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Goldstone modes in Lyapunov spectra of hard sphere systems
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In the study of chaotic behavior, Lyapunov exponents play an important part. In this paper, we demonstrate
how the Lyapunov exponents close to zero of a system of many hard spheres can be described as Goldstone
modes, by using a Boltzmann type of approach. At low densities, the correct form is found for the wave
number dependence of the exponents as well as for the corresponding eigenvectors in tangent space. The
predicted values for the Lyapunov exponents belonging to the transverse mode are within a few percent of the
values found in recent simulations, the propagation velocity for the longitudinal mode is within 1%, but the
value for the Lyapunov exponent belonging to the longitudinal mode deviates from the simulations by 30%.
For higher densities, the predicted values deviate more from the values calculated in the simulations. These
deviations may be due to contributions from ring collisions and similar terms, which, even at low densities, can
contribute to the leading order.
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I. INTRODUCTION tions Il and lll are a short introduction to Lyapunov expo-
In the past years, interest in the connections betweeA€nts and the results of the simulations done by Posch and

dynamical-systems theory and statistical mechanics has ifdirschl for hard spheres in two dimensiof. In Sec. IV,
creased and many important results have been obtaine®€ show that the small exponents are in fact due to Gold-
Some of the interest has been directed towards the connegtone modes. After an explanation of the dynamics of hard
tions between chaoticity and the decay to equilibrium. Gal-spheres in Sec. V, we derive a set of equations for the values
lavotti and Cohen[1,2] put forward a chaotic hypothesis, of the exponents in Sec. VI. The equations are derived by
conjecturing that many-particle systems as studied by statigssing a Boltzmann type of approach including a Stof3zahlan-
tical mechanics will generically be strongly chaotic. A cen-satz. Finally, we discuss the general form of the solutions in
tral role in the study of these and related properties is playe&ec. VII and the quantitative results derived from them in
by the Lyapunov exponents, which describe the exponentigsec. VIII.
separation or convergence of nearby trajectories in phase
space.

Many calculations of chaotic properties have been done Il. LYAPUNOV EXPONENTS
for variations of the Lorentz gas, which is a system of one
particle bouncing between fixed spherical hard scatterer
(see, for example, Ref$3—6]). Recently, calculations have
also been done for the largest exponents of systems of ma
freely moving hard spherd,8]), which is a more realistic

Consider a system with ak-dimensional phase spate
t time t=0 the system is assumed to be at an initial poyt
Jq this phase space, evolving with time according/gy,t).

If the system is perturbed by an infinitesimal differentg

model than the single-particle system of a Lorentz gasi.n initial conditions, it evolves along an infinitesimally dif-
wheredvy is in the tangent spacél’. The

Simulations for the entire spectrum of this system have beeffrént pathy+ay, _ _
done by Posch, Hirschl, and Dellage,10. The smallest €volution in tangent space is described by

positive and corresponding negative exponents from these

simulations have received a lot of attention because of their v(yo+ 60,0 = yo + Svo, 1
unexpected behavior. For large enough systems, they are in-

versely proportional to the system length. The tangent-space

eigenvectors associated with these exponents have a wave- Y(v0 + dyv0,t) = ¥(v0,0) + Sy (yo,0), 2
like form.

Attempts have been made to approach these exponents by
using random-matrix theory by Eckmann and GHt], and 8y (yo.) =M, (1) - 570, 3

by Taniguchi, Dettmann, and Morrigd2,13. Another ap-

proach based on kinetic theory has been taken by McNamaighere M., (t) is an\-dimensional matrix, defined by
and Mareschal14]. Yo

In this paper, we explain some of the behavior of the

small exponents both qualitatively and quantitatively. Sec- M. () = M_ (4)
70 dvo
*Electronic address: A.S.deWijn@phys.uu.nl The Lyapunov exponents are the average rates of growth of
"Electronic address: H.vanBeijeren@phys.uu.nl such infinitesimal changes that are eigenvectorh’l%f,
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In wi(t 15 ' '
A = lim () (5) 0.15 ——

. . . feBimn, i
wherep;(t) is theith eigenvalue oMYO(t). In systems which 1 —
are ergodic, almost every trajectory comes infinitesimally 5 B i
close to any point in phase space. This means that the <
Lyapunov exponents are almost independent of the initial 05 - ' i
conditions. Often the Lyapunov exponents are defined not by ' 1480 1500
usingM,, (), but[MyO(t)-MyO(t)T]l’z. In the latter definition
the exponents are real. The imaginary components of the 0 . .

Lyapunov exponents, as we define them here, are also re- 0 500 1000 1500
ferred to as the winding numbers.

