
PROCESS THEORY BASED ON BISIMULATION SEMANTICS

J.A. Bergstra
University of Amsterdam, Department of Computer Science

P.O. Box 19268,1000 GG Amsterdam;
State University of Utrecht, Department of Philosophy,

P.O. Box 8810, 3508 TA Utrecht.

J.W. Klop
Centre for Mathematics and Computer Science,

P.O. Box 4079, 1009 AB Amsterdam;
Free University, Department of Mathematics and Computer Science,

De Boelelaan 1081, 1081 HV Amsterdam.

Note: Research partially supported by ESPRIT project 432, Meteor.
Chapter 1 of this paper is a modified version of 'Process algebra: specification and verification in
bisimMation semantics', from CW1 Monograph 4, Proe. of the CW1 Symposium Mathematics ana
Computer Science H (eds. Hazewinkel, Lenstra, Meertens), North-Holland, Amsterdam 1986.
Permission of the editors to include the present Chapter I here is gratefully acknowledged.

ABSTRACT
In this paper a process is viewed as a labeled graph modulo bisimulation equivalence. Three
topics are covered: (i) specification of processes using finite systems of equations over the
syntax of process algebra; (ii) inference systems which are complete for proving the
equivalence of regular (finite state) processes; (iii) variations of the bisimulation model.

I n t r o d u c t i o n

We will discuss process theory on the basis of a given semantic concept. A process will be a rooted

directed graph where arcs are labeled with actions. An example may clarify this matter (see Figure

1.1).

a b

Figure 1.1

For instance the process P denotes a process that has two options for initial actions, a and b. After

the a-step P will terminate, but after having done the b-step P has again two options, c and d.

Now obviously the concept of a process should be made independent of its incidental coding

in a graph. So we must determine an appropriate equivalence relation on graphs. There are several

possibilities for such equivalence relations. Relevant references are for instance: Brookes, Hoare &

Roscoe [84], Hennessy [88], De Nicola & Hennessy [83], and Phil l ips [87]. However,

bisimulation equivalence, as introduced in Park [81], stands out, in our view, as the most natural

identification mechm~ism on process graphs discovered thus far.

Having thus established roughly the domain of processes as that of process graphs modulo

51

bisimulation, the next step is to incorporate the major discovery of Milner [80], namely that

processes have an algebraic structure. Our paper has to balance between two opposite poles: (a) the

syntax of process algebra and its axioms and proof rules, (b) the extremely rich world of process

graphs and bisimulations. The main relations between (a) and (b) are as follows:

(1) Using the syntax of process algebra we may write down equational axioms and axiom

schemes that 'specify' bisimulation semantics. These axioms capture the intended process

semantics in algebraic terms.
Chapter 1 contains a survey of a possible syntax of process algebra (ACP, Algebra of Communicating
Processes, and extensions) and its axioms and rules: see Table 22. In this setting one finds the concept of a
process algebra, i.e. a model of (the axioms of) process algebra: an appropriate class of process graphs,
together with a definition of the algebraic operators on these process graphs such that bisimulation
equivalence becomes a congruence relation. The main model is G/~rx 8, described in Chapter 1, Section 1.13.

(2) Equations over the syntax of process algebra having free variables ranging over processes

can be solved in bisirnulation semantics. In particular so-called systems of guarded recursion

equations turn out to have unique solutions. These systems are used to specify processes.
Chapter 1 contains several examples of process specifications as well as a general theorem (1.14.2) that
expresses the adequacy of finite guarded recursive equational specifications for the description of computable
processes.

(3) Suppose that a particular class of process specifications in the sense of (2) is given. Then a

major question is to decide whether or not two specifications specify the same process. This matter

is undecidable in general, but in some cases positive results can be obtained.
Chapter 2 discusses the bisimulation equivalence problem for regular processes. For this case a complete
inference system is presented.

(4) In the absence of the silent step x, for each process algebra (based on graphs modulo

bisimulation equivalence) one can define the corresponding algebra of processes modulo n with n a

natural number. In this algebra processes are identified whenever the restrictions of their behaviour

to the first n actions are bisimilar.

Complementary to this construction 'modulo n' , there is the construction of projective limits

of process algebras and processes. Equivalently, such a projective limit can be viewed as a

topological completion in an appropriate topology. This leads to a topological view of process

domains related to the work of De Bakker & Zucker [82a,b].
In Chapter 3 we study in detail the topological properties of process domains that result from general
topological constructions on the basis of spaces with process graphs modulo bisimulation.

Contents
Inlroduction
1. Specification and verification in bisimutation semantics
2. Complete inference systems for regular processes
3. A comparison of process models related to bisimulation semantics
References

52

1. Specif ication and verification in bis imulat ion semantics

This chapter is a modified version of Bergstra & Klop [86c]. It serves as an introduction to both

process algebra and bisimulation semantics. Sections 1-11 provide syntax and defining equations

for our operator set of process algebra as well as several examples of process specifications

including counters, bags, stacks and queues. Section 1,12 contains an extended example of a

specification and verification in process algebra. To this end an alternating bit protocol is verified

and specified in all detail. Sections 1.13, 1.14 introduce the bisimulation model and describe the

expressive power of recursive specifications in the context of the bisirnulation model.

1.1. Basic Process Algebra.
The kernel of all axiom systems for processes that we will consider, is Basic Process Algebra. The

processes that we will consider are capable of performing atomic steps or actions a,b,c with the

idealization that these actions are events without positive duration in time; it takes only one moment

to execute an action. The actions are combined into composite processes by the operations + and.,

with the interpretation that (a+b).c is the process that first chooses between executing a or b and,

second, performs the action c after which it is finished. (We will often suppress the dot and write

(a+b)c.) These operations, 'alternative composition' and 'sequential composition' (or just sum and

product), are the basic constructors of processes. Since time has a direction, multiplication is not

commutative; but addition is, and in fact it is stipulated that the options (summands) possible at

some stage of the process form a set. Formally, we will require that processes x,y satisfy the

following axioms:

BPA
x+y = y+x
(x+y)+z = x+(y+z)
X + X ----- X

(x+y)z = xz+yz
(xy)z = x(yz)

Table 1

Thus far we used 'process algebra' in the generic sense of denoting the area of algebraic

approaches to concurrency, but we will also adopt the following technical meaning for it: any

model of these axioms will be a process algebra.. The simplest process algebra, then, is the term

model of BPA (Basic Process Algebra), whose elements are BPA-expressions (built from the

atoms a,b,c by means of the basic constructors) modulo the equality generated by the axioms.

We will denote this structure with A m . This process algebra contains only finite processes; things

get more lively if we admit recursion enabling us to define infinite processes. Even at this stage one

can define, recursively, interesting processes; consider for instance the counter in Table 2.

53

COUNTER
X = (zero + up,Y)- X
Y = down + up.Y.Y

Table 2

Here 'zero ' is the action that asserts that the counter has value 0, and 'up ' and 'down ' are the

actions of incrementing, respectively decrementing, the counter by one unit. The process COUNTER

is now represented by X; Y is an auxiliary process. COUNTER is a 'perpetual ' process, that is, all

its execution traces are infinite. Such a trace is e.g. zero.zero.up.down.zero.up.up.up-. A

question of mathematical interest only is: can COUNTER be defined in a single equation, without

auxiliary processes? The negative answer is an immediate consequence of the following fact:

1.1.1. THEOREM. Let a system {X i = T(X 1 Xn) l i =1 n} of guarded fixed point equations

over BPA be given. Suppose the solutions X i are all perpetual. Then they are regular.

The solutions are in this case labeled transition g raphs- -modulo a certain equivalence relation

which will be extensively discussed in the sequel. Two concepts in this statement need also an

explanation: a fixed point equation (or recursion equation), like X = (zero + up-Y)-X is guarded if

every occurrence of a recursion variable in the right hand side is preceded ('guarded ') by an

occurrence of an action. For instance, the occurrence of X in the fight-hand side of

X = (zero + up.Y).X is guarded since, when this X is accessed, one has to pass either the guard

zero or the guard up. A non-example: the equation X = X + a.X is not guarded. Furthermore, a

process is regular if it has only finitely many 'states'; clearly, COUNTER is not regular since it has

just as many states as there are natural numbers. Let us mention one other property of processes

which have a finite recursive specification (by means of guarded recursion equations) in BPA: such

processes are uniformly finitely branching. A process is finitely branching if in each of its states it

can take steps (and thereby transform itself) to only finitely many subprocesses; for instance, the

process defined by X = (a+b+c)X has in each state branching degree 3. 'Uniformly ' means that

there is uniform bound on the branching degrees throughout the process.

In fact, a more careful treatment is necessary to define concepts like 'branching degree'

rigorously. For, clearly, the branching degree of a + a ought to be the same as that of the process

'a ' , since a + a = a. And the process X = aX will be the same as the process X = aaX; in turn these

will be identified with the process X = aX + auX. In the sequel we will extensively discuss the

semantic criterion by means of which these processes are identified ('bisimilari ty ') . Milner [84]

has found a simple axiom system (extending BPA) which is able to deal with recursion and which

is complete for regular processes with respect to 'bisimilarity' . (See Section 2.3 in Chapter 2.)

Another non-trivial example is the following specification of the process behaviour of a Stack

with data 0,1:

54

STACK

X = O$.YX + I$.ZX

Y =01" + O$.YY + I$.ZY

Z = 11" + O$.YZ + I$.ZZ

Table 3

Here 0,1, and 01" are the actions 'push 0 ' and 'pop 0 ' , respectively; likewise for 1. Now Stack is

specified by the first recursion variable, X. Indeed, according to the first equation the process X is

capable of performing either the action 05, after which the process is transformed into YX, or 15,

after which the process is transformed into ZX. In the first case we have using the second equation

YX = (05 + 0$.YY + 1,1,.ZY)X = 01".X + 0$.YYX + I$.ZYX. This means that the process YX

has three options; after performing the first one (01") it behaves like the original X. Continuing in

this manner we find a transition diagram orprocess graph as in Figure 1.2.

