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Microscopic wave functions of spin-singlet and nematic Mott states of spin-one bosons
in high-dimensional bipartite lattices

Michiel Snoek and Fei Zhou*
ITP, Utrecht University, Minnaert building, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands

~Received 25 June 2003; published 16 March 2004!

We present microscopic wave functions of spin-singlet Mott insulating states and nematic Mott insulating
states. We also investigate quantum phase transitions between the spin-singlet Mott phase and the nematic Mott
phase in both large-N limit and small-N limit ( N being the number of particles per site! in high-dimensional
bipartite lattices. In the mean-field approximation employed in this article we find that phase transitions are
generally weakly first order.
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I. INTRODUCTION

The recent observation of correlated states of bosonic
oms in optical lattices has generated much interest.1,2 As
known for a while, when bosons in lattices interact with ea
other repulsively, they can be localized and form a M
insulating state instead of a condensate.3,4 This phenomenon
has been observed in the optical lattice experiment. By va
ing laser intensities of optical lattices, Greineret al. have
successfully investigated Mott states of spinless bosons
probing spin-polarized cold atoms in optical lattices with
large potential depth.1,2

We are interested in spin-correlated Mott insulating sta
of spin-one bosons, especially spin-one bosons with ant
romagnetic interactions. Some aspects of spin-correla
Mott insulating states were investigated recently. For an e
number of particles per site, both spin-singlet Mott insulat
and nematic Mott insulators were found in certain parame
regimes, while for high-dimensional lattices with an o
number of particles per site only nematic insulating sta
were proposed.5 In one-dimensional~1D! lattices, it was
demonstrated that for an odd number of particles per s
Mott states should be dimerized valence-bond cryst
which support interesting fractionalized quasiexcitation6

Effects of spin correlations on Mott insulator-superfluid tra
sitions have been studied and remain to be fully understo7

In this article, we analyze the microscopic structures
spin-singlet Mott insulating states~SSMI! and nematic Mott
insulating states~NMI !. We study, quantitatively, quantum
phase transitions between these two phases in h
dimensional bipartite lattices. In the mean-field approxim
tion, we demonstrate that for an even number of particles
site, the transitions are weakly first order. We should emp
size that results obtained in this paper are only valid in h
dimensions. In one-dimensional lattices, nematic order d
not survive long wavelength quantum fluctuations; detai
discussions on low-dimensional Mott states for both ev
and odd numbers of particles per site are presented in Re

The organization is as follows. In Sec. II, we present
general setting for the study of spin order-disorder quan
phase transitions. In Sec. III, we present mean-field res
on the quantum phase transitions in both small-N and large-
N limits. In Sec. IV, we discuss issues which are to be u
derstood in the future.
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II. ALGEBRA AND SETTING

A. The microscopic Hamiltonian in the dilute limit

The microscopic lattice Hamiltonian we employ to stu
spin-correlated states of spin-one bosons is

Hmicroscopic52t(̂
kl&

~ck,m
† c l ,m1H.c.!

1(
k,l

ck,m
† ck,mUr~k,l !c l ,m8

† c l ,m8

1(
k,l

ck,m
† Smn

g cknU
S~k,l !c l ,m8

† Sm8n8
g c l ,n8 .

~1!

Here ck,m
† is the creation operator of a spin-one particle

site k with spin indexm50,61. ^kl& indicates that the sum
should be taken over nearest neighbors andSg (g5x,y,z)
are spin-one matrix operators given as

Sx5
1

A2 S 0 1 0

1 0 1

0 1 0
D , Sy5

1

A2 S 0 2 i 0

i 0 2 i

0 i 0
D ,

Sz5S 1 0 0

0 0 0

0 0 21
D .

Ur(k,l ) andUs(k,l ) are, respectively, spin-independent a
spin-dependent interaction parameters between two bo
at sitek and l.

In the dilute limit, which is defined as a limit wherer̄a3

!1 (a is the scattering length andr̄ the average density!,
atoms scatter ins-wave channels. For two spin-one atom
the scattering takes place in the total spinS50,2 channels,
with scattering lengthsa0,2. Interactions between atoms ca
be approximated as spin-dependent contact interactions8 In
the lattice model introduced here, calculations yield

Ur~k,l !5Ecdkl and US~k,l !5Esdkl . ~2!

The parametersEc andEs are given by
©2004 The American Physical Society10-1
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Ec5
4p\2r̄~2a21a0!

