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Scalar and vector interactions, with the scalar interaction coupled to a composite spin-1/2 system so as
cause a shift of its mass, are shown to obey a low-energy theorem which guarantees that the second or
interaction is the same as for a point Dirac particle, in which case the second-order interaction comes fromz
graphs. Off-shell and contact interactions appropriate to the composite system cancel and this is verified in
model of a composite fermion. The low-energy theorem and its generalizations provide a justification for th
use of the Dirac equation as it has been used in relativistic nuclear scattering and mean field theories.
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I. INTRODUCTION

In a recent paper@1#, a low-energy theorem has been fo
mulated for the scalar and vector interactions of a compos
spin-1/2 system. For a scalar interaction corresponding t
pure shift of the mass, the theorem shows that the seco
order interaction with the composite system is the same
for a Dirac particle interacting with an equivalent scalar p
tential. Including a vector interaction with only a time com
ponent does not change the result. This theorem, which ho
in the limit of zero momentum transfer, provides defini
conditions under which it is valid to treat a composite pa
ticle, such as a nucleon, as a Dirac particle.

Birse @2# has considered a more general combination
scalar and vector interactions and has shown from Lore
invariance that, in addition to the model independent con
bution to the second-order interaction discussed in this pa
there may be another scalar contribution that depends
polarization of the composite system. That scalar term
model dependent and will be considered in another paper@3#.

The use of the Dirac equation in nuclear physics has be
a subject of interest and debate in recent years. One of
outstanding successes is in elastic scattering of protons
nuclei @4,5#. Quite large scalar and vector interactions, whic
almost cancel one another, characterize the proton-nuc
interaction. Solving the Dirac equation with an attractive sc
lar potential and a repulsive vector one, each of magnitu
about 300 MeV, produces a good description of spin obse
ables at intermediate energies@6–10#.

The new physics obtained by use of the Dirac equation,
opposed to use of the Scho¨dinger equation, lies in the
z-graph contributions. These are largest at zero moment
transfer and they decrease at higher momentum transfer.
significance of thez-graph contributions for a composite
nucleon has been debated in the literature for a decade.
cause they are difficult to understand from the point of vie
of perturbative QCD, it has been argued that thez-graph
5313/96/53~2!/860~11!/$06.00
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contributions should be suppressed by compositeness of
nucleon, even at zero momentum transfer@11,12#. A nonper-
turbative analysis@13# has produced the same conclusion in
simple 111 dimensional theory. However, it has been argue
that the same effects as are obtained from use of the Di
equation for nucleons may be understandable in terms
quarkz graphs@14#. Arguments based on Lorentz invariance
support the validity of thez-graph contributions for a com-
posite system because they follow from a simple shift of th
mass. The low-energy theorem clarifies this latter point
view.

In Sec. II, the general basis for the low-energy theorem
stated based upon considerations of Lorentz invariance. E
phasis is placed upon the case of a scalar interaction t
shifts the mass and a vector interaction that shifts the ener
The balance of the analysis presented in this paper provid
insight into the general result for a solvable model of a com
posite system. Details that were omitted in the earlier wo
@1# are provided and the previous analysis is clarified an
extended to incorporate a suitable vector interaction. In Se
III the solvable field-theory model of a composite fermion i
introduced and the second order response to an external v
tor field is studied. It is shown how to arrive at the low
energy theorem for this case. In Sec. IV the scalar interacti
that generates a pure shift of the mass is developed and id
tities appropriate to the scalar interaction for the compos
fermion model are derived. Several distinct contributions
the second-order interaction with the a combination of sca
and vector external fields are calculated in Sec. V, and it
demonstrated how cancellations take place which produ
the simple result provided by the low-energy theorem. Co
clusions and a discussion of the results are given in Sec.

II. CONSEQUENCES OF LORENTZ INVARIANCE

Consider the case of a scalar interactionS that corre-
sponds to a pure shift of the mass and a time component o
860 © 1996 The American Physical Society
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53 861SCALAR AND VECTOR INTERACTIONS OF A COMPOSITE . . .
vector interactionV that shifts the energy. The form of th
classical Hamiltonian determined by Lorentz invariance i

H5V1A~M1S!21p2, ~2.1!

where the vector and scalar potentials are taken to be
tially uniform. Expanding inS to second order yields,

H5e1V1
M

e
S1

p2

2e3
S21•••, ~2.2!

wheree5AM21p2. If S, M , ande are noncommuting op-
erators, care must be taken to maintain Hermiticity in dev
oping this expansion. The momentum dependent repul
potential term in Eq.~2.2! provides the main relativistic ef-
fect in proton scattering by nuclei at intermediate energie

One obtains the same results from the Dirac equation w
scalar and vector potentials. The energy expression ma
reduced to the form,

Ec5~e1V 111V pair!c, ~2.3!

where

V 115V1
M

e
S ~2.4!

and

V pair5
p2S2

e2@E1e2V1~M /e!S#
5
p2S2

2e3
1•••, ~2.5!

is thez-graph contribution. To second order it is the same
in Eq. ~2.2!.

