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Hexagon model for 3D Lorentzian quantum cosmology
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We formulate a dynamically triangulated model of three-dimensional Lorentzian quantum gravity whose
spatial sections are flat two tori. It is shown that the combinatorics involved in evaluating the one-step
propagator~the transfer matrix! is that of a set of vicious walkers on a two-dimensional lattice with periodic
boundary conditions and that the entropy of the model scales exponentially with the volume. We also give
explicit expressions for the Teichmu¨ller parameters of the spatial slices in terms of the discrete parameters of
the 3D triangulations, and reexpress the discretized action in terms of them. The relative simplicity and
explicitness of this model make it ideally suited for an analytic study of the conformal-factor cancellation
observed previously in Lorentzian dynamical triangulations and of its relation to alternative, reduced phase
space quantizations of 3D gravity.
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I. MOTIVATION

The approach of Lorentzian dynamical triangulation1

~LDT! leads to a well-defined regularized path integral
3D quantum gravity, as was shown in@3,4#. The phase struc
ture of this statistical model of causal random geometries
been investigated by Monte Carlo methods in the genus-
case, where the two-dimensional spatial slices are sph
@5,6#. Perhaps its most striking feature is the emergence
the continuum limit of a well-defined ground state behav
macroscopically like a three-dimensional universe@5,7,8#.
This is in contrast with perturbative continuum argume
which suggest that ind>3 Euclideanized gravitational pat
integrals are generically ill defined because of a diverge
due to the conformal mode. Since a Wick rotation fro
Lorentzian to Euclidean space-time geometries is part of
evaluation of the regularized state sums in LDT, one mi
expect to encounter a similar problem here, but this is
what happens. Instead, all indications point to a n
perturbative cancellation between the conformal term in
action ~which still has the same structure as in the co
tinuum! and entropy contributions to the state sum~that is,
‘‘the measure’’!. It should also be emphasized that this ca
cellation is not achieved by anyad hocmanipulations of the
path integral, for example, by isolating the conformal mo
and Wick rotating it in a non-standard way~in fact, it is quite
impossible to isolate this mode in the non-perturbative s
ting of LDT!. Further discussions of the conformal-mo
problem and its possible non-perturbative resolution can
found in @9,7#.

It is obviously of great interest to understand in a mo
explicit and analytic fashion how this cancellation occu
and how it gives rise to an effective Hamiltonian who
ground state is the one seen in the numerical simulation
3D Lorentzian dynamical triangulations. Some progress

1See@1,2# for recent reviews.
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this direction has been made recently by mapping the th
dimensional LDT model to a two-dimensional Hermitia
ABAB-matrix model@10,11#. This latter model has a second
order phase transition which is absent from the LDT mod
This comes about because the matrix model naturally c
tains generalized geometric configurations which are not
lowed in the original quantum gravity model, and which c
be interpreted as wormhole geometries. The second-o
transition is related to the abundance of such wormholes
the original LDT model corresponds to the weak-grav
phase of the matrix model below the critical value of Ne
ton’s constant.2

Although the mapping to the matrix model has yield
some analytic information about the phase structure of
quantum gravity, the explicit transfer matrix has not yet be
constructed. This is a desirable goal, because it would lea
a quantum Hamiltonian that among other things could
compared with already existing canonical quantizations
3D gravity. Also, having a more detailed control over t
combinatorics of the triangulated model would be extrem
interesting in order to understand the precise cancella
mechanism between the conformal terms in the action
the entropic measure contributions.

In the absence of a solution of the full three-dimensio
model, one strategy is to formulate simplified models ri
enough to capture the dynamics of 3D gravity but who
combinatorial properties at the same time are sufficien
simple to allow for an explicit solution. There are two typ
of restrictions one can naturally impose on discretiz
Lorentzian space-times. The first are restrictions on the

2The reason why atwo-dimensional matrix model appears in th
description ofthree-dimensional quantum gravity is the fact that th
3D space-time geometries of the latter can be uniquely chara
ized by a sequence of 2D graphs representing the intersection
terns of the 3D triangulations at constant half-integer timet
11/2.
©2002 The American Physical Society16-1
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B. DITTRICH AND R. LOLL PHYSICAL REVIEW D 66, 084016 ~2002!
lowed spatial geometries~these are two-dimensional simpl
cial manifolds built from equilateral Euclidean triangles! at
integer proper timest, and the second are restrictions on t
allowed three-geometries that interpolate between adja
spatial slices at timest and t11. Note that the first type o
restriction has a direct influence on the Hilbert space of
system, since the spatial geometries may be thought of
basis in the position representation~where ‘‘position’’ here
stands for a spatial geometry!.

Such restrictions may or may not change the critical pr
erties of the corresponding ensemble of random geomet
In a larger context, a task that still needs to be accomplis
is the classification of all possible three-dimensional LD
models according to their critical properties and dynamics
a function of the set of Lorentzian discretized space-tim
allowed in the state sum.~As already mentioned earlier, on
may not only consider imposing restrictions on the class
geometries, but may also allow for generalizations.! In gen-
eral, one would expect this large number of possible disc
models to fall into only a small number of universali
classes. This turned out to be the case in two dimensi
where there are essentially two universality classes, dep
ing on whether one allows space-time to grow so-cal
‘‘baby universes’’ or not@12# ~however, see@13# for some
‘‘exotic’’ variations!. Of course, three-dimensional models
random geometries have been studied far less, and it is na
priori clear what structures one should expect to find.

A number of ‘‘quantum-cosmological’’ LDT models of 2
11 gravity were considered in@14#, see also the discussio
in @7#. There, the number of three-geometries contributing
the path integral was restricted by imposing symmetry c
straints, reflecting homogeneity and isotropy properties
space. The space-time topology was fixed toI 3T2, that is,
with toroidal spatial slices. Imposing in addition~discrete!
spatial translation invariance fixes the tori at integer-t to be
locally flat and Euclidean. The spatial geometries are t
completely characterized by three numbers, namely, the t
volume and its~two real! Teichmüller parameters. The rea
son for why one may still hope to capture the essential
namical features of 3D quantum gravity this way—desp
the drastic reduction in the degrees of freedom—is that
nonical continuum considerations suggest that 3D quan
gravity has only a finite number of true physical degrees
freedom ~which are precisely the Teichmu¨ller parameters!.
Note also that the torus case is the simplest choice with n
trivial Teichmüller parameters and also the one which h
been most studied in the literature@15#.

In the simplest and most restrictive model of such a to
universe one demands that also the spatial intersection
constant half-integert should be lattice-translationally invar
ant @14# ~see@16# for related cosmological continuum mod
els!. This scenario is most easily implemented by choos
as fundamental building blocks tetrahedra and pyramids;
@17# for a generalization to 311 dimensions. Although it is
straightforward to work out the combinatorics of all possib
interpolating three-geometries between two spatial slice
turns out that the model does not possess an interesting
tinuum limit. This has to do with the fact that because of t
strong symmetry restrictions there are too few ‘‘microstate
08401
nt

e
a

-
s.
d

s
s

f

te

s,
d-
d

t

o
-
f

n
us

-
e
a-
m
f

n-
s

s
at

g
ee

it
n-

e
’’

that is, too few geometries contributing to the state sum
any given value of the action. More specifically, unlike in 3
LDT without such restrictions, the number of distinct tria
gulations of a given space-time sliceDt51 ~corresponding
to a single time step! grows only exponentially;econst•L

with the linear sizeL of the spatial torus. Since this entrop
term has to compete with the volume-suppressing expon
tiated cosmological term from the Euclideanized acti
which is of the form e2lDt L2

5e2l L2
, the state sum will

always be dominated by geometries with effectively on
dimensional spatial slices as the number of tetrahedral bu
ing blocks goes to infinity. Any potential continuum limit i
therefore unlikely to have anything to do with the origin
LDT model, and we must conclude that this cosmologi
model is simply not rich enough to study the conform
factor cancellation and the effective quantum dynamics
three-dimensional quantum gravity.~For a general discussio
of renormalization and continuum limits in dynamical tria
gulation approaches to gravity see Ref.@1#.!