3MN
c̃, Es5

4p\2r̄~a22a0!

3MN
c̃, ~3!

whereN is the average number of atoms per site,M is the
mass of atoms, andc̃ is a constant.

B. Algebras

For the study of spin-correlated states in lattices, it
rather convenient to introduce the following operators:

ck,x
† 5

1

A2
~ck,21

† 2ck,1
† !, ~4a!

ck,y
† 5

i

A2
~ck,21

† 1ck,1
† !, ~4b!

ck,z
† 5ck,0

† , ~4c!

wherek again labels a lattice site. In this representation

ck,m
† Smn

a ck,n5Ŝk
a[2 i eabgck,b

† ck,g , ~5!

a,b,gP$x,y,z%. The density operator can be expressed i
usual way:

r̂k[ck,g
† ck,g . ~6!

Consequently the Hamiltonian is given as

Hlatt52 t̃ (̂
kl&

~ck,a
† c l ,a1H.c.!1(

k
Ecr̂k

21EsŜk
22 r̂km,

~7!

where we have introduced the chemical potentialm; Ŝk
2 is the

total spin operatorŜk,aŜk,a .
ck,a (a5x,y,z) are bosonic operators obeying the fo

lowing commutation relations:

@ck,a ,c l ,b#5@ck,a
† ,c l ,b

† #50, @ck,a ,c l ,b
† #5dkldab .

~8!

Taking into account Eqs.~5!, ~6!, and~8!, one can verify the
following algebras:

@Ŝk
a ,c l ,b#5dkli e

abgck,g , ~9a!

@Ŝk
a ,c l ,b

† #5dkli e
abgck,g

† , ~9b!

@Ŝk
a ,Ŝl

b#5dkli e
abgŜk

g , ~9c!

@ r̂k ,c l ,a#52dklck,a , ~9d!

@ r̂k ,c l ,a
† #5dklck,a

† ~9e!

@Ŝk
a ,r̂ l #50. ~9f!

Of particular interest is the singlet creation operator
09441
s

a

1

A6
ck,a

† ck,a
† 5

1

A6
~ck,0

† ck,0
† 22ck,1

† ck,21
† !. ~10!

We find the following properties for this operator:

@Ŝk
a ,c l ,a

† c l ,a
† #5@Ŝk

a ,c l ,ac l ,a#50, ~11a!

@ck,ack,a ,c l ,b
† #52dklck,b , ~11b!

@ck,ack,a ,c l ,b
† c l ,b

† #5dkl~4r̂k16!. ~11c!

C. The on-site dynamics

The total spin operator can be expressed as

Ŝk
25 r̂k~ r̂k11!2ck,a

† ck,a
† ck,bck,b . ~12!

So, eigenstates of the total spin operator have to be eig
states of the ‘‘singlet counting operator’’ck,a

† ck,a
† ck,bck,b .

Defining the stateCk,0
n such that

r̂kCk,0
n 5nCk,0

n , ck,a
† ck,a

† ck,bck,bCk,0
n 50, ~13!

we find that wave functions of these eigenstates are

Ck,m
n 5C~ck,a

† ck,a
† !mCk,0

n22m , ~14!

whereC is a normalization constant. From Eq.~11c! it fol-
lows that:

ck,a
† ck,a

† ck,bck,bCk,m
n 5@4m~n2m!12m#Ck,m

n . ~15!

Using thatr̂kCk,m
n 5nCk,m

n we derive

Ŝk
2Ck,m

n 5~n22m!~n22m11!Ck,m
n . ~16!

So Sk5n22m. Now if n is even,Sk is also even and when
n is odd,Sk is odd too. For an even number of particles p
site N the states labeled bySk50,2,4, . . . ,N are present,
whereas for an odd number of particles per siteSk
51,3,5, . . . ,N are allowed. This reflects the basic proper
of the many-body wave function of spin-one bosons, wh
has to be symmetric under the interchange of two particl

Solutions for spin-correlated condensates with finite nu
bers of particles were previously obtained;9 in the thermody-
namical limit, these states evolve into pol
condensates.8,10,11 Also there, two-body scatterings wer
shown to lead to either ‘‘antiferromagnetic’’ or ‘‘ferromag
netic’’ spin correlations in condensates. Spin-correlated c
densates have been investigated in experiments.12,13

D. The effective Hamiltonian for Mott states

In the limit when t̃ !Ec , atoms are localized and onl
virtual exchange processes are allowed. An effective Ham
tonian in this limit can be derived in a second-order pert
bative calculation of the Hamiltonian in Eq.~7!:

HMott5(
k

Ŝk
2

2I
2 J̃ex(̂

kl&
~ck,a

† c l ,ac l ,b
† ck,b1H.c.!. ~17!
0-2
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HereJ̃ex5( t̃ 2/2Ec). In deriving Eq.~17!, we have taken into
account thatEs!Ec .