Y Y X

Stack

Figure 1.2

Before proceeding to the next section, let us assure the reader that the omission of the other

distributive law, z(x + y) = zx + zy, is intentional. The reason will become clear after the

introduction of 'deadlock'.

1.2. Dead lock . A vital element in the present set-up of process algebra is the process 8

signifying 'deadlock' . The process ab performs its two steps and then stops, succesfully; but the

process ab8 deadlocks after the a- and b-action: it wants to do a proper action but it cannot. So 5 is

the acknowledgement of stagnation. With this in mind, the axioms to which 8 is subject, should be

clear:

55

D E A D L O C K

~'I- X = X

8.x = 8

Table 4

(In fact, it can be argued that 'deadlock' is not the most appropriate name for the process constant

8. In the sequel we will encounter a process which can more rightfully claim this name: "c5, where

x is the silent step. We will stick to the present terminology, however.)

The axiom system of BPA (Table 1) together with the present axioms for 5 is called BPA&

We are now in a position to motivate the absence in BPA of the 'other ' distributive law: z(x+y) =

zx+zy. For, suppose it would be added. Then ab = a(b + 8) = ab + aS. This means that a process

with deadlock possibili ty is equal to one without, conflicting with our intention to model also

deadlock behaviour of processes.

The essential role of the new process ~ will only be fully appreciated after the introduction of

communication, below.

1.3. The merge operator.

If x,y are processes, their 'parallel composition' x II y is the process that first chooses whether to

do a step in x or in y, and proceeds as the parallel composition of the remainders of x,y. In other

words, the steps of x,y are interleaved or merged. Using an auxiliary operator [1_ (with the

interpretation that x II y is like x II Y but with the commitment of choosing the initial step from x)

the operation [[can be succinctly def'med by the axioms:

M E R G E

x l l y = x[~y + y[Lx
ax[Ly = a(x II y)
a L y = a y
(x+y) L z = x L z + y [k z

Table 5

The system of nine axioms consisting of BPA and the four axioms for merge will be called PA.

Moreover, if the axioms for 5 are added, the result will be PA& The operators tl and ~_ will also be

called merge and left-merge respectively.

The merge operator corresponds to what in the theory of formal languages is called shuffle.

The shuffle of the words ab and cd is the set of words {abcd, acbd, cabd, acdb, cadb, cdab}.

Merging the processes ab and cd yields the process

abllcd = ab[[cd + cd[[ab = a(Nlcd) + c(dllab) = a(b~ cd + cd[]_b) + c(dll ab + ab[Ld) =

a(bcd + c(dttb)) + c(dab + a(btld)) = a(bcd + c(db+bd)) + c(dab + a(bd+db)),

56

a process having as trace set the shuffle above.

An example of a process recursively defined in PA, is X = a(bllX). It turns out that this

process can already be defined in BPA, by the system of recursion equations

{X = aYX, Y = b + aYY}.

To see that both ways of defining X yield the same process, one may 'unwind' according to the

given equations:

x = a(bllX) = a(btl X + Xtlb) = a(bX + a(bltX) 11 b) = a(bX + a((bllX)llb))

= a(bX + a...),

while on the other hand

X = aYX = a(b + aYY)X = a(bX + aYYX) = a(bX + a...).

So at least up to level 2 the processes are equal. By further unwinding they can be proved equal up

to each finite level. (Namely, by using the rule AIP, discussed in Section 1.8.)

Yet there are processes definable in PA but not in BPA. An example (from Bergstra & Klop

[84b]) of such a process is given by the recursion equation

X = 05.(0t" tt X) + 15.(1"I" II X)

describing the process behaviour of a Bag (or multiset), in which arbitrarily many instances of the

data 0,1 can be inserted (the actions 05, 15 respectively) or retrieved (0"1", 1~'), with the restriction

that no more 0's and l 's can taken from the Bag than were put in first. The difference with a Stack

or a Queue is that all order between incoming and outgoing O's and l ' s is lost. The process graph

corresponding to the process Bag is as in Figure 1.3.

We conclude this section on PA by mentioning the following fact (see Bergstra & Klop

[84b]), which is useful for establishing non-definability results:

1.3.1.THEOREM. Every process which is recursively defined in PA and has an infinite trace, has an

eventually periodic trace.

57

Bag

Figure 1.3

1.4. F ixed points. We have already alluded to the existence of infinite processes; this raises the

question how one can actually construct process algebras (for BPA or PA) containing infinite

processes in addition to finite ones. Such models can be obtained as:

(1) projective limits (Bergstra & Klop 84a, 86b]),

(2) complete metrical spaces, as in the work of De Bakker & Zucker [82a,b];

(3) quotients of graph domains (a graph domain is a set of process graphs or transition

diagrams), as in Milner [80];

(4) the "explicit' models of Hoare [85];

(5) ultraproducts of finite models (Kranakis [86,87]).

In Section 1.13 we will discuss a model as in (3). As to (5), these models are only of theoretical

interest: models thus obtained contain 'weird ' processes such as x = ~a °~, a process satisfying x 2 =

a ~ = a.a-a..., while x ~ x 2.

Here, we look at (2). First, define the projection operators n n (n > t) , cutting off a process at

level n:

PROJECTION

~xl(ax) = a
~Xn+ 1 (ax) = ann(X)
~(a) =a
~n(X+y) = r~n(x) + nn(y)

Table 6

E.g., for X defining BAG:

~2(X) = in(0)(out(0) + in(0) + in(l)) + in(1)(out(1) + in(0) + in(l)) .

58

By means of these projections a distance between processes x,y can be defined: d(x,y) = 2 "n where

n is the least natural number such that nn(X) ~ r~n(y), and d(x,y) = 0 if there is no such n. If the

term model Ac0 of BPA (or PA) as in Section 1.1 is equipped with this distance function, the result

is an ultrametrical space (/kc0, d). By metrical completion we obtain a model of BPA (resp. PA) in

which all systems of guarded recursion equations have a unique solution. In fact, the guardedness

condition is exactly what is needed to associate a contracting operator on the complete metrical

space with a guarded recursion equation. (E.g. to the recursion equation X = aX the contracting

function f(x) = ax is associated; indeed d(f(x),f(y)) < d(x,y)/2.) Banach's contraction theorem then

proves the existence of a unique fixed point. This model construction has been employed in

various settings by De Bakker & Zucker [82a,b], who also posed the question whether unguarded

fixed point equations, such as X = aX + X or Y = (aY 11 Y) + b, always have a solution in the

metric completion of (A m, d) as well. This turns out to be the case:

1.4.1. THEOREM. Let q be an arbitrary process in the metric completion of (A m, d) and let X =

s(X) be a recursion equation in the signature of PA.

Then the sequence q, s(q), s(s(q)), s(s(s(q))) converges to a solution q* = s(q*).

For a proof see Bergstra & Klop [87]. In general, the fixed points q* = s(q*) are not unique. The

proof of 1.4.1 in Bergstra & Klop [87] is combinatorial in nature; it is not at all clear whether this

convergence result can be obtained by the 'usual' convergence proof methods, such as invoking

Banach's fixed point theorem or (in a complete partial order setting) the Knaster-Tarski fixed point

theorem. In Kranakis [87] the present theorem is extended to the case where s(X) may contain

parameters.

1.4.2. REMARK. An alternative way to obtain this model (the metric completion of (A m, d)) is as

follows. Let A n denote N0~ modulo the equation x = nn(X); so A n is the initial algebra ofBPA u {x

= nn(X) }, containing only processes of depth at most n. Now the family of models and projections

(An, Xn : An+l ---> An [n _> 0} has a projective limit A ~. This structure is isomorphic to the metric

completion of (Ao3, d). Therefore we will use N~ as an alternative notation for the metric

completion of (Ao~, d).

1.5. Communication.

So far, the parallel composition or merge (11) did not involve communication in the process xIly:

one could say that x and y are 'freely' merged or interleaved. However, some actions in one

process may need an action in another process for an actual execution, like the act of shaking hands

requires simultaneous acts of two persons. In fact, 'handshaking' is the paradigm for the type of

communication which we will introduce now. If A = {a,b,c 8} is the action alphabet, let us

adopt a binary communication function I: A x A -9 A satisfying the axioms in Table 7.

59

COMMUNICATION FUNCTION

alb =bia
(atb)Ic =at(blc)
81a =5

Table 7

Here a,b vary over A, including & We can now specify merge with communication ; we use the

same notation II as for the ' free ' merge in Section 1.3 since in fact ' f ree ' merge is an instance of

merge with communication by choosing the communication ftmction trivial, i.e. a I b = 8 for all a,b

e A. There are now two auxiliary operators, allowing a finite axiomatisafion: left-merge (~_) as

before and I (communication merge or simply 'bar ') , which is an extension of the communication

function in Table 7 to all processes, not only the atoms. The axioms for [[and its auxiliary

operators are given in Table 8.

MERGE WITH COMMUNICATION

x 1t Y =xtl y+y[t x+xty
ax ~_ y = a(xllY)
aLLy =ay
(x + y)tz = xlt z + ylLz
axlb =(alb)x
albx = (aib)x
axlby = (alb)(xlly)
(x+y) Iz --x[z+ylz
x I (y+z) =x ly+x lz

Table 8

We also need the so-called encapsulation operators O H (for every H c A) for removing

unsuccessful attempts at communication:

ENCAPSULATION

0H(a) = a i f a ~ H
O H (a) -- 8 if a e H
0 H (x+y) = ~ I (x) + 0 H (y)
O H (xy) O H (x).0 H (y)

Table 9

These axioms express that O H 'ki l ls ' all atoms mentioned in H, by replacing them with 5. The

axioms for BPA, DEADLOCK together with the present ones in Tables 7-9 constitute the axiom

system ACP (Algebra of Communicating Processes). Typically, a system of communicating

processes x 1 x n is now represented in ACP by the expression Oi_i(XlH...ttxn). Prefixing the

encapsulation operator says that the system x 1 x n is to be perceived as a separate unit with

60

respect to the communication actions mentioned in H; no communications between actions in H

with an environment are expected or intended.

