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Abstract
A Feshbach resonance in the s-wave scattering length occurs if the energy of
the two atoms in the incoming open channel is close to the energy of a
bound state in a coupled closed channel. Starting from the microscopic
Hamiltonian that describes this situation, we derive the effective
atom–molecule theory for a Bose gas near a Feshbach resonance. In order to
take into account all two-body processes, we have to dress the bare
couplings of the atom–molecule model with ladder diagrams. This results in
a quantum field theory that exactly reproduces the scattering amplitude of
the atoms and the bound-state energy of the molecules. Since these
properties are incorporated at the quantum level, the theory can be applied
both above and below the critical temperature of the gas. Moreover, making
use of the true interatomic potentials ensures that no divergences are
encountered at any stage of the calculation. We also present the mean-field
theory for the Bose–Einstein condensed phase of the gas.

Keywords: Bose–Einstein condensation, Feshbach resonance,
coherent matter waves, many-body theory

1. Introduction

The recent experiment by Donley et al [1] has made it clear
that near a Feshbach resonance the coherence between atoms
and molecules can have a profound effect on the dynamics of
an atomic Bose–Einstein condensate (BEC). As a result, it has
become an urgent problem to understand from first principles
how to properly incorporate the possible coherence between
atoms and molecules into the theory of an interacting Bose gas.
In the last four years important progress towards a solution
of this problem has been made by a number of groups [2–
7]. Nevertheless, it appears that a fully satisfactory theory,
which obeys all the requirements that on physical grounds can
a priori be imposed upon the theory, still needs to be developed.
It is with this goal in mind that the present paper has been
written.

A first requirement for the theory is that it is based on an
adequate microscopic description of a Feshbach resonance.
Feshbach resonances have been known for a long time in
nuclear physics [8], but have only more recently been predicted
to occur in ultracold atomic gases [9, 10]. The defining feature

of such resonances is that they can only occur in a multichannel
scattering problem. More precisely, a Feshbach resonance
occurs when the kinetic energy of the particles in the incoming
open channel is equal to the energy of a bound state in a closed
channel that is (weakly) coupled to the incoming channel. It
is important for our purposes that the physics of a Feshbach
resonance is quite different from the physics of a resonance in
a single-channel scattering problem with a bound state near the
continuum threshold of the particles. This can most easily be
seen from the fact that in the latter case the bound state in the
incoming channel is only very weakly bound and the extent
of its wavefunction is, therefore, always much larger than the
range of the interaction between the particles. For a Feshbach
resonance the extent of the closed-channel contribution to the
bound-state wavefunction is generally of the same size as the
range of the interactions, because it usually corresponds to a
deeply bound state in the potential of another, closed, channel.
As a result also, the quantum numbers of this part of the bound-
state wavefunction are different from the quantum numbers of
the incoming particles, which is clearly not the case for the
single-channel scattering problem.
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A second requirement follows from the fact that the many-
body theory based on the microscopic description envisaged
above is free of ultraviolet divergences at any level of
approximation, and in particular for both the normal and
superfluid phases of the atomic Bose gas. The reason for this
is that microscopically the interatomic interactions responsible
for the Feshbach resonance are determined by short-range
potentials, which cut off all the momentum integrals that
arise when we diagrammatically include the effects of the
interactions. As a result the desired effective atom–molecule
Hamiltonian of the gas can contain only terms with coefficients
that are finite and cut-off. Moreover, the coefficients are
determined by only a small number of experimental parameters
such as the position and the width of the Feshbach resonance,
for instance.

The most crucial additional requirement for the effective
atom–molecule Hamiltonian is that it must exactly reproduce
the two-body physics of the atomic gas, i.e. by solving the
Hamiltonian in the Hilbert space of two atoms we must recover
the correct scattering amplitude of the atoms and also the
correct binding energy and quantum numbers of the molecule.
Note that in this manner the molecular properties are exactly
incorporated at the quantum level, which is important for
several reasons. First, the theory can now be applied both
in the normal and in the superfluid phase of the gas. Second,
we are not restricted to a mean-field description of the gas and
are now also able to systematically study fluctuation effects,
which we have recently shown to be of importance under the
experimental conditions of interest [11]. Finally, the theory
can be immediately generalized to atomic Fermi gases near
a Feshbach resonance, which are of great current interest
in view of the prospect of creating new neutral Bardeen–
Cooper–Schrieffer (BCS) superfluids [12–14]. Also in this
case fluctuation effects are known to be significant [15, 16]
and can only be accounted for after the molecular properties
are exactly incorporated in the quantum theory.

