectra were acquired 1.5 hours af-
ter ouabain injection in four additional animals. Because
the lactate crosspeak at 1.33 × 4.1 ppm is completely
separated from the lipid resonance and because shorter
TEs can be used, localized two-dimensional COSY al-
lows the uncontaminated detection of low lactate levels
(Delmas et al., 2001). The peaks on the diagonal in the
two-dimensional spectra are the peaks as they are de-
tected in the one-dimensional spectra (Fig. 3), and once
again indicated that there were no major differences in
metabolite levels between spectra obtained from the af-
fected ipsilateral and unaffected contralateral hemi-
sphere. At 1.33 × 4.1 ppm where the lactate crosspeak
arises, no lactate was detected in either hemisphere in all
animals (Figs. 3C and 3D). Next, a strong anoxic stimu-
lus was given by removing the oxygen from the breath-
ing mixture, which served as a positive control for lactate
detection. Two-dimensional acquisition was repeated
starting on anoxia and completed 20 minutes later. Lac-
tate was detected within minutes and a large amount of
lactate was seen in two-dimensional spectra of both
hemispheres at the end of the measurement (Figs. 3E and
3F). Lac/tCr and Lac/NAA ratios (0.61 ± 0.27 and 1.31
± 0.98 for the ipsilateral voxel and 0.49 ± 0.31 and 0.81
± 0.51 for the contralateral voxel) were 22% and 62%
higher, respectively (P > 0.05) in the ouabain-injected
hemisphere compared with the contralateral tissue.

Energy status and pHi after Na+/K+-ATPase
inhibition assessed by 31P–magnetic
resonance spectroscopy

To gain more direct information on the cerebral en-
ergy status after Na+/K+-ATPase inhibition, 31P-MR
spectra were acquired starting 1.5 hours after ouabain
injection in an additional five animals. The 31P spectra
acquired from the contralateral hemisphere showed the
prominent phosphomonoester (PME) peak typical of
neonatal brain (Burri et al., 1988; Tofts and Wray, 1985)
(Fig 5). In line with the 1H-MRS results, no overt lac-
tacidosis was detected using 31P-MRS. Intracellular
brain pH (pHi), as calculated from the chemical shift
difference between the inorganic phosphate and the
phosphocreatine resonance (Decorps et al., 1984), was
7.38 ± 0.11 for the ipsilateral side and 7.30 ± 0.09 for the
contralateral side. Previously, pHi values of 7.09 ± 0.14
and 7.26 ± 0.06 have been reported for the ipsilateral and
contralateral hemispheres, respectively, after NMDA-
injection (Dijkhuizen et al., 1996) compared with 7.25 ±
0.05 in controls (Suzuki et al., 1992).

The ratio of PCr to Pi and the Pi index, Pi/(Pi + PCr),
are both sensitive indicators of energy status. A Pi index
of 0.28 ± 0.03 was found for the unaffected contralateral
hemisphere, which is similar (0.28 ± 0.12) to control
values reported previously (Dijkhuizen et al., 1996). Af-
ter ouabain injection, the PCr/Pi and the PCr/ATP ratios

FIG. 4. Metabolite ratios determined from single-voxel 1H–
magnetic resonance spectra acquired 1.5 hours after intracere-
bral injection of ouabain or N-methyl-D-aspartate (NMDA). Note
the change in the relative signal intensities of N-acetylaspartate
(NAA) and taurine (Tau) from the typically low NAA and high Tau
concentrations of neonatal brain to the higher NAA (C) and lower
Tau (B) concentrations in the maturing brain. tCr, total creatine;
Cho, choline-containing compounds. *P < 0.05 vs. contralateral
hemisphere.
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were decreased (P < 0.05). Concomitantly, the Pi index
increased to 0.36 ± 0.03 (compared with 0.34 ± 0.18 after
NMDA injection; Dijkhuizen et al., 1996), indicative of
a compromised energy status.

Effect of MK-801 on the consequences of
Na+/K+-ATPase inhibition

To confirm a role of excitotoxicity in neurodegenera-
tion after Na+/K+-ATPase inhibition, four additional
animals received systemic injections with the NMDA-
receptor antagonist MK-801 15 minutes before intrace-
rebral ouabain injection. The excitotoxic tissue response
was strongly attenuated in the acute phase after Na+/K+-
ATPase inhibition (P < 0.05, Figs. 6A and 6C), signify-
ing that the ouabain-induced depolarization is followed
by overstimulation of the NMDA receptor, much like the
sequence of events known to occur after ischemia-
induced membrane depolarization. T2 maps acquired 1
week later showed persistently reduced lesion volumes
(P < 0.05, Figs. 6B and 6C). Thus, the protection offered
by acute NMDA-receptor blockage was not transient,
confirming that excitotoxicity is at the basis of neuronal
injury caused by Na+/K+-ATPase failure in this model.

