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Hexagon model for 3D Lorentzian quantum cosmology
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We formulate a dynamically triangulated model of three-dimensional Lorentzian quantum gravity whose
spatial sections are flat two tori. It is shown that the combinatorics involved in evaluating the one-step
propagator(the transfer matrixis that of a set of vicious walkers on a two-dimensional lattice with periodic
boundary conditions and that the entropy of the model scales exponentially with the volume. We also give
explicit expressions for the Teichiher parameters of the spatial slices in terms of the discrete parameters of
the 3D triangulations, and reexpress the discretized action in terms of them. The relative simplicity and
explicitness of this model make it ideally suited for an analytic study of the conformal-factor cancellation
observed previously in Lorentzian dynamical triangulations and of its relation to alternative, reduced phase
space quantizations of 3D gravity.
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I. MOTIVATION this direction has been made recently by mapping the three-
dimensional LDT model to a two-dimensional Hermitian
The approach of Lorentzian dynamical triangulations ABAB-matrix model[10,11]. This latter model has a second-

(LDT) leads to a well-defined regularized path integral fororder phase transition which is absent from the LDT model.
3D quantum gravity, as was shown[i8,4]. The phase struc- This comes about because the matrix model naturally con-
ture of this statistical model of causal random geometries hatins generalized geometric configurations which are not al-
been investigated by Monte Carlo methods in the genus-zenewed in the original quantum gravity model, and which can
case, where the two-dimensional spatial slices are sphergg interpreted as wormhole geometries. The second-order
[5,6]. Perhaps its most striking feature is the emergence ifyansition is related to the abundance of such wormholes and
the Continuum ||m|t Of a We”'deﬁned ground state behaVingthe Origina' LDT mode| Corresponds to the Weak_gravity
macroscopically like a three-dimensional univef$e7,8.  phase of the matrix model below the critical value of New-
This is in contrast with perturbative continuum argumentsign’s constant.
which suggest that id=3 Euclideanized gravitational path Although the mapping to the matrix model has yielded
integrals are generically ill defined because of a divergencgome analytic information about the phase structure of 3D
due to the conformal mode. Since a Wick rotation fromguantum gravity, the explicit transfer matrix has not yet been
Lorentzian to Euclidean space-time geometries is part of thgonstructed. This is a desirable goal, because it would lead to
evaluation of the regularized state sums in LDT, one mighty quantum Hamiltonian that among other things could be
expect to encounter a similar problem here, but this is noompared with already existing canonical quantizations of
what happens. Instead, all indications point to a non3p gravity. Also, having a more detailed control over the
perturbative cancellation between the conformal term in th ompinatorics of the triangulated model would be extremely
action (which still has the same structure as in the con-interesting in order to understand the precise cancellation

tinuum) and entropy contributions to the state s(#mat is,  mechanism between the conformal terms in the action and
“the meaSUre’). It should also be emphaS|Zed that this Can'the entropic measure contributions.

cellation is not achieved by arad hocmanipulations of the In the absence of a solution of the full three-dimensional
path integral, for example, by isolating the conformal modemodel, one strategy is to formulate simplified models rich
and Wick rotating it in a non-standard wép fact, it is quite enough to capture the dynamics of 3D gravity but whose
impossible to isolate this mode in the non-perturbative setcompinatorial properties at the same time are sufficiently
ting of LDT). Further discussions of the conformal-mode simple to allow for an explicit solution. There are two types
problem and its possible non-perturbative resolution can bgf restrictions one can naturally impose on discretized

found in[9,7]. . _ Lorentzian space-times. The first are restrictions on the al-
It is obviously of great interest to understand in a more

explicit and analytic fashion how this cancellation occurs

and how it gives rise to an effective Hamiltonian whose 2rpe reason why awo-dimensional matrix model appears in the

ground state is the one seen in the numerical simulations Qfescription ofthreedimensional quantum gravity is the fact that the

3D Lorentzian dynamical triangulations. Some progress inp space-time geometries of the latter can be uniquely character-
ized by a sequence of 2D graphs representing the intersection pat-

terns of the 3D triangulations at constant half-integer tinhes
1See[1,2] for recent reviews. +1/2.
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lowed spatial geometrigghese are two-dimensional simpli- that is, too few geometries contributing to the state sum at
cial manifolds built from equilateral Euclidean triangleg  any given value of the action. More specifically, unlike in 3D
integer proper timeg and the second are restrictions on theLDT without such restrictions, the number of distinct trian-
allowed three-geometries that interpolate between adjacegulations of a given space-time sliced=1 (corresponding
spatial slices at timesandt+1. Note that the first type of to a single time stepgrows only exponentially~e*°"s*"
restriction has a direct influence on the Hilbert space of thavith the linear size_ of the spatial torus. Since this entropy
system, since the spatial geometries may be thought of ast@rm has to compete with the volume-suppressing exponen-
basis in the position representatiéwhere “position” here tiated cosmological term from the Euclideanized action
stands for a spatial geometry which is of the form e*t*=eg*L? the state sum will

Such restrictions may or may not change the critical propalways be dominated by geometries with effectively one-
erties of the corresponding ensemble of random geometriegdimensional spatial slices as the number of tetrahedral build-
In a larger context, a task that still needs to be accomplishethg blocks goes to infinity. Any potential continuum limit is
is the classification of all possible three-dimensional LDTtherefore unlikely to have anything to do with the original
models according to their critical properties and dynamics atDT model, and we must conclude that this cosmological
a function of the set of Lorentzian discretized space-timesnodel is simply not rich enough to study the conformal-
allowed in the state suntAs already mentioned earlier, one factor cancellation and the effective quantum dynamics of
may not only consider imposing restrictions on the class othree-dimensional quantum graviffzor a general discussion
geometries, but may also allow for generalizatipms.gen-  of renormalization and continuum limits in dynamical trian-
eral, one would expect this large number of possible discretgulation approaches to gravity see Rf}.)
models to fall into only a small number of universality In the present piece of work, we will investigate an alter-
classes. This turned out to be the case in two dimensionsative, less restrictive cosmological LDT model first intro-
where there are essentially two universality classes, dependuced in[18]. Its spatial two-geometries are still given by
ing on whether one allows space-time to grow so-calledlat tori, but the symmetry restrictions on the interpolating
“baby universes” or not[12] (however, sed¢13] for some space-time geometries are relaxed. We describe this so-called
“exotic” variations). Of course, three-dimensional models of hexagon model in Sec. Il. As usual, a given discretized
random geometries have been studied far less, and it ia notspace-time contributing to the propagator consists of a se-
priori clear what structures one should expect to find. qguence of layer$t,t+1]. For the hexagon model, the ge-

A number of “quantum-cosmological” LDT models of 2 ometry of each such “sandwich” can be characterized as a
+ 1 gravity were considered ifl4], see also the discussion tesselation of a regular 2D triangular lattice by colored
in [7]. There, the number of three-geometries contributing tachombi. The two-colored graph dual to this tesselation is a
the path integral was restricted by imposing symmetry consuperposition of two regular hexagonal graphs describing the
straints, reflecting homogeneity and isotropy properties oflat two-tori which form the space-like boundary of the sand-
space. The space-time topology was fixed ¥6T?, that is,  wich. In Sec. lll we compute the Lorentzian action for a
with toroidal spatial slices. Imposing in additiddiscret¢ ~ sandwich geometry, together with its Euclidean counterpart.
spatial translation invariance fixes the tori at integéo-be Our next task is the counting of all possible interpolating
locally flat and Euclidean. The spatial geometries are thesandwich geometries for given torus boundaries. We show in
completely characterized by three numbers, namely, the toruSec. 1V that the associated combinatorics is that of a set of
volume and its(two rea) Teichmuler parameters. The rea- “vicious walkers” on a 2D lattice with periodic boundary
son for why one may still hope to capture the essential dy€onditions. In the following section, we demonstrate that the
namical features of 3D quantum gravity this way—despitecontributionA S to the action of a single sandwich is already
the drastic reduction in the degrees of freedom—is that caessentially determined by the geometry of the flat tori which
nonical continuum considerations suggest that 3D quanturform its boundary. Still, there is a large number of mi-
gravity has only a finite number of true physical degrees ofcrostates for given boundary data, and we prove that their
freedom (which are precisely the Teichiler parametens  number indeed grows to leading order exponentially with the
Note also that the torus case is the simplest choice with nortorus volume and not just linearly. In Sec. VI we calculate
trivial Teichmuler parameters and also the one which hasexplicitly the variables describing the flat spatial t¢for
been most studied in the literatur&5]. each torus, two real Teichriler parameters and the two-