In the present piece of work, we will investigate an alte
native, less restrictive cosmological LDT model first intr
duced in@18#. Its spatial two-geometries are still given b
flat tori, but the symmetry restrictions on the interpolati
space-time geometries are relaxed. We describe this so-c
hexagon model in Sec. II. As usual, a given discretiz
space-time contributing to the propagator consists of a
quence of layers@ t,t11#. For the hexagon model, the ge
ometry of each such ‘‘sandwich’’ can be characterized a
tesselation of a regular 2D triangular lattice by color
rhombi. The two-colored graph dual to this tesselation i
superposition of two regular hexagonal graphs describing
flat two-tori which form the space-like boundary of the san
wich. In Sec. III we compute the Lorentzian action for
sandwich geometry, together with its Euclidean counterp

Our next task is the counting of all possible interpolati
sandwich geometries for given torus boundaries. We show
Sec. IV that the associated combinatorics is that of a se
‘‘vicious walkers’’ on a 2D lattice with periodic boundar
conditions. In the following section, we demonstrate that
contributionDS to the action of a single sandwich is alread
essentially determined by the geometry of the flat tori wh
form its boundary. Still, there is a large number of m
crostates for given boundary data, and we prove that t
number indeed grows to leading order exponentially with
torus volume, and not just linearly. In Sec. VI we calculat
explicitly the variables describing the flat spatial tori~for
each torus, two real Teichmu¨ller parameters and the two
volume! in terms of the data labelling a triangulated spac
time sandwich. Since the latter are a set of discretized v
ables, it is of interest to see how they sample the us
continuous Teichmu¨ller space of all flat tori. This is illus-
trated in Sec. VII by explicitly calculating the Teichmu¨ller
parameters for a set of geometries whose volume is sm
than a certain cutoff. We also include a sample plot of
associated moduli space, obtained by factoring out the la
diffeomorphisms. Our conclusions are then presented in S
VIII. Appendix A contains details of the coordinate transfo
mation between the discrete geometric parameters and
torus data, and Appendix B an asymptotic evaluation of
6-2
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HEXAGON MODEL FOR 3D LORENTZIAN QUANTUM COSMOLOGY PHYSICAL REVIEW D66, 084016 ~2002!
vicious-walker combinatorics relevant to the entropy e
mate.

II. THE HEXAGON MODEL

The fundamental three-dimensional building blocks us
in this model are~in the language of@4#! 3-1 tetrahedra,
glued together pairwise, 1-3 tetrahedra, also glued toge
pairwise, and single 2-2 tetrahedra. The numbersi -j indicate
that a tetrahedron sharesi vertices with the spatial geometr
at time t and j vertices with that at timet11. As usual, the
space-like edges of a tetrahedron all have squared leng
~or a2 in units of the lattice spacinga) and the time-like
edges squared length2a ~or 2aa2), wherea.0 is real.
The pairing of the 3-1 or 1-3 tetrahedra is obtained by glu
them along a~time-like! triangular face.

The three types of building blocks are illustrated in Fig.
Any three-dimensional ‘‘sandwich geometry’’ of heightDt
51 we construct from these building blocks can be uniqu
described by the intersection pattern that results when
tetrahedra are sliced in half at timet11/2 and the time-like
triangles that are cut in the process are represented by
dimensional links. We color-code the links to distingui
whether they come from triangles with tip att ~gray links! or
tip at t11 ~black links!. Our three building blocks can thu
be represented by black and gray double triangles and
squares with alternating black-gray sides. Topologically,
intersection graph is again a torus. As already mentioned
want to consider only amplitudes betweenflat two-tori. For
the black-gray intersection picture this means that when
gray links are simultaneously shrunk to zero length, w
must remain is a regular tiling of a torus by~black! triangles,
where exactly six triangles meet at each vertex~and similarly
at time t11 when we shrink away the black links!. A sys-
tematic way of generating intersection patterns with t
property is as follows. Take a rectangular strip of a regu
triangular lattice of discrete widthl 1w and heightm, where
the units are chosen in such a way that all vertices h
integer coordinates3 ~Fig. 2!. Let us for the moment takel
1w and m to be even, l 52l 8, w52w8, m52m8,
l 8,w8,m8PZ1 , since this will make it possible to identify
the opposite sides of this strip without any twists to creat

3The reason for splitting up the width into two integers will b
come clear in Sec. IV.

FIG. 1. The three types of tetrahedral building blocks and th
corresponding two-dimensional intersection patterns att51/2. By
definition of the model, both the 3-1 and the 1-3 tetrahedra alw
occur in pairs.
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compact two-torus.~In a more general model, one may als
allow for twists in either of these directions.!

This regular lattice is to serve as a ‘‘background geo
etry’’ which we are going to tile with rhombic 2D building
blocks so that no space is left blank. It is immediately cle
that the intersections of the double-tetrahedra are black
gray rhombi. The squares that result from cutting the 2
tetrahedra will be ‘‘distorted’’ in this representation so th
they can fit onto the triangular lattice. Since this can be do
in two ways, we have a total of four rhombic tiles at o
disposal@Fig. 3~a!#. It will be convenient for our purposes t
adopt a dual notation where each rhombus is represente
a pair of crossing links. Each link connects two oppos
edges of the rhombus and has the same color, see Fig.~b!.
The rhombi can only be put onto the lattice if the colors
their edges~or their dual links! match pairwise at intersec
tions. The beautiful feature of this representation is the f
that any tiling of the strip~which of course must be compa
ible with its periodic identifications! automatically leads to
in- and out-geometries which are flat, connected tori. T
easiest way of seeing this is by following dual links~or
pieces of dual links! of a given color around a closed loop
where the loop must be such that no more lines of the sa
color branch off into the loop’s interior. Next, consider ho
this loop is represented in terms of triangles of the sa
color which make up one of the adjacent spatial geometr
The pieces of straight colored lines coming from the last t
building blocks depicted in Fig. 3~b! do not correspond to
any triangles at all. By contrast, the first two rhombic til
correspond to a couple of adjacent triangles each in the
evant spatial geometry at integert. Since the rhombic tiles
can be put onto the triangular ‘‘background lattice’’ at ha

ir

s FIG. 2. A regular triangular lattice serving as a ‘‘backgrou
geometry’’ at half-integer timet11/2.

FIG. 3. The four types of rhombic tiles~a! and their dual repre-
sentation~b!.
6-3
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B. DITTRICH AND R. LOLL PHYSICAL REVIEW D 66, 084016 ~2002!
integer t only with three possible orientations~see Fig. 5
below!, it is clear that any of the loops introduced abo
corresponds to a sequence of exactly six triangles. In f
these two types of rhombi can more properly be represe
by dual trivalent graphs which are dual to the individu
triangles, as shown in Fig. 4. It is then easy to see that e
loop corresponds to a hexagon graph, with six ‘‘corners’’
120° each, a property which has given the model its na
Translating this into a statement about the two-geometr
means that there are six triangles meeting at each ve
hence the geometry is everywhere flat. Thinking a little f
ther along these lines, one can also convince oneself that
not possible to obtain a flat triangulation of one color th
consists of two or more disconnected pieces.

III. GRAVITATIONAL ACTION AND TRANSFER MATRIX

The first step in constructing a path integral for our mo
is to determine which sandwich geometriesDt51 can occur
and to compute their contribution to the action. Followi
@5#, this action can be written as a function of the total nu
bersN31, N13 andN22 of tetrahedral building blocks occur
ring in the slice, namely,

S~Dt51!5~N311N13!S pkAa23k arcsinh
1

A3A4a11

23kAa arccos
2a11

4a11
2

l

12
A3a11D

1N22S 2pkAa12k arcsinh
2A2A2a11

4a11

24kAa arccos
21

4a11
2

l

12
A4a12D , ~1!

where l and k denote the bare cosmological and inver
Newton’s constants. The positive parametera appearing in
Eq. ~1! describes the ratio between the squared lengths o
time-like and the space-like edges of the triangulation,l time

2

52a l space
2 . Since we will evaluate the state sums in t

Euclidean sector of the theory, we need to Wick rotate al
our Lorentzian discretized manifolds. As explained in de

FIG. 4. These tiles appear as black and gray double triangle
spatial slices of integert. Their trivalent dual graphs form part o
regular hexagonal graphs representing flat two-geometries.
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in @4#, this is achieved by continuinga through the complex
lower half-plane to negative real values. Let us for simplic
choose the standard valuea521, so that all edges have th
same length. This gives rise to the Euclidean action

Seu~Dt51!5~N311N13!F S 2
5

2
p16 arccos

1

3D k1
1

6A2
lG

1N22F S 22p16 arccos
1

3D k1
1

6A2
lG

[~N311N13!~20.468k10.118l!