The low-energy theorem considered here is the follow
statement. In the presence of a constant, scalar interac
which causes a mass shiftS, the energy of a particle contain
the repulsive termp2S2/2e3 without any dependence on th
composite structure of the particle. The constant interac
implies the low-energy limit, i.e., the limit of zero energy
momentum transfer. In this limit, a composite fermion m
be treated as a Dirac particle interacting with an equival
scalar potential. It should be noted that at nonvanishing m
mentum transfer this no longer holds in general. The inc
sion of a suitable vector interaction provides a shift of t
energy and this corresponds to the case of interest in nuc
physics. This paper provides a full account of the demons
tion of the low-energy theorem based on a simple mo
Lagrangian.

The proof of the low-energy theorem rests on three sim
points.~i! For any composite system, it is possible to defi
a scalar interaction which produces a pure shift of the ma
~ii ! Similarly, it is possible in general to define a vector i
teraction which produces a pure shift of the energy.~iii ! The
energy of the composite system is then restricted by Lore
invariance to take the form of Eq.~2.1! and the expansion o
the energy contains the momentum-dependent repulsive
of Eq. ~2.2!.

Point ~i! may be proved by an explicit construction, a
follows. Consider a LagrangianL that supports a composite
particle bound state of massM . Let parameters with dimen
sions of mass of the Lagrangian be scaled by a factorl and
,
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let any other parameters with dimensions be scaled acc
ingly, i.e., a parameter with dimension 1/mass be scaled
1/l. Similarly scale all parameters generated by renorma
ing the theory. The bound state mass will be shifted
lM . Choosel511S/M to produce the desired shift of th
bound state massM→M1S. The required scalar coupling i
obtained by expanding the scaled Lagrangian aboutl51 in
powers ofS/M , and to first order one obtainsL→L2rS,
wherer will be called the scale-breaking charge. The co
pling term,rS, defines the interaction which shifts the mas

In general, the scale-breaking charge,r, is proportional to
the divergence of the dilatation current of the system. T
may be seen from the following argument. A dilatation of
coordinates by the factorl21, taken together with a scaling
as described above of all parameters with dimensions by
factor l, leaves the action invariant, i.e.,*d4x L does not
change. Thus the scaling of dimensionful parameters has
opposite effect of a dilatation. The system is not invariant
general under a dilatation and the change of the Lagran
is proportional to the divergence of the dilatation curre
sm , which in turn is proportional to the scale-breakin
charge as follows,

]msm52Mr. ~2.6!

Addition of a term2Sr to the Lagrangian is equivalent to
dilatation of coordinates by (11S/M )21, or a mass scaling
by 11S/M . This argument is based on the classical L
grangian but it holds also at the quantum level provided t
anomalous contributions, which are generated by renorm
izing the theory, are included in the scale-breaking charg

Point ~ii ! follows from coupling the system to an extern
field through the time-component of the total momentum.
practice, it often is sufficient to couple to the time
component of a conserved vector current. The low-ene
theorem follows by point~iii ! for a general composite sys
tem. Thus the repulsive term that is associated withz-graphs
for a Dirac particle is guaranteed. This term is model ind
pendent in the sense that the second-order term is equ
the square of the first-order term, (M /e)S, times the kine-
matical factorp2/(2eM2).

We now turn to a detailed proof of the low-energy the
rem for vector interactions.

III. INTERACTIONS WITH EXTERNAL VECTOR FIELDS

In this section we will give a general discussion of how
composite system propagates in free space, and of how
propagation is modified by the presence of an external ve
field which shifts the energy.

Consider a composite, spin-1/2 particle with total mome
tum p which has a bound state of massM . In the neighbor-
hood of the bound state pole, we may assume the propag
takes the general form

G5VG~p!V1R, ~3.1!

whereV andR are dependent on the total momentum a
the internal variables of the composite system but are reg
at p25M2. The bound state pole resides in the factor

G~p!51/@12p”A~p2!2B~p2!#, ~3.2!
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862 53S. J. WALLACE, FRANZ GROSS, AND J. A. TJON
where A and B are scalar invariants, depending only o
p2. This ansatz incorporates the fact that the bound state
is not dependent on the internal coordinates and tha
should involve a standard representation of the Lore
group for spin-1/2.

A concrete example of the assumed structure is obta
from the following model Lagrangian,

L5c̄~ i ]” 2m!c1
1

2
@]nf]nf2m2f2#2gc̄cf22LL ,

~3.3!

whereLL consists of cutoff terms sufficient to remove d
vergences of the bubble graphs we consider, i.e.,

LL5
1

2
@]nfL]nfL2L2fL

2 #2gc̄cfL
2 . ~3.4!

The quantum propagator for the composite spin-1/2 sys
with four-momentump is given by the sequence of bubb
graphs as indicated in Fig. 1 and it is written as,

G~p!5
1

12S~p!
, ~3.5!

where S(p) is related to the self-energy. In the ‘‘bubb
model,’’ the self-energyS is the contribution of a single
bubble graph and it can in general be expressed in term
the interactions between the constituents of the compo
particle. Its general form is restricted by Lorentz invarian
to be

S~p!5A~p2!p”1B~p2! ~3.6!

with two scalar functionsA andB.
For either the assumed general form of Eq.~3.1! or for the

bubble model propagator of Eq.~3.5!, the presence of a spin
1/2 bound state of massM means that there is a pole inG(p)
at p”5M . Thus the propagator can be expanded aro
p25M2, giving

G~p!5Z2F 1

p”2M
1dG~p!G5

G~p!Ḡ~p!

p02e
1dg~p!