A useful theorem to break down such expressions is the Expansion Theorem (first

formulated by Milner, for the case of CCS; see Milner [80]) which holds under the assumption of

the handshaking axiom x l yl z = & This axiom says that all communications are binary. (In fact we

have to require associativity of '11' first--see Table 10.)

1.5.1. EXPANSION THEOREM.

Xlll-.-ttxk =Zi xil[Xk i+ 'Y-i#j (xil xj)[[Xk iJ

Here Xk i denotes the merge of x 1 x k except x i, and Xk id denotes the same merge except xi,x j (k

> 3). For instance, for k = 3:

xllyllz = xll (yllz) + ylL(xllx) + zlt (xlly) + (ylz)ll x + (z I x)lLy + (x l y)ll z.

In order to prove the Expansion Theorem, one first proves by simultaneous induction on term

complexity that for all closed ACP-terms (i.e. ACP-terms without free variables) the following

axioms of standard concurrency hold:

AXIOMS OF STANDARD CONCURRENCY

(x~)lt z = xlt (Yllz)
(xly)Lz =xl(yll z)
xly =ylx
xllY = yllx
xl(ylz) =(xly)lz
xll(yllz) = (xlly)llz

Table 10

The defining power of ACP is strictly greater than that of PA. The following is an example

(from Bergstra & Klop [84b]) of a process U, recursively defined in ACP, but not definable in PA:

let the alphabet be { a,b,c,d,8 } and let the communication function be given by c [c = a, d [d = b,

and all other communications equal to 8. Let H = {c,d}. Now we recursively define the process U

as in Table 11:

U = O H (dcYII Z)
X=cXc+d

Y=dXY

Z = dXcZ

Table I I

61

Then, we claim, U = ba(ba2)2(ba3)2(ba4) 2 Indeed, using the axioms in ACP and putting

U n = a H (dcn'yliz)

for n __. 1, a straightforward computation shows that

U n = banban+lUn+l .

By Theorem 1.3.1, U is not definable in PA, since the one infinite trace of U is not eventually

periodic.

We will often adopt a special format for the communication function, called read-write

communication. Let a f'mite set D of data d and a set { 1,...,p } of ports be given. Then the alphabet

consists of read actions ri(d) and write actions wi(d), for i = 1 p and d ~ D. The interpretation

is: read datum d at port i, write datum d at port i respectively. Furthermore, the alphabet contains

actions ci(d) for i -- 1,...,p and d e D, with interpretation: communicate d at i. These actions will

be called transactions. The only non-trivial communications (i.e. not resulting in 5) are: wi(d) I ri(d)

= ci(d). Instead of wi(d) we will also use the notation si(d) (send d along i). Note that read-write

communication satisfies the handshaking axiom: all communications are binary.

1.5.2. EXAMPLE. Using the present read-write communication format we can write the recursion

equation for a Bag B12 (cf. Section 1.3) which reads data d e D at port 1 and writes them at port 2

as follows:

B12 = EdeD rl(d)(w2(d)11B~2).

In order to illustrate the defining power of ACP, we will now give an infinite specification of

the process behaviour of a queue with input port 1 and output port 2. Here D is a finite set of data

(finite since otherwise the sums in the specification below would be infinite, and we do not

consider infinite expressions), D* is the set of finite sequences c of elements from D; the empty

sequence is ~.. The sequence (~*a' is the concatenation of sequences a,(~'.

QU~tm

Q = QX = I;ae D r1(a).Q a

Qo*d = s2(d).Qa + Y~e~ D rl (e).Qe,o.,d (for all d~ D and a~ D*)

Table 12

Note that this infinite specification uses only the signature of BPA. We have the following

remarkable fact:

62

1.5.2. THEOREM. Using read-write communication, the process Queue cannot be specified in ACP

by finitely many recursion equations.

For the lengthy proof see Bergstra & Tiuryn [87]. It should be mentioned that the process Queue

can be finitely specified in ACP if the read-write restriction is dropped and n-ary communications

are allowed; in the next section it is shown how this can be done. In the sequel we will present

some other finite specifications of Queue using features to be introduced later.

1.6. Renaming. A useful 'add-on' feature is formed by the renaming operators pf, where

f: A --~ A is a function keeping 8 fixed. A renaming pf replaces each action 'a ' in a process by f(a).

In fact, the encapsulation operators O H are renaming operators; f maps H ~ A to 8 and fixes A - H

pointwise. The following axioms, where ' id' is the identity function, are obvious:

RENAMING

Pt{x+Y) = p~x) + pf(y)
Pt{xY) = pf(x).pf(y)
Pid(X) =x
(pfo pg)(X) =pfog(X)

Table 13

Again the defining power is enhanced by adding this feature. While Queue as in the previous

section could not yet be finitely specified, it can now.

The actions are the rl(d), s2(d) as before; there are moreover 'auxiliary' actions r3(d),

s3(d), c3(d) for each datum d. Communication is given by r3(d) 1 s3(d) = c3(d) and there are no

other non-trivial communications. If we let Pc3~s2 be the renaming c3(d) --~ s2(d) and Ps2~s3:

s2(d) --~ s3(d), then for H = {s3(d), r3(d) I de D} the following two guarded recursion equations

give an elegant finite specification of Queue:

QUEUE, FINITE SPECIFICATION

Q = ~dE D rl(d)'(rc3---~s2 ° ~H)(rs2--~s3(Q) 11 s2(d).Z)

Z = ~d~ D r3(d).Z

Table 14

(This specification was inspired by a similar specification in Hoare [84]. The present formulation is

from Baeten & Bergstra [88].) The explanation that this is really Queue is as follows. We intend

63

that Q processes data d in a queue-like manner, by performing 'input' actions rl(d) and 'output'

actions s2(d). So Ps2~s3(Q) processes data in queue-like manner by performing input actions

rl(d), output actions s3(d). First consider the parallel system Q' = On(Ps2~s3(Q) [I Z): since Z

universally accepts s3(d) and transforms these into c3(d), this is just the queue with input rl(d),

output c3(d). Now the process Q* = ~H(Ps2~s3(Q) [t s2(d).Z) appearing in the recursion equation,

is just like Q' but with the obligation to perform output action s2(d) before all output actions c3(d);

this obligation is enforced since s2(d) must be passed before Ps2~s3(Q) and Z can communicate

and thereby create the output actions c3(d). So Pc3-,s2(Q*) = Qd, the queue loaded with d, in the

earlier notation used for the infinite specification of Queue (Table 10). But then Q =]~deD rl(d)'Qd

and this is exactly what we want.

In fact, the renamings used in this specification can be removed in favour of a more

complicated communication format, as follows. Replace in the specification above Ps2~s3(Q) by

~s2(Q II V) where V = Y~d s2*(d).V and $2 = {s2(d), s2*(d) I dE D} with communications

s2(d)ls2*(d) = s3(d) for all d. To remove the other renaming operator, put

P = OH(Os2(Q II V) II s2(d).Z), and replace Pc3_~s2(P) by Oc3(P 11 W) where W = Y'd c3*(d).W

and c3(d)lc3*(d) = s2(d) for all d. However, though the renamings are removed in this way, the

communication is no longer of the read-write format, or even in the hand shaking format, since we

have ternary nontrivial communications s2(d) = c3(d)lc3*(d) = r3(d)ls3(d)lc3*(d). As we already

stated in the last theorem, this is unavoidable.

1.7. Abstraction.

A fundamental issue in the design and specification of hierarchical (or modularized) systems of

communicating processes is abstraction. Without having an abstraction mechanism enabling us to

abstract from the inner workings of modules to be composed to larger systems, specification of all

but very small systems would be virtually impossible. We will now extend the axiom system ACP,

obtained thus far, with such an abstraction mechanism.

Consider two Bags B12, B23 (cf. Example 1.5.1) with action alphabets {rl(d), s2(d) I dE D}

and {r2(d), s3(d) Ida D}, respectively. That is, BI2 is a bag-like channel reading data d at port 1,

sending them to port 2; B23 reads data at 2 and sends them to 3. (That the channels are bags means

that, unlike the case of a queue, the order of incoming data is lost in the transmission.) Suppose the

bags are connected at port 2; so we adopt communications s2(d) I r2(d) = c2(d) where c2(d) is the

transaction of d at 2.

1 :: 2 :: 3

Figure 1.4

transparent Bag ~13

64

The composite system B13 = 3H(B12 II B23) where H = {s2(d), r2(d) I de D}, should, intuitively,

be again a Bag between ports 1,3. However, from some (rather involved) calculations we learn that

B13 = ~]dED rl(d)-((c2(d).s3(d)) [I B13).

So ~13 is a 'transparent' Bag: the passage of d through 2 is visible as the transaction event c2(d).

(Note that this terminology conflicts with the usual one in the area of computer networks, where a

network is called transparent if the internal structure is not visible.)