1N22~1.103k10.118l!. ~2!

Obviously in our model the numbers of building blocks
type~3,1! and~1,3! are always even. Note also that the acti
~2! contains boundary terms~the discrete analogues of th
usual spatial integrals over the extrinsic curvature! in order
to make it additive under gluing of subsequent layers ofDt
51. The action without boundary contributions has the fo

Sbulk
eu ~Dt51!5~N311N13!F S 2p13 arccos

1

3D k1
1

6A2
lG

1N22F S 22p14 arccos
1

3D k1
1

6A2
lG ~3!

[~N311N13!~0.551k10.118l!

1N22~21.359k10.118l!.

The partition function or propagator for a single time st
after the Wick rotation is given by

G~g1 ,g2 ;Dt51!5 (
T:g1→g2

1

C~T!
e2Seu(T), ~4!

where the sum is over all possible sandwich geometrieT
interpolating between the two spatial boundary geomet
g1 andg2, andC(T) is the order of the symmetry group o
the triangulationT. As usual@4#, expression~4! defines the
transfer matrixT̂ of the system with respect to the natur
scalar product̂ g1ug2&5@1/C(g1)#dg1 ,g2

via its matrix ele-
ments

^g2uT̂ug1&ªG~g1 ,g2 ;Dt51!. ~5!

IV. THE COMBINATORICS OF THE INTERSECTIONS

In trying to characterize all possible intersection patte
that can occur~that is, all possible 3D sandwich geometrie!,
it is convenient to break up the combinatorial problem in
two steps. The first one is how to tile the triangular latti
with ~identical! rhombi, and the second one is how to intr

in
6-4
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HEXAGON MODEL FOR 3D LORENTZIAN QUANTUM COSMOLOGY PHYSICAL REVIEW D66, 084016 ~2002!
duce a coloring on the resulting tilings~in the form of draw-
ing chains of dual colored links onto the rhombi!. A rhombus
can be put onto the lattice with three different orientatio
which we callA, B andC. This is illustrated in Fig. 5, where
the centers of the rhombi are indicated by small circles. F
ure 6 shows a complete periodic tiling of a strip withl
1w,m)5(12,4). ~Opposite sides of this strip are to be ide
tified.! What should be noted here is that the number o
blocks as well as the combined number of B and C blo
per horizontal row is conserved as one advances in step
them direction. Starting at some B or C block in row 1, on
can therefore follow a ‘‘path’’ in vertical direction made u
of some sequence of B and C rhombi until one reaches
upper end of the strip~shaded region in Fig. 6!.

At this stage we will for simplicity impose a further re
striction on the allowed patterns of rhombi, namely, that
B-C paths should have winding number zero in thel direc-
tion and winding number one in them direction.~This does
not seem to impose serious restrictions on the in- and ou
ing two-geometries, cf. Secs. VI, VII, but is a condition th
could be relaxed, should this turn out to be convenient.! That
is, following such a path between the lower and upper en
a strip, it should contain an equal number of B and C rhom
so that it closes on itself upon identification of the lower a
upper ends of the strip. A configuration which violates th
restriction but is nevertheless periodic is shown in Fig. 7.
shrinking all B-C paths to zero width, one obtains a regu
tiling of only A rhombi ~Fig. 8, left!. This reduced lattice can
be thought of as a sublattice of the original strip in the se
that the chains of its dual A-links close onto themselves
the number of B-C paths wasw/2, the reduced lattice will

FIG. 5. There are three orientations in which a rhombus can
put onto the triangular background lattice.

FIG. 6. A tiling with A, B and C rhombi~as usual, opposite
sides of the strip are to be identified!. The shaded region is a B-C
path of winding number 1 in the vertical direction.
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have widthl and heightm. Note also that these chains tak
the very simple form of straight diagonal left- or righ
moving lines. A configuration of dual A-lines is most easi
represented as a tilted square lattice~Fig. 8, right!. The in-
tersection points of the dual left- and right-moving lines w
then havel coordinate 0,2,4,6, . . . in the oddrows and
1,3,5, . . . in theeven rows.

As will become apparent in due course, working out t
possible color assignments for such dual A lattices is an
portant part of the combinatorics of the model. They a
quite easy to enumerate. By assumption, any coloring of
dual chains has to respect periodicity in bothl andm direc-
tions. The easiest way to obtain a consistent coloring
therefore as follows. Start at some~dual! vertex v at m50
and color the, say, left-moving A line passing throughv
while following it around the lattice~keeping in mind the
periodic identifications of the strip!, until getting back to the
original vertex. Using such a procedure, it is straightforwa
to see that the number of possible colorings for the en
configuration of A lines depends on the integerd, the greatest
common divisor ofl /2 and m/2. ~For example, the lattice
depicted in Fig. 8 hasl 56, m54 and therefored51.! Pick-
ing an arbitrary vertexv at m50 as origin, the colors of the
left- and right-moving A lines emanating from the firstd
vertices to its right~including v) may be chosen arbitrarily
with the remainder determined by periodicity.

To count intersections of a certain type between the rig
and left-moving A lines~important for determining the ac
tion! it suffices to look at a fundamental diamond-shap
region of d3d vertices—this region will then be repeate
lm/2d2 times throughout the lattice. We may now reintr
duce the B-C strands into this picture by drawing chains
links whose vertices in every row lie exactly in between t

e

FIG. 7. An example of a forbidden tiling.

FIG. 8. The regular tiling with A rhombi obtained by deletin
the B and C rhombi from Fig. 6~left!, and the corresponding dua
tilted square lattice~right!.
6-5
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B. DITTRICH AND R. LOLL PHYSICAL REVIEW D 66, 084016 ~2002!
dual A vertices. Starting from the initial rowm50, we can
again follow paths of dual B or C links by making at eve
vertex a choice of moving diagonally up to the left or to t
right ~Fig. 9!. More than one dual B-C chain can pa
through any one vertex, and neighboring chains are allow
to share one or more links, but not to cross, so that th
relative position along thel-direction is preserved as we ad
vance inm. ~Obviously, to obtain configurations of the typ
depicted in Fig. 6, each of these paths must be enlarge
the horizontal direction to width 2.!

The combinatorics of the B-C chains can be mapped o
a model of so-called vicious walkers~which arenot allowed
to touch! with fixed initial and final points, by inserting col
umns of width 2 between every pair of adjacent B-C chain4

Various versions of vicious-walker models, differing in the
boundary conditions for the paths and the underlying lattic
have been investigated in the literature. The most comm
choice is that of free boundary conditions in thel direction,
i.e., a lattice of effectively infinite width. The initial points o
the walkers atm50 are usually located at a minimal mutu
distanceD l 52 near the origin, for example, atl-coordinate
0,2,4, . . . , w22, and the final points atmmax are either cho-
sen freely or again grouped together at some point (l 0 ,mmax)
with l coordinatesl 0 , l 012, l 014, . . . , l 01w22 ~see, for
example,@19–21# and references therein!. An exception is
the treatment by Forrester@22#, who uses periodic boundar
conditions in thel direction and walkers with equally~but
not necessarily minimally! spaced initial and final positions

The case relevant for our 3D gravity model is that
periodic boundary conditions in both thel and m direction,
and the combinatorial problem can be phrased as follo
Given three even integers l, m, and w, how many ways ar
there of drawing w/2 indistinguishable vicious-walker path
with winding numbers(0,1) onto a tilted square lattice o
width l1w and height m?The tilted square lattice is dual t
similar lattices depicted in Figs. 8 and 9, i.e. it has vertic
on the horizontal axis at even parameter values 0,2,4, . . . ,l
1w22 and vertices on the vertical axis at valu
0,2,4, . . . ,m. Figure 10 shows a typical configuration of v

4Vicious walkersare imaginary creatures that will dovicious
things to each other when meeting at a point and therefore a
such encounters.