5G0~p!1dg~p!, ~3.7!

where explicit expressions for the renormalization const
Z2 , and the termsdG and dg, which are nonsingular a
p0→e, are worked out in the Appendix, an
G(p)5(Z2)

1/2u(p), with u(p) the positive energy Dirac
spinor for an elementary fermion of massM :

FIG. 1. Diagrammatic representation of the propagator in
bubble model.
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u~p!5S e1M

2e D 1/2F 1

s•p

e1MG , ~3.8!

which obeys the normalization condition,ū(p)u(p)5M /e.
To calculate the propagation of the composite system

an external vector field which shifts the energy, one ma
evaluate the propagator

GV~p!5
1

12S~p2V!
, ~3.9!

where the shiftp2V in the argument ofS is shorthand for
the shift (p02V,p). If the external field is weak, one may
expand this propagator in a Taylor’s series, giving

GV~p!.G~p!2
]G~p!

]p0
V1

1

2

]2G~p!

]p0
2 V21•••,

~3.10!

where the derivatives can be written

]G~p!

]p0
52G~p!L0~p,p!G~p!,

1

2

]2G~p!

]p0
2 5G~p!L0~p,p!G~p!L0~p,p!G~p!

1
1

2
G~p!C00~p,0!G~p!, ~3.11!

with vertex functionL0 and contact termC00 defined by

L0~p,p![2
]S~p!

]p0

5L0
01~p02e!dL01O @~p02e!2#,

C00~p,0![
]2S

]p0
2 5C0

001O ~p02e!. ~3.12!

The quantitiesL0
0 , dL0 , andC0

00 are all evaluated at the on
shell point wherep05e, so that Eq.~3.12! expresses the
vertex function and contact term as a power series
p02e. Explicit expressions for these quantities in terms o
the scalar functionsA andB and their derivatives, evaluated
on shell are given in the Appendix.

The propagation of the particle in the external field ca
also be described by an effective interaction appropriate to
Schrödinger description for the propagation of the composi
particle. The resolvent of the effective Schro¨dinger equation
is

G̃V~p!5
Z28

p02e2V S~p!
1R, ~3.13!

where the renormalization constant,Z28 , the effective inter-
action,V S(p), and the remainder function,R, are functions
of the external fieldV but independent ofp0 ~they are evalu-

he
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ated atp05e). The functionR describes the propagation o
excited states with invariant masses greater thanM .

For apoint particle, the discussion in Sec. II shows th
to orderV3, V S(p)5V; there is no effective interaction o
orderV2. The low-energy theorem tells us that this is al
true for acompositeparticle. To prove this, we will first~i!
express the effective interactionV S(p) in terms of the vertex
function L0(p,p) and the contact termC00(p,0), and then
~ii ! show thatV S(p)5V.
f

t,

o

To carry out step~i!, expand the propagator~3.13! to sec-
ond order inV2, giving:

G̃V~p!.
Z28

p02e
1
Z28V S~p!

~p02e!2
1
Z28V S

2~p!

~p02e!3
1•••1R.

~3.14!

Substituting the expansions~3.7! and~3.12! into ~3.10! gives
a similar expansion forGV(p):
GV5G01dg1V@G0L0
0G01dgL0

0G01G0L0
0dg1~p02e!G0dL0G0#1V2HG0L0

0G0L0
0G01

1

2
G0C0

00G0

1dgL0
0G0L0

0G01G0L0
0dgL0

0G01G0L0
0G0L0

0dg1~p02e!@G0dL0G0L0
0G01G0L0

0G0dL0G0#1
X

p02e J
1O ~p02e!, ~3.15!
s
.

c-
c-
where all terms of orderV3 are neglected, and the term
involving dg and X do not affect the result to be proved
Projecting out the positive energy part of Eq.~3.15! and
equating powers ofp02e to similar powers in the expansion
of G̃V(p),

ū~p!g0GV~p!g0u~p!5G̃V~p!, ~3.16!

permits us to determineZ28 andV S(p):

Z285Z2@11VḠdL0G1V~ ūg0dgL0
0u1ūL0

0dgg0u!#

1V2X,

Z28V S5Z2VḠL0
0G1

1

2
Z2V

2ḠC0
00G

1Z2V
2$~ ūg0dgL0

0u!~ ḠL0
0G!1~ ḠL0

0G!

3~ ūL0
0dgg0u!1ḠL0

0dgL0
0G1~ ḠdL0G!~ḠL0

0G!

1~ ḠL0
0G!~ḠdL0G!%,

Z28V S
25Z2V

2~ ḠL0
0G!2. ~3.17!

Hence, to first order

~Z28!215~Z2!
21@12V~ ḠdL0G1ūg0dgL0

0u

1ūL0
0dgg0u!#1O ~V2!, ~3.18!

and it follows that the second of Eqs.~3.17! gives
V S5V~ ḠL0
0G!@12V~ ḠdL0G1ūg0dgL0

0u1ūL0
0dgg0u!#

1V2F12 ḠC0
00G1~ ūg0dgL0

0u!~ ḠL0
0G!