In the simplest and most restrictive model of such a torusrolume in terms of the data labelling a triangulated space-
universe one demands that also the spatial intersections time sandwich. Since the latter are a set of discretized vari-
constant half-integershould be lattice-translationally invari- ables, it is of interest to see how they sample the usual
ant[14] (see[16] for related cosmological continuum mod- continuous Teichmiler space of all flat tori. This is illus-
els). This scenario is most easily implemented by choosingrated in Sec. VII by explicitly calculating the Teichitter
as fundamental building blocks tetrahedra and pyramids; segarameters for a set of geometries whose volume is smaller
[17] for a generalization to 31 dimensions. Although it is than a certain cutoff. We also include a sample plot of the
straightforward to work out the combinatorics of all possibleassociated moduli space, obtained by factoring out the large
interpolating three-geometries between two spatial slices, diffeomorphisms. Our conclusions are then presented in Sec.
turns out that the model does not possess an interesting coxll. Appendix A contains details of the coordinate transfor-
tinuum limit. This has to do with the fact that because of themation between the discrete geometric parameters and the
strong symmetry restrictions there are too few “microstates,torus data, and Appendix B an asymptotic evaluation of the
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FIG. 1. The three types of tetrahedral building blocks and their ' l+w=12

corresponding two-dimensional intersection patterns=t/2. By

definition of the model, both the 3-1 and the 1-3 tetrahedra always FIG. 2,‘, A regu_lar trlangular lattice serving as a “background
oceur in pairs. geometry” at half-integer time+ 1/2.

~

. i i _compact two-torus(ln a more general model, one may also
vicious-walker combinatorics relevant to the entropy esti-gjow for twists in either of these directions.
mate. This regular lattice is to serve as a “background geom-
etry” which we are going to tile with rhombic 2D building
blocks so that no space is left blank. It is immediately clear
that the intersections of the double-tetrahedra are black and
The fundamental three-dimensional building blocks usedyray rhombi. The squares that result from cutting the 2-2
in this model are(in the language of4]) 3-1 tetrahedra, tetrahedra will be “distorted” in this representation so that
glued together pairwise, 1-3 tetrahedra, also glued togethdhey can fit onto the triangular lattice. Since this can be done
pairwise, and single 2-2 tetrahedra. The numbgréndicate  in two ways, we have a total of four rhombic tiles at our
that a tetrahedron sharesertices with the spatial geometry disposalFig. 3@)]. It will be convenient for our purposes to
at timet andj vertices with that at timé+ 1. As usual, the adopt a dual notation where each rhombus is represented by
space-like edges of a tetrahedron all have squared length @ pair of crossing links. Each link connects two opposite
(or @ in units of the lattice spacing) and the time-like edges of the rhombus and has the same color, see (&g. 3
edges squared lengtha (or —aa?), wherea>0 is real. The rhombi can only be put onto the lattice if the colors of
The pairing of the 3-1 or 1-3 tetrahedra is obtained by gluinggheir edges(or their dual linkg match pairwise at intersec-
them along gtime-like) triangular face. tions. The beautiful feature of this representation is the fact
The three types of building blocks are illustrated in Fig. 1.that any tiling of the strigwhich of course must be compat-
Any three-dimensional “sandwich geometry” of height ible with its periodic identificationsautomatically leads to
=1 we construct from these building blocks can be uniquelyin- and out-geometries which are flat, connected tori. The
described by the intersection pattern that results when theasiest way of seeing this is by following dual linksr
tetrahedra are sliced in half at time-1/2 and the time-like Pieces of dual linksof a given color around a closed loop,
triangles that are cut in the process are represented by on#here the loop must be such that no more lines of the same
dimensional links. We color-code the links to distinguish color branch off into the loop’s interior. Next, consider how
whether they come from triangles with tiptatgray links or ~ this loop is represented in terms of triangles of the same
tip att+1 (black links. Our three building blocks can thus color which make up one of the adjacent spatial geometries.
be represented by black and gray double triangles and bjhe pieces of straight colored lines coming from the last two
squares with alternating black-gray sides. Topologically, thduilding blocks depicted in Fig.(B) do not correspond to
intersection graph is again a torus. As already mentioned, wany triangles at all. By contrast, the first two rhombic tiles
want to consider only amplitudes betweftat two-tori. For ~ correspond to a couple of adjacent triangles each in the rel-
the black-gray intersection picture this means that when th€vant spatial geometry at integerSince the rhombic tiles
gray links are simultaneously shrunk to zero length, wha€an be put onto the triangular “background lattice” at half-
must remain is a regular tiling of a torus kylack triangles,

where exactly six triangles meet at each vessaxd similarly

at timet+1 when we shrink away the black linksA sys-

tematic way of generating intersection patterns with this

property is as follows. Take a rectangular strip of a regular

triangular lattice of discrete widtht+w and heightm, where (a)

the units are chosen in such a way that all vertices have

integer coordinatés(Fig. 2). Let us for the moment take

+w and m to be even,|=2l", w=2w', m=2m’,

I",w',;m"eZ,, since this will make it possible to identify

the opposite sides of this strip without any twists to create a

- (b)

3The reason for splitting up the width into two integers will be-  FIG. 3. The four types of rhombic tileég) and their dual repre-
come clear in Sec. IV. sentation(b).

Il. THE HEXAGON MODEL
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in [4], this is achieved by continuing through the complex
lower half-plane to negative real values. Let us for simplicity
choose the standard valae= — 1, so that all edges have the
same length. This gives rise to the Euclidean action

5 1 1
=1)=(Ng+ - -7+ +—
S At=1)=(Ngz;+Ny3) ( 57 6 arccos; k 6\/5)\
1 1
+Nog | —27+6 arccos§ k+$7\
FIG. 4. These tiles appear as black and gray double triangles in

spatial slices of integer. Their trivalent dual graphs form part of

regular hexagonal graphs representing flat two-geometries. =(N3;+N;3)(—0.46&+0.118\)

integert only with three possible orientationsee Fig. 5 +N2x(1.10%+0.118\). 2

below), it is clear that any of the loops introduced above
corresponds to a sequence of exactly six triangles. In fac

these two types of rhombi can more properly be represente | .
yb property P ) contains boundary term@he discrete analogues of the

by dual trivalent graphs which are dual to the individual > o .
triangles, as shown in Fig. 4. It is then easy to see that eac'ﬁsual Sp"_"t'al "?t_egfa's over t_he extrinsic curvalureorder
loop corresponds to a hexagon graph, with six “corners” of 0 make it additive under gluing of subsequent layera of

120° each, a property which has given the model its name- 1 The action without boundary contributions has the form

Translating this into a statement about the two-geometry, it

pbviously in our model the numbers of building blocks of
\pe(3,1) and(1,3) are always even. Note also that the action

means that there are six triangles meeting at each vertex, 1 1
hence the geometry is everywhere flat. Thinking a little fur- Spy(At=1)=(N3;+Nj3) ( —7+3 arccos§ k+——=N\
ther along these lines, one can also convince oneself that it is 612
not possible to obtain a flat triangulation of one color that 1 1
consists of two or more disconnected pieces. +N,, ( —2m+4 arccos; k+ﬁ)\ (3)