To facilitate discussions, we introduce the following o
erator:

Q̂k,ab5ck,a
† ck,b2 1

3 dabck,g
† ck,g , ~18!

whose expectation value

Q̃5
^Q̂ab&

^Q̂ab& ref

~19!

is the nematic order parameter. The reference statec ref

5)k@(nack,a
† )N/AN! #u0& is a maximally ordered state

Choosingn5ez , we obtain

^Q̂ab& ref5NS 2
1

3
0 0

0 2
1

3
0

0 0
2

3

D . ~20!

Q̃ varies in a range of@2 1
2 ,1#.

In terms of the operatorQ̂ab , the effective Mott Hamil-
tonian can be rewritten as~up to an energy shift!:

Heff5Es(
k

Tr@Q̂kQ̂k2Q̂kQ̂k
†#2 J̃ex(̂

kl&
Tr@Q̂kQ̂l #.

~21!

Finally we define

h̃5
zJ̃ex

Es
~22!

as a dimensionless parameter, which can be varied con
ously; z is the coordination number of lattice.

E. The range of the physical parameters

From Eq. ~3! it is clear thatEs and Ec depend on the
density, number of atoms, the mass of atoms and scatte
lengths. However, their ratio depends only on the scatte
lengths. According to current estimates,14 for sodium atoms
this ratio is given as (Es /Ec)'431022. In this paper, we
are interested in the limitEs!Ec .

The parametert̃ can be varied independently by changi
the depth of the optical lattice. A wide range is experime
tally accessible; one can vary from the regime wheret̃ @Ec

to a regime wheret̃ !Es . We limit ourselves to Mott state
( t̃ !Ec), where all bosons are localized, but the ratioh̃ can
have arbitrary values.
09441
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III. PHASE TRANSITIONS BETWEEN SSMI’S AND NMI’S

A. Two particles per site

In the case of two particles per site, the on-site Hilb
space is six dimensional, including a spin-singlet state

uS50,Sz50&5
ch

†ch
†

A6
u0&, ~23!

and five spinS52 states

uQhj&5
A3

2
Qhjch

†cj
†u0&, ~24!

whereQhj is a symmetric and traceless tensor with five
dependent elements. All states in the Hilbert space are s
metric under the interchange of bosons; as expected,
statesuQhj& are orthogonal touS50,Sz50&. It is convenient
to choose the following representation ofQhj :

Qhj~n!5nhnj2 1
3 dhj , ~25!

with the directorn as a unit vector living onS2. States de-
fined by the directorn form an over-complete set in th
subspace spanned by fiveS52 states.

When the hopping is zero, one notes that the Hamilton
in Eq. ~17! commutes withŜk

2 ; the ground-state wave func
tion is

uC&5)
k

uS50,Sz50&k . ~26!

On the other hand, whenEs goes to zero, the Hamiltonian
commutes with Tr@Q̂k,abQ̂l ,ba# and the ground-state wav
function can be confirmed as

uC&5)
k
A2

3
uQ~n!&k1

1

A3
uS50,Sz50&k ~27!

for any choice of the directorn.
To study spin nematic or spin-singlet Mott states at

arbitrary h̃, we introduce a trial wave function which is
linear superposition of singlet states and symmetry break
states:

uC&u5)
k

cosuuS50,Sz50&k1sinuuQhj~n!&k . ~28!

Here u is a variable to be determined by the variation
method.

A straightforward calculation leads to the following re
sults:

E~u!5^CuHuC&u56Essin2u2z J̃ex
2
3 ~2A2cosu sinu

1sin2u!2, ~29!

