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Microscopic wave functions of spin-singlet and nematic Mott states of spin-one bosons
in high-dimensional bipartite lattices
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We present microscopic wave functions of spin-singlet Mott insulating states and nematic Mott insulating
states. We also investigate quantum phase transitions between the spin-singlet Mott phase and the nematic Mott
phase in both larg&t limit and smallN limit (N being the number of particles per sgiia high-dimensional
bipartite lattices. In the mean-field approximation employed in this article we find that phase transitions are
generally weakly first order.
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I. INTRODUCTION Il. ALGEBRA AND SETTING
The recent observation of correlated states of bosonic at- A. The microscopic Hamiltonian in the dilute fimit
oms in optical lattices has generated much intef@ss The microscopic lattice Hamiltonian we employ to study
known for a while, when bosons in lattices interact with eachspin-correlated states of spin-one bosons is
other repulsively, they can be Iocalggted and form a Mott
insulating state instead of a condensdt&his phenomenon ) _ +
has been observed in the optical lattice experiment. By vary- Hmicroscopé t(% (iemthm* H-C.
ing laser intensities of optical lattices, Greineral. have
successfully investigated Mott states of spinless bosons b t p T
probing sp%—polariz%d cold atoms in opticpal lattices with ay +k2,l VemtemU (KD th g e
large potential depth?

Wg are interested in splrj-correl_ated Mott msulat_lng sta}tes +2 lﬁl,ms%nlﬂans(ky')lﬂ:mrSy W
of spin-one bosons, especially spin-one bosons with antifer- K1
romagnetic interactions. Some aspects of spin-correlated 1)
Mott insulating states were investigated recently. For an even
number of particles per site, both spin-singlet Mott insulatordHere 'ﬂl,m is the creation operator of a spin-one particle at
and nematic Mott insulators were found in certain parametesite k with spin indexm=0,=1. (kl) indicates that the sum
regimes, while for high-dimensional lattices with an oddshould be taken over nearest neighbors &4d y=x,y,z)
number of particles per site only nematic insulating stategre spin-one matrix operators given as
were proposed. In one-dimensionak1D) lattices, it was

demonstrated that for an odd number of particles per site, 010 0 —-i 0

Mott states should be dimerized valence-bond crystals, Sx:i 1 0 1 Sy:i i 0 —i

which support interesting fractionalized quasiexcitatidns. J2 01 0 ' J2 . 0 ’
i

Effects of spin correlations on Mott insulator-superfluid tran-

sitions have been studied and remain to be fully understood.
In this article, we analyze the microscopic structures of 10 0

spin-singlet Mott insulating statdSSMI) and nematic Mott =0 0 O

insulating stategNMI). We study, quantitatively, quantum 00 -1

phase transitions between these two phases in high-

dimensional bipartite lattices. In the mean-field approxima-U*(k,1) andUS(k,|) are, respectively, spin-independent and

tion, we demonstrate that for an even number of particles pespin-dependent interaction parameters between two bosons

site, the transitions are weakly first order. We should emphaat sitek and|.

size that results obtained in this paper are only valid in high |, the dilute limit, which is defined as a limit whep_fa3

dimensions. In one-dimensional lattices, nematic order doe%1 (a is the scattering length ang the average density
not survive long wavelength quantum fluctuations; detailed g ‘eng 9

. - ; . atoms scatter irs-wave channels. For two spin-one atoms,
discussions on low-dimensional Mott states for both eve P

and odd numbers of particles per site are presented in Ref.rqu.i?hsscgéfé'r?r? tiaeknes;hpzilace Ilr?t;?aectt% tr?é igtﬁngnczgrmslzén
The organization is as follows. In Sec. I, we present th g lengtha .

general setting for the study of spin order-disorder quantuﬁpe approximated as spin-dependent contact interactiams.

phase transitions. In Sec. lll, we present mean-field resultgqe lattice model introduced here, calculations yield

on the quantum phase transitions in both sralind large- UP(k1)=E.8q and US(k,1)=E.5,. )
N limits. In Sec. IV, we discuss issues which are to be un- ' ek ' skl
derstood in the future. The parameterk. andEg are given by
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whereN is the average number of atoms per skkjs the
mass of atoms, and is a constant.