As already implicitly mentioned, the effective atom–
molecule Hamiltonian is in first instance the most convenient
way to arrive at a mean-field description of the gas. In the case
of a Bose–Einstein condensed atomic gas, an exact property
of the system is that it has a gapless excitation. Therefore,
any physically reasonable mean-field theory must have the
same property. From a fundamental point of view the gapless
excitation is due to the fact that a BEC spontaneously breaks
the global U (1) symmetry associated with the conservation
of the total number of atoms. For the mean-field theory to
fulfil this requirement automatically it must be formulated
such that it does not contain an anomalous density or pairing
field [17, 18]. Including an anomalous density in general
leads to double counting of the interaction effects because the
anomalous density is proportional to the condensate density
and its effect is, therefore, already largely included in the mean-
field terms due to the condensate. As a result, the gaplessness
of the mean-field theory is lost.

In agreement with the above discussion, this paper is
organized as follows. In section 2 we start from a microscopic
Hamiltonian for an atomic Bose gas with a Feshbach resonance
and derive from this a bare atom–molecule theory. To make
contact with the experimentally known parameters of the
Feshbach resonance, we then carry out in section 3 a complete

ladder summation to arrive at the desired effective atom–
molecule Hamiltonian that exactly incorporates all the relevant
two-atom physics. In section 4 we show in particular how the
correct properties of the molecule are recovered. After that we
discuss in section 5 how to arrive at the simplest mean-field
theory that is appropriate at the low temperatures of interest
experimentally, where the thermal component of the gas can
be neglected. We finally end in section 6 with our conclusions.

2. Bare atom–molecule theory

Without loss of generality we can consider the simplest
situation in which a Feshbach resonance arises, i.e. we
consider a homogeneous gas of identical atoms with two
internal states denoted by |↑〉 and |↓〉. The atoms in the two
states interact via the potentials V↑↑(x − x′) and V↓↓(x − x′)
respectively. The state |↓〉 has an energy �µB/2 with respect
to the state |↑〉 due to the Zeeman interaction with the magnetic
field B. The coupling between the two states, which from the
atomic physics point of view is due to the hyperfine interaction,
is denoted by V↑↓(x − x′). Putting everything together our
microscopic Hamiltonian is thus given by

Ĥ =
∫

dx ψ̂
†
↑(x)

[
− h̄2∇2

2m

+ 1
2

∫
dx′ ψ̂†

↑(x′)V↑↑(x − x′)ψ̂↑(x′)
]
ψ̂↑(x)

+
∫

dx ψ̂
†
↓(x)

[
− h̄2∇2

2m
+

�µB

2

+ 1
2

∫
dx′ ψ̂†

↓(x′)V↓↓(x − x′)ψ̂↓(x′)
]
ψ̂↓(x)

+ 1
2

∫
dx

∫
dx′ [ψ̂†

↑(x)ψ̂
†
↑(x′)V↑↓(x − x′)

× ψ̂↓(x′)ψ̂↓(x) + h.c.], (1)

where the potential V↓↓(x − x′) is assumed to contain the
bound state responsible for the Feshbach resonance. Using
a Hubbard–Stratonovich transformation to decouple this part
of the Hamiltonian [19, 20], we introduce the molecular field
operator ψ̂m(x) that annihilates a molecule at position x. In
the approximation that we are close to resonance, only a single
bound state contributes and this operator has the property that

〈ψ̂↓(x)ψ̂↓(x′)〉 = √
2〈ψ̂m((x + x′)/2)〉χm(x − x′). (2)

The properly normalized and symmetrized bound-state
wavefunction in the potential V↓↓(x − x′), which we choose
to be real for simplicity, obeys the Schrödinger equation[

− h̄2∇2

m
+ V↓↓(x)

]
χm(x) = Emχm(x). (3)

Note that the wavefunction χm(x) represents the bare
molecular wavefunction. Due to the coupling V↑↓(x − x′)
the true or dressed molecular wavefunction acquires also a
non-zero component in the open channel. This distinction
is especially important near the Feshbach resonance as is
discussed in detail in section 4. After the Hubbard–
Stratonovich transformation we obtain the bare Hamiltonian
for the coupled atom–molecule system. It reads
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Ĥ =
∫

dx ψ̂
†
↑(x)

[
− h̄2∇2

2m

+ 1
2

∫
dx′ψ̂†

↑(x′)V↑↑(x − x′)ψ̂↑(x′)
]
ψ̂↑(x)

+
∫

dx ψ̂†
m(x)

[
− h̄2∇2

4m
+ �µB + Em

]
ψ̂m(x)

+
∫

dx

∫
dx′ [g↑↓(x − x′)ψ̂†

m((x + x′)/2)

× ψ̂↑(x′)ψ̂↑(x) + h.c.], (4)

where g↑↓(x) = V↑↓(x)χm(x)/
√

2 is the bare atom–
molecule coupling. The molecule–molecule and atom–
molecule interactions also follow from the above procedure but
will be neglected in the following, since under the experimental
conditions of interest [1, 21] the density of molecules is very
small.