For a classical system of hard spheres without internal
degrees of freedom, the phase space and tangent space mayFIG. 1. The spectrum of Lyapunov exponents from the simula-
be represented by the positions and velocities of all particleons [9,10,15 of 750 hard spheres in two dimensions at density

i

and their infinitesimal deviations, n=0.1 in a rectangular box of dimensions32@5 a?/n, with peri-
odic boundary conditions. Only the positive exponents are plotted,
¥i=(ri,vy), (6) since, by the conjugate pairing rule, the negative spectrum is ex-
actly the opposite. The inset shows an enlargement of the bottom
5y, = (8r;,6vy), (7) right corner.

wherei runs over all particles andy; is the contribution of exponentially, with time. Hence the corresponding Lyapunov

particlei to &y. o exponents are zero.
In the case of a purely Hamiltonian system, such as hard

spheres with only the hard particle interaction, the dynamics
of the system are completely invariant under time reversal. lll. LYAPUNOV SPECTRUM OF HARD SPHERES

Also, due to the incompressibility of flow in phase space, the | principle, M., (t) occurring in Eq(3) can be calculated

attractor is invarjant under time reversal. Therefore, Ve merically for finite times for any finite system and the
tangent-space eigenvector that grows exponentially in forgjgenyalues can be determined. Posch and Hir@ihhave
ward time decreases exponentially in backward time. SinC@sne molecular dynamics simulations to determine the entire
the Lyapunov_ spectrum does not chan_ge under time reversq_lyapunov spectrum of systems consisting of many hard
for every positive Lyapunov exponent in such a system thergisys in rectangular boxes with periodic boundary condi-

is a negative exponent of equal absolute value. This is calleg,ns A spectrum as calculated by Posch and Hirschl is dis-

the conjugate pairing rule. In systems which are reversiblep|ayed in Fig. 1. The eigenvectors in tangent space belonging

but for which the attractor is not invariant under time rever-iy the large exponents are typically very localized; only a

sal, the conditions for and the form of the conjugate pairinge,y particles closely together contribute significantly to a
rule are somewhat differefiv]. given eigenvector.

Vectors in tangent space which are generated by symme- \vhen the system is large enough compared to the mean

tries of the dynamics of the system do not grow or shrinkiree nath, a step structure appears in the Lyapunov exponents

exponentially. They are eigenvectors with Lyapunov eXpoyear zero. The size of the steps is inversely proportional to

nents 0 and are referred to as the zero modes. For a systemh |argest dimension of the box. The tangent-space eigen-
hard spheres under periodic boundary conditions, these Sy cior is distributed over all particles, much in the same way

metries and their corresponding zero modes are uniforMg ith the zero modes. An example of this is shown in Fig.
translations, Galilei transformations, time translations, andz

velocity scaling. They correspond to the initial displacements 1o tangent-space vectors belonging to the six exponents
5y, = (Aro,0) (8) in each step appear, on average and to first approximation, to
] ] )

be linear combinations of the zero modes with a sinusoidal
modulation. This is very apparent in the example in Fig. 2.

&7 =(0,Avp), © The slow modes belonging to a certain wave vector can be
separated into two groups, one consisting of four longitudi-
8y, = (Atgv;,0) = (Ar,,0), (10 nal modes and the other one of two transverse modes. The
transverse modes are found to be linear combinations of
8% = (0,ANgv;) = (0,Avy), (11)  Sinusoidal modulations of the zero modes resulting from a

translation or a Galilei transformation in the direction per-
whereAr,, Avg, Atg, andA\, are constant vectors and sca- pendicular to the wave vector. The longitudinal modes are
lars which are independent of the particle. The quantilies  linear combinations of modulations of the four remaining
and Avy can have components in ail directions of the zero modes. The transverse modes are nonpropagating, but
space. In the case of Galilei transformations and velocitythe longitudinal modes propagate through the system. This
scaling the tangent-space vectors grow linearly, rather thabehavior has been confirmed in direct simulation Monte
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FIG. 2. The component afr in the short directiordx is plotted
against the position of the particle in the long directiofor 1493 ) S )
one of the transverse modes in the first step. These data are from the FIG. 3. Two particles at a collision in relative phase space. The
same simulation as the data in Fig. 1. The corresponding exponeﬁP”'S'O” normalo is the unit vector pointing from the center of one
is indicated there with a full box. particle to the center of the other.

Carlo simulations, performed by Forster and Pogd). For vi(t) = vi(to). (14)
more details on these modes, see REFSL(].