B. Algebras

For the study of spin-correlated states in lattices, it is

rather convenient to introduce the following operators:

Loy i
‘/’k,xzﬁ(l/fk,—l_ 1) (4a)
Lo t
‘/fk,yzﬁ('/’k,fl"‘ 1) (4b)
Y= Yo (40
wherek again labels a lattice site. In this representation
Ul mStanthion=Si=—1€PVY i . (5)

a,B,ve{x,y,z}. The density operator can be expressed in
usual way:

P= Uk - (6)

Consequently the Hamiltonian is given as

Hian= —T% <wl,aw.,a+H.c.>+; Ecpg+EsSe— pst.
(7

where we have introduced the chemical poterﬁiaéﬁ is the

total spin operato, .S .-
Yo« (@=X,y,z) are bosonic operators obeying the fol-
lowing commutation relations:

[Yiarth pl=1 dfl,a ' ¢’|T,5] =0, [¥xa: l/fﬁg] = Ok 0ap - ®

Taking into account Eqg5), (6), and(8), one can verify the
following algebras:

[SE.th,51= Bl €, (9a)
(S50 g1= Si e“Pryst (9b)
[§.§1= 6P, (90)
[P ¥1,0)= = St (99)
[Pkt 1= St (99
[S¢.p]=0. (9f)

Of particular interest is the singlet creation operator
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We find the following properties for this operator:
[Asg1wl1-,awl1.,a]:[’\$vlzbl,alpl,a]zoi (113
[lﬁk,alpk,a!wl-r,ﬁ]:ZEkllﬂk,B’ (11b
[ atlia 1 gt 51 = Sa(4pict6). (119
C. The on-site dynamics
The total spin operator can be expressed as

Se= Pt 1) = Uk Wi i stk - (12

So, eigenstates of the total spin operator have to be eigen-
states of the “singlet counting operatocl}’lyaz//l’az//kﬁwkﬁ.
Defining the stately ; such that

iﬂl,alﬂl,alﬂk,plﬂk,ﬁ‘l’ﬂ,o: 0, (13

ve find that wave functions of these eigenstates are
km=C(Uk ot o) ™ 0"™,

whereC is a normalization constant. From Ed.10 it fol-
lows that:

Pk‘I’E,o: ”‘I’E,o’

(14

W o ot gt gV m=[4m(n—m)+2m]Wy . (15)

Using thatp, ¥} ,=nW} ., we derive

Sy =(n—2m)(n—2m+1)¥y . (16)

SoS=n—2m. Now if nis even,S, is also even and when
nis odd,S, is odd too. For an even number of particles per
site N the states labeled b$,=0,2,4 ... ,N are present,
whereas for an odd number of particles per skg
=1,3,5...,N are allowed. This reflects the basic property
of the many-body wave function of spin-one bosons, which
has to be symmetric under the interchange of two particles.

Solutions for spin-correlated condensates with finite num-
bers of particles were previously obtain&il the thermody-
namical limit, these states evolve into polar
condensate$!®! Also there, two-body scatterings were
shown to lead to either “antiferromagnetic” or “ferromag-
netic” spin correlations in condensates. Spin-correlated con-
densates have been investigated in experiménts.

D. The effective Hamiltonian for Mott states

In the limit whent<E., atoms are localized and only
virtual exchange processes are allowed. An effective Hamil-
tonian in this limit can be derived in a second-order pertur-
bative calculation of the Hamiltonian in E¢7):

Hygon= 2, ;—3% (Wath atl g st HC). (17)
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HereJe,= (t%/2E,). In deriving Eq.(17), we have taken into
account thaEs<E..