How can we abstract from such internal events, if we are only interested in the external

behaviour at 1,3? The first step to obtain such an abstraction is to remove the distinctive identity of

the actions to be abstracted, that is, to rename them all into one designated action which we call,

after Milner, x: the silent action. This renaming is realised by the abstraction operator ~I,

parameterized by a set of actions I c A and subject to the following axioms:

ABSTRACTION

x I (x) = x
xi(a) = a i f a e I
"Ci(a) =xifae I

x I (x+y) = x I (x) + x I (y)
x I (xy) = x I (x).x I (y)

Table 15

The second step is to attempt to devise axioms for the silent step x by means of which x can be

removed from expressions, as e.g. in the equation axb = ab. However, it is not possible to remove

all 'o's in an expression if one is interested in a faithful description of deadlock behaviour of

processes (at least in bisimulation semantics, the framework adopted in this paper). For, consider

the process (expression) a + xS; this process can deadlock, namely i f it chooses to perform the

silent action. Now, if one would propose naively the equations l:x = xx = x, then a + x~ = a + ~ =

a, and the latter process has no deadlock possibility. It turns out that one of the proposed equations,

xx = x, can be safely adopted, but the other one is wrong. Fortunately, R. Milner has devised some

simple axioms which give a complete description of the properties of the silent step (complete with

respect to a certain semantical notion of process equivalence called r'cS-bisimulation, which does

respect deadlock behaviour; this notion is discussed below), as follows.

SILF2qT STEP

X'I~= X
~X----TX+ X
a(zx + y) = a(xx + y) + ax

Table 16

65

To return to our example of the 'transparent' Bag ~13, after abstraction of the set of transactions I

= {c2(d) I d~ D} the result is indeed an 'ordinary' Bag:

ZI(]~ 13) =
"~I(Zde D rl(d)(c2(d).s3(d)]l B 13)) =

Y'de D rl(d)(x.s3(d) II ZI(B13)) =

~ d e D (rl(d). z.s3(d)) 11 'ci(]~13) =

X aeD (rl(d).s3(d))~_ zI(][~13) =

Z deD rl(d)(s3(d)H zi(B13))

(*)

from which it follows that xi(~13) = B13 (**), the Bag defined by

B13=EdeDr l (d) (s3 (d) t[B13)-

Here we were able to eliminate all silent actions, but this will not always be the case. For instance,

'chaining' two Stacks (see Figure 1.2) instead of Bags (Figure 1.3) yields a process with

'essent ia l ' z-steps. Likewise for a Bag followed by a Stack. (Here 'essential ' means:

non-removable in bisimulation semantics.) In fact, the computation above is not as straightforward

as was suggested: to iustifv the eqnntlnn~ m a r l ~ d ~ l t l t h (* ' ~ ,~,~A t ' * * ' ~ ~ . ~ , . 1 _ , 4 . , ~ : , : ~ _ _ i c

principles. As to (**), this equation is justified by the Recursive Specification Principle (RSP)

stating that a guarded system of recursion equations in which no abstraction operator "c I appears,

has a unique solution.

1.8. Proof rules for recursive specifications. We have now presented a survey of ACPz;

we refer to Bergstra & Klop [85] for an analysis of this proof system as well as a proof that (when

the hand shaking axiom is adopted) the Expansion theorem carries over from ACP to ACPz

unchanged. Note that ACP x (displayed in full in Section 1.11) is entirely equational. Without

further proof rules it is not possible to deal (in an algebraical way) with infinite processes, obtained

by recursive specifications, such as Bag; in the derivation above we tacitly used such proof rules

and these will be made explicit below.

(i) RDP, the Recursive Definition Principle:

Every guarded and abstraction free recursive specification has" a solution.

(ii) RSP, the Recursive Specification Principle:

Every guarded and abstraction free recursive specification has at most one solution.

(iii) AlP, the Approximation Induction Principle:

A process is determined by its finite projections.

In a more formaJ, notation, Alp can be rendered as the infinitary rule

66

Vn gn (x) =gn(Y)

x = y

As to (i), the restriction to guarded specifications is not very important (for an informal definition of

'guarded' see Section 1.1); in the process algebras that we have encountered and that satisfy RDP,

also the same principle without the guardedness condition is true. More delicate is the situation in

principle (ii): first, z - s t e p s m a y n o t a c t as g u a r d s : e.g. the recursion equation X = xX + a has

infinitely many solutions, namely x(a + q) is a solution for arbitrary q; and second, the r e c u r s i o n

e q u a t i o n s m u s t n o t c o n t a i n o c c u r r e n c e s o f a b s t r a c t i o n o p e r a t o r s "c I. That is, they are

'abstraction-free' (but there may be occurrences of x in the equations). The latter restriction is in

view of the fact that, surprisingly, the recursion equation X = a-X{a)(X) possesses infinitely many

solutions, even though it looks very guarded. (The solutions are: a.q where q satisfies X{al(q) = q.)

That the presence of abstraction operators in recursive specifications causes trouble, was already

noticed in Hoare [85].

As to (iii), we still have to define projections ~n in the presence of the z-action. The extra

clauses are:

PROJECTION, CONTINUED

r~n(X) = x
~n(xx) = ,%(x)

Table 17

So, z-steps do not add to the depth; this is enforced by the x-laws in Table 16 (since, e.g., axb = ab

and xa = xa + a). Remarkably, there are infinitely many different terms t n (that is, different in the

term model of ACPx), built from x and a single atom 'a ' , such that t n has depth 1, i.e. t = ~l(t).

The t n are inductively defined as follows:

to = a, t l = x a, t2 = x, t3 = x(a + x), t4 = a + xa,

t4k+i = x.t4k+i. 1 for i = 1,3 and k > 0,

t4k+i = t4k+i. 3 + t4k+i. 5 for i = 0,2 and k > 0.

In fact, these are a l l terms (modulo provable equality in ACPx) with the properties as just stated.

Furthermore, with respect to the "summand ordering" < defined by x < x + y, the set of these term

takes the form of the partial order in Figure 1.5, which has the same form (but for one point) as the

Rieger-Nishimura lattice in intuitionistic propositional logic.

67

x(x(x + a) + xa) + x (x a + ~ x) /) (~ x(x(x +a) + x(xa + x))

/ \ /
~(x(x + a ' + xa) GrNNN\ / / / ' l ~ a) + x(x a+ x)

x (x + a) + ~ / j / ~ x (x a + x)

X v v a

Figure 1.5

The unrestricted form of AIP as in (iii) will turn out to be too strong in some circumstances;

it does not hold in one of the main models of ACP x, namely the graph model which is introduced in

Section 1.13. Therefore we also introduce the following weaker form.

(iv) AIP- (Weak Approximation Induction Principle):

Every process which has an abstraction-free guarded specification is determined by its finite

projections.

Roughly, a process which can be specified without abstraction operators is one in which there are

no infinite x-traces (and which is definable). E.g. the process X 0 defined by the infinite

specification {X 0 = bX 1, Xn+ 1 = bXn+ 2 + an}, where a n is a.a.....a (n times), contains an infinite

trace of b-actions; after abstraction with respect to b, the resulting process, Y = "C{b } (X0), has an

infinite trace of x-steps; and (at least in the main model of ACP x of Section 1.13) this Y is not

definable without abstraction operators.

Even the Weak Approximation Induction Principle is rather strong. In fact a short argument

shows the following:

1.8.1. THEOREM. AIP- ~ RSP.

As a rule, we will be very careful in admitting abstraction operators in recursive

specifications. Yet there are processes which can be elegantly specified by using abstraction

inside recursion. The following curious specification of Queue is obtained in this manner. We

want to specify Q12, the queue from port 1 to 2, using an auxiliary port 3 and concatenating

68

auxiliary queues Q13, Q32; then we abstract from the internal transaction at port 3. Write, in an ad

hoc notation, Q12 = Q13*Q32" Now Q13 can be similarly split up: Q13 = QI2*Q32. This gives rise

to six similar equations: Qab = Qac*Qcb where {a,b,c} = { 1,2,3}. (See Figure 1.6.)

%3

Figure 1.6

These six queues, which are merely renamings of each other, can now be specified in terms of each

other as in the following table. One can prove that these recursion equations, though not

abstraction-free, indeed have a unique solution.

QUEUE, FINITE SPECIFICATION WITH ABSTRACTION

Q12 = ~dE D rl(d)'x3 ° a3(Q13 II s2(d).Q32)

Q21 = ~dED r2(d)'t:3 ° a3(Q23 II sl(d).Q31)

Q23 = Y'd~ D r2(d)'xl ° al(Q21 II s3(d).Q13)

Q32 = Y'dE D r3(d)'Xl ° al(Q31 II s2(d)-Q12)

Q31 = ~dEDr3(d)'x2 ° a2(Q32 I1 sl(d).Q21)

Q13 = Ed~D rl(d)'x2 o a2(Q12 II s3(d)-Q23)

Table 18

Here the usual read-write notation is used: ri(d) means read d at i, si(d): send d at i,

communications are ri(d)lsi(d) = ci(d); further x i = X{ci(d)ld E D} and 3i = a{ri(d),si(d) I d~ D}" This

example shows that even with the restriction to read-write communication, ACP x is stronger than

ACP.

1.9. Alphabet calculus. In computations with infinite processes one often needs information

about the alphabet c~(x) of a process x. E.g. if x is the process uniquely defined by the recursion

equation X = aX, we have ~(x) = {a}. An example of the use of this alphabet information is given

by the implication (x(x)nH = 0 ~ OH(x) = x. For finite closed process expressions this fact can

be proved with induction to the structure, but for infinite processes we have to require such a

69

property axiomatically. In fact, this example will be one o f the 'condit ional axioms' below

(conditional, in contrast with the purely equational axioms we have introduced thus far). First we

have to define the alphabet:

ALPHABET

a(~) = O

a(,) = O
a(a) = {a}
a(xx) = a(x)
ct(ax) = {a} to a(x)
a(x+y) = a(x) to a(y)
a(x) =Un>1 a(~n(X))
~On(x) = ct(x) - H
a(xi(x)) = a(x)- I

Table 19

To appreciate the non-triviality of the concept ct(x), let us mention that a finite specification can be

given of a process for which the alphabet is uncomputable (see Bergstra & Klop [84b] for an

example).