At a collision, momentum is exchanged between the collid-
ing particles along the collision normaf=(r;-rj)/a, as
shown in Fig. 3. The other particles do not interact. Using

The sinusoidal modes found in the simulations may beP"imes to denote the coordinates in phase space after the
explained as Goldstone modes. These occur in systems wifipllision, we find
a continuous symmetry, such as the symmetries associated
with the zero modes. Translation invariance, e.g., causes the /

IV. GOLDSTONE MODES

evolution operator to commute with the translation operator, fi =l (19
so that they have a set of common eigenfunctions. These
have the general form

Vi’=Vi—6'(a'-Vij), (16)

5’)/| = fk(Vj,rij)eXF(ik . ri), (12)

gyherevij:vi—vj.
From Egs.(4) and (13)—«(16) the dynamics in tangent
space can be derivdd]. During free flight there is no inter-

where the eigenvalues of the operator translating over th
vectora are of the form exfk -a). The Goldstone modes are
those eigenmodes that fé&r— 0 reduce to linear combina- . .

tions of the zero modes. For nonzero valuekothey con- ?;rflogntft\gssr\]/egir ??arélg;grsma:gcot? deincotgnponents of the
tain a sinusoidal modulation in space of the continuous sym- 9 P 9
metry which grows or shrinks slowly with time. These

modes were first introduced by Goldstofi]. Hydrody- r! St
namic modes and phonons in crystals are well-known ex- ( ', ) =Z(t-ty) ( '0>, a7
amples. v SVio
In order to calculate the Lyapunov exponents belonging to
these Goldstone modes, one first needs to consider the dy-
namics of the system. I (t=ty)l
Z(t-tg) = (o | ) (18)

V. DYNAMICS OF HARD SPHERES IN PHASE SPACE
AND TANGENT SPACE in which | is thed X d identity matrix.
At a collision between particlesand j, only the contri-
Consider a gas of identical hard spheres or disks of diamputions to the tangent-space vectors of the colliding particles
etera and massn in d dimensions. The evolution in phase are changed8]. As shown in Fig. 3, an infinitesimal differ-
space consists of an alternating sequence of free flights anghce in the positions of the particles leads to an infinitesimal
collisions. During free flights the particles do not interact andchange in the collision normal and collision time. The

the positions grow linearly with the velocities, +6v are exchanged along+ 6o according to Eq(16). This
leads to infinitesimal changes in both positions and velocities
ri(t) = ri(ty) + (t—to)vi(ty), (13 right after the collision,
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s/ =S S 0 0 sr, in which f ? denotes the two-particle distribution functian,
St/ S 1-s o0 0 sr. and v respectively,u’ andv’ are the velocities before the
= . I, collision with collision normalo in the direct and restituting
ov| -Q Q I-S s oV, collision.
5ij Q -Q S 1I-5S v, The second and third term on the left-hand side of the
equation, respectively, describe the effects of free flight in
(19 position space and those of the action of external forces. The
in which S andQ are thed x d matrices vectora(r,v,t) is the acceleration of a particle due to exter-
L nal forces as a function of position, velocity, and time.
S=oo0, (20) In the low-density approximation, Boltzmanr@toRzahl-
ansatzapproximates the precollisional pair distribution func-
[ vl + avi] - [(6 - vl - v;0] tions in this equation by products of one-particle distribu-
Q= a(o - v;)) : (21) tions. In addition both of these are evaluated at the same

positionr, which is allowed if the radiua is small compared
Here the notatiorab denotes the standard tensor product ofto the mean free path. The Enskog equation is a heuristic
vectorsa andb. Let Z(t) be theNdx Nd matrix which per-  generalization of this, known to give a good approximate
forms the transformations cf(t) on all particles. Let, be  description of the dynamics up to moderate densié&®sut a
the NdxX Nd matrix which performs the transformations of quarter of close-packingin this equation the pair distribu-
Eqg. (19) on the two particles involved in collisiop and  tion is approximated by the product of two one-particle dis-
leaves the rest of the particles untouchid,(t) in Eq.(3)is  tribution functions, evaluated at the actual positions of the
a product of these matrices for the sequence of collision&vo particles, and a factoye, equal to the equilibrium pair
(1,2, ... p) between time andt,. Its specific form reads correlation function at contact between the two particles
evaluated as a function of the density(r,+r,)/2) at the
M, (O =Z(t=ty) - Lp-Z(ty—tpg)lp1- -+ - Ly Z(ti —to). point halfways between; andr,. Notice that this approxi-
(22) mation becomes exact for a system in homogeneous equilib-
rium. The explicit form of the Enskog equation thus becomes
VI. BOLTZMANN AND ENSKOG EQUATION % +v -V, (r,v,t)
Except in a calculation where the path of every particle
Would_ be calculated rlgorously from the !nltlal _C(_)nqmons,_as _ f du d& ye(mna & - (v - u)|
done in the molecular dynamics simulations, it is impossible -(v-0)=0
to know the matrixm Yo in Eq. (3) exactly. The tangent-space ) ., R
eigenvector belonging to a given Lyapunov exponent will in X[f(r,v",Of(r +ao,u’,t) - f(r,v,0f(r —ao,u, 1],
general depend on the initial conditions of all the particles in (24)
a much too complicated way to specify exactly. It is there-__ . . . .
fore impossible to know the tangent-space vector which be?_l’h|$ equation effectively reduces to the Boltzmann equation

longs to any Lyapunov exponent exactly. To find the expo-'n the limit n— 0, when the difference in position between

nents, one has to make some statistical approximatioH'® MO Eollldln.g particlesy;;=as, may be ignored ange
without allowing contributions along faster growing tangent- 2PProaches unity.