DISCUSSION

The effect of in vivo Na+/K+-ATPase inhibition in
neonatal rat brain is described in terms of NMR param-

eters. Ouabain injection was explored as a more relevant
strategy to study in vivo neuronal injury relevant to ce-
rebral ischemia than direct excitotoxin injection. Imma-
ture brain is often used for these studies because of its
high susceptibility to the consequences of intrathecal ex-
citotoxin injection, resulting in large, distinct excitotoxic
lesions (Ikonomidou et al., 1989; McDonald et al.,
1989a; van Lookeren Campagne et al., 1996).

We will first discuss the current setup of ouabain-
induced, secondary excitotoxicity in neonatal rat brain
and compare it with existing models of excitotoxicity
using direct excitotoxin injection, in particular NMDA
injection. We will then discuss the nature of the ADC
decrease in our model with respect to the current discus-
sion about the mechanism behind the ADC decrease in
the acute phase after stroke. Finally, we address appli-
cation of the present setup to the study of neuroprotec-
tion relevant to cerebral ischemia.

Ouabain-induced in vivo excitotoxicity
We showed that inhibition of Na+/K+-ATPase in neo-

natal rat brain results in a decrease of the water ADC by
40%. It is thought that the sequence of events leading to
the ADC decrease after ouabain injection is as follows
(see also schematic in Fig. 7): the Na+ gradient set up
by Na+/K+-ATPase pumping will run down owing to
diffusion of Na+ down its concentration gradient. The

FIG. 5. 31P-MR spectra acquired 1.5
hours after Na+/K+-ATPase inhibition.
The spectra showed the prominent
phosphomonoester (PME) peak typi-
cal of neonatal brain. Spectra acquired
from the ipsilateral voxel showed a de-
cline in phosphocreatine (PCr) and
concomitant increase in phosphate
(Pi). Metabolite ratios calculated from
the spectra indicated a decreased
phosphorylation potential. *P < 0.05
vs. contralateral hemisphere. PDE,
phosphodiester.
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potassium equilibrium, responsible for the major com-
ponent of the resting membrane potential maintained by
potassium diffusion through K+-leak channels, will be
lost when it is no longer electrogenically balanced by
low intracellular Na+. Membrane depolarization triggers
the opening of voltage-gated Ca2+ channels and synaptic
release of glutamate. Together with the loss of the volt-
age-sensitive Mg2+ block from the NMDA receptor, this
results in a massive increase of intracellular calcium con-
centration ([Ca2+]i) (Antonov and Johnson, 1999; Nov-
elli et al., 1988). In addition, the dissipation of the Na+

gradient disrupts transport processes, such as the uptake
of synaptic glutamate (Rossi et al., 2000), but also the
functionality of the Na+/Ca2+ exchanger will be dis-
turbed. This will further increase [Ca2+]i (Czyz et al.,
2002; Koch and Barish, 1994). The rise in intracellular
Na+ leads to electrogenic Cl- uptake (Rothman, 1985),
osmotic cell swelling, and a decrease of the ADC of
water. Waves of spreading depression, resulting from

excessively released K+ and glutamate, may then con-
tribute to expansion of the lesion (Balestrino et al., 1999)
and to a further increase of extracellular glutamate levels
(Basarsky et al., 1999).