Now the following conditional axioms will be adopted:

CONDITIONAL AXIOMS

0t(x) 1 (a(y)c-~H) ~ H ~ bH(xll y) = OH (xll bH(y))

ot (x) I (a(y)c~I) = O ~ xi(xlly) = "ci(xllxi(Y))

H = H 1 u H 2 ~ ~n (x) = (bill o bi_i2)(x)

I = I 1 to 12 ~ "ci(x) = ('Oil o xi2)(x)

~(x)c~ H=O ~ ~H(X)=X

a(x)c~ I--O ~ xi(x)=x

Table 20

Using these axioms, one can derive for instance the following fact: if communication is of the

read-write format and I is disjoint from the set of transactions (communication results) as well as

disjoint from the set of communication actions, then the abstraction xI distributes over merges x [I y.

1.10. K o o m e n ' s F a i r A b s t r a c t i o n Rule . Suppose the fol lowing statistical experiment is

performed: somebody flips a coin, repeatedly, until head comes up. This process is described by

the recursion equation X = flip.(tail.X + head). Suppose further that the experiment takes place in a

closed room, and all information to be obtained about the process in the room is that we can hear

the experimenter shout joyfully: 'Head! ' . That is, we observe the process "ci(X) where I = {flip,

70

tail}. Now, if the coin is 'fair ' , it is to be expected that sooner or later the action 'head' will be

perceived. Hence, intuitively, xi(X) = x-head. (This vivid example is from Vaandrager [86].)

Koomen's Fair Abstraction Rule (KFAR) is an algebraic rule enabling us to arrive at such a

conclusion formally. (For an extensive analysis of this rule see Bateen, Bergstra & Klop [87].) The

simplest form is

x = i x + y (i E I)
KFAR 1

xi(x) = x. xI (Y)

So, KFAR 1 expresses the fact that the 'x-loop' (originating from the i-loop) in xi(x) will not be

taken infinitely often. In case this 'x-loop' is of length 2, the same conclusion is expressed in the

rule

Xl = ilx2 + Yl, x2 = i2xl + Y2 (il,i2 ~ I)

'~i(Xl) = ,~. "ci(Yl+Y2)
KFAR 2

and it is not hard to guess what the general formulation (KFAR n, n > 1) wilt be. In fact, as

observed in Vaandrager [86], KFAR n can already be derived from KFAR 1 (at least in the

framework of ACPx#, to be discussed below).

KFAR is of great help in protocol verifications. An example is given in Section t.12, where

KFAR is used to abstract from a cycle of internal steps which is due to a defective communication

channel; the underlying fairness assumption is that this channel is not defective forever, but will

function properly after an undetermined period of time. (Just as in the coin flipping experiment the

wrong option, tail, is not chosen infinitely often.)

An interesting peculiarity of the present framework is the following. Call the process ~c0 (=

'~.'c.'c.....) l ivelock. Formally, this is the process x{i}(x) where x is uniquely defined by the

recursion equation X = i.X. Noting that x = i.x = i.x + ~ and applying KFAR 1 we obtain "c °~ =

x{i } (x) = 'c8. In words: livelock = deadlock. There are other semantical frameworks for processes,

also in the scope of process algebra but not in the scope of this paper, where this equality does not

hold (see Bergstra, Klop & Olderog [86, 87]).

1.11. ACPx#, a framework for process specification and verification.
We have now arrived at a framework which will be called ACPx #, and which contains all the

axioms and proof rules introduced so far. In Table 21 the list of all components of ACP # is given;

Table 22 contains the equational system ACP x. Note that for specification purposes one only needs

ACPx or ACPx+; for verification one will need ACPx # (an extensive example is given in Section

1.12). Also, it is important to notice that this framework resides entirely on the level of syntax and

formal specifications and verification using that syntax---even though some proof rules are

infinitary. No semantics for ACPx # has been provided yet; this will be done in Section 1.13. The

71

idea is that 'users ' can stay in the realm of this formal system and execute algebraical

manipulations, without the need for an excursion into the semantics. That this can be done is

demonstrated by the verification of a simple protocol in the next section; at that point the semantics

of ACPx# (in the form of some model) has, on purpose, not yet been provided. This does not mean

that the semantics is unimportant; it does mean that the user need only be concerned with formula

manipulation. The underlying semantics is of great interest for the theory, if only to guarantee the

consistency of the formal system; but applications should not be burdened with it, in our intention.

ACPz #

Basic Process Algebra A1-5
Deadlock A6,7
Communication function C1-3
Merge with communication CM1-9
Encapsulation D1-4

Silent step T1-3
Silent step: auxiliary axioms TMI,2;TC1-4
Abstraction DT; TI1-5

Renaming RN
Projection PR1-4
Hand shaking HA

Expansion theorem ET

Alphabet calculus
Recursive Definition Principle
Recursive Specification Principle
Weak Approximation Induction Principle
Koomen's Fair Abstraction Rule

CA
RDP
RSP
Alp-
KFAR

Table 21

The system up to the first double bar is ACP; up to the second double bar we have ACP x, and up to

the third double bar, ACPz+.

So ACPx # is a medium for formal process specifications and verifications; let us note that we

also admit infinite specifications. As the system is meant to have practical applications, we will only

encounter computable specifications. A finite specification (of which an expression is a particular

case) is trivially computable; an infinite specification {E n t n > 0}, where E n is the recursion

equation X n = T(X 1 Xf(n)), is computable if after some coding, in which E n is coded as a

natural number e n, the sequence {e n I n > 0} is computable. Here an important question arises: is

every computable specification provably equal to a finite specification ? At present we are unable to

answer this question; but we can state that the answer is affn'mative relative to certain models of

ACP~ #. Before we elaborate this, a verification of a simple protocol is demonstrated.

72

ACP

x + y = y + x A1 x'~=x T1
x + (y + z) = (x + y) + z A2 x x + x = x x T2
x + x = x A3 a('rx + y) = a(xx + y) + ax T3
(x + y)z = xz + yz A4
(xy)z = x(yz) A5
x + 8 = x A6
8x=fi A7

a b = b a C1
(a b) lc=al(blc) C2
8 a = 8 C3

xlly = x~y + y [~ x + x l y CM1
a~ x=ax CM2 x Hx=xx TM1
ax ~_ y = a(xtly) CM3 xx [~ y = "c(x[ty) TM2
(x+ y) U_z=x L z + y L z CM4 "~ Ix =8 TC1
ax b = (a b)x CM5 x 1"¢ = 8 TC2
a bx = (a b)x CM6 xx y = x y TC3
ax by = (a b)(xlly) CM7 x xy = x y TC4
(x+y) z = x z + y z CM8
x l (y + z) = x l y + x [z CM9 ~H (x) =x DT

Zi (x) ='~ TI1
3 H (a) = a if a~ H D1 x I (a) = a if a~ I TI2
~H (a) = ~ i f aeH D2 "¢i(a)=xifaeI TI3
~H (x + y) = ~n (x) + ~H (Y) D3 "¢I (x + y) = x I (x) + xI (Y) TI4
3H (xy) = 3H (x)'DH (Y) 134 x I (xy) = x I (x)cr I (y) TI5

Table 22

1.12. An algebraic verification of the Alternating Bit Protocol.

In th is sec t ion we wi l l d e m o n s t r a t e a ver i f i ca t ion o f a s imple c o m m u n i c a t i o n protocol , the

Al te rna t ing Bi t Protocol , in the f r amework of ACPx#. (In fact, no t all of ACPx # is needed.) This

ver i f ica t ion is f r o m Bergs t ra & Klop [86a]; the p resen t s t reaml ined t rea tment was k indly made

avai lable to us by F.W. Vaandrager (CWI Amsterdam).

Le t D be a f'mite set of data. E lements of D are to be t ransmit ted by the A B P from port 1 to port

2, The A B P can be visual ized as follows:

Figure 1.7

73

There are four components:

A: Reads a Message (RM) at 1. Thereafter it Sends a Frame (SF), consisting of the message and a

control bit, into channel K until a correct Acknowledgement has been Received (RA) via channel L.

The equations for A are as follows. We will always use the notations: datum d ~ D, bit b e {0,1 },

frame f ~ D x {0,1 } (so a frame f is of the form db).

A =RM 0

RMb =)"drl(d)'SF~

SF db = s3(db).RA db

RA db = (r5(1-b) + r5(e))-SF db + r5(b).RM l'b

K: data transmission channel K communicates elements of D x {0,1 }, and may communicate these

correctly or communicate an error value 'e ' . K is supposed to be fair in the sense that it will not

produce an infinite consecutive sequence of error outputs.

K = 5"~ r':t/~.r~f

K f = (%-s4(e) + "t;.s4(f))-K

The "o's in the second equation express that the choice whether or not a frame f is to be

communicated correctly, cannot be influenced by one of the other components.

B: Receives a Frame (RF) via channel K. If the control bit of the frame is OK, then the Message is

Sent (SM) at 2. B Sends back Acknowledgement (SA) via L.

B =RF °

RFb = (~d r4(d(1-b)) + r4(e)).SA 1-b + ~d r4(db)'sMdb

SA b = s6Co).RFI"b

SM db = s2(d).SA b

L: the task of acknowledgement transmission channel L is to communicate boolean values from B

to A. The channel L may yield error outputs but is also supposed to be fair,

74

L =Zb ~C°)'L b

L b = (x-s5(e) + x-s5(b))-L

Define D = D t..) (D x {0,1}) u {0,1} t j {e}. D is the set of 'generalized' data (i.e. plain data,

frames, bits, error) that occur as parameter of atomic actions. We use the notation: g ~ D. For t

{ 1,2 6} there are send, read, and communication actions:

A = { s t (g) , r t (g) , c t (g) l g ~ D , t ~ {1,2 6}}.

We define communication by st(g) I rt(g) = ct(g) for g ~ D, t ~ {1,2 6} and all other com-

munications give 8. Define the following two subsets of A:

H = {st(g), rt(g) I t ~ {3,4,5,6}, g a D}

I = {ct(g) 1 t e {3,4,5,6}, g ~ D}.