space vectors to blow up. To this end, we start with assump- In equilibrium the _time derivativ_e term Vaﬂishes and, in
tions similar to theStoRzahlansatin the Boltzmann equa- absence of external fields, the particles are distributed homo-

tion. geneously. This yields the Maxwellian solution

_ ~ 24 dr2 m|V|2
A. Equations in u space f(r,v,t) =n¢y(v) =n T exp - 2T (25)

To illustrate our calculations we first briefly review the . L
. S . here T is the temperature, related to the average kinetic
Boltzmann and Enskog equations describing the dynamics o . _ .
. . nergy per particl& throughE=dksT/2. In this paper, only
hard-sphere and hard-disk systems at low, respectively mog- AN : .
he equilibrium system is studied.
More details on the Boltzmann equation and Enskog’s

theory of dense gases may be found in REf3,1§.

erate densities. For either one may start from the firs
Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy equation
df(r,v,t
¥+v -V, f(r,v,t) +V, -a(r,v,t)f(r,v,t)
B. Equations in tangent u space
:f du dona®Y& - (v - u)| To describe thg dynamics in ta_ngent space, a genera_lized
5 (v-u)<0 Boltzmann equation must be derived for the single-particle
distribution function in bothx space and “tangent space,”
(2 ’ 5u t)—f@ —as . - . -

X[F9(r v r +aou', )= 9(r,v,r —ao,u,], f(r,v,dr,dv,t). On integration over the variables in tangent

(23)  space the equation and the solutions we are interested in
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must reduce to Eq$24) and(25), respectively.

For given initial conditions the eigenvectors bf, in  Csda(r,v,t)= | du d& xg(nna*a - (v - u)|y(u)
general depend sensitively on the precise values of the col- olu-u)=0
lision parameters of all collisions, as generated by the posi- x{8q(r,v',t) +S - [8q(r +ao,u’,t)

tions and velocities of all particles. The zero modes are ex-

ceptions to this. For smak it is to be expected that the ~49(r.v".H] - 6q(r.v.0}, (29)
Goldstone modes behave in a similar way and are approxi-

mately independent of the collision parameters of the various

collisions. Under those circumstances one may expect th&odr (r,v,t)= | du d& xe(n)na™6 - (v = u)| gy ()
the tangent-space vectofs and Sv can be described by a o(v-u)<0

single-particle distribution function that depends smoothly X Q-[or(r+ao,u’,t)—or(r,v',b)], (30

on velocity, position, and time, just like the velocity distri-

bution in ordinaryu space. If in addition one makes the where §q can be either or Sv. In Eq. (29) the first two

assumption that the distribution function of the tangent-spacesrms between braces are gain terms. The last term is the loss

vectors of two particles about to collide, factorizes in a simi-term. Note that, from Eq21), Q is a function of the colli-

lar way as the distribution of their velocities, one ends upsion parameter and the velocities of the particles before the

with a generalized Enskog equation in tangentspace, collision. This means that in E¢30) it is a function ofa, u’,

which, in absence of an external field, is of the form andv’. The collision operators are proportional to the colli-
sion frequencyy, which for dilute systems is proportional to
the number density.

df(r,v,or,6v,t)
at

+ 6V -V, f(r,v,or,6v,t) C. Fourier transform

+v -V f(r,v,8r,6v,t)

_ R d-1y As the translation operators commute with the collision
=1 du dodosdsu xe(nna™o - (v - u)| operatorg29) and(30), solutions to Eqs(27) and(28) may
=0 be found of the form
X[f(r,v',or', v/ 1)f(r +ao,u’,85,6u’,t)

—£(r,v,5r,6v,0)f(r —ao,u, 8s,5u,b)]. (26) 4a(r,v.) = Aq(v)explik -1 +AD), (3D

whereq is eitherr or v, andk;=2mn;/L; is the jth compo-
nent of the wave vector of the sinusoidal modulation ansl
the Lyapunov exponent. Among these the Goldstone modes
are those solutions that in the limit of vanishing wave num-
er reduce to linear combinations of the zero modes. For
these modes to stand out among the continuum of other
modes their wavelength has to be large compared to the typi-
cal length scale of the mean free path, or

If the tangentu-space variablesy and év are integrated
over, this equation reduces to Hg@4).