1~ ḠL0
0G!~ ūL0

0dgg0u!1ḠL0
0dgL0

0G

1~ ḠdL0G!~ḠL0
0G!1~ ḠL0

0G~ḠdL0G!. ~3.19!

In the Appendix we show that

ḠL0
0G51,

ḠC0
00G52ḠdL0G5

2e

M2 j1
p2

M2e
~12Z!, ~3.20!

wherej and Z are given by Eqs.~A4! and ~A6!. Hence a
number of terms cancel in Eq.~3.19!, and it reduces to

V S5VF11VS 2
1

2
ḠC0

00G1ḠL0
0dgL0

0G D G . ~3.21!

Note that the first-order term inV S is simplyV, as expected.
We wish to emphasize that the second-order term,V2, in-
volves a matrix element ofdg, the differenceof the full
propagator,G and the positive energy propagatorG0 , as
defined in Eq.~3.7!. Evaluation of this matrix element in the
Appendix gives

ḠL0
0dgL0

0G5
1

2 F 2e

M2 j1
p2

M2e
~12Z!G , ~3.22!

and thus theV2 term is zero,independent of the details of the
structure of the bound state. Note that the third of the Eqs.
~3.17! is also consistent withV S5V.

This analysis establishes in a straightforward way the fa
tors which enter the calculation of the second-order intera
tion and Eq.~3.14! illustrates an important point. The two
potential terms in Eq.~3.14! may be combined and each
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expanded up to second order in powers of the external i
action strengthV. Omitting extraneous factors, the potent
terms in the expansion ofG̃V are,

V S
~1!~p!1V S

~2!~p!1
~V S

~1!~p!!2

p02e
1•••, ~3.23!

which shows that the second-order terms inG̃V contain the
true second-order interactionV S

(2) that is irreducible with
respect to intermediate propagations of the fo
(p02e)21, plus the iterated first-order interaction evalua
using the on-mass-shell vertex,L0

0 . The term involving
(V S

(1))2/(p02e) must be subtracted from the result of e
pandingG̃V in order to isolate the irreducible potential.
Sec. V we will use this fact in a slightly different demonst
tion of the low energy theorem.

To generalize the analysis we now develop a suitable
lar interaction.

IV. SCALAR INTERACTION CORRESPONDING
TO A PURE MASS SHIFT

Construction of a scalar interaction that generates a
shift of the mass of the composite system provides an il
tration of the general arguments of Sec. II. In the bub
model, the scalar interaction is determined by scaling all
rameters in the Lagrangian with dimensions of mass to
valuesm→lm, m→lm, g→l21g, and similarly scaling al
cutoff masses associated withLL , such that the bound sta
massM is scaled tolM . Choosingl511S/M produces
the desired shift of the mass and it implies that the Lagra
ian, which includes interactions of the scalar fieldS, has the
form ~to first order inS!

L→L2rS. ~4.1!

The scale-breaking charge associated with the mass sc
in the bubble model is

r5~m/M !c̄c12~m/M !f22~g/M !c̄cf222~L/M !fL
2

1~g/M !c̄cfL
2 . ~4.2!

The last two terms are necessitated by the cutoff and
correspond to anomalous contributions in a renormaliz
theory.

A suitable vector interaction for the bubble model
added to arrive at

L→L2rS2c̄g0cV. ~4.3!

The vertex functions and contact terms associated with
vector interaction are those already defined in Sec. III.
straightforward to see fromL that the effect of this vecto
interaction is to shift the time-component of momentum
the constituent fermion. It follows thatS(p)→S( p̃), where
p̃5(p02V,p) and thus the propagator pole is atp̃25M2,
corresponding top05e1V. In the previous section w
showed that there was no contribution to the second-o
interaction from such a vector coupling.

The Ward identity for the scalar vertex follows from e
amination of the lowest order Feynman diagrams in
er-
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simple model. The vertex function corresponding to insertion
of the charger, in the limit whereq5p82p→0, is

LS~p,p!5DrS~p!, ~4.4!

where

Dr[
m

M

]

]m
1

m

M

]

]m
2

g

M

]

]g
1

L

M

]

]L
. ~4.5!

For example, the (m/M )c̄c term in the charger generates a
vertex insertion in the fermion propagator withinS(p),
which is the same result as is obtained from
(m/M )]S/]m. Similarly, the 2(m/M )f2 term generates a
vertex insertion in the scalar meson propagator, which is
equivalent to (m/M )]S/]m, and so on.

The self-energy,S, is dimensionless, and hence invariant
when all parameters with the dimensions of mass are scale
i.e.,

S~m,m,L,g,pa!5S~lm,lm,lL,l21g,lpa!. ~4.6!

This invariance provides a series of identities that simplify
the analysis. It may be restated as a power series inl21, the
first few terms of which are,

S5S1~l21!SDr1
pm

M

]

]pm
DS1

1

2
~l21!2

3SDr1
pm

M

]

]pm
D SDr1

pn

M

]

]pn
DS1•••. ~4.7!