IIl. GRAVITATIONAL ACTION AND TRANSFER MATRIX

The first step in constructing a path integral for our model =(N31+N13)(0.55k+0.118\)
is to determine Whlch sandvylch_ geometrme@.l can occur +Noy( —1.35%+0.118\).
and to compute their contribution to the action. Following
[5], this action can be written as a function of the total num-  The partition function or propagator for a single time step
bersN3;, Ni3 andN,, of tetrahedral building blocks occur- after the Wick rotation is given by
ring in the slice, namely,

1

G(gy,0,;At=1)= —e M, 4

1 (90028t=1)=_ 2 = @
V3Vda+1

S(At=1)=(Ng+ ng)( mky/a— 3k arcsinh

where the sum is over all possible sandwich geomeffies
interpolating between the two spatial boundary geometries

2+1 A :
—3k\/Zarc00ﬁ——\/3a+ 1 g, andg,, andC(T) is the order of the symmetry group of
at+l 12 the triangulationT. As usual[4], expression(4) defines the
22 \2a+1 transfer matrixT of the system with respect to th(_a natural
+ Nyl 27k/a+ 2k arcsinhw scalar produc(gl|gz>=[1/C(gl)]5glvgz via its matrix ele-
ments
4k+/a arccos —t A 4a+2 (1)
- o A A o ~
4atl 12 ’ (920 Tlg1) =G(g1,92:At=1). (5)

where A and k denote the bare cosmological and inverse
Newton’s constants. The positive parameternppearing in IV. THE COMBINATORICS OF THE INTERSECTIONS

Eq. (1) describes the ratio between the squared lengths of the |n trying to characterize all possible intersection patterns
time-like and the space-like edges of the triangulatid,  that can occufthat is, all possible 3D sandwich geometjies
= —ozl§pace Since we will evaluate the state sums in theit is convenient to break up the combinatorial problem into
Euclidean sector of the theory, we need to Wick rotate all oftwo steps. The first one is how to tile the triangular lattice
our Lorentzian discretized manifolds. As explained in detailwith (identica) rhombi, and the second one is how to intro-
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FIG. 5. There are three orientations in which a rhombus can be
put onto the triangular background lattice. have widthl and heightm. Note also that these chains take
_ o the very simple form of straight diagonal left- or right-
duce a coloring on the resulting tilings the form of draw-  moving lines. A configuration of dual A-lines is most easily
ing chains of dual colored links onto the rhomtA rhombus represented as a tilted square latti€ég. 8, right. The in-

can be put onto the lattice with three different orientationsiersection points of the dual left- and right-moving lines will
which we callA, B andC. This is illustrated in Fig. 5, where then havel coordinate 0,2,4,6 .. in the oddrows and

the centers of the rhombi are indicated by small circles. Figq 35 .. in theeven rows.

ure 6 shows a complete periodic tiling of a strip with (' As will become apparent in due course, working out the
+w,m)=(12,4). (Opposite sides of this strip are to be iden- possible color assignments for such dual A lattices is an im-
tified.) What should be noted here is that the number of Aggrtant part of the combinatorics of the model. They are
blocks as well as the combined number of B and C blockguite easy to enumerate. By assumption, any coloring of the
per horizontal row is conserved as one advances in steps fljal chains has to respect periodicity in bbtand m direc-
them direction. Starting at some B or C block in row 1, one tions, The easiest way to obtain a consistent coloring is
can therefore follow a “path” in vertical direction made up tnerefore as follows. Start at sontdual) vertexv at m=0
of some sequence of B and C rhombi until one reaches thgng color the, say, left-moving A line passing through
upper end of the strigshaded region in Fig.)6 while following it around the latticgkeeping in mind the
At this stage we will for simplicity impose a further re- perjodic identifications of the stripuntil getting back to the
striction on the allowed patterns of rhombi, namely, that allgriginal vertex. Using such a procedure, it is straightforward
B-C paths should have winding number zero in tidirec- o see that the number of possible colorings for the entire
tion and winding number one in tha direction. (This does  ¢onfiguration of A lines depends on the intedethe greatest
not seem to impose serious restrictions on the in- and outdQsemmon divisor ofl/2 and m/2. (For example, the lattice
ing two-geometries, cf. Secs. VI, VII, but is a condition that gepjicted in Fig. 8 hak=6, m=4 and thereforel=1.) Pick-
could be relaxed, should this turn out to be convenjéiftat ing an arbitrary vertex atm=0 as origin, the colors of the
is, following such a path between the lower and upper end Ofeft. and right-moving A lines emanating from the firgt
a strip, it should contain an equal number of B and C rhombiyetices to its rightincluding v) may be chosen arbitrarily,
so that it closes on itself upon identification of the lower and,yity the remainder determined by periodicity.
upper ends of the strip. A configuration which violates this 14 count intersections of a certain type between the right-
restriction but is nevertheless periodic is shown in Fig. 7. Byynq left-moving A lines(important for determining the ac-
shrinking all B-C paths to zero width, one obtains a regulagjon) jt suffices to look at a fundamental diamond-shaped
tiling of only A rhombi (Fig. 8, leff). This reduced lattice can region of dx d vertices—this region will then be repeated
be thought of as a sublattice of the original strip in the sens¢,/542 times throughout the lattice. We may now reintro-
that the chains of its dual A-links close onto themselves. 'fduce the B-C strands into this picture by drawing chains of
the number of B-C paths was/2, the reduced lattice will  jinks whose vertices in every row lie exactly in between the

INAVACLVAVAVA
ANAVLTAYAVAV,
X@AVA%&VAV%V%

FIG. 7. An example of a forbidden tiling.

DAVATAYS

FIG. 6. A tiling with A, B and C rhombi(as usual, opposite FIG. 8. The regular tiling with A rhombi obtained by deleting
sides of the strip are to be identifled’he shaded region is a B-C the B and C rhombi from Fig. @eft), and the corresponding dual
path of winding number 1 in the vertical direction. tilted square latticéright).
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FIG. 9. The B-C strands may be reintroduced by drawing paths ' ‘ ‘ | | [ ‘ | | o
onto the regular dual A strip. In the figure we have drawn the path \ 2| 3\ J‘ L A L B B N A 1 T
corresponding to the shaded area in Fig. 6. ! w

FIG. 10. A configuration of three vicious walkers, correspond-

dual A vertices. Starting from the initial rom=0, we can ing to (1.m.w)=(10.10,6).