T2-weighted MRI and histologic analysis showed that
ouabain-injection in neonatal rat brain resulted in dis-
tinct, infarctlike lesions 7 days later. Injection of ouabain
(0.1 nmol) into the striatum of adult rats (Lees and Le-
ong, 1995) resulted in much smaller lesions (0.65 ± 0.04
mm3) than injection of ouabain into the striatum of neo-
natal animals described here (0.5 nmol; 46 ± 15 mm3).
This cannot just be explained by the lower dose of
ouabain used, since, in that study, doubling the dose
of ouabain still resulted in lesion volumes of only 2.7 ±
0.8 mm3. Moreover, striatal injection of a 1-nmol dose
of ouabain in adult rats in another study lesioned 9.2 ±
1.8 mm3 of tissue (Greene and Greenamyre, 1996). In-
jection of ouabain into the hippocampus of adult rats,
a region known to be particularly vulnerable to ischemia,
elicits severe neuronal injury, although also in only a
small volume of tissue (Lees et al., 1990). A low dose
(0.1 nmol) of ouabain resulted in a hippocampal neuronal
loss of up to 40%, and a high dose (1 nmol) resulted in
apparent infarction and a complete loss of neurons. How-
ever, no damage was seen outside the hippocampus
at either dose in that study. Application of ouabain to
the adult hippocampus via microdialysis (60-minute
perfusion at 5 !L/min of a 1 mmol/L ouabain solution)
resulted in a 41 ± 14% ADC decrease (Benveniste et al.,
1992), very similar to the ADC decrease described here
after ouabain injection into neonatal brain. In that study,
lesion volumes were not determined, but based on
histologic sections, a 1,500-!m lesion radius was re-
ported. Assuming a spherical lesion, this yields an esti-
mated volume of 4 mm3, which is also smaller than the
lesion volumes reported in the present study. The sen-
sitivity of neonatal rat CNS to NMDA-receptor over-
stimulation peaks during the first 2 postnatal weeks and
declines to adult levels dur ing the following weeks
(Ikonomidou et al., 1989; Izumi et al., 1995; Mitani et al.,
1998; van Lookeren Campagne et al., 1996). We have
shown here that ouabain-induced injury in neonatal brain is
largely dependent on NMDA-receptor activation. Further-
more, compared with adult brain, 7-day-old rat brain poses
less restriction to diffusion in the extracellular space, as
measured via Mn+ or [3H]-AMPA tracing using T1W-MRI
and autoradiography, respectively (van Lookeren Cam-
pagne et al., 1996), or as determined using iontophoresis
(Lehmenkuhler et al., 1993). The increase in diffusional
restriction developing over the subsequent weeks is paral-
leled by a decrease in the ADC of water. Thus, as compared
with adult brain, the larger lesion volumes obtained after
ouabain application to neonatal brain are likely due to both
the higher sensitivity of neonatal brain to NMDA-
receptor overstimulation, and to the less hindered extra-

FIG. 6. Attenuation of cytotoxic tissue injury and final tissue loss
by N-methyl-D-aspartate (NMDA)-receptor antagonism. (A) Con-
secutive parametric apparent diffusion coefficient (ADC) maps of
ouabain- + MK-801–treated animals, acquired 15 minutes after
ouabain injection (compare with ouabain-treated animals shown
in Figs. 1A and 1C). (B) Consecutive parametric T2 maps of the
corresponding slices of the same animal 1 week later. (C) Lesion
volumes after ouabain + MK-801 treatment compared with oua-
bain alone, as determined from ADC maps on day 0 and T2 maps
on day 7. Lesion volumes shown for T2 maps are the sum of the
volumes of hypointense and hyperintense tissue. *P < 0.05, **P
< 0.005 vs. ouabain alone.
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cellular diffusion of ouabain compared with adult brain.
The initial ADC decrease after ouabain injection was

not accompanied by a major disturbance in metabolite
levels or intracellular pH as detected by 1H- and 31P-
MRS, respectively. These findings are in good agree-
ment with those of previous studies that have used
NMDA injection (Dijkhuizen et al., 1999; Dijkhuizen et
al., 1996; Young et al., 1991). A reduction in the mito-
chondrial membrane potential ($&) and impaired mito-
chondrial function can be expected to occur given the
suspected increase in [Ca2+]i (Nicholls and Ward, 2000).
A complete dissipation of $& preceding the anoxic
stimulus, however, was not a feature of ouabain-induced
excitotoxicity. This is in line with earlier observa-
tions in the NMDA model of only moderately declined
tissue energy status 24 hours after injection, a time
point at which there is already extensive neuronal injury
(Dijkhuizen et al., 1996). The decline in 31P-metabolite
levels in that study was somewhat less than the decline
that we observed after ouabain injection. This difference
is more relevant when one considers the error induced
by the partial volume effect due to the 31P voxel being
larger than the lesion, which will underestimate the
changes in 31P-metabolite levels. As is clear from Fig. 1,
the initial lesion size after NMDA injection is larger
than after ouabain injection, resulting in larger partial
volume effects in the latter model. We conclude that,
although ouabain-induced excitotoxic cell death is not

accompanied by complete energy depletion, mitochon-
drial function is clearly compromised. ATP levels are
maintained through creatine kinase activity, which is ac-
companied by reduced PCr levels and increased Pi lev-
els. The maintenance of sufficiently high ATP levels
allows for the execution of apoptosis (Nicotera and Lip-
ton, 1999). This supports the in vitro observation that
ouabain-induced cell death is executed as mixture of ne-
crosis and apoptosis (Xiao et al., 2002; reviewed in Mar-
tin et al., 1998).