Now the ABP is described by ABP = "c I o OH(A II K l[B II L). The fact that this is a correct protocol

is asserted by

1.t2.1. THEOREM. ACP~ g I-- ABP = Y'd rl(d).s2(d)-ABP.

(Actually, we need only the part of ACPz # consisting of ACPx+SC+RDP+RSP+CA+KFAR--see

Tables 21, 22.)

PROOF. Let I' = {ct(g) I t ~ {3,4,5}, f ~ D}. We will use Ix] as a notation for "c I, O0H(X).

Consider the following system of recursion equations:

(0) x = Xl °

(1) x t b = Zdrl(d).X2 ~

(2) x2db = "c.x3db + "c-x4db

(3) x3db =c6(1-b).x2db

(4) X4 db = s2(d).X5 db

(5) Xsab =c6(b).X6 ~

(6) x6db ='c.x5db+'c.X1 l'b

We claim that ACPx# ~- X = [AII K I1 B II El, We prove this by showing that [A I1 K II B II L]

75

satisfies the same recursion equations (0)-(6) as X does. In the computat ions below, the bold face

part denotes the part o f the expression currently being ' rewrit ten' .

(0) [A II K II B II L] = [RM ° II K 11 RF 0 11 L]

(1) [RM b II K II RUb II L l =

E d r l (d) . [SF db II K II RF b II L] =

~d r t (d) 'x ' [RAdb 11 K db II RUb It L] =

Y,d~D rl(d)-[RA db I1K db II RF b I1L]

(2) [RA db II K db II RF b II L] =

x-[RA db II s4(e) .K 11 R F b 11 L] + x . [RA db I] s4 (db) -K tl R F b II L] =

x.01A db II K II SA 1-b II L] + x.[RA db II K II SM db II L]

(3) [RA db II K I I S A l 'b 11 L] =

c6(1-b).[RA db 11 K Ii RU b II L I ' b] =

c6(1-b).(x . [RA db 11 K II RU b II s5(e)-L] + x- [RA ab I1 K II RF b II s5 (1-b) -L]) =

c6(1-b), x.[SF db II K II RUb II L] =

c6(1-b), x. z - [RA db I1 K db II RU b I1 L l =

c6(1-b).[RA db II K °b II RF b I1 L].

(4) [RA db II K l[S M db l[L] =

s2(d),[RA db 11 K I ISA b II L] .

(5) [RA db II K II S A b II L] =

c6(b)-[RA db tl K tl RE l b 11 L b].

(6) [RA db II K 11 RF 1-b II L b] =

x. [RA db][K [I RF 1-b II s5(e) .L] + t:.[R A db H K II RF 1-b II s5(b)-L] =

x.[SF db]] K [] RF I-b][L] + x.[R M l 'b [] K [] RF l 'b II L].

(7) [SF db II K II RE ~'b II L] =

2;.[RA db [[K db H RE 1-b H L] =

z . (z . [R A db [I s 4 (e) - K II R F l 'b [[L] + a:.[RA db II s 4 (d b) . K El R F l ' b II L]) =

x.[RA db II K II SA b [l L].

N o w substitute (7) in (6) and apply RSP + RDP. Using the condit ional axioms (see Table 20,

Section 1.9) we have ABP = xi(X) = xI(X10). Further, an application of K F A R 2 gives

76

"~i(X2 db) = "~. 1:i(X4 db) and 'gi(X5 db)= "c. 'ci(Xll'b).

Hence,

xI(Xlb) = Y'd r l (d).xt(xdb) =]~d r l (d). ~i(X4 db)=

~"d rl (d).s2(d). 'Ci(x5db) = ~d r l (d).s2(d).Zl(X 11 -b)

and thus

~I(Xl O) =]~d rt(d)'s2(d)'~d' rl(d')-s2(d')- xi(Xl O)

xI(X11) = Y~d rl(d)'s2(d)'~d' rl(d').s2(d'). '[I(Xll).

Applying RDP + RSP gives "ci(X10) = ~I(X11) and therefore

"gI(Xl O) = ~'~d rl(d)-s2(d). '~i(XlO),

which finishes the proof of the theorem. []

More complicated communication protocols have been verified in ACPx# by Vaandrager [86]:

a Positive Acknowledgement with Retransmission protocol and a One Bit Sliding Window

protocol. There the notion of redundancy in a context is used as a tool which facilitates the

verifications. A related method, using a modular approach, is employed in Koymans & Mulder

[86], where a version of the Alternating Bit Protocol called the Concurrent Alternating Bit Protocol

is verified in ACPx #. (In fact, also in the verifications in Vaandrager [86] and Koymans & Mulder

[86] one only needs the part of ACPx # mentioned after Theorem 1.12.1.) Another verification of

the Concurrent Alternating Bit Protocol is given in Van Glabbeek & Vaandrager [88].

1.13. Bisimulation semantics for ACPx#: the model of countably branching
graphs.
We will now give a short description of what we consider to be the 'main' model of ACPx #. The

basic building material consists of the domain G of countably branching, labeled, rooted ,

connected, directed multigraphs. (In the notation of Chapter 3, G will be Gc~ ' ~1, where 0~ is the

alphabet cardinality.) Such a graph, also called a process graph, consists of a possibly infinite set

of nodes s with one distinguished node s 0, the root. The edges, also called transitions or steps,

between the nodes are labeled with an element from the action alphabet; also ~ and x may be edge

labels. We use the notation s -'->a t for an a-transition from node s to node t; likewise s ~ t is a

x-transition and s---> 8 t is a 8-step. That the graph is connected means that every node must be

accessible by finitely many steps from the root node. Examples of process graphs where already

given in Figures 1-3. Regarding 8-steps in process graphs, we will suppose that all process graphs

77

are 8-normalised; the precise definition follows in Definition 1.13.3.

Corresponding to the operations +,., 1I, 11, I, ~H, %, ~Xn' ~ in ACPx # we define operations

in the domain G of process graphs. Precise definitions can be found in Baeten, Bergstra & Klop

[87]; we will sketch some of them here. The sum g + h of two process graphs g, h is obtained by

glueing together the roots of g and h; there is one caveat: if a root is cyclic (i.e. lying on a cycle of

transitions leading back to the root), then the initial part of the graph has to be 'unwound' ftrst so as

to make the root acyclic. (In Chapter 2 we will be more precise about 'root-unwinding': see

Definition 2.1.2 there.) The product g.h is obtained by appending copies of h to each terminal node

of g; alternatively, one may first identify all terminal nodes of g and then append one copy of h to

the unique terminal node if it exists. The merge g II h is obtained as a cartesian product of both

graphs, with 'diagonal' edges for communications. (See Figure 1.8 for the merge of ab and cd,

with communications blc = g and aid = f.) Definitions of the auxiliary operators II, I are somewhat

more complicated and not discussed here. The encapsulation and abstraction operators are simply

renamings, that replace the edge labels in H and I, respectively, by 5 and x, respectively.

Definitions of the projection operators rc n and cc should be clear from the axioms by which they are

specified. As to the projection operators, it should be emphasized that x-steps are transparent: they

do not increase the depth.

h:

0
Figure 1.8

g: a b
~ ~O

gl lh : ~ a ~ b ~ ?

a ~ b , ~

The domain G of process graphs equipped with the operations just introduced, is not yet a model of

ACPx: for instance the axiom x + x = x does not hold. In order to obtain a model, we define an

equivalence on the process graphs which is moreover a congruence with respect to the operations.

This equivalence is called bisimulation congruence or bisimilarity. (The original notion is due to

Park [81]; it was anticipated by Milner's observational equivalence, see Milner [80].)

78

1.13.1. DEFINITION. Let g e G.

(i) Steps s "-)u t and s---) v t' (where u, v ~ A ~ {x, 8}; s, t, t' are nodes of g) are brothers. A

step t --~v t' is a son of the step s --~u t.

(ii) g is said to be 8-normalised if 5-steps have no brothers and no sons.

(iii) End points of g-steps are virtual nodes; all other nodes in g are proper.

(iv) A node is a deadlock node if all outgoing traces have only edges with labels x, 8 and end all

in 8. (See Figure 1.9.)

(v) Nodes from which only infinite x-traces start, are livelock nodes.

(vi) A deadlock-livetock node is a node from which all outgoing traces have as labels only % 8

and such that there is no succesfully terminating trace.

deadlock node

"c

Figure 1.9

livelock node

"c "c

deadlock-livelock node

1.13.2. DEFINITION. Apath ~ in g is a sequence

So --')u0 Sl '-~ul --" --~u(n-1) Sn (n _> 0)

of proper nodes and labelled edges. The node s O is begin(g), the node s n is end(Tt). The path g

determines a sequence of labels U0Ul...Un. 1 (u i ~ A u {x}); val(g) is this sequence with all '~'s

skipped. Note that val(g) ~ A*, the set of words over A, including the empty word)~.

1.13.3. DEFINITION. Let g, h ~ G be ~5-normalised. Let R be a relation between the proper nodes

of g,h. We say that R relates path ~ in g to path n' in h (notation rc R ~') if

begin(n) R begin(g)

end(re) R end(g)

val(g) = val(g').

(s R t means: s,t are retated by R.) If ~ R ~', we also say that ~ is transfered by R to g', and vice

versa.

(ii) Relation R has the transfer property if:

- whenever rc is a path in g and begin(g) R t, t e NODES(h), then r~ is transfered to some path

79

7~' in h' with begin(z) = t;

- likewise with the role of g, h interchanged.

(Note that by definition the end points of re, n' are again related.)

1.13.4. DEFINITION. (i) Let g, h E G be 6-normalised. Then g ,-*r~6 R h (g, h are r'c6-bisimilar via

R) if there is a relation between the proper nodes of g, h such that

(t) the roots of g, h are related,

(2) a root may only be related to a root,

(3) R has the transfer property,

(4) a deadlock-livelock node may only be related to a similar node.