To facilitate discussions, we introduce the following op-

erator:
Qk,aﬁ: lpl,awk,ﬁ_ %6aﬁ¢l,y¢k,y il (18)
whose expectation value
= (Qup)
Q== (19
<Qaﬁ>ref

is the nematic order parameter. The reference state
=L [ (N4 )NANIT0) is a maximally ordered state.
Choosingn=¢,, we obtain

o 1
<Qaﬁ>ref: N 0 3 0 (20)

o
o
Wl N

Q varies in a range of—%,1].
In terms of the operato@a,;, the effective Mott Hamil-
tonian can be rewritten gsip to an energy shift

Hef= Es; T QQx— QuQL] _jex% T Qi Q1.
(21)

Finally we define

o ZJey
K=

(22

S

as a dimensionless parameter, which can be varied contin

ously; z is the coordination number of lattice.

E. The range of the physical parameters

From Eq.(3) it is clear thatE; and E. depend on the
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Ill. PHASE TRANSITIONS BETWEEN SSMI'S AND NMI'S

A. Two particles per site

In the case of two particles per site, the on-site Hilbert
space is six dimensional, including a spin-singlet state

Tt
5=05-0)= “22) @3
and five spinS=2 states
V3
|Q77§>: 7Qn§¢w§|o>, (24

whereQ, . is a symmetric and traceless tensor with five in-
dependent elements. All states in the Hilbert space are sym-
metric under the interchange of bosons; as expected, the
state§Q, ;) are orthogonal t¢S=0,S,=0). It is convenient

to choose the following representation @f,, :

with the directorn as a unit vector living orf?. States de-
fined by the directom form an over-complete set in the
subspace spanned by fige=2 states.

When the hopping is zero, one notes that the Hamiltonian
in Eqg. (17) commutes WitI"Sf; the ground-state wave func-
tion is

[w)y=111s=05=0). (26)

On the other hand, wheBg goes to zero, the Hamiltonian

commutes with TrQy ,sQi s.] and the ground-state wave
function can be confirmed as

_H \F 1 _ _
|W)= , 31 QUM+ ﬁ|3—0,5z—0>k (27)

for any choice of the directan.

To study spin nematic or spin-singlet Mott states at an
arbitrary 77, we introduce a trial wave function which is a
linear superposition of singlet states and symmetry breaking

u_

States:

|W) = ];[ €0s6|S=0,5,=0),+sin4]Q,(n)y. (28)

Here 60 is a variable to be determined by the variational

density, number of atoms, the mass of atoms and scatteringethod.
lengths. However, their ratio depends only on the scattering A straightforward calculation leads to the following re-

lengths. According to current estimatésior sodium atoms
this ratio is given asK/E.)~4x10 2. In this paper, we
are interested in the lImE,<E..

The parametet can be varied independently by changing
the depth of the optical lattice. A wide range is experimen-

tally accessible; one can vary from the regime whb‘aﬁc
to a regime wheré < E;. We limit ourselves to Mott states

(t<E,), where all bosons are localized, but the ragican
have arbitrary values.

sults:
E(6)=(W|H| W) ,=6ESiM6— 2z Jo (2y2c0s0 sin 6

+5sirf6)?, (29

- Sirf 6
Q=| \2cosfsing+ ——]|.

5 (30

In terms ofQ, the energy can be expressed as
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FIG. 1. Energy(measured in units d,) vs Q for variousz for

N=2. Curves from top to bottom are foy=0.97, 0.99, 1.0, 1.02. FIG. 2. (Color onlineg The nematic order parameter as a func-

tion of 7 for N=2. The phase transition takes placezat 1. Data

4 2~ 4\/f 8 ~ o~ i . i i
_ - NPTV _° 2 along the black lines represent ground states; the(light) lines
E=6E; 9 * 9Q 9 2Q7+Q+1 32‘]‘9"Q ’ are for metastable states. Spheres with double-headed arrows are

introduced to represent ordering in directodefined in Eq(25) in
which for Q<1 can be expanded as different Mott states. In spin-singlet states, the directds uncor-
related; in rodlike nematic states, the directois ordered and in

8 =2 3L =3, 39 =4 disklike states, the axis of the easy plane of the direntds or-
(BEs—32Je)Q°— 2 EsQ + GEQ ™+ - - -. (3D dered.