The decreased NAA/tCr ratio detected 7 days after
ouabain injection reflects the neuronal loss also detected
on Nissl stainings (McDonald et al., 1990). The area
of neuronal loss extended into the area of reactive gliosis,
which is detected by its hypointense signal on T2

maps and increased staining for GFAP on histologic
sections. Reactive gliosis is a typical response to brain
injury. It has been previously described to accompany
excitotoxicity, both in adult (Wang et al., 1991) and neo-
natal rats (van Lookeren et al., 1994), and to occur
after ischemic insults (Kajihara et al., 2001; Schroeter
et al., 2001). Ultrastructurally, excitotoxin-induced
cell death has been described to resemble ischemia-
or trauma-induced cell death (Ishimaru et al., 1999).
Observations further underscoring the relevance to
hypoxia/ischemia-induced brain injury are, for example,
similarities in selectively vulnerable brain regions (Mc-
Donald and Johnston, 1990) and the similar efficacy of

FIG. 7. Schematic overview comparing
N-methyl-D-aspartate (NMDA)-, oua-
bain-, and ischemia-induced excitotox-
icity. Ouabain application and ischemia
(black arrows) both induce acute failure
of Na+/K+-ATPase. Depolarization and
Ca2+ influx induce glutamate release,
both from synaptic terminals, and more
importantly from neuronal somata, den-
drites, and astroglia via interference
with the Na+-gradient–dependent glu-
tamate transporters. The concurrent
persistent relief of the Mg2+ block
allows activation of NMDA-type gluta-
mate receptors, leading to influx of
cytotoxic Ca2+ levels and production
of reactive oxygen species (ROS).
Administered NMDA (grey arrows)
can open the NMDA-receptor–linked
ion channel only on release of the
voltage-sensitive Mg2+ block from the
receptor. Steady-state activation of
AMPA/Kainate-receptors will tran-
siently release the Mg2+ block from the
NMDA receptor to allow subsequently
released glutamate to activate the re-
ceptor. When NMDA is present in the
extracellular space, it can immediately
activate the NMDA receptor. Repeated,
transient activation will eventually over-
load the capacity of Na+/K+-ATPase to
restore membrane potential, only then leading to cellular depolarization (striped arrows). Thus, NMDA initiates excitotoxicity in a different
way and with a different timing of Ca2+ influx, cellular depolarization, and glutamate release compared with ouabain or ischemia.
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NMDA-receptor antagonists in attenuating injury. Fur-
thermore, the intracellular and extracellular changes
in Na+, K+, and Ca2+ ion concentrations induced by
inhibition of Na+/K+-ATPase are very similar to those
produced by excitotoxins released by other mechanisms
(reviewed in Lees, 1991), including ischemic damage
(Choi, 1987; Choi, 1988; Goldberg and Choi, 1993; Lee
et al., 1999).

ADC decrease after Na+/K+-ATPase inhibition
A reduction in the ADC of water as measured using

DW-MRI occurs early after the onset of cerebral is-
chemia, but the exact mechanism behind the decrease is
unknown (for a recent review see Hoehn et al., 2001). On
cessation of blood flow, energy failure and subsequent
loss of Na+/K+-ATPase function result in a shift of water
from the extracellular space into depolarized cells. This
leads to swelling of some cellular compartments and to a
net decrease of extracellular volume and an increase in
intracellular volume. It is thought that these changes to a
large extent underlie the decrease in ADC that occurs in
the acute phase after the onset ischemia (Benveniste et
al., 1992; Liu et al., 2001; Pfeuffer et al., 1998; van der
Toorn et al., 1996). In our model, inhibition of Na+/K+-
ATPase resulted in an acute 40% drop in water ADC,
which could be attenuated, but not completely prevented,
by pretreatment with the NMDA-receptor antagonist
MK-801. Injection of NMDA results in a slightly stron-
ger ADC decrease (45%), which can be completely pre-
vented by prophylactic MK-801 treatment and can even
be reversed by post hoc treatment (Dijkhuizen et al.,
1999; Dijkhuizen et al., 1996; van Lookeren et al., 1994;
Verheul et al., 1993). These findings suggest that after
ischemia-induced Na+/K+-ATPase failure, ADC de-
crease can start before glutamate is excessively released,
and is then aggravated by such release. The initial, glu-
tamate overload-independent ADC decrease can be
caused by the net influx of water arising when the free
diffusion of Na+ is no longer compensated for by
Na+/K+-ATPase activity. Indeed, in vitro treatment of
neuronal cultures with ouabain increased [Na+]i and in-
duced cell swelling, even when MK-801 was added to
the culture medium (Xiao et al., 2002). During ischemia,
the main cause of extracellular glutamate increase is the
reversed operation of glutamate transporters, which oc-
curs only after dissipation of the Na+ gradient, their main
driving force. This would seem to be in line with the
finding that the increase in extracellular glutamate levels
and the occurrence of anoxic depolarization as measured
using microdialysis and DC-potential recordings, respec-
tively, do not precede the early rapid ADC decrease after
cerebral ischemia (Harris et al., 2000). Furthermore, it
has been proposed that a decrease in energy-dependent
intracellular circulation (or cytoplasmic streaming) is a
predominant mechanism for the decrease in water ADC