again follow paths of dual B or C links by making at every
vertex a choice of moving diagonally up to the left or to the )
right (Fig. 9. More than one dual B-C chain can passcious walkers for (;m,w)=(10,10,6). The vertical bound-
through any one vertex, and neighboring chains are allowe@ies of this lattice are identified perlodlcally as indicated in
to share one or more links, but not to cross, so that theithe figure, so that+w=0. Each vicious-walker path starts
relative position along thedirection is preserved as we ad- on the lower horizontal axis at some poiritQ) and ends
vance inm. (Obviously, to obtain configurations of the type after m steps on the upper horizontal boundary at the point
depicted in F|g 6, each of these pa‘[hs must be en|arged iﬂ,m), i.e. at the pOint with the same horizontal coordinate.
the horizontal direction to width 2. This situation can be viewed as a special case of that of a
The combinatorics of the B-C chains can be mapped ontgingle random walker in an alcove of the affine Weyl group
a model of so-called vicious walkefahich arenotallowed  of type A,,_; [23]. The reflections of the path at the walls
to touch with fixed initial and final points, by inserting col- of the Weyl chamber correspond in this case to the collision
umns of width 2 between every pair of adjacent B-C chéins.points of w/2 random walkers that move on a one-
Various versions of vicious-walker models, differing in their dimensional circle. The ensemble of walkers takes simulta-
boundary conditions for the paths and the underlying latticespeously steps of unit length along the circle, either to the
have been investigated in the literature. The most commoright or the left. Mapping these onto diagonal upward steps
choice is that of free boundary conditions in thdirection, on a tilted square lattice and requiring identical initial and
i.e., a lattice of effectively infinite width. The initial points of final points for each walker on the circle leads exactly to a
the walkers atn=0 are usually located at a minimal mutual situation as depicted in Fig. 10. Followihg4,23, the num-
distanceAl =2 near the origin, for example, &toordinate  ber of non-intersecting path configurations fef2 walkers
02,4 ...,w=2, and the final points ah,, are either cho-  wjth initial and end pointsX=(\1,\z, ... Aya), A
sen freely or again grouped together at some pdjiima)  {0,2,4 ... |+w—2}, ordered along the circle so thag
with | coordinatedy, lIo+2, lg+4, ..., lgtw—2 (see, for <), < .. <\, is given by
example,[19-21] and references therginAn exception is
the treatment by Forrestg22], who uses periodic boundary
conditions in thel direction and walkers with equallgbut
not necessarily minimallyspaced initial and final positions. b(x,m,l,w)= i > detw)x (wi2)
The case relevant for our 3D gravity model is that of t,2t=0
periodic boundary conditions in both thheand m direction,
and the combinatorial problem can be phrased as follows:
Given three even integers th, and w, how many ways are x (m/2)+ I+—Wt-+)\-—)\- , (6
there of drawing w2 indistinguishable vicious-walker paths 2
with winding numberg0,1) onto a tilted square lattice of
width |+w and height mThe tilted square lattice is dual to o i
similar lattices depicted in Figs. 8 and 9, i.e. it has verticesvheret is aw/2-tupel of integers. Note that because of the
on the horizontal axis at even parameter values 0,24/ properties of the binomial coefficients, only a finite number
+w—2 and vertices on the vertical axis at valuesof terms in the sum over is nonvanishing. The presence of
0,2,4 ... ,m. Figure 10 shows a typical configuration of vi- the determinants has to do with the fact that although all
possible path configurations appear in B, the contribu-
tions from configurations with touching or intersecting walk-
“Vicious walkersare imaginary creatures that will deicious  €rs cancel appropriately by virtue of the alternating signs in
things to each other when meeting at a point and therefore avoithe determinantal sum, in such a way that only the non-
such encounters. intersecting ones are left over. The largest term that can ap-

m
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SESH

FIG. 11. The effect of a wedge flip on a B-C path drawn on the
dual A lattice. FIG. 13. The rearrangement of the rhombi making up a funda-

mental hexagon region during a wedge flip and of the associated
pear in any of the determinants on the right-hand side of Ecdual links or lines.
(6) is always the product of the elements on the diagonal,

namely, piece of left-moving A-chain entering at the bottom right and
coming out at the top left. The wedge flip changes the tiling
m | w2 of the fundamental hexagon and the intersection patterns of

(m/2 , (7)  the dual chains in the interior of the hexagon, without alter-

ing the dual links emanating from (Fig. 13.

To determine the effect on the geometry, one has to con-
sider all possible colorings of the chains passing through the
hexagon and how the wedge flip affects the black and gray
dual link patterns. The first case is that where all lines have
V. ADDING COLOR AND ESTIMATING THE ENTROPY the same color, say, black, which implies that the hexagon

The hexagon model possesses a feature that wil Simp”f{,epresents a gluing of six 3-1 tetrahedra. The wedge flip only

the (asymptoti¢ analysis of the propagator. This has to do altteri tge v_va:y {E Wh'gh \E)Vle :n?ntr]allé/ dvaI;jl;e .th|s|s?].of SIX
with the fact that each intersection pattern characterizing ctrahedra into three double tetrahedra. Lbviously this move

sandwich geometry can be brought tes@ndard formby 0€s pot in any way affect the three-geometry, and the ge-
using a sequence of moves which affect neither the in- an metries before and after the move should not be counted as

outgoing 2D torus geometries nor the value of the ac®n istinct. However, for all other color choicéthere is a total
The basic idea is to move all B-C paths to the far left off SiX) the three-geometry genuinely changes. As one can

the strip. The elementary move necessary to achieve this Fsasily verify, the wedge flip in all of these cases corresponds

the flip of a left-right wedgéan adjacent pair of a dual B and LOI pllillibr;g zlal(piece Oftf”‘ gray tcr:]hai(rv;githout vertice; grcr:_oss a
C link) to a right-left wedge or vice vers@rig. 11). Since ack-black intersection or the other way round. This means

any B-C chain has by assumption an equal number of B anfat the mdiVidL_’al gray and black dual grz_aphs are s_queezed
C links, it can be moved to the left of the strighere it and stretched in the process, but remain otherwise com-

assumes the form of a zigzag patly a finite sequence of pletely unaffected, and hence will correspond to the same

o . : two-geometries.
such moves. In the process, it will crogseces of A chains, b -
but not other B-C chains. A typical final result after applying _S![nce,gmfr(iog/er, ;hednumbert oLbundmg db|°Ckf‘°i. of a cer-
this procedure to all B-C chains of an intersection pattern igain type(3-1, 1-3 or 2-2 does not change under a flip move,
illustrated in Fig. 12. we have proved our original assertion that the wgdge flip
In order to understand which consequences the wedge flikﬁal\lles a:LtW_(I)_' .aﬂgﬂﬁree—volunléand P?r?cet\}vhe acuc);rats.
has for the geometry, let us analyze which action it translatey©" as the Teic I parameters of the two-geometries

to on theunreducedhombic tiling. The region on the origi- invariant” We recognize here' a simplified feature of the'
nal triangular lattice which is affected by the wedge flip is hexagon model, compared with the most general dynami-

confined to a set of six triangles forming a single hexagon®alY triangulated 3D gravity modeld,5], even if we re-

with six dual links emerging from the sides of the hexagon_’stricted its integet-slices to be flat tori. Namely, although

There are two ways of tiling this fundamental hexagon bythe toroidal two-geometries forming the spatial boundaries of

three rhombi. In both cases, there is a piece of B-C chaif® SPace-time sandwicht=1 by no means fix the three-

entering at the bottom of the hexagon and coming out at th§€OMetry in between the two slices, they determine essen-

top, a piece of a right-moving A-chain entering at the bottomti@/ly uniquely the value of the sandwich acti@fAt=1).

left and exiting at the top right side of the hexagon and dn other words, thgre s a _Iarge .number of interpolating
space-time geometries for given, fixed boundaries, but they

all contribute with the same weight®e A main task in solv-

\ \ \ \ \ ing the model is therefore the computation of the number of
distinct interpolating 3-geometries between two adjacent flat
two-tori.

corresponding to the independent productwd® periodic,
free random walks consisting ofi steps.