3. Ladder summations

For an the application of the Hamiltonian in (4) to realistic
atomic gases we have to include all two-body processes,
because at the relevant low densities three-body (and more)
processes can in the first instance be neglected. These are
most conveniently included by a renormalization of the bare
potential V↑↑(x−x′) and the bare coupling g↑↓(x). Moreover,
the molecules acquire a self-energy.

The interaction potential of the atoms in principle
renormalizes to the many-body T (transition) matrix. This
renormalization is determined by a Bethe–Salpeter equation
which, within the (for our purposes) sufficiently accurate
Hartree–Fock approximation [17], reads

T MB(k, k′, K, z) = V↑↑(k − k′) +
1

V

∑
k′′

V↑↓(k − k′)

× [1 + N(εK/2+k′′ − µ) + N(εK/2−k′′ − µ)]

z − εK/2+k′′ − εK/2−k′′

× T MB(k′′, k′, K, z), (5)

where N(x) = [eβx − 1]−1 is the Bose distribution function of
the atoms, µ their chemical potential and 1/kBT the inverse
thermal energy. This equation describes the scattering of a pair
of atoms from relative momentum k′ to relative momentum k

at energy z. Due to the fact that the scattering takes place
in a medium the many-body T matrix also depends on the
centre-of-mass momentum K. The energy of a single atom is
equal to εk = h̄2k2/2m. In the Hartree–Fock approximation
the energy in principle also contains a mean-field correction
which we neglect in the first instance. We come back to this
point in section 4, however. The diagrammatic representation
of (5) is given in figure 1.

For temperatures not too close to the critical temperature
we are allowed to neglect the many-body effects [17], and (5)
reduces to the Lippmann–Schwinger equation for the two-body
T matrix. The effective interaction between the atoms thus
becomes T 2B(k, k′, z − εK/2). For the realistic conditions of
the atomic gases under consideration here, i.e. small external
momenta and energies, the two-body T matrix is independent
of momentum and energy and equal to 4πa↑↑h̄2/m, with a↑↑
the s-wave scattering length of the potential V↑↑(x − x′).

Figure 1. Diagrammatic representation of the many-body T matrix.
The solid lines correspond to single-atom propagators. The dashed
lines corresponds to the interatomic interaction V↑↑.

Therefore, we conclude that the renormalization of this
potential is given by

V↑↑(x − x′) → 4πa↑↑h̄2

m
δ(x − x′). (6)

The renormalization of the bare atom–molecule coupling
is determined by the equation

gMB(k, K, z) = g↑↓(k) +
1

V

∑
k′

T MB(k, k′, K, z)

× [1 + N(εK/2+k′ − µ) + N(εK/2−k′ − µ)]

z − εK/2+k′ − εK/2−k′
g↑↓(k′), (7)

and is presented diagrammatically in figure 2. Neglecting
many-body effects, the coupling constant becomes g2B(k, z −
εK/2) with

g2B(k, z) = g↑↓(k)

+
1

V

∑
k′

T 2B(k, k′, z)
1

z − 2εk′
g↑↓(k′). (8)

For the relevant small momenta and energies we are thus led
to the substitution

g↑↓(x − x′) → gδ(x − x′), (9)

where g can be related to experimentally known parameters
as follows. The resonance is characterized experimentally by
a width �B and a position B0. More precisely, the s-wave
scattering length of the atoms as a function of magnetic field
is given by

a(B) = abg

(
1 − �B

B − B0

)
, (10)

where abg denotes the so-called background scattering length.
To correspond with the experiment we thus have that a↑↑ =
abg. In order to reproduce the experimentally observed width
of the resonance we have that g = h̄

√
2πabg�B�µ/m, since

an elimination of the molecular field shows that abg�B =
mg2/(2πh̄2�µ).

