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Relativistic quasipotential equations withu-channel exchange interactions
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Various quasipotential two-body scattering equations are studied at the one-loop level for the case of botht-
andu-channel exchange potentials. We find that the quasipotential equations devised to satisfy the one-body
limit for the t-channel exchange potential can be in large disagreement with the field-theoretical prediction in
the case ofu-channel exchange interactions. Within the spectator model, the description of theu-channel case
improves if another choice of the spectator particle is made. Since the appropriate choice of the spectator
depends strongly on the type of interaction used, one faces a problem when both types of interaction are
contained in the potential. Equal-time formulations are presented, which, in the light-heavy particle system
corresponding to the mass situation of thepN system, approximate in a reasonable way the field-theoretical
result for both types of interactions.@S0556-2813~99!00209-5#

PACS number~s!: 11.10.St, 11.30.Er, 13.75.Gx
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I. INTRODUCTION

In the theoretical studies of dynamics of hadronic syste
special relativity often needs to be accounted for. Althou
the framework of relativistic quantum field theory~QFT! is
believed to be most consistent and suitable for this purp
it cannot be readily applied to the strongly interacting fe
particle systems without making drastic approximations. T
relativistic quasipotential~QP! equations@1–9#, present such
an approximation scheme which was extensively applied
the description of light nuclei, meson-nucleon, and lig
quark systems.

These equations can usually be obtained from the Be
Salpeter equation by truncating the kernel and simplifying
singularity structure but keeping the Lorentz covariance
tact. Since an infinite number of different equations can
principle, be derived in this way, it is desirable to establish
addition to the requirement of Lorentz covariance other
teria, which would constrain the choice. For instance, an
portant property one would like to have for a relativis
two-body equation is thecorrect one-body limit, meaning
that in the limit when one of the particles becomes infinite
heavy the equation must reduce to the corresponding e
tion of motion of the light particle~e.g., the Klein-Gordon
equation! in an external potential. Some of the first equatio
of this type were suggested by Gross@5# and by Todorov@6#,
and later on other QP equations were adjusted to satisfy
limit @7,8#.

In all these investigations of the one-body limit the use
the t-channel-type of potential is implicitly assumed. Th
quality of the quasipotential approximations has been stud
for some of these prescriptions@10,11# in the equal-mass
scattering case. It was in particular found that the differen
with the field theory predictions are moderate in magnitu
and that the same energy dependence of the scattering
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plitude can be recovered by changing slightly the coupl
parameters.

The aim of this paper is to examine the situation for t
u-channel potential. The motivation comes from the study
the pN scattering equations with potentials containing bo
meson and baryon exchanges. In that case the various
dictions differ considerably. In this connection it is releva
to recall that applying the spectator equation to thepN sys-
tem Gross and Surya@13# have argued that the light particl
~the pion! must be taken as the spectator, in contrast to
original spectator equation which demands the heavy par
on mass shell@5,12#. Studying the box and the crossed-bo
graphs at threshold, they conjecture that ‘‘the essential
ference is the mass of the exchanged particle.’’ Here we s
analyze the graphs for more general situations, and find
the argument should be related to the type of the poten
rather than to the mass of the exchange particle.

In the next section we evaluate the box and crossed-
graph contributions for the case oft- and u- channel forces
and describe various quasipotential approximations use
the actual studies of thepN system. In Sec. III the field-
theory box graph results are compared with the quasipo
tial approximations to these graphs. We in particular do t
for the situation of the unequal mass scattering case, co
sponding to masses of thepN system. It is found that equal
time approximations can be formulated, which are reas
able for both types of exchanges. In Sec. IV dire
comparison is made at the one-loop level of the phase-s
predictions as obtained from the@1,1# Padéapproximant to
the first two terms of the Born series of theK matrix. Some
concluding remarks are made in the last section.