LN
LN
L TN

5The wedge flip is an obvious candidate for a Monte Carlo move

NCTSNSTN
NN

/ / / in numerical simulations of the hexagon model; it will have to be
augmented by moves thaan change ther's and other physical
FIG. 12. A rhombic tiling of standard form. variables.
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Before we can give a precise definition of this combina-entropy contributions compete with the kinematical action
torial problem, we still need to specify how we are going toS®" to result in an effectivécontinuun) action. The combi-
parametrize theoloring of the rhombic intersection pattern. natorial partM(S) of Eq. (8) is very similar to that of the
Since we have already shown that any intersection patterfincolored problem described in connection with Fig. 10, but
characterizing a three-geometry can be brought to standaigle color dependenaesnow enter in a slightly subtle way.
form without affecting the individual gray and black torus Thjs again has to do with the slight overcounting present in
geometries, we may without loss of generality think of thegyr model(the subdivision of fundamental hexagon regions
latter as subgraphs of this standard form. Using the notatiogf one coloy which implies that not all vicious-walker con-
introduced above, we will label the uncolored standard formigurations will correspond to distinct three-geometries. How
by three even integersy(l,m), wherew/2 is the number of  often this occurs depends on both the boundary geometries
zigzag B-C chains on the leftvhose individual height isn) g, and the relative orde® of colored lines of an individual
and (,m) is the size of the regular lattice of A rhombi on the sandwich geometry. It is clear that the overcounting will be
right. most pronounced when the intersection pattern has very

Let us now introduce a coloring by drawing closed dualmany dual links of one color and very few of the other,
lines onto this standard form, thereby producingadored  pecause this will result in many local fundamental hexagon
standard formsS. There are obviously/2 independent ver- regions of one color which are insensitive to wedge flips, cf.
tical lines that can be drawn onto the B-C columns. We willFig. 13.

split them intow,/2 black lines andv,/2=(w—w;)/2 gray Let us proceed on the assumption that—at least to leading

lines. Itis clear that the order in which we color these strandgrder—the scaling behavior of the entropy will not be af-

will affect the three-geometry, but not the individual two- fected by this overcounting. This is in part justified by the

geometries or the action. This results in a muItipIicitX/l)( numerical investigations db], where we found that in the

for given in and out states, counting the number of possiblg€ontinuum limit, neighboring spatial slices are strongly

orderings of black and gray vertical dual lines. coupled, in the sense of having a similar total volume. Under
We turn next to the coloring of the remaining dual lines, this assumption, we can drop the sum ogein Eq. (8), and

i.e. those that traverse the B-C chains horizontally and the Aubstitute the combinatorial factor =M, where

rhombi diagonally. The choice is restricted by the fact that

the number of such lines which are clodedd therefore can

be colored independenilys exactlyd for the right-moving -

andd for the left-moving lines. We will denote the numbers M(m,1,w):=2> b(X,m,l,w) ©)

of black right-moving and left-moving dual lines lay and »

a,, and those of the corresponding gray linesthy=d—a, R

andb,=d—a,. As before, the relative ordering of the black is the sum over all ordered/2-tupels of initial conditions.

and gray lines in either direction leads in general to differenfor a set of random walkers. We would like to establish the

three-geometries, but leaves the two-geometries and the albehavior ofM in the limit as (m,l,w) simultaneously be-

tion unchanged, thus contributing a fact(ﬁr)(gl) to the come largé. This is not completely straightforward, since

number of interpolating states. according to Eq(6) eachb is a sum of terms that can be both
Putting all of these observations together, we can now©Sitive and negative. _
rewrite the one-step propagatdd) in a more explicit For the purposes of this paper we will concentrate on

form. Using the essentially  unique association €stablishing the Ieading_ diverggnt behavioMfwe. hope to
(91,92) < (I,m,wy,W,,a,,a,) (cf. Sec. VI and Appendix '€turn to the full analytic solution of the model in the near
G now takes the form future. Is it the case that the leading behavior is given by
exp(c spatial volumg for some positive constaet? As ex-
plained earlier, this is needed for obtaining truly extended
geometries in the continuum limit and a necessary prerequi-
site for a conformal-factor cancellation. The continuum limit
that has been considered in most of the literature on vicious
eSS (8) walkers is that in which both the width and the length of the
lattice become large, butot the number of walkers. In this

- case one typically finds for the numhé&fof walker configu-
The numberM(S) counts the distinct strip configurations rations

that can be obtained by applying elementary wedge flips to

the colored standard fori&, uniquely described by the six

parametersl(m,w;,w,,a,,a,), and the relative orde® of N/= 2number of walkers number of steps (5 hleading terms

their dual colored lines(We are regarding configurations (10

that differ by overall translations in theand m direction as

equivalent. At any rate, this choice does not affect the re=————

mainder of our discussion. ®A natural canonical scaling ansatz ig|,w—o while sending
In view of the discussion in Sec. |, we are interested in thehe cutoffa—0, in such a way that the dimensionful length vari-

continuum behavior of Eq(8), and in particular how the ablesM:=am, L:=al andW:=aw remain fixed and finite.

d
al’

1o +
G919z At=1)= 3 WM(S)(lelez

d
q

X
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This is precisely the type of scaling behavior we are lookinga role in the continuum limit.We may therefore conclude
for but not the physical situation we are interested in, sincehat for an average spacing=(l +w)/w, and in the limit as
the paths here are “diluted{even though their initial and m,l,w—o, the number of vicious-walker configurations be-
final points may lie close together haves to leading order like

A scenario of more immediate interest to us is again that
considered by Forrester that we already cited eafl2, S ]
who treats the case of equally spaced walkers on a lattice M(m,l,w)~c(v)™™ "X (subleading terms (13
of width g with initial conditions\;j=iv, i=1,... N, so
that v=u/N is the average distance between the walkerswherec(v) is a constant of order 2, which appeared in Eq.
paths. However, it should be noted that his class of patfl2). This shows that the hexagon model of three-
configurations is larger than ours: although he also considedimensional quantum gravity has indeed enough entropy,
periodic boundary conditions in the direction, an indi- compared with more restricted cosmological models that
vidual walker’s path is not required to close on itself after were studied previously.
steps, but may wind around the lattice several times before
doing SO. The resulting glosed paths will in general have VI. TEICHMU LLER PARAMETERS
(I,m) V\{md|_ng num_bers d|ffe_re_n_t fronf0,1) (an example is FOR TRIANGULATED TORI
shown in Fig. 7 which by definition we have excluded from
our current model. The evaluation of the combinatorics of Our next task will be to relate the parameters
this more general case turns out to be easier because it igk,m,w,,w,,a,,a,), introduced in the preceding section to
volves determinants afyclic matrices, which can be simpli- label a standard colored three-geometry, to the variables de-
fied. For everm,» and oddN the number of vicious-walker scribing the two spatial boundaries of that geometry. In this
configurations is given bj22] way we will achieve a clean separation of the geometric in

and out datay; andg, appearing as arguments of the ampli-
tude G, and make contact with the standard parametrization
. (1D of two-dimensional flat tori.

It is a well-known fact that in the continuum any flat torus

eometry g can be characterized by three numbers
Cﬁv,rl,rz), wherev is the two-volume(in our case propor-
tional to the number of triangles that make up the tpard
the 7 are the two real Teichntier parameter$.We would
like to compute the geometric data@,#{",7)), i=1,2,
for the individual two-tori from the parameters
(I,m,wy,w5,a;,a,).

Recall that the numbers of black, gray and black-gray
rhombi at timet+1/2 is given byNsy/2, N1o/2 and N,,,
respectively. The first two numbers give us directly the dis-
crete two-volumes of the spatial slices at timesndt+1,
hamely,v™®=N3; and v®=N,5. (In order to obtain the
volume in terms of the lattice spaciray one needs to mul-
tiply with the volume of a Euclidean triangle, which is
a2\3/4.) Taking into account the considerations of Sec. IV
on the division of the A lattice into fundamental regions, one
derives for these numbers the expressions

NT1g w2l 2
NF( vazﬂ;Z coé“—W%er

However, it is easy to see that the overcounting involve
in Eqg. (11) does not alter the leading behavior for laigand
m compared to our more restricted case. Namely, we cal
divide the path configurations counted by Efjl) into dif-
ferent sectors, depending on the lateral displacement
= Ntinal— Ninitia Of the initial and final point of each walker.
We haveA .= *m, with the largest contribution tav™
coming from configurations witlA =0 (corresponding ex-
actly to the path configurations with winding number 1 we
are counting in the hexagon mogleThe asymptotics of Eq.
(12) is much easier to handle, since the right-hand side is a
product of sums ovepositiveterms. Assuming an appropri-
ate monotonic behavior of, it follows from the results in
Appendix B that the leading divergence fbl,m—o and
fixed v>2 is given by

NF(N,m,v)~c(v)™\, 2c05<77)<c( n=<2. (12

m Im

Coming back to the combinatorics of the functii note Na1=wi55 (ar+a|)+ aa,
that for a given lattice width and number of walkers there are
((+W72=1y terms contributing to the suif®), corresponding
to all possible initial conditions for the walkers. Since this Im
number grows at most exponentially in lengés opposed to Nis=W, = (b +b|)+ b.by, (14)
volume, the leading exponential behavior will coincide with 2d
that of the largest term in the sum, which is, roughly speak-
ing, that of the configuratids) where the walkers are maxi-
mally distributed(i.e. spaced out in the direction over the
available space and therefore get least in the way of each?we will keep our options open about whether we eventually want
other. We can identify their average distance with the spacing use these or rather the so-called moduli parameters, which label
v appearing in Forrester’s formulgsStrictly speaking,y is  equivalence classes of Teichlien parameters with respect to the
of course areven) integer, but we do not expect this to play action of the mapping class group.