The self-energy of the molecules, shown diagrammati-
cally in figure 3, is given by

h̄�MB(K, z) = 2

V

∑
k

g↑↓(k)

× [1 + N(εK/2+k − µ) + N(εK/2−k − µ)]

z − εK/2+k − εK/2−k

× gMB(k, K, z). (11)
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In the first instance we neglect again many-body effects which
reduces the self-energy in (11) to h̄�2B(z − εK/2) with

h̄�2B(z) = 〈χm|V̂↑↓Ĝ↑↑(z)V̂↑↓|χm〉, (12)

where the propagator Ĝ↑↑(z) is given by

Ĝ↑↑(z) = 1

z − Ĥ↑↑
, (13)

with the Hamiltonian

Ĥ↑↑ = p̂2

m
+ V̂↑↑ ≡ Ĥ0 + V̂↑↑. (14)

We insert in (12) a complete set of bound states |φκ〉 with
energies Eκ and scattering states |φ(+)

k 〉. The latter obey the
Lippmann–Schwinger equation

|φ(+)
k 〉 = |k〉 +

1

2ε+
k − Ĥ0

V̂↑↑|φ(+)
k 〉, (15)

where ε+
k = εk + i0 denotes the usual limiting procedure. This

reduces the self-energy h̄�2B(z) to

h̄�2B(z) =
∑

κ

|〈χm|V̂↑↓|φκ〉|2 1

z − Eκ

+
∫

dk

(2π)3
|〈χm|V̂↑↓|φ(+)

k 〉|2 1

z − 2εk

, (16)

where we replaced the sum over the momenta k by an integral.
Using (8) and the Lippmann–Schwinger equation we have that

g2B(k, 2ε+
k ) = 1√

2
〈χm|V̂↑↓|φ(+)

k 〉. (17)

As a result we have for the retarded self-energy h̄�(+)(h̄ω), i.e.
the self-energy h̄�2B(z) evaluated at the physically relevant
energy z = h̄ω+,

h̄�(+)(h̄ω) 	 −g2 m3/2

2πh̄3
i
√

h̄ω − (�µB0 + Em), (18)

where we have denoted the energy-independent shift, that
results from the z = 0 part of the right-hand side of (16), in
such a manner that the position of the resonance in the magnetic
field is precisely at the experimentally observed magnetic field
value B0.

4. Molecular binding energy and density of states

Putting the results of the previous sections together, we find
that the Bose gas near a Feshbach resonance is described
by a coupled set of equations of motion for the atomic and
molecular Heisenberg operators ψ̂a(x, t) ≡ ψ̂↑(x, t) and
ψ̂m(x, t) respectively. Within our approximations, these
coupled equations are given by

ih̄
∂ψ̂a(x, t)

∂t
=

[
− h̄2∇2

2m
+ T 2B

bg ψ̂†
a (x, t)ψ̂a(x, t)

]
ψ̂a(x, t)

+ 2gψ̂†
a (x, t)ψ̂m(x, t),

ih̄
∂ψ̂m(x, t)

∂t
=

[
− h̄2∇2

4m
+ δ(B(t))

− g2 m3/2

2πh̄3
i

√
ih̄

∂

∂t
+

h̄2∇2

4m

]
ψ̂m(x, t) + gψ̂2

a (x, t), (19)

MB

+ +
g

+...=

+

T

=
MBg

Figure 2. Diagrammatic representation of renormalization of the
bare atom–molecule coupling g↑↓.

Figure 3. Diagrammatic representation of the self-energy of the
molecules.

where the detuning is defined by δ(B) = �µ(B − B0)

and T 2B
bg = 4πabgh̄2/m. This is the most important result

of our work. Note that the time derivative and gradient
terms appear exactly, such that both equations of motion are
manifestly Galilean invariant. Note also that an external
trapping potential can just be added to the right-hand sides
of these equations if required. It is interesting to mention that
the above equations can immediately be generalized to a Fermi
gas near a Feshbach resonance. Moreover, a simple Hartree–
Fock approximation to the resulting theory reproduces exactly
the interesting crossover physics recently discussed by Ohashi
and Griffin [14] on the basis of the Nozières and Schmitt-Rink
formalism for the normal phase of the gas. Having made this
observation, it is now clear how the same crossover phenomena
can be studied in the superfluid phase of the gas. Work in this
direction is in progress and will be reported elsewhere.