Q̃5SA2cosu sinu1
sin2u

2 D . ~30!

In terms ofQ̃, the energy can be expressed as
0-3
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E56EsS 4

9
1

2

9
Q̃2

4

9
A22Q̃21Q̃11D2

8

3
zJ̃exQ̃

2,

which for Q̃!1 can be expanded as

~3Es2
8
3 zJ̃ex!Q̃

22 3
2 EsQ̃

31 39
16 EsQ̃

41•••. ~31!

The cubic term leads to a first-order phase transition in
mean-field approximation, which is similar to the situation
classical nematic liquid crystals.15

In Fig. 1 theQ̃ dependence of energy is plotted for va
oush̃ in the vicinity of a quantum critical point~mean field!.
For h̃,0.985, the energy has only one minimum atQ̃50
and correspondingly the ground state is a spin-singlet M
state. When 0.985,h̃,1.0, in addition to the global mini-
mum at Q̃50, there appears a local minimum atQ̃.0,
which represents a spin nematic metastable state. Wheh̃
.1.0 the solution withQ̃.0 becomes a global minimum
and the solution atQ̃50 is metastable; consequently th
ground state is a nematic Mott state. Forh̃. 9

8 , the solution
at Q̃50 becomes unstable; but an additional local minim
appears atQ̃,0 which we interpret as a new metastab
state~not shown in Fig. 1!.

The evolution of ground states ash̃ is varied is summa-
rized in Fig. 2. As is clearly visible, the phase transition is
weakly first-order one. The jump inQ̃ at the phase transition
(h̃51.0) is equal to1

2 .
It is worth emphasizing that a positiveQ̃ corresponds to a

rodlike nematic state; forQ̃51 the state is microscopicall
given by

~naca
† !2

A2
u0&. ~32!

A solution with negativeQ̃ indicates a disklike nematic
state; the microscopic wave function is

S 1

2
ch

†ch
†2

~naca
† !2

2 D u0&, ~33!

FIG. 1. Energy~measured in units ofEs) vs Q̃ for varioush̃ for

N52. Curves from top to bottom are forh̃50.97, 0.99, 1.0, 1.02.
09441
e

tt

at Q̃52 1
2 . For n5ez the wave functions in Eqs.~32! and

~33! become 1/A2cz
†cz

†u0& and 1
2 (cx

†cx
†1cy

†cy
†)u0&, respec-

tively.
We have also tried a five-parameter variational approa

taking into account the full on-site Hilbert space. In a sligh
different representation we write the trial wave function a

uC&5)
k

~cxxuxx&k1cyyuyy&k1czzuzz&k1cxyuxy&k

1cxzuxz&k1cyzuyz&k). ~34!

Here uaa&k51/A2ck,a
† ck,a

† u0& ~no summation! and uab&k

5ck,a
† ck,b

† u0&. This results in the following expression fo
the energy:

E5Es@4~cxx
2 1cyy

2 1czz
2 2cxxcyy2cxxczz2cyyczz!16~cxy

2

1cxz
2 1cyz

2 !#2zJ̃ex@6~cxx
4 1cyy

4 1czz
4 !14~cxy

4 1cxz
4 1cyz

4 !

14~cxx
2 cyy

2 1cxx
2 czz

2 1cyy
2 czz

2 !112~cxx
2 cxy

2 1cxx
2 cxz

2

1cyy
2 cxy

2 1cyy
2 cyz

2 1czz
2 cxz

2 1czz
2 cyz

2 !18~cxy
2 cxz

2 1cxy
2 cyz

2

1cxz
2 cyz

2 !18A2~cxx1cyy1czz!cxycxzcyz14~cxx
2 cyz

2

1cyy
2 cxz

2 1czz
2 cxy

2 !18~cxxcyycxy
2 1cxxczzcxz

2

1cyyczzcxz
2 !#. ~35!

The conclusions are almost the same and summarized
low.

~i! For h̃,0.985, the only minimum is atcxx5cyy5czz

51/A3, cab50 for aÞb.
~ii ! At h̃50.985 additional local minima appear.
~iii ! At h̃51 a first-order phase transition takes place.

FIG. 2. ~Color online! The nematic order parameter as a fun

tion of h̃ for N52. The phase transition takes place ath̃51. Data
along the black lines represent ground states; the red~light! lines
are for metastable states. Spheres with double-headed arrow
introduced to represent ordering in directorn defined in Eq.~25! in
different Mott states. In spin-singlet states, the directorn is uncor-
related; in rodlike nematic states, the directorn is ordered and in
disklike states, the axis of the easy plane of the directorn is or-
dered.
0-4
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~iv! For 8
9 .h̃.1, the global minimum is atQ̃.0, but

the Q̃50 solution remains to be a local minimum.
~v! At h̃5 9

8 the solution atcxx5cyy5czz51/A3 becomes
unstable.