084016-9



B. DITTRICH AND R. LOLL PHYSICAL REVIEW D 66, 084016 (2002

T T+1

FIG. 14. An intersection pattern at tinte-1/2 gives rise to a T
black triangulation at timé and a gray triangulation at tintet+ 1.
We also show the two vectong;, and ), representing the closed
geodesics of winding numbét,0) and (0,1) for both of these ge-

FIG. 15. Standard representation of a flat torus with the Teich-
muller parameterr=r,+i7, as a parallelogram in the complex

ometries. plane.
m Im Vg_l):(l_(al+ar)+wl’|_(al_ar) ,
Naz= g [Wabe b))+ wa(a +a)]+-— (aby+ab). 2d 2d
4d 2d2
In order to determine the Teichiher parameters for the V(21)=(%(a,—a,),md(a|+ar) . (15
tori, we will identify for each color(black or gray a pair of
oriented, closed geodesi_cs, i.e. straight lines of mi”ima*l'ranslating this into absolute units, one finds
length on the corresponding torus at timer t+ 1. (Note
that these do not have to coincide with any triangle edges. | w, 3l
Each pair consists of a circle with winding number (1,0) and Vi(l):(—(éh +a,)+ _1, _(al_ar)) a,
one with winding number (0,1) when viewed as curves on 4d 2’ 4d
the intersection pattern &t 1/2 (the two winding numbers (16)
refer to the horizontal,w direction and the verticah direc- ([ M 3m
tion). The winding numbers of closed curves in the spatial VU= zg@—a) g (atan) ja,

two-geometries can therefore be thought of as “inherited”

from the three-dimensional geometry. These curves arwherea again denotes the lattice spacing. The two vectors
clearly unique up to two-dimensional translatiofis we ;) V() characterizing the gray triangulation at tinte
think of the flat tori at integer timéas being rolled out into  +1 are obtained by substituting ,a, ,w; in Eq. (16) by

the two-dimensional planeFor a given color, their lengths b, b, ,w,. Note that the relationgl6) imply the inequalities
and their relative intersection angle are translation invariant,

and in one-to-one correspondence with the torus parameters
(0,71,7'2)- ) . . .
Let us look at a simple example in order to illustrate this zq s shown in Appendix A, the coordinate transformation
procedure. Figure 14 shows on the left a colored intersectiofarveen the six variabled MW, ,W,,a /d,a, /d) and the
’ ’ ’ H 1 “Ar

pattern in standard form representing a sandwich geometY. mponents of the vectotg ), subject to the constraints
and consisting of 12 rhombi. It gives rise to two spatial '

boundary geometries, both of them flat tori with four tri- @) (D) (@) (1)
angles each. They have been cut open and are represented by Vip'==Vip' Vori'=—Vai’ (18)
two parallelograms in the plane, where the small black and )
white arrows indicate how their opposite sides are to be iden'S One to one. Up to a com(ri?or] (ir)otatlon and a global rescal-
tified pairwise. Each of these two-geometries has oriented!d: €ach pair of vectorsiy™’,1;™") can be identified with
geodesics with winding numbét,0) and(0,1), respectively. the vectors spanning the parallelogram in the standard repre-
They can be represented by a pair of vectdss,V,) drawn  Sentation of a flat torus with normalized area in the complex
onto the parallelogram. For ease of representation, the vea'’ plane )= T(1')+iT(g')). Fig. 15. It is straightforward to
tors are depicted on the right with their correct lengths anccompute the S) rotation
orientations, and with a common origin.

It remains to compute the lengths and angles of these cosgp)  sing®
vectors from the data (m,w,,w,,a, ,q,,b, ,b|) characteriz- I ;
. . . . —sin ¢(') COS¢(I)
ing the colored intersection pattern in standard form. Repre-
senting the black closed geodesic with winding number (1,0
at time't as a two-dimensional vector{® and the black
closed geodesic with winding number (0,1) as a second vec- |
tor V5, one finds in terms of the discrete units inherited COS(ﬁ(l):il(_(al‘l'ar)‘l' ﬂ) (20)
from the (,m) coordinate system at+ 1/2 LMW\ 4d 2

V=0, nY=0, VY=Yl vi9=9l. @)

(19

Which aligns the vector, with the 7§ axis. One finds
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a 3l 1 1
indW=—""""(g9,— —
sin = (ay—a,), Noo=
S 72 (D (=)
whereL®) denotes the length of the vectwt® us 7
' X —2(7'(11)7'(22)+ 7(12)7'(21)) v(l)—l—H)(z)—2
751 752
L)
5 —fM(r?bz—<r¥bz+<rgbz—<r§bzﬂ. (23
| wi\2 [ 3l
= —(ata)+—| +|—(a—a,)| a. .
4d 2 4d The function
(21
_ r(1)yy (2 r(1)y 9 (2
The corresponding expressions for ¢#%, sing®, L are Q_(Vl,(l)VZ,(Z)_V2,(2)V1,(1))_a2\/§ (24)

obtained by substitutinga( ,a, ,w;)— (b, ,b, ,w,).
We still have to rescale all |engthS by a faCtOL(]].') SO can bhe expressed in terms of théke,T(k)) 0n|y uptoa Sign’

that the rotated vectar;) assumes length 1. Applying then namely, as the positive and negative square root of
both the rotation(19),(20) and this rescaling to the vector

V,(, we can read off directly the dimensionless Teicligru Dy
parametersr’). Collecting the geometric data describing 02= N [(AD+ 72)2+ (AD— 7422
uniquely the black torus at timie we have finally 7-(2 )T(z )
(1) (2)\ 2
71 71
I L mw; —(“”zﬁ+“”;5)- 29
v\= a,ar¥+(a,+ar)ﬁ , 2 2

The resulting action has a feature that may at first seem
puzzling. Let us think of the exponentiated action for fixed
boundary geometries as a matrix elemfarit Eq. (5)],

m I w
M | (52_52\_ PN P
LT 4d(L(l))2<(a| ar)d +(a| ar) 2 as,
(22) e—SeLtv(l),T(l),v(z),T(Z)): :<v(2)’ 7(2)|f|v(1), 7_(1)>. (26)
Usually this kinematical “transfer matrix” can be written as
w_ M V3l Vaw, | t=e2"=1-ah+0(a?), whereh denotes the discrete, ki-
2= 4d(LD)2 a,arT+(a,+ar) 5 |2 nematical Hamilton operator of the systérand where we
have reintroduced the discrete ugdit=a for a single time
J3  a? step.
=770 2v(l). For such an expansion to exist, in the limit of smidlthe
(L) configuration variables at a neighboring spatial slice should

i always be expressible as(t+a)=v(t)+av, 7(t+a)
The map between the independent vector components . . -
¥40) =7(t)+ar. However, looking at the explicit formulas for
I

(or, equivalently, the sandwich variables ) . :
(I'm.wy Wy, /d.a, /d)) and the (% ¥ is in general 7" and r{?) (representing the variable, at two adjacent
tvx;o—io—%)’nez(,sele A'p;:)endix A ' spatial slicepas functions ofa; anda,, one sees that they
plways have opposite signs. It is therefore kinematically im-