Becausedr and dv are infinitesimal, the dynamics in tan-
gent space are linear in these quantities. Therefore, from Eq
(19) and(26) one may obtain closed linear equations for the
time evolution of the average first momentsr) and(5v).

To this end, multiply both sides of E@26) by the tangent-
space vectors and then integrate over them.
The result is a set of equations for the averages, KV <. (32
On substituting Eq(31) into Egs.(27) and (28), they
become eigenvalue equations for the Goldstone modes,

d d
—or(r,v,t)==v-—45r(r,v,t) + 8v(r,v,t) + Csor(r,v,t), _
dt ar NAr(v) =—i(k -v)Ar + Av + BgAr, (33
(27)

NAV(V) = —i(k - V)Av + BgAv + BoAr . (34)

d 3 d Spatial propagation, as seen in the simulations for the longi-
a5v(r,v,t) =TV ;5"(”"0 +Csov(r,v,b) tudinal modes, may be accounted for by allowingo have
an imaginary componenBg andBg are the Fourier trans-
+Cqor(r,v.t). (28)  forms of G and G,

The functionsér(r,v,t) and ov(r,v,t) are the averages of B Aq(v) :f du do xe(mna®Y& - (v —u)| gy (u)
the tangenju-space vectors of a particle, as a function of its &-(v-u)<0

position and velocity, and of time. The linear collision opera- , ' , T
tors G and G, are associated with the matricE€sand Q, X {Aq(v’) +S -[Ag(u’)exp(-iak - 5)
and given by —Aq(v')]-Aq(v)}, (39
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BoAr(v) = du do xe(mna®™Ya - (v = u)| ¢y (u)

o-(v-u)<0
XQ -[Ar(u")exp(—iak - ) — Ar(v')], (36)

whereAq can be eitheAr or Av. One of these, for instance

PHYSICAL REVIEW EO, 016207(2004

Ar®=[(B)2-BYT B (ik -v-BY) + BY1Ar©,
(44)

This form suggests thatr is of zeroth order im, just as
Ar©@ but this is actually not the case, because the operator

0 0)1— . . N
Av, can be eliminated from the equations. One must SO|Vé(B(S))2_BEg)] ! acts on functions with nonvanishing compo-

Eq. (33) for Av and substitute the result into E(R4). This
yields

[(\ +ik -v=Bg)?~BgJAr =0. (37)

This equation can be solved by the use of a perturbatior'ie

expansion in powers ok, provided the mean free path is
much smaller than the wavelength, as expressed by32y.
This is done in Sec. VII A.

VII. SOLUTIONS

A. Perturbation theory

When Eq.(32) is substituted one may expand the opera-

tors and solutions as

Bs=BY +kBY +KBZ + -, (38)
Bo=BY +kBY +kBZ + -+ (39
Ar =Ar@ + kAr® + RAr @ + ... (40)

Note that fork— 0, the linear operatorBs and B, be-
come identical to g and G,. When acting on linear combi-
nations of zero modear © they satisfy the properties

BYAr® =BYAr @ =(Ar0BY =(Ar®BY =0,
(41)

where(:|-) represents the inner product defined by integra
tion against a Maxwell distribution of the velocity, which is
the equilibrium distribution. As it turns ouBg)) has some
nontrivial right eigenfunctions with zero eigenvalues, which
will have an important effect on the limiting values of
Lyapunov exponents in the limit of vanishing density. An
example of such an eigenfunction isr(v)=v k+yk,
wherev ; andv; are the components of perpendicular and
parallel tok.

In zeroth order Eq(37) reduces to

[(A9-BY)2-BYAr@=0. (42)

The relevant solutions to this are the zero modes, with
=0. This means that the Goldstone modes to leading order
k are the zero modes with a sinusoidal modulation, in nic
agreement with the findings in Ref®,10].

In linear order, one finds with the aid of E@1)

[-BQ(ik -v-BY) -BY1ArO = -[(BY)?-BYAr Y,
(43)

wherek is the unit vector in the direction &. This is an
equation forAr™®. Its formal solution is

01620

)

nents along the nontrivial right zero eigenfunctions|
This yields contributions ta\r™ of order 1h. One might
wonder whether this could cause a divergence in the limit of
vanishing density, but that is not the case because of the
striction imposed ok by Eg. (32).