The derivativesDr1 pm/M ]/]pm provide an equivalent
form of d/dl. From uniqueness of a power series, it follows
that the coefficient of each power ofl21 vanishes. The
vanishing of the coefficient ofl21 provides the first iden-
tity,

DrS52
pm

M

]

]pm
S ~4.8!

and the vanishing of the coefficient of (l21)2 provides the
second,

Dr
2S5

pm

M

]

]pm

pn

M

]

]pn
S, ~4.9!

FIG. 2. Diagramatic representation of the three contributions to
Eq. ~5.6!.
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53 865SCALAR AND VECTOR INTERACTIONS OF A COMPOSITE . . .
where we have used Eq.~4.8! to eliminate cross terms in
volving 2(pm/M )]/]pmDrS.

Equation ~4.8! together with Eq.~4.4! provides a Ward
identity for the scalar vertex of the form

LS~p,p!52
pm

M

]

]pm
S~p!52

p”

M
S8~p!. ~4.10!

This is a direct consequence of a Ward identity for the div
gence of the dilatation current@15# and the particular low
energy theorem we consider depends on it. Note that
arguments may be applied to the general propagator of
~3.1! and Ward identities of the form of Eqs.~4.8! and ~4.9!
hold generally.

We now have the necessary equipment to derive
second-order interaction potential for an arbitrary lin
combination of scalar plus vector fields. This is done in
next section.

V. CALCULATION OF SECOND-ORDER INTERACTION

In Sec. III we calculated the effective first- and seco
order interaction potentials for a vector interaction by exa
ining the response function of the composite system. In
section we will calculate the effective second-order inte
tion potential for an arbitrary linear combination of vec
and scalar fields using an approach based on the Fey
diagrams of the bubble model introduced in Sec. III. Wh
the details of this calculation are somewhat different fr
those worked out in Sec. III, the two methods are similar
give identical results in the limit of zero momentum trans
The Feynman diagrams provide the extension to finite
mentum transfer. Comparison of the two methods g
added insight into the physics.

Feynman graph analysis requires the calculation of
‘‘Compton’’ scattering graphs which include absorption a
emission of either a vector fieldV or a scalar fieldS. The
‘‘strong’’ interactions, which depend on the coupling stren
g, are summed to all orders by summing all bubble graph
the type shown in Fig. 2. There are three elementary type
bubbles: the self-energiesS(p), the vertex graph
LSV(p,p1q) which describe the absorption of a field qua
~eitherS or V! with four-momentumq, and ‘‘contact’’ inter-
actionsCSV(p,q) which describe the absorption and em
sion of anS or V quanta fromwithin a single bubble. For
derivation of the low-energy theorem it is sufficient to lim
ourselves to forward scattering in which the initial and fi
bound state four-momenta are bothp, and the incoming an
outgoing field quanta both have four-momentaq; the same
restriction will apply to the contact termsCSV. The summa-
tion of the self-energy bubble graphsS(p) generates the
bound state, as already described in Sec. III.

The vertex which describes the absorption of either a
lar or a vector quanta has the form

LSV~p,p1q!5SLS~p,p1q!1VL0~p,p1q!. ~5.1!

When q50, the vertex functionLS(p,p) is given in Eq.
~4.10!, and the functionL0(p,p) in Eq. ~3.12!. Similarily,
the contact termCSV has the form
r-

the
Eq.
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CSV~p,q!5S2CSS~p,q!12SVC0S~p,q!1V2C00~p,q!.
~5.2!

The C00 contact term forq50 is given in Eq.~3.12!. For
scalar interactions, the contact termCSS corresponds to
two insertions of r. If we write Dr in the form
Dr5( i(mi /M )]/]mi , where$mi%5$m,m,L,g21%, then at
q50 the contact term is given by

CSS~p,0!5(
i

(
j

mimj

M2

]2S~p!

]mi]mj
,

5SDr
22

Dr

M DS~p!. ~5.3!

The second partial derivatives in this expression that invo
the fermion massm correspond to two insertions o
(m/M )c̄c, the first generating a vertex function connect
to two fermion propagators. The second]/]m generates ver-
tex insertions in each of the two fermion propagators. T
other terms inDr

22Dr /M generate in a similar fashion al
the rest of the required contributions.

The scalar contact terms may be rewritten using the id
tities of Eqs.~4.8! and ~4.9!, as follows,

CSS~p,0!5
pm

M

]

]pm

pn

M

]

]pn
S~p!1

pm

M2

]S~p!

]pm

5
2p”

M2S8~p!1S9~p!. ~5.4!

When p”5M , S85S08 , andS95S09 . There are also cross
terms involving oner and one vector insertion. Forq50
these are

C0S~p,0!5
]

]p0

pm

M

]S~p!

]pm

5
g0

M
S8~p!1

p0

M
S9~p!12S p”g0

M
2
p0

M DB8~p2!,

~5.5!

where the last term will not contribute to the matrix eleme
of interest. The contact term in which the order of the sca
and vector insertions is switched yields the same result.

In terms of the elementary bubbles defined above,
effective second-order interaction, derived from the grap
shown in Fig. 2, can be written:
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V ~2!~p!5 lim
q→0

V ~2!~p,q!5
1

2
Ḡ~p!$LSV~p,p1q!G~p1q!LSV~p1q,p!1LSV~p,p2q!G~p2q!LSV~p2q,p!