FIG. 1. Thet-channel~a! andu-channel~b! exchange potentials.
©1999 The American Physical Society05-1
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II. ONE-LOOP CONTRIBUTIONS

A. Field-theoretical box graphs

In this paper we for simplicity confine ourselves to t
case of scalar ‘‘nucleons.’’ The distinct differences betwe
the various prescriptions can already be seen by studying
simplified case. We consider the two types of the potentia
Fig. 1: ~a! t-exchange potential,~b! u-exchange potential
Substituting these into the scattering equation, Fig. 2,
iterating once, we obtain the box graphs depicted in F
3~a! and 3~b!, respectively. In QFT one, in addition, has
this level the corresponding crossed-box graphs. Let us r
to the dashed line particle as the pion, being the light p
ticle, and the solid line as the nucleon, being the heavy p
ticle, ~even though all the particles are scalar in our cons
eration! with corresponding massesmp andmN . Obviously,
the box and crossed-box graphs for both situations can
erally be represented by Fig. 4, where for the case~a! ma
5mp , mb5mN , while for the case~b! ma5mN , mb5mp .

Let us further denotep,k and p8,k8, the initial and final
momenta of the external particles~taken on their mass shel
p25p825mN

2 , k25k825mp
2 ) and letP5p1k5p81k8 be

the total four-momentum. We now define the relative m
menta of the initial and final state as

l 5bp2ak,

l 85bp82ak8, ~1!

where a5p•P/s[a(s), b5k•P/s[b(s), see Eq.~A4!.
The Mandelstam invariants are given by

s5~p1k!25P2,

t5~p2p8!25~k2k8!25~ l 2 l 8!2,

u5~p2k8!252mN
2 12mp

2 2s2t. ~2!

Note thatl 05 l 0850 in the center-of-mass~c.m.! system de-

fined byP5(P0 ,0W ).
Defining the relative momentum of the intermediate st

in the same way, i.e.,q5bp92ak9, wherep9 (k9) is the
intermediate nucleon~pion! momentum, the box graph o
Fig. 3~a! corresponds to

FIG. 2. Diagrammatic form of a relativistic two-body scatterin
equation.

FIG. 3. The box graphs obtained by iterating once the poten
of Fig. 1.
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B~s,t !5
2 i

p2E d4q
1

@~q2 l !22m21 i«# @~q2 l 8!22m21 i«#

3
1

@~aP1q!22mb
21 i«# @~bP2q!22ma

21 i«#
~3!

with ma5mp , mb5mN , andm the mass of the exchange
particle. We can write theu-channel box of Fig. 3~b! also in
this form by introducing as the momentum of integrationq
5bk92ap9 and takingma5mN , mb5mp .

Consider now the poles of the integrand in the comp
q0 plane:

~1! q052A~qW 2 lW !21m21 i«, ~4!

~2! q052A~qW 2 lW8!21m21 i«,

~3! q052aP02A~aPW 1qW !21mb
21 i«,

~4! q05bP02A~bPW 2qW !21ma
21 i«,

~5! q05A~qW 2 lW !21m22 i«,

~6! q05A~qW 2 lW8!21m22 i«,

ls

FIG. 4. The box and crossed-box graphs with massesma andmb

in the intermediate state.

FIG. 5. Wick rotation and the resulting integration path~bold
line! in the complexq0 plane. The situation is shown where the tw
poles 4 and 7 from Eq.~4! have pinched and crossed the imagina
q0 axis.
5-2
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RELATIVISTIC QUASIPOTENTIAL EQUATIONS WITH . . . PHYSICAL REVIEW C60 034005
~7! q052aP01A~aPW 1qW !21mb
22 i«,

~8! q05bP01A~bPW 2qW !21ma
22 i«.

To perform the integration in Eq.~3! over the relative energy
variableq0 we apply the Wick rotation:q0˜ iq0. The rota-
tion has to be made in such a way that the poles which
cross the Imq0 axis, when the spatial integration variab
03400
n

varies, are avoided. Provided that no pinching of singula
ties occurs such a rotation can be carried out. For the cro
box of Fig. 3~b! this indeed does not occur. For the dire
box, poles 4 and 7 do pinch when we are in the scatter
region, and hence in that case the Wick rotated integra
has to be deformed to a contour@15# as shown in Fig. 5. The
integral overq0 is thus equal to the singularity-free integr
tion along the imaginary axis plus the residues of the t
poles, i.e., in the c.m. system we have
that, in
B~s,t !5
1

p2E dVH E
0

`

dq q2E
2`

`

dq0

1

@~aP01 iq0!22vb
2# @~bP02 iq0!22va

2#

3
1

@2q0
22~qW 2 lW !22m2# @2q0

22~qW 2 lW8!22m2#

2pE
0

q̂
dq q2 F 1

va @~P02va!22vb
2#

1

@~bP02va!22~qW 2 lW !22m2# @~bP02va!22~qW 2 lW8!22m2#

1
1

vb @~P02vb!22va
2# @~aP02vb!22~qW 2 lW !22m2# @~aP02vb!22~qW 2 lW8!22m2#

G J , ~5!