The second-order equation involves the first-order
Lyapunov exponenk?, the second-order Lyapunov expo-
nentA®, and the second-order tangent-space vesté?,

[{-BO A2 -B2}, + WV +ik -v-BY)? - BZ]Ar©
+[{-BY,ik -v-BY}, -BYIAr®
+[(B)?-BQ1Ar® =0, (45)

where{., .}, is used to denote the anticommutator of two
operators. On taking the inner product witn©, all terms
involving Ar@ vanish as a consequence of H4l). The
resulting set of equations reads

(ArO[A® +ik -v - BY)? - BZ]|Ar @)

+(ArO|[- (ik -v-BF)BY - BY)Ar) = 0.
(46)

SinceAr(© is a linear combination of three independent zero
modes, Eq(46) actually has to be read as ax3 matrix
equation involving the matrix elements between the various
zero modes. In principle all of these are second-order poly-
nomials in\Y. The eigenvalues, as usual, follow from the
condition that the determinant of the matrix vanishes as a
function of AV

B. General form of the solutions

In order to investigate the general structure of Ef) it
is useful to organize the zero modes fir'® as

\/ﬁ%mv, (47)

whereB=1/(kgT). The first mode consists of a perpendicular
displacement, i.e., a spatial translation normal to the wave

0) —

)
= Ary’ =

ArO=k ; Ar k; v

ird one to a time translation.

The first mode is odd iﬁL and the last two even; the first
two modes are even i and the last one odd. The collision

operatorsBg andBg as well as the functiok -v are odd in

k| to every order. The operatoBt” and B\" are even iv

for evenn and odd for oddh. On the basis of these parity
properties it follows immediately that the structure of Eq.
(46), written as a matrix equation on the ba#$f), is re-
stricted to

chtor, the second mode to a parallel displacement, and the
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100 0 0 O y,.., 0 0 100 000 (00
Ao 1 of+iAPl0 0 x,|-| O y, O (W)Z%m 010 +i)\(1)\/ﬁ—m 001|-{0 10
001 0 xy O 0 0 wy 001 010 001

The constantg andy are determined by temperature and byindependent of the density. The solutions for the Lyapunov
the form of the collision operators. From this it becomes€XPonents then are

clear that the equation can be split into two parts, one for the K
perpendicular zero mode, the transverse part, and one for the Mrans= £ ——, (53
parallel zero mode and the time mode, the longitudinal part. VAm
From the general form of the matrices one can derive the
general form of the Lyapunov exponents k\\Y to be 1 = _ [>
Nong= £ 7(V1+iN7 +V1-iN7)\/ —K (59
J— 4
Nrans= T k\’IYL,La (49)
_ ~t 0.978,L—, (55
)\Iong: TKVy iV, (50) VBm

wherey; andy, are functions ofx,,X,,,y;;, andy,,. If 1 /= =

y. . >0, the Lyapunov exponent of the transverse mode is Viong= * ;- (V1 +in7 = 1-iNT) - (56)
real and therefore the mode is of the same form as in the

simulations reported in Ref§9,10]. If y,>0, the longitudi- 1
nal Lyapunov exponents have both real and imaginary com- ~+0.676—. (57)
ponents, and these modes also have the form of the longitu- VBm

dinal modes found in the simulations.

5]

The structure of the corresponding eigenvectors is indeed
like that found in simulation$9,10].

C. Density expansion To calculate the contribution from the second term in Eq.
46) to the leading order of the Lyapunov exponents, one has

The Stof3zahl ansatz is an approximation that for many, chgose a suitable basis in which to express the function
purposes, e.g., the derivation of hydrodynamic equatlongr(l)(v)_ The basis must be orthogonal with regard to the

from the Boltzmann equation with explicit expressions forchosen inner produdt|.). Next, the matrix elements of the

the transport coefficientd 8], becomes exact in the limit of 0) @) lcul |
vanishing density. Therefore we want to investigate the begperatorsBS and BQ must be calculated between elements

havior of our equations in this limit and compare to the re-Of X‘e_basl's'b t suitable. basis is th  of funcii that
sults found in the simulations. In the limit of vanishing den- simpie, but suitable, basis IS the set otfunctions that are
sity Eq. (46) becomes products of Hermite polynomials in the components of

viymg/2 parallel and perpendicular to the wave veckor
. The Hermite polynomial$i;(x) form a complete orthogonal
(ArOIN® +i(k - v)Ar©) basis with regard to integration against &x), and there-
o~ fore their products will be orthogonal under the inner product
- (0) . (0) (1) Dy = .
(ArPfitk -v)Bs' +BgJJAr™")=0. (51)  ;sed here. The solution to E@®7) can thus be expanded as