FIG. 9. The B-C strands may be reintroduced by drawing pa
onto the regular dual A strip. In the figure we have drawn the p
corresponding to the shaded area in Fig. 6.
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cious walkers for (l ,m,w)5(10,10,6). The vertical bound
aries of this lattice are identified periodically as indicated
the figure, so thatl 1w[0. Each vicious-walker path start
on the lower horizontal axis at some point (l ,0) and ends
after m steps on the upper horizontal boundary at the po
( l ,m), i.e. at the point with the same horizontal coordina
This situation can be viewed as a special case of that
single random walker in an alcove of the affine Weyl gro
of type Ãw/221 @23#. The reflections of the path at the wal
of the Weyl chamber correspond in this case to the collis
points of w/2 random walkers that move on a on
dimensional circle. The ensemble of walkers takes simu
neously steps of unit length along the circle, either to
right or the left. Mapping these onto diagonal upward ste
on a tilted square lattice and requiring identical initial a
final points for each walker on the circle leads exactly to
situation as depicted in Fig. 10. Following@24,23#, the num-
ber of non-intersecting path configurations forw/2 walkers
with initial and end points lW 5(l1 ,l2 , . . . ,lw/2), l i
P$0,2,4, . . . ,l 1w22%, ordered along the circle so thatl1
,l2, . . . ,lw/2 , is given by

b~lW ,m,l ,w!5 (
tW,(t i50

det(w/2)3(w/2)

3US m

~m/2!1
l 1w

2
t i1l j2l i

D U , ~6!

where tW is a w/2-tupel of integers. Note that because of t
properties of the binomial coefficients, only a finite numb
of terms in the sum overtW is nonvanishing. The presence o
the determinants has to do with the fact that although
possible path configurations appear in Eq.~6!, the contribu-
tions from configurations with touching or intersecting wal
ers cancel appropriately by virtue of the alternating signs
the determinantal sum, in such a way that only the n
intersecting ones are left over. The largest term that can
id

s
h

FIG. 10. A configuration of three vicious walkers, correspon
ing to (l ,m,w)5(10,10,6).
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HEXAGON MODEL FOR 3D LORENTZIAN QUANTUM COSMOLOGY PHYSICAL REVIEW D66, 084016 ~2002!
pear in any of the determinants on the right-hand side of
~6! is always the product of the elements on the diagon
namely,

S m
m/2D w/2

, ~7!

corresponding to the independent product ofw/2 periodic,
free random walks consisting ofm steps.

V. ADDING COLOR AND ESTIMATING THE ENTROPY

The hexagon model possesses a feature that will simp
the ~asymptotic! analysis of the propagator. This has to
with the fact that each intersection pattern characterizin
sandwich geometry can be brought to astandard formby
using a sequence of moves which affect neither the in-
outgoing 2D torus geometries nor the value of the action~2!.

The basic idea is to move all B-C paths to the far left
the strip. The elementary move necessary to achieve th
the flip of a left-right wedge~an adjacent pair of a dual B an
C link! to a right-left wedge or vice versa~Fig. 11!. Since
any B-C chain has by assumption an equal number of B
C links, it can be moved to the left of the strip~where it
assumes the form of a zigzag path! by a finite sequence o
such moves. In the process, it will cross~pieces of! A chains,
but not other B-C chains. A typical final result after applyin
this procedure to all B-C chains of an intersection pattern
illustrated in Fig. 12.

In order to understand which consequences the wedge
has for the geometry, let us analyze which action it transla
to on theunreducedrhombic tiling. The region on the origi
nal triangular lattice which is affected by the wedge flip
confined to a set of six triangles forming a single hexag
with six dual links emerging from the sides of the hexago
There are two ways of tiling this fundamental hexagon
three rhombi. In both cases, there is a piece of B-C ch
entering at the bottom of the hexagon and coming out at
top, a piece of a right-moving A-chain entering at the botto
left and exiting at the top right side of the hexagon and

FIG. 11. The effect of a wedge flip on a B-C path drawn on
dual A lattice.

FIG. 12. A rhombic tiling of standard form.
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piece of left-moving A-chain entering at the bottom right a
coming out at the top left. The wedge flip changes the tili
of the fundamental hexagon and the intersection pattern
the dual chains in the interior of the hexagon, without alt
ing the dual links emanating from it~Fig. 13!.

To determine the effect on the geometry, one has to c
sider all possible colorings of the chains passing through
hexagon and how the wedge flip affects the black and g
dual link patterns. The first case is that where all lines ha
the same color, say, black, which implies that the hexag
represents a gluing of six 3-1 tetrahedra. The wedge flip o
alters the way in which we mentally divide this set of s
tetrahedra into three double tetrahedra. Obviously this m
does not in any way affect the three-geometry, and the
ometries before and after the move should not be counte
distinct. However, for all other color choices~there is a total
of six! the three-geometry genuinely changes. As one
easily verify, the wedge flip in all of these cases correspo
to pulling a piece of a gray chain~without vertices! across a
black-black intersection or the other way round. This mea
that the individual gray and black dual graphs are squee
and stretched in the process, but remain otherwise c
pletely unaffected, and hence will correspond to the sa
two-geometries.

Since, moreover, the number of building blocks of a c
tain type~3-1, 1-3 or 2-2! does not change under a flip mov
we have proved our original assertion that the wedge
leaves all two- and three-volumes~and hence the action! as
well as the Teichmu¨ller parameters of the two-geometrie
invariant.5 We recognize here a simplified feature of th
hexagon model, compared with the most general dyna
cally triangulated 3D gravity model@4,5#, even if we re-
stricted its integer-t slices to be flat tori. Namely, althoug
the toroidal two-geometries forming the spatial boundaries
a space-time sandwichDt51 by no means fix the three
geometry in between the two slices, they determine ess
tially uniquely the value of the sandwich actionS(Dt51).
In other words, there is a large number of interpolati
space-time geometries for given, fixed boundaries, but t
all contribute with the same weight eiS. A main task in solv-
ing the model is therefore the computation of the numbe
distinct interpolating 3-geometries between two adjacent
two-tori.

5The wedge flip is an obvious candidate for a Monte Carlo mo
in numerical simulations of the hexagon model; it will have to
augmented by moves thatcan change thet ’s and other physical
variables.

FIG. 13. The rearrangement of the rhombi making up a fun
mental hexagon region during a wedge flip and of the associ
dual links or lines.
6-7
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B. DITTRICH AND R. LOLL PHYSICAL REVIEW D 66, 084016 ~2002!
Before we can give a precise definition of this combin
torial problem, we still need to specify how we are going
parametrize thecoloring of the rhombic intersection pattern
Since we have already shown that any intersection pat
characterizing a three-geometry can be brought to stan
form without affecting the individual gray and black toru
geometries, we may without loss of generality think of t
latter as subgraphs of this standard form. Using the nota
introduced above, we will label the uncolored standard fo
by three even integers (w,l ,m), wherew/2 is the number of
zigzag B-C chains on the left~whose individual height ism)
and (l ,m) is the size of the regular lattice of A rhombi on th
right.

Let us now introduce a coloring by drawing closed du
lines onto this standard form, thereby producing acolored
standard formS. There are obviouslyw/2 independent ver-
tical lines that can be drawn onto the B-C columns. We w
split them intow1/2 black lines andw2/2[(w2w1)/2 gray
lines. It is clear that the order in which we color these stra
will affect the three-geometry, but not the individual tw
geometries or the action. This results in a multiplicity (w1

w )

for given in and out states, counting the number of poss
orderings of black and gray vertical dual lines.