1CSV~p,q!%G~p!2FV ~1!~p,p̄1q!
1

ep1q02ep1q
V ~1!~ p̄1q,p!G , ~5.6!
t

-

the
tion
where the external momentum is chosen to be on the m
shell, i.e.,p25M2. This is important: the low-energy theo
rem pertains to the on-mass-shell amplitude that arises
physical scattering process. The first term in the curly bra
is the direct pole term, Fig. 2~a!, the second term with
q→2q is the crossed pole term, Fig. 2~b!, and the third,
contactlike term, Fig.2~c! describes processes involving sca
tering from the constituents within a single self-ener
bubble. The appropriate subtraction of the iteration of
first-order interaction is based on matrix elements betw
on-mass-shell states, i.e.,p̄1q denotes the four-vecto
(ep1q ,p1q) where ep1q5@(p1q)21M2#1/2. The first-
order interaction,V (1), is
ass
-
in a
ces

t-
gy
he
een
r

V ~1!~p,p1q!5Ḡ~p!LSV~p,p1q!G~p1q!. ~5.7!

The low-energy limitq→0 must be taken with care, as dis
cussed below.

The contributions of Eq.~5.6! will be divided into four
parts as follows:

V ~2!5V Z
~2!1V dG

~2!1V dL
~2!1V C

~2! . ~5.8!

The first term involves on-mass-shell matrix elements of
vertices, the pole part of the propagator and the subtrac
terms as follows,
se of the
V Z
~2!~p!5 lim

q→0

1

2
Ḡ~p!H LSV~p,p1q!

Z2
p”1q”2M

LSV~p1q,p!1~q→2q!J G~p!

2 lim
q→0

FV ~1!~p,p1q!
1

p01q02ep1q
V ~1!~p1q,p!G . ~5.9!

The second term involves propagation in excited states of the system, for which the limitq→0 gives

V dG
~2!~p!5Ḡ~p!$LSV~p,p!Z2dG~p!LSV~p,p!%G~p!. ~5.10!

The third term involves an expansion of the vertices about the on-mass-shell momenta, which is necessary becau
singularity of the denominator atq→0

V dL
~2!~p!5 lim

q→0
„p1q2~p1q!…m

1

2
Ḡ~p!H ]

]pm8
LSV~p,p8!up85p1qG~p1q!LSV~p1q,p!

1LSV~p,p1q!G~p1q!
]

]pm8
LSV~p8,p!up85p1q1~q→2q!J G~p!. ~5.11!
a-

e
-
is
Finally, the fourth term involves the contact terms, for whi
the limit q→0 poses no problem,

V C
~2!~p!5

1

2
Ḡ~p!CSV~p,0!G~p!. ~5.12!

Using Eqs.~3.12!, ~5.4!, and~5.5! we find immediately

V C
~2!~p!52

1

e SS1
e

M
VD FS~12j!2S eV

M D jG
1S eV

M D 2 p22e3
~12Z!. ~5.13!
ch Now evaluateV Z . The subtraction removes the contribu-
tion from positive-energy intermediate states of the propag
tor which follows from using,

Z2
p”1q”2M

5
G~p1q!Ḡ~p1q!

p01q02ep1q
1

G~2 !~p1q!Ḡ~2 !~p1q!

p01q01ep1q
,

~5.14!

where

G~2 !~p![Z2v~2p!, ~5.15!

andv(2p) is a negative-energy Dirac spinor defined in th
Appendix. The positive-energy intermediate state contribu
tion is the only singular part of the expression and once it
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cancelled, there is no difficulty taking the limitq→0. More-
over, this limit does not depend on whetherq0→0 first or
q→0 first. ThusV Z

(2) becomes,

V Z
~2!~p!5Ḡ~p!LSV~p,p!

3H G~2 !~p!G~2 !~p!

2e J LSV~p,p!G~p!.

~5.16!

This is the composite particlez-graph contribution. The cal-
culation proceeds as in the Appendix. Because factors ofp” in
LSV become factors ofM when the Dirac equation is used
i.e., p”G(p)5MG(p), we obtain

Ḡ~p!LSV~p,p!G~2 !~p!5ū~p!XS1
e

M
V

1ZVS g02
e

M D Cv~2p!

52FS1
e

M
V~12Z!Gs•p2e

.

~5.17!

Two factors ofZ2
1/2 from the wave functions,G and G (2),

cancel with a factor2S08 from the vertex function. The re-
sult is

V Z
~2!~p!5SS1

e

M
V~12Z! D 2 p22e3

. ~5.18!

The purely vector part of this result was already obtained
the Appendix. Note that thez-graph contribution for a purely
scalar interaction is that expected from the Dirac equatio
but the contribution from the vector interaction is not. Th
z-graph contribution of the vector interaction is model de
pendent because it depends on the factorZ. The limit
Z→1 corresponds to a point particle and in this limit, th
vectorz-graph contribution vanishes, as expected. In gener
the z-graph contribution for the composite fermion does n
yield the same contribution that is obtained for a Dirac pa
ticle interacting with equivalent scalar and vector potentia

Using the expression of Eq.~A7!, it is a straightforward
matter to evaluate the contribution of the off-shell propag
tion. The result is

V dG
~2!~p!5SS1

e

M
VD 2 j

e
2Z~Z21!S eV

M D 2 p22e3
.