wherev i5(q21mi
2)1/2, q̂25l(s)/s, andl is the triangle function defined in Eq.~A4!. We have used Eq.~5! to evaluate

numerically the box and crossed-box contributions.

B. Quasipotential approximations

Let us now define the box graphs obtained within various QP formalisms. In applying thespectatorprescription, only one
of the poles inq0 is taken into account. For example, if particlema is the spectator, only pole 4 of Eq.~4! is taken, and one
has

Bspect52
1

pE d3q
1

va @~P02va!22vb
2# @~bP02va!22~qW 2 lW !22m2#

1

@~bP02va!22~qW 2 lW8!22m2#
. ~6!

In the equal-time~ET! approximation, the retardation in the exchanged particle propagators is neglected. It means
the c.m. system, the relative energy is set tozero in the propagators of particlem, while the poles ofma andmb are treated
exactly, i.e., for case~a!:

BET~s,t !5
1

pE d3q
1

@2~qW 2 lW !22m2# @2~qW 2 lW8!22m2#
GET~q2,s!, ~7!

while for the case~b!:

BET~s,t !5
1

pE d3q
GET~q2,s!

F ~mN
2 2mp

2 !2

s
2~qW 2 lW !22m2G F ~mN

2 2mp
2 !2

s
2~qW 2 lW8!22m2G , ~8!

where

GET~q2,s!5
2 i

p E dq0

1

@~aP1q!22mN
2 1 i«# @~bP2q!22mp

2 1 i«#
5

1

l~s!/s2q21 i«
S a~s!

vN
1

b~s!

vp
D . ~9!
5-3
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FIG. 6. The box and various
QP approximations for mN

51, mp50.01,As51.1, andt50
as a function of the massm of the
exchanged particle. In the left an
right panels are shown the resul
corresponding to graphs 3~a! and
3~b!, respectively. Also are shown
the results when the crossed box
added to the box contribution.
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It should be remarked that for the scalar case being stu
the above-defined ET formalism is equivalent to the one
Salpeter@1#.

In the symmetrized equal-timeprescription of Mandelz-
weig and Wallace@8#, the contribution from the forward
scattering crossed box is approximately included by mod
ing the two-particle Green function

Gsym ET~s,t !5GET~q2,s!1GET~q2,2mp
2 12mN

2 2s!.
~10!

We would like now to consider one more prescriptio
motivated by the fact that theu-exchange case of the E
approximation suffers from the exchanged particle singul
ties when condition

m22~mN
2 2mp

2 !2~s2q̂2!/s2<0 ~11!

is satisfied. To avoid this we may write down both cases
the form of Eq. ~3! and then make the approximationq0
50 in there. For thet-exchange case this is just the usual E
approximation, while for theu exchange this implies an en
ergy transfer equal to (b2a)P0. In the latter case, we there
fore refer to this prescription as toconstant energy-transfe
~CET! approximation. We should note that, in this appro
mation, both cases~a! and ~b! become fully equivalent
(t-exchange ET equal tou-exchange CET!, since the two-
particle propagatorGET is obviously symmetric with respec
to the interchange ofma andmb . In analogy to the symme
trized ET, thesymmetrized CETapproximation can be de
fined and will be studied as well.

III. COMPARISON IN THE FORWARD DIRECTION

We have calculated the field-theoretical scalar box a
crossed-box graphs in~311! dimension both numerically by
integrating Eq.~5!, and analytically for the forward scatte
ing with the explicit expressions given in the Appendix. F
the numerical integrations we used the Gaussian quadra
method. We observed that in order to obtain a good num
cal stability, especially near threshold, one needs to tak
rather large number of Gaussian points for theq0 integration
03400
ed
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,
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n

d

r
re

ri-
a

~we have taken 320 points!. On the other hand, 64 points fo
q, and 8 points for each of the angular integrations is su
cient. We have checked that our numerical calculat
agrees, fort50, with the analytical expressions of the Ap
pendix and fortÞ0, with the code developed by Veltma
@16#.