The cubic term leads to a first-order phase transition in the  ~ 1 . .
mean-field approximation, which is similar to the situation in & Q= ~z- For nzTeZTthe wave fuTnc]yonsT m Eqg32) and
classical nematic liquid crystats. (33 become 12¢}y,]0) and 3 (gt dyi)[0), respec-
In Fig. 1 theQ dependence of energy is plotted for vari- tively.
' We have also tried a five-parameter variational approach,

ous in the vicinity of a quantum critical poinimean field.  taking into account the full on-site Hilbert space. In a slightly
For 7<<0.985, the energy has only one minimum@&0  different representation we write the trial wave function as
and correspondingly the ground state is a spin-singlet Mott

state. When 0.9857<1.0, in addition to the global mini-
mum atQ=0, there appears a local minimum @0, |\P>:1|:[ (Cx XXt Cyp| YY)t €222+ Cr XY
which represents a spin nematic metastable state. \When
>1.0 the solution withQ>0 becomes a global minimum

and the solution aQ=0 is metastablg; consequently the yaore |aa>k:1/\/§djl,ad/l,a|o> (no summatioh and | &),
ground state is a nematic Mott state. Apr §, the solution = Ut Ut 510). This results in the following expression for
at Q=0 becomes unstable; but an additional local minimumthe energy:
appears alD<0 which we interpret as a new metastable
state(not shown in Fig. 1 B E=E4(CZ,+Clyt 5, CyxCyy— CxxCaz— CyyCsp) +6(CEy

The evolution of ground states asis varied is summa- s - i 4 a4 4 4 4
rized in Fig. 2. As is clearly visible, the phase transition is a +Cy T Cyz)]_z‘]e{G(Cxx'{_ ny+ sz)+4(cxy+ Cxzt Cyz)

+ sz| Xz>k+ Cyz| yZ> k) . (34)

weakly f|r§t-order orle. The jump @ at the phase transition +4(CE,C2, + CE o+ Co el ) +12(C2 cE + C2 e,
(7=1.0) is equal tc;. 2 2 2 2 2.2 2.2 2 .2 2 .2
It is worth emphasizing that a positi¥@ corresponds to a +CyyCy+ CyyCyrt Coliat C2ly2) +8(Chy Lozt Gy Oy
{:]ci)\(/jclairl?eb;ematic state; foQ=1 the state is microscopically T Cizciz) +82(Cyt+ Cyy+ C22) CyCx Lyt 4(C>2(XC3212
+ Csyciz—’_ ngciy) + 8(CxnyyC>2<y+ CxszZC>2<z
th2
n 2
% |0). (32 +CyyCrLx2) |- (35
2

The conclusions are almost the same and summarized be-
A solution with negativeQ indicates a disklike nematic low. N
state; the microscopic wave function is (i) For »<<0.985, the only minimum is at,,=C,,=C,,
=13, c,z=0 for a# .
(i) At 7=0.985 additional local minima appear.

(Nal)?
(i) At 7=1 a first-order phase transition takes place.

1
Syl —%—|0), (33
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(iv) For $>7%>1, the global minimum is a©>0, but
the Q=0 solution remains to be a local minimum.

(v) At =3 the solution at,,=c,,=c,,~ 1/\/3 becomes
unstable.

(vi) However, the disklikeQ<0 solution appears in this

case as a saddle point.

B. Large-N limit: An even number of particles per site

For a large number of particles per site, it is convenient to

introduce the following coherent state representation:

Nt o (ngyhm
In,x)= N m:NE_(SN exp(— lmx)mm%

(36)

where the directon is again a unit vector of$? given by
(cosgsing,sing sind,cosd). In this representation

. d @7
:|—,

P IXk

S=i ><(9 38

o 1 9/ 9 1 5 39
= lsna a6\ ") e er Y

Qup=N(Nnng—38,p). (40)
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FIG. 3. Energy(in units of Eg) as a function ofr for variousz
(N=2k>1). From top to bottom are curves fgr=9.9, 9.96, 10,
10.0965, 10.3.