We turn next to the coloring of the remaining dual line
i.e. those that traverse the B-C chains horizontally and th
rhombi diagonally. The choice is restricted by the fact th
the number of such lines which are closed~and therefore can
be colored independently! is exactlyd for the right-moving
andd for the left-moving lines. We will denote the numbe
of black right-moving and left-moving dual lines byar and
al , and those of the corresponding gray lines bybr[d2ar
andbl[d2al . As before, the relative ordering of the blac
and gray lines in either direction leads in general to differ
three-geometries, but leaves the two-geometries and the
tion unchanged, thus contributing a factor (ar

d )(al

d ) to the

number of interpolating states.
Putting all of these observations together, we can n

rewrite the one-step propagator~4! in a more explicit
form. Using the essentially unique associati
(g1 ,g2)↔( l ,m,w1 ,w2 ,al ,ar) ~cf. Sec. VI and Appendix A!,
G now takes the form

G~g1 ,g2 ,Dt51!5(O
1

C~S!
M̃ ~S!S w11w2

w1
D S d

ar
D

3S d
al

De2Seu(S). ~8!

The numberM̃ (S) counts the distinct strip configuration
that can be obtained by applying elementary wedge flips
the colored standard formS, uniquely described by the si
parameters (l ,m,w1 ,w2 ,al ,ar), and the relative orderO of
their dual colored lines.~We are regarding configuration
that differ by overall translations in thel andm direction as
equivalent. At any rate, this choice does not affect the
mainder of our discussion.!

In view of the discussion in Sec. I, we are interested in
continuum behavior of Eq.~8!, and in particular how the
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entropy contributions compete with the kinematical acti
Seu to result in an effective~continuum! action. The combi-
natorial partM̃ (S) of Eq. ~8! is very similar to that of the
uncolored problem described in connection with Fig. 10,
the color dependencedoesnow enter in a slightly subtle way
This again has to do with the slight overcounting presen
our model~the subdivision of fundamental hexagon regio
of one color! which implies that not all vicious-walker con
figurations will correspond to distinct three-geometries. H
often this occurs depends on both the boundary geome
gi and the relative orderO of colored lines of an individual
sandwich geometry. It is clear that the overcounting will
most pronounced when the intersection pattern has v
many dual links of one color and very few of the othe
because this will result in many local fundamental hexag
regions of one color which are insensitive to wedge flips,
Fig. 13.

Let us proceed on the assumption that—at least to lead
order—the scaling behavior of the entropy will not be a
fected by this overcounting. This is in part justified by th
numerical investigations of@5#, where we found that in the
continuum limit, neighboring spatial slices are strong
coupled, in the sense of having a similar total volume. Un
this assumption, we can drop the sum overO in Eq. ~8!, and
substitute the combinatorial factor byM̃5M , where

M ~m,l ,w!ª(
lW

b~lW ,m,l ,w! ~9!

is the sum over all orderedw/2-tupels of initial conditionslW
for a set of random walkers. We would like to establish t
behavior ofM in the limit as (m,l ,w) simultaneously be-
come large.6 This is not completely straightforward, sinc
according to Eq.~6! eachb is a sum of terms that can be bo
positive and negative.

For the purposes of this paper we will concentrate
establishing the leading divergent behavior ofM; we hope to
return to the full analytic solution of the model in the ne
future. Is it the case that the leading behavior is given
exp(c spatial volume!, for some positive constantc? As ex-
plained earlier, this is needed for obtaining truly extend
geometries in the continuum limit and a necessary prere
site for a conformal-factor cancellation. The continuum lim
that has been considered in most of the literature on vici
walkers is that in which both the width and the length of t
lattice become large, butnot the number of walkers. In this
case one typically finds for the numberN of walker configu-
rations

N52number of walkers3number of steps3~subleading terms!.
~10!

6A natural canonical scaling ansatz ism,l ,w→` while sending
the cutoff a→0, in such a way that the dimensionful length va
ablesMªam, Lªal andWªaw remain fixed and finite.
6-8
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HEXAGON MODEL FOR 3D LORENTZIAN QUANTUM COSMOLOGY PHYSICAL REVIEW D66, 084016 ~2002!
This is precisely the type of scaling behavior we are look
for but not the physical situation we are interested in, sin
the paths here are ‘‘diluted’’~even though their initial and
final points may lie close together!.

A scenario of more immediate interest to us is again t
considered by Forrester that we already cited earlier@22#,
who treats the case ofN equally spaced walkers on a lattic
of width m with initial conditionsl i5 in, i 51, . . . ,N, so
that n5m/N is the average distance between the walke
paths. However, it should be noted that his class of p
configurations is larger than ours: although he also consi
periodic boundary conditions in them direction, an indi-
vidual walker’s path is not required to close on itself afterm
steps, but may wind around the lattice several times be
doing so. The resulting closed paths will in general ha
( l ,m) winding numbers different from~0,1! ~an example is
shown in Fig. 7! which by definition we have excluded from
our current model. The evaluation of the combinatorics
this more general case turns out to be easier because
volves determinants ofcyclic matrices, which can be simpli
fied. For evenm,n and oddN the number of vicious-walke
configurations is given by@22#

N F~N,m,n!5 )
p50

N21
2

n (
b50

n/221

2mcosmF2p

n S p

N
1bD G . ~11!

However, it is easy to see that the overcounting involv
in Eq. ~11! does not alter the leading behavior for largeN and
m compared to our more restricted case. Namely, we
divide the path configurations counted by Eq.~11! into dif-
ferent sectors, depending on the lateral displacemenD
5l f inal2l init ial of the initial and final point of each walker
We haveDmax56m, with the largest contribution toN F

coming from configurations withD50 ~corresponding ex-
actly to the path configurations with winding number 1 w
are counting in the hexagon model!. The asymptotics of Eq
~11! is much easier to handle, since the right-hand side
product of sums overpositiveterms. Assuming an appropr
ate monotonic behavior ofN F, it follows from the results in
Appendix B that the leading divergence forN,m→` and
fixed n.2 is given by

N F~N,m,n!;c~n!mN, 2 cosS p

n D<c~n!<2. ~12!

Coming back to the combinatorics of the functionM, note
that for a given lattice width and number of walkers there
( w/2

( l 1w)/221) terms contributing to the sum~9!, corresponding
to all possible initial conditions for the walkers. Since th
number grows at most exponentially in length~as opposed to
volume!, the leading exponential behavior will coincide wi
that of the largest term in the sum, which is, roughly spe
ing, that of the configuration~s! where the walkers are max
mally distributed~i.e. spaced out in them direction! over the
available space and therefore get least in the way of e
other. We can identify their average distance with the spac
n appearing in Forrester’s formulas.@Strictly speaking,n is
of course an~even! integer, but we do not expect this to pla
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a role in the continuum limit.# We may therefore conclude
that for an average spacingn[( l 1w)/w, and in the limit as
m,l ,w→`, the number of vicious-walker configurations b
haves to leading order like

M ~m,l ,w!;c~n!mw/23~subleading terms!, ~13!

wherec(n) is a constant of order 2, which appeared in E
~12!. This shows that the hexagon model of thre
dimensional quantum gravity has indeed enough entro
compared with more restricted cosmological models t
were studied previously.

VI. TEICHMU¨ LLER PARAMETERS
FOR TRIANGULATED TORI

Our next task will be to relate the paramete
( l ,m,w1 ,w2 ,al ,ar), introduced in the preceding section
label a standard colored three-geometry, to the variables
scribing the two spatial boundaries of that geometry. In t
way we will achieve a clean separation of the geometric
and out datag1 andg2 appearing as arguments of the amp
tudeG, and make contact with the standard parametrizat
of two-dimensional flat tori.

It is a well-known fact that in the continuum any flat toru
geometry g can be characterized by three numbe
(v,t1 ,t2), wherev is the two-volume~in our case propor-
tional to the number of triangles that make up the torus! and
the t j are the two real Teichmu¨ller parameters.7 We would
like to compute the geometric data (v ( i ),t1

( i ) ,t2
( i )), i 51,2,

for the individual two-tori from the parameter
( l ,m,w1 ,w2 ,al ,ar).