One may also wish to reexpress the action in terms o ble t t th ainless thev both ish(
these torus parameters. Because the transformation to thdd@Ssibie to set them equainiessney both vanishior,

parameters is not bijective, this can only be done modulo gquivalently,a|=ar). This can be traced back to the fact that

sign ambiguity. One first writes the counting variabs as a r]atural pairing between two ne|ghb9r|ng spanal geom-
functions of the two-vectors” ® and then in turn expresses etries occurs in our construction by putting their two graphs

the latter as functions of the torus parameters. Details Opgether In an intersection pattern. As can be seen fr“om tt'e
these calculations can again be found in Appendix A.elementa_try example dEp'Ct?d n Fig. 14, the natural _dual
The explicit form for the sandwich actionS™{(S) of a pa}rtlcular plack graph is given not py thg graph itself,
= seYp ™D, D), (@) 22 s given by Eq.(2), with but by its reflection, where the relative orientation of the two
o ' coordinate axes has been reversed. In terms of the Teich-

Ngy =0
8This is the “kinematical,” and not yet the full, “effective”
Hamiltonian, because we have not included any entropy contribu-
N13=v(2) tions in the matrix element.
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muller parametergsince by definition we always keep, T2 T2
=0) this amounts to a malR: 7y— — 71, with a lowest-order ' 1172 g ’
expansiont = R+0(a) for the matrixt. From this point of 125 .
view, a more natural elementary time unit in our model con- 07; . g
sists of two time steps, a feature that has also been observe - 05 . 2
in other discrete models of-21 gravity [25]. AN ) RS | SR
RS ats i Tl MR TP YA Tl
. -1 -05 0.5 1 -2 -1 1 2
VII. ADISCRETE SAMPLING OF THE TEICHMU LLER T
AND MODULI SPACES T 2
8 8
Although we have established above a description of the P 6
geometry of spatial slices in terms of the standard Teich- N A I
muller parameters, it is clear that in our model the parametri- _4 s o ;f‘ .
zation will not be a continuous one, since tHe according DR 4 B O 1 D P R
to Eq.(22) are given as f_uncti(_)ns of certain discréimegeb PRS2 AP S 1, C SR R 1,
parameters characterizing triangulated geometries. From « -2 -1 12 -2 -1 12

continuum point of view our simplicial discretization there- 5 16. Sampling Teichiiller space for maximal spatial vol-
fore provides a discrete sampling of the TeichieuspaceZ | nesy .. —4 14 (top row) and 24,34(bottom row.
(which topologically is anR?). It is interesting to look in mee ’
more detail at how this sampling works as a function of 3riangles, which is always evEnv<v .., where v,
given cutoff on the volume of either the space-time sand-_ 4 14 5 34. The origin of the Teickiier Space is clearly
wiches or _the spatial §I|ces, say. . , . __an accumulation point, with sampled points spreading out
In addition, one might be interested in the configurationy, e ang more with growing torus volume. The points are
space obtained from Teichrifer space by identifying points - 5rangeq symmetrically about the imaginary axis and seem
that differ by th_e action of “large dlff_eomorphlsms(the to lie along various well-defined curves and straight lines
so-called moduli spagei.e. those two-dimensional transfor- y,.q.qh the origin. Note that any given point may occur at
mations that do not lie in the connected component of the, ;e than one volume; the information about this multiplic-
diffeomorphism group of the torus. There are different sugyy 5 not included in our plots. Figure 17 shows half of the
gestions of how these transformations should be incorporat yhole region with all moduli that occur up to torus vol-
into the quantum theory of 3D gravity, whether as exact i neg 33again, the left half of the region can be obtained by
variances, as symmetries with a unitary action, or possiblyefiection. Comparing with the number of different points
hot at aII_(see[26] for fqrther discussions We will not.take appearing in Fig. 16, it is clear that the modular parameters
any .par.tlcular viewpoint h.ere, apart from remarking thatare highly degenerate. It is clearly of interest to study these
quotienting out by large diffeomorphisms usually leads tOgjstribytions more systematically and for larger volumes, and
additional complications in the quantum theory. compare them with the natural measures on Teidlemand

In order to detgrmlne the modulus Of, agiven Teictlenu 4, space, but this would lead us beyond the scope of the
parameterr= 7,+i7,, we have to map it by a sequence of present paper.

modular transformations

VIIl. CONCLUSIONS

r
) 27 We have introduced a dynamically triangulated model of
three-dimensional Lorentzian quantum gravity whose spatial
slices at integer times are flat two-tori. As we have shown,
this symmetry restriction simplifies an exact analysis consid-
“evhol ion” defi 1< <12 2_ 2 erably: t_he spatial slice@nd therefore the associated states

eyhole region” defined by—1/2<r,<1/2 and|7|*=7; of the Hilbert spaceare labeled by just three parameters—

2
=1 T . two Teichmiler parameters and a global “conformal
To get a qualitative idea of the nature of the discrete sam-

pling of these two spaces, we have set up a small program
that generates all values ob (r) that occur for sandwich
geometries with parameters0,m,w= 10 (and with the lat-
tice cutoffa set to 1. This is easy to implement, but does not
quite amount to a systematic bound on the total space-time
volume [which is proportional tov= (I +w)m]. The range
of V is between 4 and 200. Geometries with one or two
vanishing spatial volumes" were not allowed.

We show in Fig. 16 a sequence of samplings of the upper
half of the complex plane, with dots indicating the values FIG. 17. A sample of moduli parameters inside the right half of
that occur for a spatial slice @brus volume (the number of  the keyhole region.

T—7+1, 7—

(the generators of the mapping class group of the jaus
point in a fundamental regio 7, usually taken to be the

- N W R W
<
N

T
0 01 02 03 04 05

084016-12



HEXAGON MODEL FOR 3D LORENTZIAN QUANTUM COSMOLOGY PHYSICAL REVIEW D66, 084016 (2002
factor"—and the evaluation of the model’s entropy is relatedwhich is known to possess only a finite humber of global
to that of a set of vicious walkers, which is a rather well- metric degrees of freedom. Secondly, as we have shown, an
studied combinatorial problem. essential part of the combinatorics of the hexagon model's
It should be pointed out that our model is not a “minisu- transfer matrix is that of awvo-dimensional problem of vi-
perspace model” in the usual sense of the weéheduce  Cious walkers, about which a number of analytic results are
classically and then quantizg”since the spatial slices at already available. In summary, we think that a further inves-
non-integert are in general not translationally invariant. tigation of this model is a promising avenue to pursue, both
Therefore, more geometric degrees of freedom contribute tf @dvance our understanding of dynamically triangulated
the superposition of space-time histories in the path integrdf’°dels and their continuum limits, and to achieve some de-
than is obvious from the integerslices.(In this sense it is gree of unification among the existing and rather disparate
related in spirit to recently studied cosmological models inapproaches to three-dimensional quantum gravity.
canonical loop quantum gravity, where also part of the re-
duction occurs only at the quantum level, see, for example,
[28].) As we already explained in Sec. I, the conditions on .
the space-timayeometries cannot be too stringent in dynami- R.'L'. wishes to thank C Kratten?haler for correspondence
cally triangulated formulations of quantum gravity, in order ©n Vicious walkers, a critical reading of the paper, and for

to have a sufficiently large entropy and a potentially interestPointing out Ref.[23]. She also thanks J. Ambjo for dis-
ing continuum limit® cussions and C. Dehne for comments on an earlier version of

Crucially, we could show that the hexagon model doedNiS manuscript. Lastly, she acknowledges support by the EU
have enough entropy in the sense that the number of triadl€twork on “Discrete Random Geometry,” grant H‘PRN'CT'
gulations of a sandwich\t=1 with given boundaries to 1999-00161, ?nd by the ESF network no. 82 on “Geometry
leading order scales exponentially with the volume of the?nd Disorder.
slice. We also exhibited explicitly how the discrete triangu-
lation data can be translated into the more familiar param-
etrization of the flat two-tori in terms of Teichiier (or
moduli) variables. In this appendix we give some details of the coordinate