For this equation it is crucial indeed that V) is of the order Ar(v)= > g Cipg HpwHq(v 1), (58)
of n™L. If there were no nontrivial right eigenfunctions B, ) lp.a

with eigenvalue 0ArY would be one order afi higher, and wherel can be eitherl or | e. is k.. ande. is k
the second term would not contribute to the Lyapunov expo- : Pk L & IS K. .
By truncating all expressions at some finite order in the

nents in the limit of vanishing density. | ial . find imat lues\d
In the following section we will further discuss the actual EO ynomc;a expansion, one finds approximate vajues\ior
magnitudes of the two terms in E€51). -or good convergence one has to go beyond the zeroth- and
first-order Hermite polynomials. In the Appendix more de-
tails are given on the matrix representations of the truncated
VIIl. RESULTS AND DISCUSSION operators and on the convergence of the Lyapunov exponents
in dependence on the order of truncation.
If only the first term in Eq(46) is kept, the calculation is To sixth order in the polynomial expansion, the results for
fairly simple. From now on we choos=2. The same cal- n—0 andd=2 are
culations can easily be repeated fibr 3, but there are far
fewer §|mul_at|on results to compare to. Equat{@8) in this Ngane= + 0.886 L (59)
approximation becomes VBm
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FIG. 4. The Lyapunov exponents for transverse and longitudinal - o _
modes from the simulationg9,10 compared to the present FIG. 5. The velocities of the longitudinal mode from simula-

calculations. tions [9,10 compared to the present calculations.
K netic theory, where ring terms only contribute to higher or-
Niong= *0.607—, (60 ders in the density, in the present case they contribute to the
/ eading order. In the present calculation these contributions
vBm leading order. In the p t calculation th tribut

are not included, but we are actively working on their evalu-
_ 1 ation. Similarly, the ring terms will contribute to higher or-
Ulong = 10'706V"B—rn' (61) ders in a density expansion of the Lyapunov exponents.
These contributions may be responsible for the discrepancies
With respect to Eqs:53)«57) the corrections are largest for petween simulation results and Enskog theory for higher
the Lyapunov exponent of the longitudinal mode. densities, which show up in Figs. 4 and 5. For more details
For low densities the form of the modes is predicted coron ring terms in kinetic theory, see R¢19].
rectly by the calculations; the modes are split into nonpropa- |t is interesting to compare our results to those by Mc-
gating transverse and propagating longitudinal modes. FaNamara and Maresch#l4], who also based their work on
number densityn=pa®=0.02, the Lyapunov exponents from kinetic theory calculations. They do not derive equations for

the simulations are the distribution functions, but go directly to hydrodynamic-
K like equations for the moments. To close these, they make
Myrans= * 0.906-—, (62) hypotheses to factorize the fluxes. The resulting values for

ey the Lyapunov exponents in the low-density limit are less

close to the simulation values than those from our calcula-

k tions. It is not clear that in this treatment the effects of the
Mong= * Oj%ﬁl' (63) nontrivial zero eigenfunctions & are accounted for.
Forster and Posch have also done simulations on similar
1 systems with soft potentia[20]. They roughly find a branch
Vlong= +0.703—=. (64) again of Lyapunov exponents close to zero, but the sinuoidal
e structure of the corresponding modes is much less ¢R&r

The calculated Lyapunov exponent of the transverse modi Would be very interesting to calculate the Lyapunov expo-
and the propagation speed of the longitudinal mode compaféems with klr_1et|c thgory methods also for this case. It would
to the values from the simulations, within 2%r&t0.02. The &S0 be very interesting to look at small Lyapunov exponents
Lyapunov exponent for the longitudinal mode deviates b)/n none'qumbnum systems. Howgver, in such systems the
about 30%. calculations become more complicated because the station-

The results for higher densities are displayed in Fig. aary velocity distributions are not Maxwellian any more.
With increasing density the calculated values deviate increas-
ingly from the simulation results. For the longitudinal mode

the predicted real part of the Lyapunov exponent even drops IX. CONCLUSION
to 0 and the exponent becomes purely imaginary. In this paper, we have demonstrated how Lyapunov expo-
The deviations from the simulations can be attributed tohents close to zero can be related to Goldstone modes. We
contributions from ring terms and possibly other contribu-found the correct types of behavior in dependence on the
tions to a generalizeBq operator that are at most of order wave number of the exponents and their tangent-space eigen-
n. From Eq.(44) one sees that such terms, working on thevectors. This was achieved through a kinetic theory ap-
nontrivial zero eigenfunctions cﬁg), contribute to the lead- proach, in which we used a molecular chaos assumption for
ing order terms in the density expansion &V, just like  the pair distribution function to derive an equation similar to
(Bgo))z. Therefore they have to be included in the secondhe Enskog equation. For low densities this reduces
term in Eq.(51). So in contrast to usual applications of ki- effectively to a generalized Boltzmann equation.
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The calculated values for the exponents belonging to the 003001
transverse modes at low densities are within a few percent of 000110
the values found in the simulatio8,10]. The propagation —
velocity for the transverse mode is within 1% of the simula- BY = /i@naz 300000
tion values. The value for the Lyapunov exponent belonging Si1 B 16 010000
to the longitudinal mode deviates from the simulations by 010000
30%. For higher densities, the predicted values deviate in- 100000

creasingly more from the values found in the simulations.
These deviations are probably due to contributions from ring (A5)
collisions and similar terms. In most applications of the