2

t
= —_ . 2 = —
H=Es2 S do () Jo=pg, (42

and we definep=2zJ.,/E;.
In general, we choose the on-site trial wave function to be

. (43

w(nk)=cgex;{§<nk~ no)?

C, is a normalization constant. When—0 this yields an
isotropic stateYy(ny), which indicates a spin-singlet state.
Wheno— +%, ny is localized on the two-sphere in the vi-
cinity of ngy, representing a rodlike nematic state and when

The Hamiltonian in Eq(7) can be mapped to a constrained ¢— —«, n, lies in a plane perpendicular tg, correspond-
quantum rotor modglCQR), describing the dynamics of two ing to a disklike spin nematic state. Moreover this wave

unit vectors (,e'X) on a two-sphere and a unit circle:

HCQR:_I% nk'n|005(Xk_X|)+§k: EsS+Ecpi— prit,
(41

t=Nt. The CQR model has been introduced to study spin-
one bosons in a few previous works and we refer to those
papers for detailed discussion$® For Mott states the ef-

fective Hamiltonian can be found as

3e”\[o]

function has the following propertys(—n,) = #(ny), as is
required for an even number of particles per stte.
Choosingng=eg, this gives

Wby, 0 ) = Cgex;{gco&Qk] (44)

The expectation value of the Hamiltonian in this state is

1262 — 4e”\m\|o|(3+ 20)Erfiv| o| + 7[ 3+ 4(o + o) |Erfi2\| o]

3 1
272

PN JIFI) _ZJEX(

in which Erfix] is the complex error function defined by

Erflix]/i. In a series expansion fer<1, the result is:

2d (2 NI
3 1575 67577 T\ 3157 141757
8 32 , ]
+| — 4725ES+ 165375ZJ€X o*+0o(ov). (45)

8wo?Erfi?y/| o] ) ,

The energy as a function ef at different# is plotted in
Fig. 3, which is qualitatively the same as Fig. 1 for two
particles per site. When<9.96, the energy as a function of
o has only one(globa) minimum, which corresponds to a
spin-singlet ground state. Whep>9.96, in addition to the
global minimum, there appears a local minimunvat0. At
n=n.=10.0965, these two minima become degenerate, sig-
nifying a phase transition. Ay> 7., the solution ato=0

094410-5
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tilde Q
T @@@@ 17.5
NN
5
b.d 12.5 "~...
10
Q.2 7.5
5 10 15 20 et >
oose Nl “
-0.2
@@@@ 5 10 15 20 !

) . . FIG. 5. The value oD as a function ofy (N=2k+1>1).
FIG. 4. (Color online Nematic order parameter as a function of

n for N=2k(>1). Along the black lines are ground states; along . .
the red(light) lines are metastable statéSee also the caption of Where long wavelength fluctuations are substantial. Here we
Fig. 2) restrict ourselves to high-dimensional lattices only.

For largeN a trial wave function which interpolates be-
becomes a local minimum indicating a metastable spinfween spin-singlet stateslimerized and nematic states can
singlet state, whereas the global minimumeat0 corre- e introduced as
sponds to a nematic ground state. Afurther increases, the
solution atoc=0 becomes unstable and a local minimum

occurs ato<0, while the global minimum remains at W oad i) = C(0,0)[O(ng-Ng)(N;-Ng)

>0. Following discussions on Eq&32) and(33) we inter- (kDp

pret theo<0 solution as a metastable disklike spin nemat- +(ne-n)le Ne- N2+ (M- D)2

iy () Jexp{o (my-no)* + (- o)1}
For the trial wave function in Eq44) the nematic order (48)

parameter can be calculated as

. (kl)p denotes that the summation should be taken over par-
o (0]Qaploy 1 i+ 3e” 46) allely ordered pairs of nearest neighbé&rand| covering the
B (2] Q gl ) 2 40 2(mlolEriVo] lattice. C(O,0) is a normalization constant. The solution
with O=0,0=0 corresponds to a dimerized valence-bond

WhenQ is small, we obtain an expression of energy in termscrystal state; and solutions wit®+#0, or o#0 represent
nematic states.

of Q: It is straightforward, but tedious to compute the energy of
7] 15 2 75 _ 1275 _ these states. Minimizing it with respect to various values of

Eg=— ex (_ES_ —zJex> 02— —E0%+ ——E0Q* 7 for d=3 gives the results shown in Figs. 5 and 6. No
3 2 3 14 98 phase transitions are found in the mean-field approximation;

(47) and ground states break both rotational and translational
symmetries.’