~vi! However, the disklikeQ̃,0 solution appears in this
case as a saddle point.

B. Large-N limit: An even number of particles per site

For a large number of particles per site, it is convenien
introduce the following coherent state representation:

un,x&5
1

A2dN
(

m5N2dN

N1dN

exp~2 imx!
~naca

† !m

A2~m21!!
u0&,

~36!

where the directorn is again a unit vector onS2 given by
(cosf sinu,sinf sinu,cosu). In this representation

r̂5 i
]

]xk
, ~37!

Ŝ5 in3
]

]n
, ~38!

Ŝ252F 1

sinu

]

]u S sinu
]

]u D1
1

sin2u

]2

]f2G , ~39!

Q̂ab5N~nanb2 1
3 dab!. ~40!

The Hamiltonian in Eq.~7! can be mapped to a constraine
quantum rotor model~CQR!, describing the dynamics of two
unit vectors (n,eix) on a two-sphere and a unit circle:

HCQR52t(̂
kl&

nk•nlcos~xk2x l !1(
k

EsŜk
21Ecr̂k

22 r̂km,

~41!

t5N t̃. The CQR model has been introduced to study sp
one bosons in a few previous works and we refer to th
papers for detailed discussions.5,6,16 For Mott states the ef-
fective Hamiltonian can be found as
y

09441
o

-
e

H5Es(
k

Sk
22Jex(̂

kl&
~nk•nl !

2, Jex5
t2

2Ec
, ~42!

and we defineh5zJex/Es .
In general, we choose the on-site trial wave function to

c~nk!5CsexpFs2 ~nk•n0!2G . ~43!

Cs is a normalization constant. Whens→0 this yields an
isotropic stateY00(nk), which indicates a spin-singlet stat
Whens→1`, nk is localized on the two-sphere in the v
cinity of n0, representing a rodlike nematic state and wh
s→2`, nk lies in a plane perpendicular ton0, correspond-
ing to a disklike spin nematic state. Moreover this wa
function has the following property:c(2nk)5c(nk), as is
required for an even number of particles per site.16

Choosingn05ez this gives

c~fk ,uk!5CsexpFs2cos2ukG . ~44!

The expectation value of the Hamiltonian in this state

FIG. 3. Energy~in units ofEs) as a function ofs for varioush
(N52k@1). From top to bottom are curves forh59.9, 9.96, 10,
10.0965, 10.3.
Es5EsS 2
3

4
2

1

2
s1

3esAusu

2ApErfiAusu
D 2zJexS 12e2ss24esApAusu~312s!ErfiAusu1p@314~s1s2!#Erfi2Ausu

8ps2Erfi2Ausu
D ,
o
f

a

sig-
in which Erfi@x# is the complex error function defined b
Erf@ ix#/ i . In a series expansion fors!1, the result is:

2
zJex

3
1S 2

15
Es2

8

675
zJexDs21S 4

315
Es2

32

14175
zJexDs3

1S 2
8

4725
Es1

32

165375
zJexDs41o~s5!. ~45!
The energy as a function ofs at differenth is plotted in
Fig. 3, which is qualitatively the same as Fig. 1 for tw
particles per site. Whenh,9.96, the energy as a function o
s has only one~global! minimum, which corresponds to
spin-singlet ground state. Whenh.9.96, in addition to the
global minimum, there appears a local minimum ats.0. At
h5hc510.0965, these two minima become degenerate,
nifying a phase transition. Ath.hc , the solution ats50
0-5
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becomes a local minimum indicating a metastable sp
singlet state, whereas the global minimum ats.0 corre-
sponds to a nematic ground state. Ash further increases, the
solution at s50 becomes unstable and a local minimu
occurs ats,0, while the global minimum remains ats
.0. Following discussions on Eqs.~32! and ~33! we inter-
pret thes,0 solution as a metastable disklike spin nem
ics.

For the trial wave function in Eq.~44! the nematic order
parameter can be calculated as

Q̃5
^suQ̂abus&

^`uQ̂abu`&
52

1

2
2

3

4s
1

3es

2ApusuErfiAusu
. ~46!