associated with cell injury (Dijkhuizen et al., 1999;
Duong et al., 1998; Li et al., 2002; Norris, 2001). In the
present excitotoxicity paradigm, we measured ADC de-
creases of the same order of magnitude as those that
occur after brain ischemia (Albers, 1998). Both 1H-MRS
and 31P-MRS demonstrated the absence of energy deple-
tion during the ADC decrease, suggesting that a loss of
energy-dependent cytoplasmic streaming is not a major
determinant of diminished intracellular bulk water mo-
tion and decreased intracellular water ADC. It should be
noted in this respect that Ca2+ overload associated with
NMDA-receptor overstimulation and opening of volt-
age-sensitive Ca2+ channels can interfere with cytoplas-
mic circulation, independent of energy failure (Kamiya,
1984; Stearns, 1982). In a recent study using the Xeno-
pus oocyte, however, it was shown that diffusion of ions,
water, and several other small molecules was consistent
with Brownian motion (Sehy et al., 2002). Even though
extrapolation to mammalian neurons is not straight-
forward, these findings preclude a significant contribu-
tion of cytoplasmic streaming to water ADC, at least in
that system.

Applications
The use of ouabain injection to model excitotoxicity in

a setting of cerebral ischemia is chosen when a more
mechanistic approach to acute neuronal injury is desired
than, for example, middle cerebral artery occlusion. Us-
ing the ouabain model we have shown that administra-
tion of the cannabinoid $9-tetrahydrocannabinol ($9-
THC) or the endocannabinoid anandamide affords
protection against excitotoxic acute neuronal injury (van
der Stelt et al., 2001a,b). The ouabain model allowed us
to study the neuroprotective properties of these com-
pounds in a setting that separates their modulatory effect
on glutamatergic transmission from their complex cere-
brovascular effects. Interestingly, these experiments un-
derscored the subtle difference between the ouabain and
NMDA approach to excitotoxicity studies, in that, while
$9-THC proved neuroprotective against excitotoxicity
elicited via ouabain-injection, it had an adverse effect
when excitotoxicity was elicited via NMDA injection
(W. B. Veldhuis and M. van der Stelt, unpublished ob-
servations, 2001). It has been demonstrated that canna-
binoid receptor (CB1) activation can inhibit glutamater-
gic transmission via closing of N and P/Q-type Ca2+

channels (Gerdeman and Lovinger, 2001; Shen et al.,
1996). Because the protection afforded by $9-THC was
CB1 dependent, the lack of protection in a situation
where glutamate-receptor agonists are exogenously sup-
plied compared with after ouabain injection, when their
endogenous release is induced, can be explained. This
lack of protection of CB1 activation against NMDA-
induced excitotoxicity has recently also been shown by
Hansen et al. (2002).
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CONCLUSIONS

In conclusion, we have shown that inhibition of
Na+/K+-ATPase in neonatal animals produces distinct,
excitotoxic brain lesions that progress to apparent infarc-
tion within 7 days. Ouabain-induced injury is largely
dependent on NMDA-receptor stimulation and is com-
parable to NMDA-induced brain injury. As a model,
however, the ouabain approach better reproduces the se-
quence of events that occurs during ischemia-induced in
vivo excitotoxicity, and is therefore better suited for the
investigation of these mechanisms. This approach may
permit the evaluation of putative neuroprotective drugs
not identifiable using the NMDA-injection paradigm,
such as those that prevent presynaptic glutamate release
and glutamate release due to reversed operation of glu-
tamate transporters.
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