At very small 5, the on-site Hilbert space is truncated
nto the one for a spin-one partidieThe reduced Hamil-
Pnian in the truncated space is a Bilinear-Biquadratic model
or spin-1 lattices

The jump inQ at the phase transition is equal to 0.323.

The evolution of ground-state wave functions and result
on quantum phase transitions are summarized in Fig.
where the nematic order parameter is plotted as a function g
7. As stated before, these results are only valid in high-
dimensional lattices, where fluctuations in ordered states are
small. For detailed calculations of fluctuations we refer to
Appendix B.

g

C. Large-N limit: An odd number of particles per site

At last, we also present results for an odd number of
atoms per site. The main difference between this case and the
case for an even number of particles per site is that at zero ¢
hopping limit in the former case there is always an unpaired
atom at each site. Consequently in the mean-field approxi- 2
mation, we only find nematic Mott insulating phases. As in
the case for even numbers of particles per site, we expect this
approximation to be valid in high-dimensional lattices but
fail in low dimensions, especially in one-dimensional lattices FIG. 6. The value ofr as a function ofy (N=2k+1>1).

5 10 15 20 n
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~ _&ada’ _ 1 Sy&y— _ LaBy o' By T T
Hb_b_:J<2> [COSGS(S‘l‘Sln H(SKS)Z], 3322, (49) szaar S S 35aa78787 € 76 Y ¢B¢B’¢7¢)”
Kl

+5aa’¢'T¢' _l/"zflpa_laaa”\ . (Al)
0 in general varies between 3#/4 and— /2. We therefor T ’ Stzm

expect ground states at smajl limit should still exhibit  Defining the more conventional order param&ter
nematic ordefi.e., O#0).

It is worth emphasizing that conclusions about small - (QZM,>
limit arrived here are only valid in high-dimensional bipartite Q= (A2)
lattices. In low-dimensional lattices, states of correlated at- (Qzar et

oms in this limit were discussed recently and ground statege optain the following results for the trial wave function in
could be rotationally invariant dimerized-valence-bondgq, (2g):

crystals®

_ 3
IV. CONCLUSIONS Q,= Esmzﬂ,

We have studied the microscopic wave functions of spin
nematic and spin-singlet Mott states. Both disklike and rod- 2. 2 . 2 2. \o
like spin nematic states were investigated. We also have ana- E=6E, \[§Q2_ §ZJe»<{2\/§\/\[§( 1- \[§Q2) Q2
lyzed quantum phase transitions between spin singlet Mott
insulating states and nematic Mott insulating states. We show > ? 16 /2 _ \_
that in the mean-field approximation, the phase transitions +\3Q :(2\/555— 3 §ZJex) Q2

are weakly first-order ones. Thus, we expect that fluctuations

play a very important role in these transitions and the full 1682 _ 28 _ _ _
theory on quantum phase transitions remains to be discov-  — WZJQXQE’AL 3zJeXQ§+ 0(03?),
ered.

On the other hand, we have estimated fluctuations in difypich jead to the same conclusions as in Sec. Ill. However,

ferent regimes of the parameter space. We found that fluGi, 1arms of the order parameter defined in E&), the rod-

tqations are indged small away from_ the critical point, aljje and disklike structures shown in Figs. 2 and 4 are less
either small hopping or large hopping limit for an even nuM- b ious

ber of particles per site. At the small hopping limit, fluctua- In the case of a large number of particles per site, the
tions are proportional tgy, while at the large hopping limit 5 4er harameter introduced here has the same expectation
they can be estimated to be proportional tq/#/(see Ap- value as the operator in EG40).

pendix B.