~5.19!

In order to evaluate the contribution from off-shell verti
ces, note that@p1q2(p1q)#m has only a time component
and it has the formp01q02ep1q . This factor cancels the
corresponding denominator of the propagator’s positiv
energy pole term, thus producing a finite result, and all oth
terms vanish in the limitq→0. This observation and some
algebra reduces the required calculation to the form,
in

n,
e
-

al,
t
r-
s.

-

e-
er

V dL
~2!~p!5Ḡ~p!„SLS~p,p!1VL0~p,p!…G~p!

3Ḡ~p!
d

dp0
„SLS~p,p!1VL0~p,p!…G~p!,

~5.20!

where the derivative with respect top0 combines terms cor-
responding to action of the derivative first on the left arg
ment and then on the right argument ofLSV(p,p). The re-
quired matrix elements are:

Ḡ~p!„SLS~p,p!1VL0~p,p!…G~p!5
M

e SS1
e

M
VD ,

~5.21!

Ḡ~p!S d

dp0
LS~p,p! DG~p!5

1

M
~122j!, ~5.22!

and

Ḡ~p!S d

dp0
L0~p,p! DG~p!52

1

M S 2e

M
j1

p2

Me

~12Z!

M D .
~5.23!

The result for the contribution from off-shell vertices i
therefore

V dL
~2!~p!5

1

e SS1
e

M
VD FS~122j!2S eV

M D
3S 2j1

p2

e2
~12Z! D G . ~5.24!

Substantial cancellations between the contact terms, the
shell vertex corrections, the off-shell propagation, and t
z-graph contributions are apparent.

Combining the four parts produces the following resu
for the second-order interaction,

V ~2!~p,p!5
p2S2

2e3
. ~5.25!

Although the various parts have model-dependent contrib
tions involving j or Z21, these all cancel in the end. The
simple result that is guaranteed by the low-energy theor
emerges and the second-order interaction is the same a
expected from the Dirac equation with equivalent scalar a
vector potentials, or more simply, from a mass shift in th
relativistic expression for the energy. There is no suppress
of this effect by compositeness at zero momentum transf

If there is only a scalar interaction, the result may b
stated as follows

V ~2!~p,0,p!5
p2S2

2e3
1
S2

e
@j1~j21!1~122j!#5

p2S2

2e3
.

~5.26!

The contributions to Eq.~5.26! arise as follows: thep2 term
from the composite particlez graphs,j from the off-shell
propagation dG(p), j21 from the contact terms, and
(122j) from the off-shell expansion of the vertex functions
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Cancellations render the overall result independent of
factor j. This result was given in Ref.@1#.

VI. CONCLUSIONS AND DISCUSSION

The low-energy theorem establishes an equivalence
tween second-order scattering of a composite spin-1/2 s
tem by scalar plus vector interactions of arbitrary streng
and the second-order scattering of a Dirac particle by sim
potentials. The basic result is guaranteed by Lorentz inva
ance. It takes a very simple and model-independent form
the special case of a scalar interaction that shifts the m
linearly, i.e.,M→M1S. Birse @2# has discussed more gen
eral scalar and vector interactions and has shown that
momentum-dependent term of Eq.~5.25! is accompanied by
a model-dependent scalar term when the interaction caus
nonlinear shift of the mass with respect to the scalar streng
S. A similar analysis as the one given here based on
Lagrangian of Eq.~3.3! can provide a demonstration of tha
result as well. Birse’s generalization is important because
scalar interaction that gives rise to a linear mass shift m
not be applicable to the interactions of a nucleon. Neverth
less, there is a low-energy theorem for an arbitrary sca
interaction that shows that the momentum-dependent term
Eq. ~5.25! is always present. Thus the main contribution th
arises fromz graphs when a nucleon is treated as a Dir
particle in nuclear scattering and mean-field analyses i
simple consequence of Lorentz invariance and scalar in
actions. It is not suppressed by compositeness of the nucl
in the low-energy limit.

In order to emphasize the model independent result,
he

be-
ys-
th
lar
ri-
for
ass
-
the

es a
th,
he
t
the
ay
e-
lar
of

at
ac
a

er-
eon

the

analysis of this paper has been restricted to theq→0 limit
for a scalar interaction that provides a linear shift of t
mass. The bubble model Feynman graphs may be evalu
numerically for finiteq. The results are model dependent a
they are not pursued in this paper. The general expecta
for the q dependence is that each of the contributions d
cussed in Sec. V has smoothq dependence. The cancella
tions which produce the low-energy theorem change slo
with q over a rangeq,R21, whereR is a typical dimension
of the composite system. Similar behavior is expected fo
nucleon. It suggests that the Dirac equation may be used
interactions which vary slowly over the size of a nucleo
such as those in nuclear scattering or mean fields.
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APPENDIX: MATRIX ELEMENTS
FOR VECTOR INTERACTIONS

In this appendix we find the quantitiesZ2 , dg, L0, and
C00 introduced in Sec. III, and evaluate the matrix eleme
given in Eqs.~3.20! and ~3.22!.