(An equivalent defmition is obtained by replacing (4) by:

(4') a node with possibly successful termination may only be related to a similar node. Here a

node has 'possibly successful termination' if there is an outgoing trace ending succesfully.)

(ii) g mrs8 h if there is an R such that g ,-,r~R h.

1.13.5. EXAMPLES. (i) Figure 1.10 contains an example of a bisimulation in which only proper

atoms (no x, 8) are involved: the cyclic process graph g is bisimilar to the infinite process graph h

obtained by unwinding.

g:

Figure 1.10

(ii) The two graphs in Figure 1.11 are bisimilar via the bisimulation relating nodes on the same

level (i.e. joinable by a horizontal line).

(a)

Figure 1.11

a a

80

h:

(b)

(iii) Figure 1.12 demonstrates a bisimulation between process graphs involving x-steps: nodes of

the same 'color' are related.

2

g:

a

c b

a d

Example of r v6b&imulation: nodes of the same colour are related

Figure 1.12

We now are in the fortunate position that r~6-bisimilafity is not only an equivalence relation

on the domain G of process graphs, but even a congruence with respect to the operators on G. Thus

we can take the quotient G /~ 9~6' notation: (3. The following theorem is from Baeten, Bergstra &

Klop [87].

81

1.13.6. THEOREM. (3 is a model of ACP¢ #.

Remarkably, this graph model (as we will call it henceforth) does not satisfy AIP, the unrestricted

Approximation Induction Principle. A counterexample is given (in a self-explaining notation) by the

two process graphs g = ~n_>l an and h = ~--~1 an+at° (see Figure 1.13(a)); while g and h have the

same finite projections nn(g) = nn(h) = a + a 2 + a 3 + ... + a n, they are not (r~8-)bisimilar due to the

presence of the infinite trace of a-steps in h. It might be thought that it would be helpful to restrict

the domain G of process graphs to finitely branching graphs, in order to obtain a model which does

satisfy AIP, but there are two reasons why this is not the case: (1) the finitely branching graph

domain would not be closed under the operations, in particular the communication merge (I); (2) a

similar counterexample can be obtained by considering the finitely branching graphs g' = ~:{t}(g")

where g" is the process graph defined by {X n = a n + tXn+ 1 I n > 1} and h' = g' + a °~. (See Figure

1.14(b).)

g

a

Figure 1.13

?
a

(

a

a

c
a

(

g ' h '

Figure 1.14

82

1.13.7. REMARK. It is not hard to see that the val idi ty o f AIP" in the model ¢3 is a direct

consequence of the fol lowing general lemma about bisimulations. Here, for a grapla g, Xn(g) is the

n- th projec t ion o f g, i.e. what remains of g after cu t t ing off every th ing be low depth n.

Furthermore, ~ is the restriction of ~r¢8 to the case where no ¢ or 8 is present. (For an explicit

definition, see 2.1.4.1 in Chapter 2.)

1.13.7.1. LEMMA. Let g, h be process graphs containing only proper steps (not ¢ or 5). Let g be

finitely branching (h may be infinitely branching). Then:

Vn r~n(g) ~ r c n (h) ~ g ~ h .

PROOF. W e may suppose that g, h are process trees. Suppose g is f ini tely branching. Define

relations =n (n > 1) and = between nodes s of g and t of h as follows: s - t i f f ~/n s - n t and s =n t

iff rcn((g) s ~ gn((h)t) . Here (g)s is the subtree of g with root s. W e wil l prove that - is a

bisimulation.

For the roots So, t o of g, h respectively we have indeed s o -= to; this is just the assumption Vn

7~n(g) ~ r~n(h). Next we show the easy half of the bisimtflation requirements: let s --- t and

t "-+a t'. We have to show that there is an s' such that s ---~a s' and s' = t'. By definit ion of =n, and

because we have Vn s =n t, for every n there must be a step s ---~a Sn' such that s n' =n t'. Since s

has only finitely many successors (g is finitely branching), there must be an s' among the s n' such

that s ---~a s' and s' - n t' for infinitely many n. Since the relations - n are decreasing (=0 -~ =1 _D ---2

D ...) this means that s' - n t' for all n, i.e. s' - n t'-

For the reverse bisimutation requirement, see Figure 1.i5. Let s --- t and s --)a s'. To show

that there is a t' such that t ---~a t' and s' - t'. We can find a-successors t 1, t 2 t n of t such

that s' - n tn" As was jus t proved, for every t n there is an a-successor s n of s with s n = t n. Since s

has on ly f ini tely m a n y successors, the sequence {Sn} n is in fact finite. Hence there is an

a-successor s* of s such that s* - t n for infinitely many n. So, s' =n tn - s* for infinitely many n.

So s' - s*, and s' = t' where t' is one of the t n with t n = s*. [3

The general case, where x and ~ may be present, follows by an entirely similar proof (see

also Baeten, Bergstra & Klop [87]). Note however that ~n(g) now is obtained by cutting away all

steps that are reachable from the root only by passing n or more proper steps. (So r~n(g) may

contain infinite x-paths.) Thus we have:

1.13.7.2. LEMMA. Let g, h be process graphs. Let g have finite projections (i.e. every ~n(g) is a

finite graph.) Then:

Vn ~n(g) *-'r~8 ~n(h) ~ g ~ r ~ h.

Note that the assumption of finite projections is fulfilled for a graph which is defined by a system

83

of guarded recursion equations; hence AIP" holds in ~.

g

/ ,/ \ / \ \

n

Figure 1.15

1.14. The expressive power o f ACP, c.

ACP,~ is a powerful specification mechanism; in a sense it is a universal specification mechanism:

every finitely branching, computable process can be finitely specified in ACP x. We have to be

more precise about the notion of 'computable process'. First, an intuitive explanation: suppose a

finitely branching process graph g is actually given; the labels may include x, and there may be even

infinite x-traces. That g is 'actually' given means that the process graph g must be 'computable': a

finite recipe describes the graph, in the form of a coding of the nodes in natural numbers and

recursive functions giving in-degree, out-degree, edge-labels. This notion of a computable process

graph is rather obvious, and we will not give details of the definition here (these can be found in

Baeten, Bergstra & Klop [87]).

Now even if g is an infinite process graph, it can be specified by an infinite computable

specification, as follows. First rename all x-edges in g to t-edges, for a 'fresh' atom t. Call the

resulting process graph: gt" Next assign to each node s of gt a recursion variable X s and write

down the recursion equation for X s according to the outgoing edges of node s. Let Xs0 be the

variable corresponding to the root s o of gt- As g is computable, gt is computable and the resulting

'direct' specification E = {X s = Ts(X) I s a NODES(g0} is evidently also computable (i.e.: the

nodes can be numbered as s n (n > 0), and after coding the sequence e n of codes of equations En:

Xsn = Tsn(X) is a computable sequence). Now the specification which uniquely determines g, is

simply: {Y = z{t}(Xs0)} u E. In fact all specifications below will have the form {X = xi(X0),

X n = Tn(X) I n > 0} where the guarded expressions Tn(X) (= Tn(Xi l Xin)) contain no

abstraction operators xj. They may contain all other process operators. We will say that such

specifications have restricted abstraction.

84

However, we want more than a computable specification with restricted abstraction: to describe

process graph g we would like to find afinite specification with restricted abstraction for g. Indeed

this is possible:

1.14.2. FINITE SPECIFICATION THEOREM. Let the fnitely branching and computable process

graph g determine g- in the graph model C~ of ACP x. Then there is a finite specification with

restricted abstraction E in ACP,~ such that ~E~ = g~.

Here ~] is the semantics of E in the graph model. (The proof in Baeten, Bergstra & Klop [87] is

by constructing a Turing machine in ACPx; the ' tape' is obtained by glueing together two stacks. A

stack has a simple finite specification, already in BPA; see the example in Section 1.1.) A stronger

fact would be the assertion that every computable specification with restricted abstraction in ACP, e

is provably equivalent (in ACPx #) to a finite specification with restricted abstraction. At present we

do not know whether this is true.

It should be noted that abstraction plays an essential role in this finite specification theorem.

If f: N --~ {a,b} is a sequence of a,b, let pf be the process f(0).f(1).f(2).... (more precisely: the

unique solution of the infinite specification {X n = f(n).Xn+ 1 I n > 0}). Now:

1o14.3. THEOREM. There is a computable function f such that process pf is not definable by a finite

specification (in ACP, c) without abstraction operator.

Afortiori, pf is not finitely definable in ACP. The proof in Baeten, Bergstra & Klop [87] is via a

simple diagonalization argument.

1.14.4. REMARK. As we have seen, the graph model of ACPx # (Section 1.13) does not satisfy the

unrestricted Approximation Induction Principle which states that every process is uniquely

determined by its finite projections. It is natural to search for a model in which this principle does

hold. However, Van Glabbeek [87] proves that such a model does not exist, if one wishes to

adhere to the very natural assumption that composition of abstraction operators is commutative, and

if one only allows models in which deadlock behaviour is respected (in which, therefore, the

equation x = 'c + x8 does not hold). We will consider the following consequence of the axioms in

Table 20: X{a } o x{b } = X{b } o X{a } which we will denote by CA (commutativity of abstraction). Now

Van Glabbeek [87] proves:

1.14.5. THEOREM. ACP~ + KFAR 1 + RDP + RSP + CA + AIP ~- ~ = x + "c8.

So, in every theory extending ACPz, the combination of features Alp, KFAR, CA, RDP+RSP

is impossible. Among such theories are also theories where the equivalence on processes is much

coarser, such as in Hoare 's well-known failure model (see Hoare [85]).