All of these properties give rise to the hope that the hexairanSformationS used in the main text in Sec. VI. As a first
gon model will provide a link between the LDT formulation Step, we give the transformation law frofan independent
of three-dimensional quantum gravity and alternative, resubset of the combinatorial parameters describing the dis-
duced phase space quantizations_ On the one hand there |§f£tlzed Space-time slices to the dimensionful vectorial quan-
good chance it will lie in the same universality class as thditites V. Taking into account the identites, +w,=w, a,
full dynamically triangulated modehfter all, the degrees of +b;=d, a,+b,=d [with d:=GCD(l/2m/2)], we choose as
freedom we got rid of by working with flat spatial slices are an independent set of the former the six variables
those of the local conformal mode, which are known to be(l,m,w1,w,,a,/d,a,;/d). Note also that not all of the com-
unphysical, and on the other hand the parametrization of theponents of the two-vectong' ), i=1,2, are independent, but
Hilbert space and the quantum Hamiltonian will be close towe have the two constraintd8). The set of transformation
that of the canonical formulations. laws is given by

What remains to be analyzed is the precise nature of the
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APPENDIX A

continuum limit of the hexagon model. What is the sublead-
ing asymptotic behavior of the state sum? Can we reconfirm

2 V1%’

2

our earlier conclusiof5,6,1(0 that the gravitational constant al (V§f21)+V§f§)), am= E(VQFZI)“LV?(Z‘Z))’
is not renormalized, but merely sets an overall scale? How is
the divergence coming from thiglobal) conformal mode in
the action compensated by a corresponding term in the en-
tropy? What is the functional form of the effective con-
tinuum Hamiltonian in terms of the Teichitker parameters?
What is its ground state and is it identical to the ground state
seen in the numerical simulations reported 5i6,8]?

One may wonder how we can hope to make much ana-
Iytical progress in the investigation of tareedimensional
statistical model. Firstly, the answer is of course thate

gravity is a very special type of theory in three dimensions,

BERVRE)

PRVASAVASY

—opy)_Z
aw, Vl,l 3 Vé,(ll)

(A1)

r(1)y7(2)

aw,=2V;@ - 2NaVad

, 1) ?
30

a 3P+ a - B3P+

%0ne could argue that this is actually desirable from a physical E: yDyy@ E: PO 4@
point of view. The more restrictive a mini- and/or midi-superspace 22 1 V22 22 1 22
model is, the less likely it is that its dynamics is representative of _ _ _ .
that of full gravity (see[27] for further discussion and an explicit This is indeed a well-defined coordinate transformation, with

example. Jacobian
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as well as the inequalitigd 7). Note that this does not imply
that if one of these) configurations can be realized as a
three-dimensional triangulation.e. corresponds to suitable
discrete values ofl(m,w;,w,,a,/d,a,/d)] that the other

Next, let us establish the coordinate transformation thapo of the pair can too. In fact, this is in general not the case.

will enable us to rewrite part of the action in terms of two-
volumes and Teichiler parameters. Note first that

V3

a? - Ngg= X130,

V3

a~Nig= V@%@ (A3)

az%gsz ARV A R VAN QVARS
These relations can be verified using the transformatio
laws (A1) from the independent variables
(I,m,wq,w,,a,/d,a, /d) to the vectorial quantitie¥”.

It is more involved to express the components of the two
vectorsV’ () in terms of the torus parameters, subject to th
constraintg18). We need to invert the relations

o V0. g0
1 T2 !
Rk
ERVACINEPA0)
TN (A4)
Vil

) ) 4
(i) =y (i) ri)
V=V VXY .
1 2 a2 3

This gives rise to certain algebraic expressions for the

independent vector componentsV; (), v; 3,V 1,0,
Vi V,2)) in terms of the Teichrilier parameters and the
two-volumes, which we do not bother to write down explic-
itly here. The Jacobian of this transformation is

I=40 (WM VW) (V@ xvp@) [y ]| =4[y )| ~4,
(A5)

whereQ) was already defined earlier in E@4). Substituting
the vector components into EgA3), one obtains the ex-
pressiong23) given in the main text. The fact that this co-

e

APPENDIX B

In this appendix we determine the leading asymptotic be-
havior of the combinatorics of a set of equally spaced vicious
walkers on a lattice with torus topology, as quoted in Sec. V
of the main text. Followind22], the number of configura-
tions of N vicious walkers whose initial and final coordinates
are equally spaced at a distancand who walk form steps

is given by
N—1 v/2—1
2m+1 2
NEIN,m,v) =[] > cod —W(B+b”,
n p=0 VY  Hh=0 v \N

(B1)

wherem and v are assumed even aftlodd. The width of
the lattice is thereforge=vN and its height ism. We are
interested in the asymptotic behavior of EB1) asmandN
become both large. Assuming that-2, let us for some
given p consider the corresponding sum oweon the right-
hand side. It is clear that for largeg, this will be dominated

by the term with the largest absolute value of the cosine. For
p=<N/2, this is the term wherb is minimal, i.e.b=0, and

for p=N/2 the term wherd is maximal. We thus arrive at

(N—1)/2 o N-1
NF~2mN T coé“(ZTr—
p=0 YN/ p=(N+1)12
x cos"| 2 P, 11
co T m"r‘z ;
(N—-1)12 m
2
=2"N [ co¢ _p) , (B2)
p=0 VN

where we have already dropped terms that do not scale ex-
ponentially with the volume. Next, let us make an estimate
of the product in the square bracket for lafgeSince for all

N the argument of the cosine lies in the interp@}/v] and
since for largeN we have

1 N

1——

cog N (B3)

v
14

T
~| COS—
14

ordinate transformation is not bijective finds its expression in

the fact that there are two regions iV ‘space” where] has

the leading asymptotic behavior &fF can be estimated by

opposite signs, and which are separated by the hypermani-

fold defined byQ)=0. In geometric terms, this comes about
because for two pairs of two-vectof®{), V¥}, i=1,2
[where for eachi the lengths and relative angle o and
V{) are uniquely specified by7{’,7,v(™M) according to
Eq. (A4)] there are in general two ways in which these two
vector pairs can be arranged relative to each offwrex-
ample, by specifying the angle betwee and V(%)
which satisfy the constrain{d8) on the vector components,

mN
<

<NF(N,m,v)<2™N  »>2.

a
( 2 cos; (B4)
The argument leading to E¢B4) is not yet water-tight since
we first letm, and only afterwarddN become large. That
there are no further terms contributing at the same order can
be seen by establishing an upper bound for the potentially
dangerous part of/F,

084016-14



HEXAGON MODEL FOR 3D LORENTZIAN QUANTUM COSMOLOGY

(N=1)/2 [ vi2—1 2 p 2 (N-1)2
[E coé“—(—er” < I]
p=1 b=0 v N p=1
(N—1)/2
=
p=1
=|1+| 5

Letting nowm andN simultaneously become large, one sees that the term in front of the square bracket in the last line of Eq.

14
-1

PHYSICAL REVIEW D66, 084016 (2002

cos"| —|1——
(27Tp) v ) v N
cog" 1+|=—-1
vN @ 2mp
o (N)
a7l 1) :
(27Tp) v )CO ST
cog" 1+|=—-1
vN

m 2m

27w
1- —tan— (B5)
vN v p=1

N-1[ (N=1)/2
2mp
{ 11 cos(—VN)

(B5) scales at most exponentially with, and not with the volumenN.

For v=2, a direct evaluation of EqB1) leads to

NF(N,m,pv)~2" »=2,

(B6)

which is independent oN. This happens because =&t 2 the walkers are “densely packed” and can only move in unison,

effectively behaving like a single random walker.
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