For an odd number of particles per site, fluctuations are
small only at large hopping limit and are significant at small
hopping limit. The later fact implies a large degeneracy of Nonlinear dynamics and spin fluctuations in condensates
Mott states at zero hopping limit which was emphasized inof spin-one bosons were discussed in a previous Work.
the discussions on low-dimensional Mott states. The physicgiere we carry out a similar discussion for Mott states. Fol-
in this limit remains to be fully understood. lowing the Hamiltonian

In the context of antiferromagnets, spin nematic states
have also been propos&t?° Collective excitations in .
atomic nematic states should be similar to those studied in H=Es> §- e, (Nen))?, (BY)
previous works; we present some brief discussions on this X D

subject in Appendix B and refer to Refs. 1820 for details. we derive the following equation of motion for the director

Note added in proofRecently, we became aware of a M-
papef! by A. Imambekov, M. Lukin, and E. Demler, where dn
k

similar results have been obtained. W:2ESS<>< ny. (B2)

APPENDIX B: SPIN FLUCTUATIONS IN MOTT STATES

ACKNOWLEDGMENTS
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APPENDIX A: AN ALTERNATIVE DESCRIPTION k

Alternatively, one can also carry out the calculations inWhen 0< <1, the ground-state wave function can also be
Sec. lll, using the following operator: obtained by a perturbation theory; the leading term is
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(0) ) Following discussions in Sec. Il B, we obtain the follow-
eXE (e np)?| W ing commutators,
NCO . (B9 . , - :
° H&O’m E(O)_E(O) [S(y,ck'x]%lgk,k’ ’ [S(chk/y]%_lb‘k,k/ ’ (Bg)
In our case¥ (9=, with | even, ancE(¥=1(1+1)E;. A  which define two sets of harmonic oscillators. Introducing
direct calculatlon yields .o . -
Hy:S(' HX:_SII (Blo)
O == <.EJ> mz Yom(M) Y2 (M) H Yoo M) the effective Hamiltonian becomes
(B5) H= 3 |ES M+ de (ck,a—cl,af},
Taking into account Yo Q.4 Yoo =0, we find desired ’ (B11)
results in this limit,
and
(Qu.ap)=0. (B6) [y Cro ] =1 S s (B12)

To characterize fluctuations, we study the following cor- 14 gptain eigenmodes, we perform a Fourier transforma-

relation function(Qy ,,Qk',«a)- Calculations of this corre- tion (setting the lattice spacing to be unity
lation function in the state given in E¢B5) yield

N 1 , . .
Hk,a:_ Z Hq,aelﬂ'k'qa Ck,a:_ 2 Cq,aelﬂ'k'qa
<Qk aan’ aa> kk, <k|>) 2 (<Y2m|Qaa|YOO> \/V_T q \/V—T 4
(B13)
XY mlOual Yoo + H.C.. whereVr is the total number of lattice sites. This leads to the
e following Hamiltonian
S(kk’,(kl)) is unity if k' and k sites are two neighboring | |
sites agkl) and otherwise is zero. The last expression can be B ~ 0 qlm
calculated explicitly, H=2 Esllg otz Sinf —— (B14)
(Y 2l Qual Yoo (Yo m| Qual Yooy + H.C)=75.  (B7) Following a standard calculation, fluctuations in this limit
Clearly at smally, fluctuations are small. are
1 2 1 1
. . 2\ _ = 2y = = .
2. Fluctuations when 5 is large <§ Ck,a> Vs < % Cq,a| ) \/; Vs |ngc sinq[/2°
Again we consider the case for an even number of par- (B15)

ticles per site. In the limit ofy— o, all directorsn, point in

e . | The momentum cut in general n n the short-
the direction ofe,. For a finite but largey we introduce e momentum cutoffi, in general depends o € sho

distance behavior of our model and for simplicity we set it as

. In high-dimensional lattices, the sum in EB15) is
n=6,\1—CZ,— C2 + Cyy&+ Ciy, Bg On¢ » 1
k=& o™ Hky T ST Sy (B8) convergent; and we see the fluctuations are also small at the
whereC,,, a=X,y are much less than unity. large-n limit.
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