WhenQ̃ is small, we obtain an expression of energy in ter
of Q̃:

EQ̃52
zJex

3
1S 15

2
Es2

2

3
zJexD Q̃22

75

14
EsQ̃

31
1275

98
EsQ̃

4.

~47!

The jump inQ̃ at the phase transition is equal to 0.323.
The evolution of ground-state wave functions and res

on quantum phase transitions are summarized in Fig
where the nematic order parameter is plotted as a functio
h. As stated before, these results are only valid in hi
dimensional lattices, where fluctuations in ordered states
small. For detailed calculations of fluctuations we refer
Appendix B.

C. Large-N limit: An odd number of particles per site

At last, we also present results for an odd number
atoms per site. The main difference between this case an
case for an even number of particles per site is that at z
hopping limit in the former case there is always an unpai
atom at each site. Consequently in the mean-field appr
mation, we only find nematic Mott insulating phases. As
the case for even numbers of particles per site, we expect
approximation to be valid in high-dimensional lattices b
fail in low dimensions, especially in one-dimensional lattic

FIG. 4. ~Color online! Nematic order parameter as a function
h for N52k(@1). Along the black lines are ground states; alo
the red~light! lines are metastable states.~See also the caption o
Fig. 2.!
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where long wavelength fluctuations are substantial. Here
restrict ourselves to high-dimensional lattices only.

For largeN a trial wave function which interpolates be
tween spin-singlet states~dimerized! and nematic states ca
be introduced as

Codd~$nk%!5 )
^kl&p

C~O,s!@O~nk•n0!~nl•n0!

1~nk•nl !#exp$s@~nk•n0!21~nl•n0!2#%.

~48!

^kl&p denotes that the summation should be taken over
allely ordered pairs of nearest neighborsk andl covering the
lattice. C(O,s) is a normalization constant. The solutio
with O50,s50 corresponds to a dimerized valence-bo
crystal state; and solutions withOÞ0, or sÞ0 represent
nematic states.

It is straightforward, but tedious to compute the energy
these states. Minimizing it with respect to various values
h for d53 gives the results shown in Figs. 5 and 6. N
phase transitions are found in the mean-field approximat
and ground states break both rotational and translatio
symmetries.17

At very small h, the on-site Hilbert space is truncate
into the one for a spin-one particle.6 The reduced Hamil-
tonian in the truncated space is a Bilinear-Biquadratic mo
for spin-1 lattices

FIG. 5. The value ofO as a function ofh (N52k11@1).

FIG. 6. The value ofs as a function ofh (N52k11@1).
0-6
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Hb.b.5J(̂
kl&

@cosuSk•Sl1sinu~Sk•Sl !
2#, Sk

252, ~49!

u in general varies between23p/4 and2p/2. We therefor
expect ground states at smallh limit should still exhibit
nematic order~i.e., OÞ0).

It is worth emphasizing that conclusions about smallh
limit arrived here are only valid in high-dimensional biparti
lattices. In low-dimensional lattices, states of correlated
oms in this limit were discussed recently and ground sta
could be rotationally invariant dimerized-valence-bo
crystals.6

IV. CONCLUSIONS

We have studied the microscopic wave functions of s
nematic and spin-singlet Mott states. Both disklike and r
like spin nematic states were investigated. We also have
lyzed quantum phase transitions between spin singlet M
insulating states and nematic Mott insulating states. We s
that in the mean-field approximation, the phase transiti
are weakly first-order ones. Thus, we expect that fluctuati
play a very important role in these transitions and the
theory on quantum phase transitions remains to be dis
ered.

On the other hand, we have estimated fluctuations in
ferent regimes of the parameter space. We found that fl
tuations are indeed small away from the critical point,
either small hopping or large hopping limit for an even nu
ber of particles per site. At the small hopping limit, fluctu
tions are proportional toh, while at the large hopping limit
they can be estimated to be proportional to 1/Ah ~see Ap-
pendix B!.

For an odd number of particles per site, fluctuations
small only at large hopping limit and are significant at sm
hopping limit. The later fact implies a large degeneracy
Mott states at zero hopping limit which was emphasized
the discussions on low-dimensional Mott states. The phy
in this limit remains to be fully understood.