Using the equations described in the previous section
have also determined numerically the QP box graphs.
confine ourself in this section to the forward direction, i.
t50. Similar results are found fortÞ0. In the following we
consider the real part of the one-loop contributions. T
imaginary part is essentially determined from the tw
particle unitarity condition. As a typical example we show
Fig. 6 the dependence of the box on the exchange massm for
the case that the heavy particle is much heavier than the
one. We have takenmN51, mp50.011 and the energy is
fixed somewhat above threshold,As51.1mN .

From the figure we see that for thet-exchange potentia
the one-body limit is achieved2 in the symmetrized ET for-
mulation independentlyof the mass of the exchanged pa
ticle. The nucleon spectator approximation clearly devia
from this limit for largem. However, we also can see that th
pion spectator gives an even worse prediction. In
u-exchange case, both the nucleon spectator and sym
trized ET disagree substantially with the QFT result~the
spectator calculation is an order of magnitude larger a
hence beyond the scale of the figure!, while the pion specta-

1Note that we multiply the results bym3mN in order to obtain
reasonable values for various limiting values ofm andmN , since,
for instance, at threshold we have for thet-exchange case:

lim
m˜0

B@~mN6mp!2,0#5
p

2m3mN

161

16~mp /mN!
.

2The proof of the correct one-body limit given at the one-lo
level can usually be extended for the whole equation, see,
@12,14#. In our discussion we shall therefore assume that the o
body limit is satisfied in a given QP formulation if, in the limit, th
QP box graph becomes equal to the sum of the field-theoretical
and crossed-box graph.
5-4
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RELATIVISTIC QUASIPOTENTIAL EQUATIONS WITH . . . PHYSICAL REVIEW C60 034005
tor prediction is in good agreement. Based on these obse
tions, we can, in particular, conclude that the difference
tween theNN situation and thepN situation encountered b
Gross and Surya@13# appears due to the differenttype of
potential.

We were unable to study theu-channel exchange fo
smallerm, because of the occurrence of the exchange p
ticle singularities, due to condition~11!. Only the constant
energy-transfer approximation~CET! can, in principle, be
discussed in the whole mass region. In Fig. 7 we compare
CET prescription with the exact result for theu-channel situ-
ation. We see that for largem the QP and exact calculatio
converge to the same answer. Recall that CET for thu
exchange is just equal to the ET for thet exchange. This in
particular indicates that for largem the exact result fort and
u exchange should be the same. For smallerm the exact
u-exchange results are strongly affected by the abo
mentioned m5mN singularity in the separate box an
crossed-box contributions.

The qualitative difference between thet and u exchange
in the mp /mN˜0 limit is transparently seen from the an
lytical expressions. Fort-exchange we have at threshold

FIG. 7. The QFT and CET results for the same set of parame
as in Fig. 6 for the case of graph 3~b!.
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B@~mN6mp!2,0#5
2

m3~mN6mp!

3H mN

A~2mN!22m2
arctgAS 2mN

m
D 2

21

6
mp

A~2mp!22m2
arctgAS 2mp

m
D 2

21J .

~12!

From Eq. ~12! we see that for smallmp ~or, equivalently,
large mN and arbitrarym), there is a cancellation betwee
the box and crossed box leading to the following result:

B@~mN1mp!2,0#1B@~mN2mp!2,0#

5
4

m3A4mN
2 2m2

arctgFAS 2mN

m D 2

21G . ~13!

In contrast, in the case of theu-exchange at threshold, bot
the box and the crossed boxvanish, for mÞmN . The special
casem5mN is singular, yielding

lim
mp˜0

B@~mN6mp!2,0#56
1

2mpmN
3

.

Hence only the sum of theu-exchange boxes vanishes.
It is still remarkable though that the pion spectator is

close to the exact result for theu-exchange case, suggestin
that the dominant pole always comes from particlemb . This
can be understood by using the crossing relation between
t- and u-channel box graphs: under the crossing the fie
theoretict-channel box and crossed box turn into the cor
spondingu-channel graphs, while the nucleon-spectator b
turns into the pion-spectator box.