Boltzmann equation and the Stol3zahlansatz such terms pro-

duce contributions to the relevant quantities which are one

order of higher order in the density, but in the problem atThe first three contributions B4 as expanded in Eq$36)
hand they turn out to contribute to the leading order. and (39) have similar matrix representations of the form
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APPENDIX A: EXPANSION IN HERMITE POLYNOMIALS

In order to solve Eq(46), one must write the operators in BO = iZWn
Egs. (35) and (36) as matrices between the basis functions
described in Eq(58). From now on we takel=2, but the
same calculations can easily be done for three dimensions.
We only show results for basis functions of up to linear order
in v. In Eq.(58) p andq can be equal to 0 or 1. In fact one
has to include higher powers to find good approximations for
the solutions to the original equations. If the first component
is the component parallel to, the basis is ordered 4%, 0);
(0,D); (VBm/2v;,0); (0,VBm/2v); (VBm/2v ,0);
(0,VBm/2v ). All coefficients are given to leading order in
n. In this notation the zero modes are

. (A6)

» O O O

1 -1

O O O O O O

O O O o o o

O O O o o o
o

O O o o o ©o

Ar®=(1,0,0,0,0,0, (A1) 17 gm 8

=
|
N
/‘
3
o or oo
)
o
0o oo oo
o o o o
©O 0o oo ~o
o oo oo

(0,1,0,0,0,0, (A2) (A7)

(0,0212,0,0%\2). (A3)

Here, the subscript 1 indicates that basis functions up to first
order inv have been included. From Eqgl3) and (46) it
follows that the operatoBg described in Eq(35) is only -2
needed up to first order ik. One finds for the matrix ele-
ments ofBg in the expansion of E(.38)

)
3
©
©O o o oo
o
P O O o oo

(A8)

o
o
m O O O

2 3\27
BY =/ — A
pm 8

o O O O O o
O O O o o ©
|
=
o
O O O O

1 0 0 -1 The operators'slz v and —(lz-v)2 can also be written in this

(A4)  way. One finds
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00i 000 With these matrices and E@3) the vectors forar Y may
000i 00 be expressed in terms dfr @ up to first order in the poly-
. nomial expansion irv. With the orthogonality relation be-
iR y=— |1 100000 (A9) tweenAr™ and Ar©, mentioned in Sec. VII A, this yields
m 0Oi 0oo0oo0oO0]|
p . ; 0000 0 00000
000000 0O 00OO0OOO
W 2 [ 1 00000
Ary’=- “Ary”.
100000 9nayw| 0 1 0 0 0O O
010000 0 10000
& vy [2 003000 -100000
—(k-V)2=-24/-2%
2Vpm |0 00300 (A11)
0000110
These matrices can be used to find the 3matrices in Egs.
000001 (46) and (48). The equation to leading order in then

(A10) becomes

7 2
de 0 ——+(>\<11>\/B—m) ix(ll)\/ﬁ—m =0. (A12)
18 2 2

Here, the indices of the matrix on the left-hand side are orThe remaining part yields the longitudinal mode. The solu-
dered according tar”,Ar'” Ar(?. The matrix can be fac- tions to the fourth order equation faf" are
torized into two parts. One part describes the transverse

mode and produces a simple quadratic equation foy with

m 1 — .
the solution INERY. % = % (711455 ~ +0.639 552+ 0.493 231

(A14)

m 1 —
INRRY '87 =2:V14~ £0.62361.  (Al3)  These results must be scaled for the temperature. The same
calculation can be done with larger subsets of the basis. The
results are shown in Table I.
TABLE I. The Lyapunov exponents and the propagation veloci-  Using functions up to an odd power inis different from
ties for the longitudinal mode calculated using products of Hermiteusing functions up to an even power, because the odd pow-

polynomials inv up to different orders. ered functions contribute to different matrix elements than
the even powered functions. To determine whether the solu-

n T ransverse\f})\"’ Bm/2 Longitudinal)\f]l)\ Bm/2 tions have converged, one must therefore look at the behav-
ior as the maximum power is increased by steps of 2. The

1 +0.623 61 +0.639552+0.463281 ooy in the results using up to sixth powers\ncan be

2 +0.623 61 +0.422 807+0.499 026 estimated by comparing the values with the results for pow-

3 +0.626 194 +0.424 806+0.499 105 ers inv up to four. The error in the solutions when using up

4 +0.626 194 +0.428 599+0.498 952 to sixth powers ofv in the basis functions appears not to be

5 +0.626 254 +0.428 645+0.498 954 much larger than a tenths of a percent, except in the case of

6 +0.626 254 +0.429 104+0.498 953 the longitudinal mode, where it might be of the order of a

few tenth of a percent.
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