From (19) we determine the retarded Green function of the
molecules G(+)

m (x, t;x′, t ′). For fixed detuning, the poles of
its Fourier transform determine the bound-state energy. This
Fourier transform is given by

G(+)
m (k, ω)

= h̄

h̄ω+ − εk/2 − δ(B) + (g2m3/2/2πh̄3)i
√

h̄ω − εk/2
,

(20)
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Figure 4. Molecular density of states.

with εk/2 = h̄2k2/4m the kinetic energy of a molecule. For
positive detuning the propagator has a pole with non-zero
imaginary part, which shows that the molecule has a finite
lifetime in this case. To a first approximation the energy of
the molecule is εm(B) + εk/2 with εm(B) = δ(B) and its
rate of decay equals m(B) = (g2m3/2/πh̄4)

√
δ(B). For

negative detuning the molecular propagator has a real pole at
h̄ω = εm +εk/2, where the bound-state energy of the molecule
is given by

εm(B) = δ(B) +
g4m3

8π2h̄6

[√
1 − 16π2h̄6

g4m3
δ(B) − 1

]
. (21)

Close to the resonance the bound-state energy is, using (10),
found to be equal to

εm(B) = − h̄2

m[a(B)]2
. (22)

It is important to realize that this last equation, which is well-
known to be true for a weakly bound state in a single-channel
scattering problem [22], has now thus been proven to also be
valid for the case of a multichannel Feshbach resonance.

The physics of (20) is best understood by considering the
molecular density of states, related to the retarded propagator
by

ρm(k, ω) = − 1

π
Im[G(+)

m (k, ω)]. (23)

For negative detuning, it has two contributions as shown in
figure 4. The first comes from the bound state, i.e. the dressed
molecule, the second comes from the two-atom continuum. It
is the latter part of the density of states that incorporates into
our theory the rogue dissociation process put forward recently
by Mackie et al [6]. More explicitly, the density of states is
found to be equal to

ρm(k, ω) = 1

1 + g2m3/2/(4πh̄3√|εm|)
× δ(h̄ω − εk/2 − εm) +

1

π
θ(h̄ω − εk/2)

× (g2m3/2/2πh̄3)
√

h̄ω − εk/2

[h̄ω − εk/2 − δ(B)]2 + (g4m3/4π2h̄6)(h̄ω − εk/2)
,

(24)

and can be shown to obey the sum rule∫
d(h̄ω) ρm(k, ω) = 1. (25)

We thus conclude that the wavefunction renormalization factor
of the molecules is given by Z = 1/[1+g2m3/2/(4πh̄3√|εm|)],
which close to resonance is much smaller than one. Physically,
this implies that in this case the wavefunction of the molecule
is strongly affected by the interaction with the continuum in the
incoming channel and contains only the wavefunction χm(x)

of the bound state in the closed channel with an amplitude
√

Z .
The molecular density of states changes when an atomic

BEC is present, due to the mean-field interactions with the
condensate. In particular, in this case we expect that the
two-atom continuum part of the density of states is less
important because of the mean-field barrier that the two
colliding condensate atoms have to overcome. Mathematically
this comes about because to include the Hartree–Fock mean-
field shift of the energy of the atoms we have to replace in (20)√

h̄ω − εk/2 by
√

h̄ω − 2h̄�HF − εk/2, where h̄�HF denotes
the Hartree–Fock self-energy of the non-condensed atoms due
to their interaction with the condensate.

The mean-field shift of the thermal atoms leads to a change
of the bound-state energy as well. In equilibrium we estimate
the magnitude of this shift by approximately calculating the
self-energy h̄�HF from

h̄�HF 	 2n0

[
T 2B

bg +
2g2

2h̄�HF − δ(B)

]
, (26)

for a given condensate density n0. In this manner we have
calculated the mean-field shift of the bound-state energy as
a function of the magnetic field for the Feshbach resonance
at B0 	 154.9 G in the | f = 2; m f = −2〉 state of
85Rb. In figure 5 the results of this calculation are presented
for two experimentally relevant condensate densities, namely
n0 = 1.1 × 1013 and 5.4 × 1013 cm−3 [1, 21]. As expected,
the shift of the bound-state energy is largest for the highest
condensate density and decreases away from the resonance.
Although (26) is only a first approximation to calculate the
Hartree–Fock mean-field energy, figure 5 shows that the shift
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Figure 5. Mean-field shift of the bound-state energy as a function of
the magnetic field. The solid curve corresponds to an atomic
condensate density of n0 = 1.1 × 1013 cm−3 and the dashed curve
corresponds to n0 = 5.4 × 1013 cm−3. The dotted curve corresponds
to the molecular binding energy in a vacuum. The calculations are
performed for the resonance at B0 	 154.9 G in the
| f = 2; m f = −2〉 state of 85Rb [1, 21].

in the bound-state energy is significant. A more thorough
calculation of the mean-field effect on the bound-state energy
and also on the position of the resonance is postponed to future
work. With respect to this remark, it should be noted that,
since the retardation time of the interaction is only of the
order of h̄/εm(B), the mean-field effects are not instantaneous.
Therefore, the relevance of the mean-field shifts to non-
equilibrium situations, such as in the recent experiments with
time-dependent detuning [1, 21], is also subject to further
research.