We have also studied somewhat more realistic situatio
away from the one-body limit. In Fig. 8 we plot the resu
for mp50.15mN ~i.e., the physical pion mass!, and m
5mN . In Fig. 9 we have takenmp50.15mN , and m

rs
t
FIG. 8. The same as Fig. 6, bu
for mN5m51, mp50.15, and t
50, as a function of the energy
W5As.
5-5
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FIG. 9. The same as Fig. 6, bu
for mN51, mp50.15, andt50,
as a function of the energyW.
Note that the mass of the ex
changed particle for thet- and
u-exchange cases is not the sam
-
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ing
50.82mN ~the r-meson mass! for t exchange, whilem
51.31mN ~the D-isobar mass! for u exchange. The corre
sponding CET calculations are presented in Fig. 10. Fr
these figures we see that for thet exchange all of the QP
prescriptions, except the pion spectator one, do reason
well as they have the correct energy dependence, and
small discrepancy in the magnitude can possibly be
counted for by a readjustment of the coupling strength.

For the u exchange the ET and the pion spectator p
scriptions do particularly well, especially for larger exchan
mass and/or larger energy. In Fig. 9 they both practica
‘‘fall on top’’ of the exact result. From Fig. 10 note that th
ordinary CET agrees in overall better with QFT than t
symmetrized version. The good agreement at large ener
is again very remarkable.

Apparently, in a model where both thet- andu-exchange
potential are present, the spectator approximation does
provide an optimal choice. Choosing the pion spectator le
to pathological results for the iteratedt-exchange potential. A
similar contradiction appears in the nucleon spectator p
scription and theu-exchange potential. On the other han
the ET prescriptions, including CET and the symmetriz
versions, are preferable from this point of view. We can
make a definite preference among the two, although so
agreement between a given choice in the ET approach
the exact results are observed in certain regimes, which
haps should be studied in more detail.
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It must be emphasized, that the one-body limit situation
physically very different for the two cases: for th
t-exchange potential it corresponds to the light particle m
ing in an external potential of the heavy particle, while in t
u-exchange case the heavy particle obviously does not a
a static external source, and, therefore, there is no corres
dence to any one-body situation. Clearly, the possibility
have a QP approach, which describes at the same time
cases oft- andu-exchange in a reasonable way is interestin

IV. PHASE-SHIFT CALCULATIONS

We may also examine the differences among the vari
prescriptions at the level of phase shift predictions. Sim
to the NN scattering case@18# this can be done by recon
structing the scattering amplitude from the driving force a
the one-loop contributions. For this we assume the follow
t- andu-channel potentials~in a f3 theory!:

Vt~p,q!5
g2

4p

m2

m22~p2q!22 i«
,

Vu~p,q;P!5
g2

4p

m2

m22~p1q2P!22 i«
,

t

FIG. 10. The QFT and CET
predictions formN51, mp50.15,
and t50. Exchange particle
massesm51 and m51.31 have
been used for the left and righ
panels, respectively.
5-6



-

a

e
e
of

x

RELATIVISTIC QUASIPOTENTIAL EQUATIONS WITH . . . PHYSICAL REVIEW C60 034005
FIG. 11. S- andP-wave phase-
shift predictions of various QP ap
proximations with mN51, mp

50.15, andg2/(4p)52.0. In the
u-exchange S-wave case the
nucleon spectator model predicts
phase shift which varies fromp to
zero degrees, i.e., supporting on
bound state in this channel. Th
open dots represent the results
the field-theoretic box graph, the
filled dots include the crossed-bo
graph in addition.
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as the driving force in the scalar Bethe-Salpeter equation3

T~p8,p;P!5V~p8,p;P!

1 i E d4q

4p3
V~p8,q;P! G~q;P! T~q,p;P!.

~14!

Introducing thel th partial waveK matrix

Kl5
Tl

11 i v̂Tl

, ~15!

where v̂5Al(s)/s, we obtain from Eq.~14! the K-matrix
equation~omitting external momenta!:

Kl5Vl1
i

p2E2`

`

dq0PE
0

`

dq q2 Vl~q0 ,q!G~q0 ,q!Kl~q0 ,q!