In the context of antiferromagnets, spin nematic sta
have also been proposed.18–20 Collective excitations in
atomic nematic states should be similar to those studie
previous works; we present some brief discussions on
subject in Appendix B and refer to Refs. 18–20 for detai

Note added in proof. Recently, we became aware of
paper21 by A. Imambekov, M. Lukin, and E. Demler, wher
similar results have been obtained.
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APPENDIX A: AN ALTERNATIVE DESCRIPTION

Alternatively, one can also carry out the calculations
Sec. III, using the following operator:
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Q̂2,aa85ŜaŜa82 1
3 daa8Ŝ

gŜg52eabgea8b8g8cb
†cb8

† cgcg8

1daa8ch
†ch2ca8

† ca2 1
3 daa8Ŝtot

2 . ~A1!

Defining the more conventional order parameter19

Q̃25
^Q̂2,aa8&

^Q̂2,aa8& ref

, ~A2!

we obtain the following results for the trial wave function
Eq. ~28!:

Q̃25A3

2
sin2u,

E56EsA2

3
Q̃22

2

3
zJ̃exF2A2AA2

3S 12A2

3
Q̃2D Q̃2

1A2

3
Q̃2G2

5S 2A6Es2
16

3
A2

3
zJ̃exD Q̃2

2
16A4 2

A4 37
zJexQ̃2

3/21
28

9
zJ̃exQ̃2

21O~Q̃2
5/2!,

which lead to the same conclusions as in Sec. III. Howev
in terms of the order parameter defined in Eq.~A2!, the rod-
like and disklike structures shown in Figs. 2 and 4 are l
obvious.

In the case of a large number of particles per site,
order parameter introduced here has the same expect
value as the operator in Eq.~40!.

APPENDIX B: SPIN FLUCTUATIONS IN MOTT STATES

Nonlinear dynamics and spin fluctuations in condensa
of spin-one bosons were discussed in a previous wor16

Here we carry out a similar discussion for Mott states. F
lowing the Hamiltonian

H5Es(
k

Ŝk
22Jex(̂

kl&
~nk•nl !

2, ~B1!

we derive the following equation of motion for the direct
nk :

dnk

dt
52EsŜk3nk . ~B2!

1. Fluctuations whenh is small

For h5zJex/Es50 and an even number of particles p
site, the ground state is the product state:

Ch505)
k

Y00~nk!. ~B3!

When 0,h!1, the ground-state wave function can also
obtained by a perturbation theory; the leading term is
0-7



or

g
b

a

-

a-

he

it

t-
as

t the

U
r,

hy

le

e,

.P.

MICHIEL SNOEK AND FEI ZHOU PHYSICAL REVIEW B69, 094410 ~2004!
C0
(1)5 (

lÞ0,m

K C lm
(0)U2Jex(̂

kl&
~nk•nl !

2UC00
(0)L

E00
(0)2Elm

(0)
. ~B4!

In our caseC lm
(0)5Ylm with l even, andEl

(0)5 l ( l 11)Es . A
direct calculation yields

C0
(1)5

h

45z (̂
i j &

(
m522

2

Y2m~ni !Y2,2m~nj ! )
kÞ i , j

Y00~nk!.

~B5!

Taking into account̂ Y00uQ̂abuY00&50, we find desired
results in this limit,

^Q̂k,ab&50. ~B6!

To characterize fluctuations, we study the following c
relation function^Q̂k,aaQ̂k8,aa&. Calculations of this corre-
lation function in the state given in Eq.~B5! yield

^Q̂k,aaQ̂k8,aa&5
2h

45
d~kk8,^kl&! (

m522

2

~^Y2muQ̂aauY00&

3^Y2,2muQ̂aauY00&1H.c.!.

d(kk8,^kl&) is unity if k8 and k sites are two neighborin
sites aŝ kl& and otherwise is zero. The last expression can
calculated explicitly,

~^Y2muQ̂aauY00&^Y2,2muQ̂aauY00&1H.c.!5 8
45 . ~B7!

Clearly at smallh, fluctuations are small.

2. Fluctuations whenh is large

Again we consider the case for an even number of p
ticles per site. In the limit ofh→`, all directorsnk point in
the direction ofez . For a finite but largeh we introduce

nk5ezA12Ckx
2 2Cky

2 1Ckxex1Ckyey , ~B8!

whereCka , a5x,y are much less than unity.
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(
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following Hamiltonian

H5(
q,a
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2
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2 L 5

1
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K (
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1

sinuqup/2
.
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