Recall that the numbers of black, gray and black-gr
rhombi at timet11/2 is given byN31/2, N13/2 and N22,
respectively. The first two numbers give us directly the d
crete two-volumes of the spatial slices at timest and t11,
namely, v (1)5N31 and v (2)5N13. ~In order to obtain the
volume in terms of the lattice spacinga, one needs to mul-
tiply with the volume of a Euclidean triangle, which i
a2A3/4.! Taking into account the considerations of Sec.
on the division of the A lattice into fundamental regions, o
derives for these numbers the expressions

N315w1

m

2d
~ar1al !1

lm

d2
aral ,

N135w2

m

2d
~br1bl !1

lm

d2
brbl , ~14!

7We will keep our options open about whether we eventually w
to use these or rather the so-called moduli parameters, which l
equivalence classes of Teichmu¨ller parameters with respect to th
action of the mapping class group.
6-9
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N225
m

4d
@w1~br1bl !1w2~ar1al !#1

lm

2d2
~arbl1albr !.

In order to determine the Teichmu¨ller parameters for the
tori, we will identify for each color~black or gray! a pair of
oriented, closed geodesics, i.e. straight lines of minim
length on the corresponding torus at timet or t11. ~Note
that these do not have to coincide with any triangle edg!
Each pair consists of a circle with winding number (1,0) a
one with winding number (0,1) when viewed as curves
the intersection pattern att11/2 ~the two winding numbers
refer to the horizontall ,w direction and the verticalm direc-
tion!. The winding numbers of closed curves in the spa
two-geometries can therefore be thought of as ‘‘inherite
from the three-dimensional geometry. These curves
clearly unique up to two-dimensional translations~if we
think of the flat tori at integer timet as being rolled out into
the two-dimensional plane!. For a given color, their length
and their relative intersection angle are translation invaria
and in one-to-one correspondence with the torus parame
(v,t1 ,t2).

Let us look at a simple example in order to illustrate th
procedure. Figure 14 shows on the left a colored intersec
pattern in standard form representing a sandwich geom
and consisting of 12 rhombi. It gives rise to two spat
boundary geometries, both of them flat tori with four t
angles each. They have been cut open and are represent
two parallelograms in the plane, where the small black a
white arrows indicate how their opposite sides are to be id
tified pairwise. Each of these two-geometries has orien
geodesics with winding number~1,0! and~0,1!, respectively.
They can be represented by a pair of vectors (V1 ,V2) drawn
onto the parallelogram. For ease of representation, the
tors are depicted on the right with their correct lengths a
orientations, and with a common origin.

It remains to compute the lengths and angles of th
vectors from the data (l ,m,w1 ,w2 ,ar ,al ,br ,bl) characteriz-
ing the colored intersection pattern in standard form. Rep
senting the black closed geodesic with winding number (1
at time t as a two-dimensional vectorV 1

(1) and the black
closed geodesic with winding number (0,1) as a second v
tor V 2

(1) , one finds in terms of the discrete units inherit
from the (l ,m) coordinate system att11/2

FIG. 14. An intersection pattern at timet11/2 gives rise to a
black triangulation at timet and a gray triangulation at timet11.
We also show the two vectorsV1 and V2 representing the close
geodesics of winding number~1,0! and ~0,1! for both of these ge-
ometries.
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V 1
(1)5S l

2d
~al1ar !1w1 ,

l

2d
~al2ar ! D ,

V 2
(1)5S m

2d
~al2ar !,

m

2d
~al1ar ! D . ~15!

Translating this into absolute units, one finds

V18
(1)5S l

4d
~al1ar !1

w1

2
,
A3l

4d
~al2ar ! D a,

~16!

V28
(1)5S m

4d
~al2ar !,

A3m

4d
~al1ar ! D a,

wherea again denotes the lattice spacing. The two vect
V18

(2),V28
(2) characterizing the gray triangulation at timet

11 are obtained by substitutingal ,ar ,w1 in Eq. ~16! by
bl ,br ,w2. Note that the relations~16! imply the inequalities

V1,18( i )>0, V2,28( i )>0, V1,18( i )>uV1,28( i )u, V2,28( i )>uV2,18( i )u. ~17!

As is shown in Appendix A, the coordinate transformati
between the six variables (l ,m,w1 ,w2 ,al /d,ar /d) and the
components of the vectorsVj8

( i ), subject to the constraints

V1,28(2)52V1,28(1), V2,18(2)52V2,18(1), ~18!

is one to one. Up to a common rotation and a global res
ing, each pair of vectors (V18

( i ),V28
( i )) can be identified with

the vectors spanning the parallelogram in the standard re
sentation of a flat torus with normalized area in the comp
t ( i ) plane (t ( i )5t1

( i )1 i t2
( i )), Fig. 15. It is straightforward to

compute the SO~2! rotation

S cosf ( i ) sinf ( i )

2sinf ( i ) cosf ( i )D ~19!

which aligns the vectorV18
( i ) with the t1

( i ) axis. One finds

cosf (1)5
a

L (1) S l

4d
~al1ar !1

w1

2 D , ~20!

FIG. 15. Standard representation of a flat torus with the Tei
müller parametert5t11 i t2 as a parallelogram in the complext
plane.
6-10
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sinf (1)5
a

L (1)

A3l

4d
~al2ar !,

whereL (1) denotes the length of the vectorV18
(1),

L (1)
ªuuV18

(1)uu

5AS l

4d
~al1ar !1

w1

2
D 2

1S A3l

4d
~al2ar !D 2

a.

~21!

The corresponding expressions for cosf(2), sinf(2), L (2) are
obtained by substituting (al ,ar ,w1)°(bl ,br ,w2).

We still have to rescale all lengths by a factor 1/L (1) so
that the rotated vectorV18

(1) assumes length 1. Applying the
both the rotation~19!,~20! and this rescaling to the vecto
V28

(1), we can read off directly the dimensionless Teichmu¨ller
parameterst i

(1) . Collecting the geometric data describin
uniquely the black torus at timet, we have finally

v (1)5S alar

lm

d2
1~al1ar !

mw1

2d D ,

t1
(1)5

m

4d~L (1)!2 S ~al
22ar

2!
l

d
1~al2ar !

w1

2 Da2,

~22!

t2
(1)5

m

4d~L (1)!2 S alar

A3l

d
1~al1ar !

A3w1

2 D a2

[
A3

4

a2

~L (1)!2
v (1).

The map between the independent vector compon
Vi , j8(k) ~or, equivalently, the sandwich variable
( l ,m,w1 ,w2 ,al /d,ar /d)) and the (v (k),t (k)) is in general
two-to-one~see Appendix A!.

One may also wish to reexpress the action in terms
these torus parameters. Because the transformation to
parameters is not bijective, this can only be done modu
sign ambiguity. One first writes the counting variablesNi j as
functions of the two-vectorsV8(k) and then in turn expresse
the latter as functions of the torus parameters. Details
these calculations can again be found in Appendix
The explicit form for the sandwich actionSeu(S)
5Seu(v (1),t (1),v (2),t (2)) is given by Eq.~2!, with

N315v (1)

N135v (2)
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N225
1

2

1

~t1
(1)1t1

(2)!21~t2
(1)2t2

(2)!2

3F22~t1
(1)t2

(2)1t1
(2)t2

(1)!S v (1)
t1

(1)

t2
(1)

1v (2)
t1

(2)

t2
(2)D

2V@~t1
(1)!22~t1

(2)!21~t2
(1)!22~t2

(2)!2#G . ~23!

The function

V5~V1,18(1)V2,28(2)2V2,28(1)V1,18(2)!
4

a2A3
~24!

can be expressed in terms of the (v (k),t (k)) only up to a sign,
namely, as the positive and negative square root of

V25
v (1)v (2)

t2
(1)t2

(2) @~t1
(1)1t1

(2)!21~t2
(1)2t2

(2)!2#

2S v (1)
t1

(1)

t2
(1)

1v (2)
t1

(2)

t2
(2)D 2

. ~25!