5Vl1
i

p2E2`

`

dq0PE
0

`

dq q2 Vl~q0 ,q!G~q0 ,q!Vl~q0 ,q!

1•••[Kl
(0)1Kl

(1)1•••, ~16!

3In our conventionV andT contain an extra factor of 1/4p, hence
the usual volume factor (2p)4 is replaced by 4p3.
03400
where P*dq is the principal value integral, whileVl

5 1
2 *21

1 dx V Pl(x) is the partial wave decomposed potenti
x being the cosine of the center-of-mass scattering angle.
second term in Eq.~16! can immediately be written in term
of the field-theory box graphB:

Kl
(1)52

~gm!4

~4p!2
~1/8p!E

21

1

dx ReB Pl~x!.

From theK matrix we can determine the phase shift throu
the relation

tan~d!5v̂Kl . ~17!

The series forKl can be summed by Pade´ approximants to
get a converged solution of the integral equation. When
confine ourselves to the study of the box graphs we can c
out a geometric summation of the Born series, being ess
tially the @1,1# approximant in the coupling constantg2, i.e.,

Kl
[1,1]5Kl

(0) S 12
Kl

(1)

Kl
(0)D 21

. ~18!

For not too strong coupling we expect that this is a reas
able approximation to the solution of Eq.~16! @19#. In Fig.
11 we show the phase shifts obtained in the various calc
tions of theK [1,1] approximant, together with the Born ap
proximation Kl5Kl

(0) . The depicted results correspond
masses relevant to thepN system, while the coupling
strength, taken to beg2/(4p)52.0, has been adjusted suc
5-7
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FIG. 12. Comparison of the
phase shifts obtained from th
perturbation series and the Pad´
@1,1# approximant for the
t-exchange potential. The same s
of parameters as in Fig. 11 ar
used. In the right panel the predic
tions of ET(K01K1) coincide
with the ET @1,1# Padéapproxi-
mant.
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that the relative size of rescattering effects is of the sa
order of magnitude as observed in our realisticpN calcula-
tions @17#.

Also are shown the results which include the crossed-
graph in the field-theory calculation. This is determined
approximating theK matrix as

Kl
[1,1]5Kl

(0) S 12
Kl

(1)1Bl
Xbox

Kl
(0) D 21

. ~19!

with Bl
Xbox being the corresponding partial wave reduc

crossed-box diagram. One can see that the crossed box
tributions are rather small and that they give rise to an ad
tional attraction in theS-wave channel. One can also sta
that the predictions shown in Fig. 11 are qualitatively simi
to the results obtained in the forward direction.

To get a feeling on the convergence of the Born series
the used coupling constant, we compare in Fig. 12
change due to including the second Born term perturbativ
i.e., Kl5Kl

(0)1Kl
(1) . From the figure we see that the highe

order correction is rather moderate, so that we expect tha
@1,1# approximant is reasonable for the considered stren
of the coupling constant.

From the present analysis we find that the nucleon
pion spectator models do lead to a reasonable descriptio
the phase shift for the case oft- and u-channel exchanges
respectively, but do not describe both types of exchan
simultaneously. For instance, the nucleon-spectator m
with the u-exchange potential, leads to a considerably str
ger attraction than would have been predicted by the fie
theory box graph contribution. Assuming that the@1,1# Padé
approximant is valid, the nucleon-spectator model pred
the existence of a bound state in theSwave, to be contrasted
with none in the other quasipotential prescriptions. As a c
sequence the predicted phase shift is distinctly differen
this case as compared to the other quasipotential predict
It decreases fromp at threshold to zero with increasing e
ergy, as can be inferred from Fig. 11.

V. CONCLUSIONS

We have studied here in detail various quasipotential
proximations to the box graph and compared them with
field-theory graphs. We have chosen the kinematics oft50
03400
e

x
y

on-
i-

r

r
e
y,

he
th

d
of

es
el
-
-

ts

-
n
ns.

-
e

to present the various comparisons of the one-loop contr
tions. Although the present study has been confined to
situation of scalar particles, the same conclusions ap
when one considers the case of fermions. Moreover, sim
results were found when the phase shifts are studied up to
one-loop level.