5. Mean-field theory

The mean-field theory for the coupled atomic and molecular
condensates is found by taking the expectation value of (19).
We assume for simplicity that the temperatures are so low that
the thermal cloud of the Bose gas can be neglected. It is,
however, straightforward to include the mean-field effects of
the thermal cloud in the same manner as in the by now standard
Popov theory for weakly interacting Bose gases. Furthermore,
we neglect for simplicity the effect of the Hartree–Fock energy
shift on the two-atom continuum and the molecular binding
energy. The resulting mean-field equations are then given by

ih̄
∂ψa(t)

∂t
= T 2B

bg |ψa(t)|2ψa(t) + 2gψ∗
a (t)ψm(t),

ih̄
∂ψm(t)

∂t
=

[
δ(B(t)) − g2 m3/2

2πh̄3 i

√
ih̄

∂

∂t

]
ψm(t) + gψ2

a (t).

(27)

Note that the time dependence is determined by the
Hamiltonian Ĥ and not by the grand-canonical Hamiltonian
Ĥ − µN̂ . In equilibrium the atomic and bare molecular
condensate wavefunctions are therefore not time independent
but behave as as ψa(t) = ψae−iµt/h̄ and ψm(t) = ψme−i2µt/h̄

respectively, where ψa and ψm obey the time-independent
version of (27) at chemical potential µ. In agreement with
our remarks in the introduction the above equations contain
no anomalous density or pairing field. One way to understand

the reason for this is that the effects of the anomalous density
are already included by using the renormalized couplings and
including the molecular self-energy. Including these effects
again would lead to double counting problems and, therefore,
to a theory that is not gapless. Another way to understand
it is that equation (27) is explicitly U (1) invariant and the
gaplessness of the theory is thus automatically guaranteed.

A crucial ingredient in our formulation is the (non-local)
term1 proportional to

√
ih̄∂/∂t . It is this term that incorporates

the correct binding energy of the molecules for negative
detuning, and their lifetime if the detuning is positive. In
principle this term must be treated as follows. Using the Green
function in (20) we find that the wavefunction of the molecular
condensate is, for time-independent detuning, given by

ψm(t) = g

h̄

∫ t

0
dt ′ G(+)

m (t − t ′)ψ2
a (t ′) + ψm(0), (28)

where the Fourier transform of G(+)
m (0, ω) is given by

G(+)
m (t − t ′) = −iθ(t − t ′)Z/h̄

× exp

[
− i

h̄
εm(t − t ′)

]
− iθ(t − t ′)g2m3/2

πh̄3

×
∫ ∞

0

dω

2π

√
h̄ωe−iω(t−t ′)

[h̄ω − δ(B)]2 + (g4m3/4π2h̄6)h̄ω
. (29)

This result can then be substituted in the equation for the atomic
condensate wavefunction, which can now be easily solved
numerically, as we will show in future work.

6. Conclusions and outlook

We have derived from first principles an effective quantum field
theory for Feshbach resonant interactions in atomic Bose gases.
In future work we intend to apply this quantum field theory to
study various equilibrium and non-equilibrium properties of
ultracold atomic gases near a Feshbach resonance. This will
include a further study of the mean-field shifts of the bound-
state energy and the position of the resonance, as well as the
study of the BEC/BCS crossover in the superfluid phase of
a two-component Fermi gas [14]. Moreover, we are now in
a position to also study the normal phase for both bosonic
and fermionic gases. In order to apply the theory also to the
recent pulse experiments with BECs of 85Rb [1, 21], we need to
include a detuning that varies rapidly with time. This leads to
some technical complications with the proper treatment of our
non-local term that remain to be resolved. With respect to the
latter experiments we also want to further study the importance
of the quantum evaporation process, which previous work has
shown to be non-negligible [11].
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1 Note that this term can be interpreted as a fractional derivative. See, for
instance [23].
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