The resulting action has a feature that may at first se
puzzling. Let us think of the exponentiated action for fix
boundary geometries as a matrix element@cf. Eq. ~5!#,

e2Seu(v(1),t(1),v(2),t(2))5:^v (2),t (2)u t̂ uv (1),t (1)&. ~26!

Usually this kinematical ‘‘transfer matrix’’ can be written a
t̂5e2aĥ512aĥ1O(a2), whereĥ denotes the discrete, ki
nematical Hamilton operator of the system,8 and where we
have reintroduced the discrete unitDt5a for a single time
step.

For such an expansion to exist, in the limit of smallDt the
configuration variables at a neighboring spatial slice sho
always be expressible asv(t1a).v(t)1av̇, t(t1a)
.t(t)1aṫ. However, looking at the explicit formulas fo
t1

(1) and t1
(2) ~representing the variablet1 at two adjacent

spatial slices! as functions ofal and ar , one sees that they
always have opposite signs. It is therefore kinematically i
possible to set them equalunless they both vanish~or,
equivalently,al5ar). This can be traced back to the fact th
a natural ‘‘pairing’’ between two neighboring spatial geom
etries occurs in our construction by putting their two grap
together in an intersection pattern. As can be seen from
elementary example depicted in Fig. 14, the natural ‘‘du
of a particular black graph is given not by the graph itse
but by its reflection, where the relative orientation of the tw
coordinate axes has been reversed. In terms of the Te

8This is the ‘‘kinematical,’’ and not yet the full, ‘‘effective’’
Hamiltonian, because we have not included any entropy contr
tions in the matrix element.
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B. DITTRICH AND R. LOLL PHYSICAL REVIEW D 66, 084016 ~2002!
müller parameters~since by definition we always keept2
>0) this amounts to a mapR:t1°2t1, with a lowest-order
expansiont̂5R1O(a) for the matrix t̂ . From this point of
view, a more natural elementary time unit in our model co
sists of two time steps, a feature that has also been obse
in other discrete models of 211 gravity @25#.

VII. A DISCRETE SAMPLING OF THE TEICHMU ¨ LLER
AND MODULI SPACES

Although we have established above a description of
geometry of spatial slices in terms of the standard Tei
müller parameters, it is clear that in our model the parame
zation will not be a continuous one, since thet ( i ) according
to Eq.~22! are given as functions of certain discrete~integer!
parameters characterizing triangulated geometries. Fro
continuum point of view our simplicial discretization ther
fore provides a discrete sampling of the Teichmu¨ller spaceT
~which topologically is anR2). It is interesting to look in
more detail at how this sampling works as a function o
given cutoff on the volume of either the space-time sa
wiches or the spatial slices, say.

In addition, one might be interested in the configurati
space obtained from Teichmu¨ller space by identifying points
that differ by the action of ‘‘large diffeomorphisms’’~the
so-called moduli space!, i.e. those two-dimensional transfo
mations that do not lie in the connected component of
diffeomorphism group of the torus. There are different su
gestions of how these transformations should be incorpor
into the quantum theory of 3D gravity, whether as exact
variances, as symmetries with a unitary action, or poss
not at all~see@26# for further discussions!. We will not take
any particular viewpoint here, apart from remarking th
quotienting out by large diffeomorphisms usually leads
additional complications in the quantum theory.

In order to determine the modulus of a given Teichmu¨ller
parametert5t11 i t2, we have to map it by a sequence
modular transformations

t→t11, t→ t

t11
~27!

~the generators of the mapping class group of the torus! to a
point in a fundamental region,T, usually taken to be the
‘‘keyhole region’’ defined by21/2<t1<1/2 and utu2[t1

2

1t2
2>1.
To get a qualitative idea of the nature of the discrete sa

pling of these two spaces, we have set up a small prog
that generates all values of (v,t) that occur for sandwich
geometries with parameters 0< l ,m,w<10 ~and with the lat-
tice cutoffa set to 1!. This is easy to implement, but does n
quite amount to a systematic bound on the total space-
volume @which is proportional toV5( l 1w)m]. The range
of V is between 4 and 200. Geometries with one or t
vanishing spatial volumesv ( i ) were not allowed.

We show in Fig. 16 a sequence of samplings of the up
half of the complext plane, with dots indicating thet values
that occur for a spatial slice oftorus volume~the number of
08401
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triangles, which is always even! v<vmax, where vmax
54,14,24,34. The origin of the Teichmu¨ller space is clearly
an accumulation point, with sampled points spreading
more and more with growing torus volume. The points a
arranged symmetrically about the imaginary axis and se
to lie along various well-defined curves and straight lin
through the origin. Note that any given point may occur
more than one volume; the information about this multipl
ity is not included in our plots. Figure 17 shows half of th
keyhole region with all moduli that occur up to torus vo
umes 32~again, the left half of the region can be obtained
reflection!. Comparing with the number of different point
appearing in Fig. 16, it is clear that the modular parame
are highly degenerate. It is clearly of interest to study th
distributions more systematically and for larger volumes, a
compare them with the natural measures on Teichmu¨ller and
moduli space, but this would lead us beyond the scope of
present paper.

VIII. CONCLUSIONS

We have introduced a dynamically triangulated model
three-dimensional Lorentzian quantum gravity whose spa
slices at integer times are flat two-tori. As we have show
this symmetry restriction simplifies an exact analysis cons
erably: the spatial slices~and therefore the associated sta
of the Hilbert space! are labeled by just three parameters
two Teichmüller parameters and a global ‘‘conforma

FIG. 16. Sampling Teichmu¨ller space for maximal spatial vol
umesvmax54,14 ~top row! and 24,34~bottom row!.

FIG. 17. A sample of moduli parameters inside the right half
the keyhole region.
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HEXAGON MODEL FOR 3D LORENTZIAN QUANTUM COSMOLOGY PHYSICAL REVIEW D66, 084016 ~2002!
factor’’—and the evaluation of the model’s entropy is relat
to that of a set of vicious walkers, which is a rather we
studied combinatorial problem.

It should be pointed out that our model is not a ‘‘minis
perspace model’’ in the usual sense of the word~‘‘reduce
classically and then quantize’’!, since the spatial slices a
non-integer t are in general not translationally invarian
Therefore, more geometric degrees of freedom contribut
the superposition of space-time histories in the path inte
than is obvious from the integer-t slices.~In this sense it is
related in spirit to recently studied cosmological models
canonical loop quantum gravity, where also part of the
duction occurs only at the quantum level, see, for exam
@28#.! As we already explained in Sec. I, the conditions
thespace-timegeometries cannot be too stringent in dynam
cally triangulated formulations of quantum gravity, in ord
to have a sufficiently large entropy and a potentially intere
ing continuum limit.9

Crucially, we could show that the hexagon model do
have enough entropy in the sense that the number of tr
gulations of a sandwichDt51 with given boundaries to
leading order scales exponentially with the volume of
slice. We also exhibited explicitly how the discrete triang
lation data can be translated into the more familiar para
etrization of the flat two-tori in terms of Teichmu¨ller ~or
moduli! variables.

All of these properties give rise to the hope that the he
gon model will provide a link between the LDT formulatio
of three-dimensional quantum gravity and alternative,
duced phase space quantizations. On the one hand ther
good chance it will lie in the same universality class as
full dynamically triangulated model~after all, the degrees o
freedom we got rid of by working with flat spatial slices a
those of the local conformal mode, which are known to
unphysical!, and on the other hand the parametrization of
Hilbert space and the quantum Hamiltonian will be close
that of the canonical formulations.

What remains to be analyzed is the precise nature of
continuum limit of the hexagon model. What is the sublea
ing asymptotic behavior of the state sum? Can we recon
our earlier conclusion@5,6,10# that the gravitational constan
is not renormalized, but merely sets an overall scale? Ho
the divergence coming from the~global! conformal mode in
the action compensated by a corresponding term in the
tropy? What is the functional form of the effective co
tinuum Hamiltonian in terms of the Teichmu¨ller parameters?
What is its ground state and is it identical to the ground s
seen in the numerical simulations reported in@5,6,8#?