In the large external mass ratio limit a large qualitati
difference is observed between the situation when the po
tial in question has the form oft- or u-channel particle ex-
change. The QP equations, such as the nucleon spec
@5,12# and the symmetrized ET@8#, developed to satisfy the
one-body limit for thet-type exchange potential, have a po
agreement with the exact calculation if theu-type exchange
potential is used. The differences are in general so large,
large reductions of the coupling constants will be needed
establish reasonable agreement of the phase shifts. Altho
the pion spectator approximation describes theu-exchange
case better, it however fails in the other case. Therefore
the situation where both types of the potential are pres
either of the spectator equations cannot be justified.

It appears that in the case of theu-channel exchange po
tential the one-body limit cannot be viewed analogously
the t-channel case, essentially because in the former case
heavy particle is not expected to act like a source. Thus
general, the one-body criterium for quasipotential equati
should be reconsidered. Instead one can, for instance,
mand that the quasipotential prescription leads to a g
approximation of the field-theory box graphs.

Analyzing the situation with, for thepN system realistic
parameters, we find that the ET type of prescriptions can
fairly close to the QFT answer for both types of the potent
We may hope that such a ET prescription may offer u
suitable dynamical framework to describe thepN system.
The above study clearly indicates that these quasipote
formulations have indeed very nice properties to render
attractive framework for application to thepN system. It can
clearly treat both thet- andu-exchange forces in a reasonab
way. In a separate publication we report on the results o
relativistic study of thepN dynamics, based on hadron d
grees of freedom, including the full spin complication a
employing the equal-time quasipotential formalism@17#.
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APPENDIX: FORWARD-SCATTERING BOX GRAPHS

For t50, using the Feynman parameter trick, we can
write the expression for the box Eq.~3! as follows:

B~s,0!5E
0

1

dx dy dz
x d~12x2y2z!

h2~x,y,z!

5E
0

1

dx dy
x~12x!

h2@12x,xy,x~12y!#
,

h~x,y,z!ªm2x1ma
2y1mb

2z2mp
2 xy2mN

2 xz2syz.
~A1!
a

s

03400
or

-

Integrations yield the following result:
~a! t exchange,ma5mp , mb5mN :

B~s,0!5
1

Na~s! H 2 A2l~s!arctgF s/A2l~s!

12s2a~s! b~s!/l~s!
G

2
s1mN

2 2mp
2

A~2mN /m!221
arctg@A~2mN /m!221#

2
s1mp

2 2mN
2

A~2mp /m!221
arctg@A~2mp /m!221#J ,

~A2!

with Na(s)5m2@4l(s)2sm2#.
~b! u exchange,ma5mN , mb5mp :
B~s,0!5
2

Nb~s!
A2l~s! arctgF s/A2l~s!

12s2a~s! b~s!/l~s!
G1

1

2Nb~s! A2l~m2!
H 2@~mN

2 2mp
2 !22m2s#arctgFmN

2 1mp
2 2m2

2A2l~m2!
G

1@~mN
2 2mp

2 !22sm21~mN
2 2mp

2 !~m22u!#arctgF m2a~m2!

A2l~m2!
G1@~mN

2 2mp
2 !22sm22~mN

2 2mp
2 !~m22u!#

3arctgF m2b~m2!

A2l~m2!
G J , ~A3!
this
with u52mN
2 12mp

2 2s, and Nb(s)5(m22u) @(mN
2 2mp

2 )2

2sm2#.
Here functionsl, a, andb are defined as

l~x!5@x2~mN1mp!2# @x2~mN2mp!2#/4,

a~x!5~x1mN
2 2mp

2 !/2x, ~A4!

b~x!5~x2mN
2 1mp

2 !/2x. ~A5!

Note that the crossed-box graph is given simply byB(u,0).
Let us also quote the threshold value for the case when
 ll

the masses are equal, since some care is required in
calculation. We have formN5m

lim
mp˜m

B@~m1mp!2,0#5
2p

3A3
m24'1.2092m24,

lim
mp˜m

B@~m2mp!2,0#5
2

3 S 12
p

3A3
D m24'0.2636m24.

~A6!
s.
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