We begin with the expansion of the propagator given
Eq. ~3.5!. To obtain the results given in Eq.~3.7! we ratio-
nalize the propagator, and expand the scalar functionsA and
B in a power series in the parameterp22M2:
G~p!5
A~p2!p”112B~p2!

@12B~p2!#22A2~p2!p2
.

12B01A0p”1~p22M2!~A08p”2B08!1O @~p22M2!2#

@12B0#
22A0

2M22~p22M2!c02~p22M2!2c11O @~p22M2!3#
, ~A1!
ry
ater
where the constantsc0 andc1 are

c052@12B0#B081A0
212M2A0A08 ,

c15@12B0#B092~B08!21M2@A0A091~A08!2#12A0A08 ,

~A2!

with A05A(M2), A085dA(p2)/dp2up25M2, A095d2A(p2)/
d2p2up25M2, and similarly forB0 , B08 , andB09 . If the propa-
gator is to have apositive energy pole atp25M2, then
12B05MA0 , and the propagator reduces to

G~p!.Z2H M1p”

p22M2 1
A08

A0
p”2

B08

A0
2~M1p” !

c1
c0

J
1O ~p22M2!, ~A3!

where

2~Z2!
21[A012M @MA081B08#5S085

dS~p” !

dp”
up”5M ,

~A4!
is a wave function normalization constant. Nonelementa
propagation due to excited states of invariant masses gre
thanM gives rise to the additional termdG(p) anddg @de-
fined in Eq.~3.7!# which are nonsingular atp0→e. Introduc-
ing

S095
d2S~p” !

dp” 2 U
p”5p”

54M2~A09M1B09!12~A08M1B08!14MA08 , ~A5!

and two constants

j[M SA08M2B08

A0
22

c1
c0

D 5
M

2
Z2S09 , Z[2Z2A0 ,

~A6!

we find
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dG~p!5
p”1M

2M2 j1S 12Z

2Z D p”2M

2M2 1O ~p22M2!,

dg5Z2Fv~2p!v̄~2p!

p01e
1dG~p!G . ~A7!

Herev(2p) is a negative-energy Dirac spinor defined by
v~p!5S e1M

2e D 1/2S s•p

Ep1M

1 D , ~A8!

and the two constantsj andZ depend on the internal struc-
ture of the composite bound state and are the only constan
one needs in order to discuss the various contributions to th
second-order interaction.

Next we obtain the expansions given in Eq.~3.12!. The
vertex function is
ontact
L0~p,p![2
]S~p!

]p0
52$g0A012p0~A08p”1B08!1~p22M2!@g0A0812p0~A09p”1B09!#%1O @~p22M2!2#. ~A9!

HenceL0
0 anddL0 defined in Eq.~3.12! are

2L0
05g0A012e~A08p”̃1B08!, 2dL054eg0A0812~A08p”̃1B08!14e2~A09p”̃1B09!, ~A10!

wherep̃5(e,p) andA08 , etc. are the derivatives of the scalar self-energy functions which we encountered before. The c
term is

C0
00[

]2S

]p0
2 54p0g0A0812~A08p”1B08!14~p0!2~A09p”1B09!1O ~p22M2!. ~A11!

HenceC0
00 is

C0
0054eg0A0812~A08p”̃1B08!14e2~A09p”̃1B09!. ~A12!

We see immediately that

2ḠL0
0G5Z2ū~p!@g0A012e~A08M1B08!#u~p!51,

2ḠdL0G5ḠC0
00G5Z2ū~p!@4eg0A0812~A08M1B08!14e2~A09M1B09!#u~p!

5Z2F4eA081
2M

e
~A08M1B08!14Me~A09M1B09!G5

e

M
Z2S092

2p2

Me
Z2~A08M1B08!5

2e

M2 j1
p2

M2e
~12Z!.

~A13!

Finally, we evaluate the matrix element ofdg. This consists of two terms. The first is thez-graph contribution of the
composite system, which requires the matrix elements

ū~p!L0
0v~2p!5 v̄~2p!L0

0u~p!52s•p~A08M1B08!. ~A14!

Hence thez-graph contribution becomes, asp0→e,

^z-graph&5Z2
2
ū~p!L0

0v~2p!v̄~2p!L0
0u~p!

p01e
→

2p2

e
Z2
2~A08M1B08!25

p2

2M2e
~12Z!2. ~A15!

Note that this depends on the value ofZ, as discussed in Sec. V. ThedG term gives

^Z2dG&5Z2
2ū~p!@g0A012e~A08M1B08!#Fp”1M

2M2 j1S 12Z

2Z D p”2M

2M2 G@g0A012e~A08M1B08!#u~p!

5
e

M2 j1
p2

2M2e
Z~12Z!, ~A16!

where we used the identities
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ū~p!g0~M2p” !g0u~p!5ū~p!~M1p”22eg0!u~p!52
2p2

e
,

ū~p!g0~M1p” !g0u~p!5ū~p!~M2p”12eg0!u~p!52e. ~A17!

Combining~A15! and ~A16! gives Eq.~3.22!:

^z-graph&1^Z2dG&5
e

M2 j1
p2

2M2e
~12Z!. ~A18!
ot,
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