One may wonder how we can hope to make much a
lytical progress in the investigation of athree-dimensional
statistical model. Firstly, the answer is of course thatpure
gravity is a very special type of theory in three dimensio

9One could argue that this is actually desirable from a phys
point of view. The more restrictive a mini- and/or midi-superspa
model is, the less likely it is that its dynamics is representative
that of full gravity ~see@27# for further discussion and an explic
example!.
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which is known to possess only a finite number of glob
metric degrees of freedom. Secondly, as we have shown
essential part of the combinatorics of the hexagon mod
transfer matrix is that of atwo-dimensional problem of vi-
cious walkers, about which a number of analytic results
already available. In summary, we think that a further inv
tigation of this model is a promising avenue to pursue, b
to advance our understanding of dynamically triangula
models and their continuum limits, and to achieve some
gree of unification among the existing and rather dispar
approaches to three-dimensional quantum gravity.
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APPENDIX A

In this appendix we give some details of the coordin
transformations used in the main text in Sec. VI. As a fi
step, we give the transformation law from~an independent
subset of! the combinatorial parameters describing the d
cretized space-time slices to the dimensionful vectorial qu
titites V8. Taking into account the identitesw11w25w, al
1bl5d, ar1br5d @with dªGCD(l /2,m/2)], we choose as
an independent set of the former the six variab
( l ,m,w1 ,w2 ,al /d,ar /d). Note also that not all of the com
ponents of the two-vectorsV8( i ), i 51,2, are independent, bu
we have the two constraints~18!. The set of transformation
laws is given by

al5
2

3

V1,28(1)

V2,18 (1)
~V2,28(1)1V2,28(2)!, am5

2

A3
~V2,28(1)1V2,28(2)!,

aw152V1,18(1)2
2

3

V1,28(1)V2,28(1)

V2,18(1)
,

~A1!

aw252V1,18(2)2
2

3

V1,28(1)V2,28(2)

V2,18 (1)
,

al

d
5

A3V2,18(1)1V2,28(1)

V2,28(1)1V2,28(2)
,

ar

d
5

2A3V2,18(1)1V2,28(1)

V2,28(1)1V2,28(2)
.

This is indeed a well-defined coordinate transformation, w
Jacobian

l
e
f

6-13



ha
o-

tio
s

o
th

th

e
c-

-
-
i

a
ut

o

,

a
e

se.

be-
us
. V

s

For

ex-
ate

t
can
ally

B. DITTRICH AND R. LOLL PHYSICAL REVIEW D 66, 084016 ~2002!
J̃5
64

3

1

~V2,28(1)1V2,28(2)!2

V2,28(2)

V2,18(1)
. ~A2!

Next, let us establish the coordinate transformation t
will enable us to rewrite part of the action in terms of tw
volumes and Teichmu¨ller parameters. Note first that

a2
A3

4
N315V18

(1)3V28
(1),

a2
A3

4
N135V18

(2)3V28
(2), ~A3!

a2
A3

2
N225V18

(1)3V28
(2)1V18

(2)3V28
(1).

These relations can be verified using the transforma
laws ~A1! from the independent variable
( l ,m,w1 ,w2 ,al /d,ar /d) to the vectorial quantitiesV8.

It is more involved to express the components of the tw
vectorsVj8

( i ) in terms of the torus parameters, subject to
constraints~18!. We need to invert the relations

t1
( i )5

V18
( i )
•V28

( i )

uuV18
( i )uu2

,

t2
( i )5

V18
( i )3V28

( i )

uuV18
( i )uu2

, ~A4!

v ( i )5V18
( i )3V28

( i )
4

a2A3
.

This gives rise to certain algebraic expressions for
independent vector components (V1,18(1),V1,28(1),V2,18(1),V2,28(1),
V1,18(2),V2,28(2)) in terms of the Teichmu¨ller parameters and th
two-volumes, which we do not bother to write down expli
itly here. The Jacobian of this transformation is

J54V~V18
(1)3V28

(1)!~V18
(2)3V28

(2)!uuV18
(1)uu24uuV18

(2)uu24,

~A5!

whereV was already defined earlier in Eq.~24!. Substituting
the vector components into Eqs.~A3!, one obtains the ex
pressions~23! given in the main text. The fact that this co
ordinate transformation is not bijective finds its expression
the fact that there are two regions in ‘‘V space’’ whereJ has
opposite signs, and which are separated by the hyperm
fold defined byV50. In geometric terms, this comes abo
because for two pairs of two-vectors$V 1

( i ) ,V 2
( i )%, i 51,2

@where for eachi the lengths and relative angle ofV 1
( i ) and

V 2
( i ) are uniquely specified by (t1

( i ) ,t2
( i ) ,v ( i )) according to

Eq. ~A4!# there are in general two ways in which these tw
vector pairs can be arranged relative to each other~for ex-
ample, by specifying the angle betweenV 1

(1) and V 1
(2))

which satisfy the constraints~18! on the vector components
08401
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as well as the inequalities~17!. Note that this does not imply
that if one of theseV configurations can be realized as
three-dimensional triangulation@i.e. corresponds to suitabl
discrete values of (l ,m,w1 ,w2 ,al /d,ar /d)] that the other
one of the pair can too. In fact, this is in general not the ca

APPENDIX B

In this appendix we determine the leading asymptotic
havior of the combinatorics of a set of equally spaced vicio
walkers on a lattice with torus topology, as quoted in Sec
of the main text. Following@22#, the number of configura-
tions ofN vicious walkers whose initial and final coordinate
are equally spaced at a distancen and who walk form steps
is given by

N F~N,m,n!5 )
p50

N21
2m11

n (
b50

n/221

cosmF2p

n S p

N
1bD G ,

~B1!

wherem andn are assumed even andN odd. The width of
the lattice is thereforem5nN and its height ism. We are
interested in the asymptotic behavior of Eq.~B1! asm andN
become both large. Assuming thatn.2, let us for some
given p consider the corresponding sum overb on the right-
hand side. It is clear that for largem, this will be dominated
by the term with the largest absolute value of the cosine.
p<N/2, this is the term whereb is minimal, i.e.b50, and
for p>N/2 the term whereb is maximal. We thus arrive at

N F;2mN )
p50

(N21)/2

cosmS 2p
p

nND )
p5(N11)/2

N21

3cosmF2pS p

nN
1

1

2
2

1

n D G
52mNF )

p50

(N21)/2

cos2S 2pp

nN D Gm

, ~B2!

where we have already dropped terms that do not scale
ponentially with the volume. Next, let us make an estim
of the product in the square bracket for largeN. Since for all
N the argument of the cosine lies in the interval@0,p/n# and
since for largeN we have

cosNFpn S 12
1

ND G;S cos
p

n D N

, ~B3!

the leading asymptotic behavior ofN F can be estimated by

S 2 cos
p

n D mN

<N F~N,m,n!<2mN, n.2. ~B4!

The argument leading to Eq.~B4! is not yet water-tight since
we first let m, and only afterwardsN become large. Tha
there are no further terms contributing at the same order
be seen by establishing an upper bound for the potenti
dangerous part ofN F,
6-14



)
(N21)/2 F (

n/221

cosmF2p S p
1bD G G2

< )
(N21)/2

cosmS 2ppD 11S n
21D cosmF2p

n S 12
p

ND G 2

of Eq.

on,
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p51 b50 n N p51 F nN S 2
cosmS 2pp

nN D D G
< )

p51

(N21)/2 F cosmS 2pp

nN D S 11S n

2
21D cosmFpn S 11

1

ND G
cosmFpn S 12

1

ND G D G
2

5F11S n

2
21D S 12

2p

nN
tan

p

n D mGN21F )
p51

(N21)/2

cosS 2pp

nN D G2m

. ~B5!

Letting nowm andN simultaneously become large, one sees that the term in front of the square bracket in the last line
~B5! scales at most exponentially withm, and not with the volumemN.

For n52, a direct evaluation of Eq.~B1! leads to

N F~N,m,n!;2m, n52, ~B6!

which is independent ofN. This happens because atn52 the walkers are ‘‘densely packed’’ and can only move in unis
effectively behaving like a single random walker.
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