85

2. Complete inference systems for regular p r o c e s s e s

In the first chapter we have explained a proof system for specification of processes in bisimulation

semantics (namely, in the graph model G), which is 'complete' in the sense that every computable

process in ~3 can be finitely specified. In this chapter we will address the issue of completeness in

the usual sense. In doing so, we restrict our attention to the submodel R of G consisting of

processes having only finitely many 'states', i.e. to "regular'processes. Silent steps (x-steps) are

allowed in these processes. We will present a complete inference system for such processes; it is

an improved version of the complete inference system in Bergstra & Klop [88].

To obtain the complete proof system we first explore various properties of bisimulations

between process graphs with x-steps (rx-bisimulation). This leads us to an analysis of

rx-bisimulation which may be illuminating for its own sake. This part of the present chapter is taken

from Bergstra & Klop [88]; Sections 2.1 and 2.2 are essentially 1.2-2.4 from Bergsta & Klop

[88], with some modifications, and with some examples and proofs omitted.

In this chapter (and the next) we will not consider the process constant 5, deadlock. This is

merely a matter of convenience, and in no way essential; all results can easily be adapted for the

presence of 5. On the other hand, the presence of x is very essential; without "c, complete proof

systems for regular processes are relatively easy to find. Because ~ is omitted from our

considerations, we will refer to r~-bisimulation (defined in Chapter 1, Definition 1.13.4) as

rx-bisimutation.

2.1. Some properties of rx-bisimulation.
As in Chapter 1, G is the set of (at most) countably branching process graphs with edge labels from

A u {5} u {x}. Here A = {a,b,c,...} is the set of 'proper' atoms or actions. In the present chapter

we will consider the set R ~ G of finite process graphs in which no ~ occurs; so the edge labels are

from A x = A to {x}. Notation: u,v,.., vary over A x.

2.1.1. Root-unwinding
It will be convenient to have a canonical Iransformation of a process graph g ~ G into an

'equivalent' root-acyclic one. (Here 'equivalent" is in a sense which will be explained below, in

Proposition 2.1.4.3.)

2.1.2. DEFINITION. The map p: G ---> G, root-unwinding, is defined as follows. Let g e G have

root r; then p(g) is def'med by the following clauses:

(i) NODES(p(g)) = NODES(g) u {r'} where r' is a 'fresh' node;

(ii) the root of p(g) is f ;

(iii) EDGES(p(g)) = EDGES(g) to {r' "->u s I r -'>u s ~ EDGES(g)};

(iv) nodes and edges which are inaccessible from the new root r' are discarded.

86

2.1.3. EXAMPLE. Figure 2.1 gives two examples of root-unwinding.

oya
Co)

IX
Figure 2.1

that p is idempotent: p2(g) = p(g). Notation: GO is the set of all root-unwound graphs in Observe

G.

2.1.4. Bisimulations

In the previous chapter we have already defined rxS-bisimulation; the concepts of 'ordinary '

bisimulafion ~- (on G × G), 'x-bisimulat ion ' ---x (on G × G) and ' rooted x-bisimulafion' Urr (on

GO x GO) are just restrictions of that of rxS-bisimulation, but for the sake of clarity we give the

successive definitions again, in a rephrased way which conforms more to the usual definition..

2.1.4.1. Bisimulation: -*

Let g,h e G. The relation R c NODES(g) × NODES(h) is a bisimulationfrom g to h, notation

R: g -~ h, if

(i) Domain(R) = NODES(g) and Range(R) = NODES(h)

(ii) (ROOT(g), ROOT(h)) ~ R

(iii) if (s,t) ~ R and s -->u s' e EDGES(g) then there is an edge t -->u t' e EDGES(h), such that

(s',t') e R.

(iv) if (s,t) e R and t --*u t' E EDGES(h) then there is an edge s --)u s' e EDGES(g), such that

(s',t') ~ R.

Further, we write g o_ h i f 3 R R: g_o h. In this case g,h are called bisimilar.

87

2.1.4.2. EXAMPLE. See Figure 2.2 for a bisimulation between a graph and its root-unwinding; the

shaded lines denote the bisimulation.

c

Figure 2.2

Bisimilar process graphs have the same sets of traces. The reverse, however, does not hold.

We mention the following facts without proof:

2.1.4.3. PROPOSITION.

O) Let g ~ G. Then g -~ p(g).

(ii) The relation ~- (bisimilarity) is an equivalence relation on G.

(iii) I fg ,h ~ G, R: g ~ h and for s e NODES(g), t e NODES(h) we have (s,t) ~ R, then

R': (g)s -~ (h)t, where R' is the restriction o f R to the nodes of(g) s and (h)t.

2 . 1 . 4 . 4 . x - B i s i m u l a t i o n : '* x

An equivalent definition for ordinary bisirnulation can be given as follows. Replace in the definition

of 2.1,4.1. clauses (iii), (iv) by:

(iii)' i f (s,t) e R and n: s --'w s' is a path in g (determining the 'word ' UlU2...u k (k > 0) of labels

along the edges in n), then there is a path n': t --*w' t' in h such that (s',t') ~ R and such that

w - w' (w,w' are identical).

(iv) likewise with the role of g, h interchanged.

The definition of ~x now parallels that for _.e, with as only alteration that w - w' is replaced by

w ---~ w'. Here w =x w' (w,w' e Ax* are equivalent modulo x) if w,w' are identical after deletion of

"o's. E.g. x =x ~'cx =x e (the empty word); ab'cxxcx =x xaxbxc. Processes g,h ~ G such that

g ~-x h are called x--bisimilar.

2 . 1 . 4 . 5 . R o o t e d ' c - b i s i m u l a t i o n : a rx
Suppose g,h E GP and R: g -*x h in such a way that

(s,t) ~ R ~ s = ROOT(g) and t = ROOT(h), or: s ¢ ROOT(g) and t ¢ ROOT(h).

(So a non-root cannot be related in the bisimulation to a root.) Then R is called a rooted

x-bisimulation between g,h and we write R: g ~r~ h or g --r~ R h. Such g,h are called rx-bisimilar

(via R). Note that g ~ h ~ g ~ - x h a n d g - * r ~ h ==~ g-*x h. A s b e f o r e , -~rxand-*x are

equivalence relations on GP and G, respectively. Also ax, ~-r~ are invariant under p.

88

2.1.4.6. EXAMPLES.

l a 0
(a) (b) (e)

Figure 2.3

Some further Obvious facts are:

2.1.4.7. PROPOSITION. (i) Let g,h ~ G be x-bisimilar via R. Let (s,t) ~ R. Then (g)s and (h) t are

x-bisimilar (via the appropriate restriction o f R). (The nodes s,t are called in this case x-bisimilar.)

(ii) Let g,h a GP and g *- rx R h. Let (s,t) ~ R. Then (g)s nx (h)t (in general not rx-bisimilar). D

2.1.4.8. PROPOSITION. Let g,h e G and suppose R: g ~ h as well as R': g ~- h. Then

RuR' : g a h. Similar f o r *--x and ~-rx" D

(Note that the intersection of bisimulations R, R' need not be a bisimulation.)

2.1.4.9. DEFINITION. (i) A x-cycle in a process graph g is a cycle

g: So "-~x Sl -'~x "'" --')x Sk = SO (k > 1).
(ii) A x--loop is a x-cycle of length 1:

7~: s 0 -"~x s0-

2.1.4.10. PROPOSITION. Let g E G contain a x--cycle passing through the nodes s,t. Then s,t are

¢-bisimilar (i.e. (g)s ---x (g)t)"

PROOF. (See Figure 2.4, next page.) Note that every point in g accessible form s is accessible from

t and vice versa. Hence the node sets of (g)s and (g)t coincide. Now let Id be the identity relation on

NODES((g)s). Then it is easy to verify that Id u {(s,t)} is a ¢-bisimulation from (g)s to (g)r D

2.1.4.11. PROPOSITION. (i) Let g ~ G, contain ¢-bisimilar nodes s,t. Let g* be the result o f adding

a x-edge from s to t. Then g and g* are x-bisimilar.

(ii) Let g ~ GP contain non-root nodes s,t which are ¢-bisimilar. Then g -~r~ g*"

PROOF. (i) Let id be the identity relation on NODES(g) (= NODES(g*)). Then Id u {(s,t)} is a

x-bisimulation from g to g* as required. (ii) Similar. D

89

NODES(g)s = NODES(g)t

Figure 2.4

This proposition says that adding x-steps between x-bisimilar nodes in a graph g does not

change the "x-bisimilarity character" of g (and for the same reason, o f any node q, or better,

subgraph (g)q of g). Here the x-bisirnilarity character of g is the class of all g' ~ G which are

z-bisimilar with g. In particular, the "c-bisimilality character is not disturbed by appending x-loops

to nodes of g. Vice versa, removing x-loops also does not change the x-bisimilarity character.

2.!.4.12. EXAMPLE.

b a

Figure 2.5

Just as all x-loops can be removed from g without changing x-bisimilarity (which follows

from the previous proposition, by taking s = t), it is possible to remove all x-cycles from g. We

need a definition first:

2.1.4.13. DEFINITION. Let g ~ G contain nodes s,t. Then gid(s,t) is the process graph resulting

from the identification of s and t, in the obvious sense.

90

2.1.4.14. EXAMPLE. Let g be as in Figure 2.5. Then gid(s,t) is:

Figure 2.6

2.1.4.15. PROPOSITION. (i) Let g ~ G and suppose s,t ~ NODES(g) are x-bisimilar. Then g and

gid(s,t) are x-bisimilar.

(ii) Let g E C~ ° and suppose the non-root nodes s,t ~ NODES(g) are x-bisimilar. Then

g --rx gid(s,t)"

PROOF. Obvious. [3

2.1.4.16. COROLLARY. (i) Every g ~ G is x-bisimilar with some g' ~ G without x-cycles.

(ii) Every g ~ GP is ~-bis imilar with some g' E GP without x-cycles.

Off) Every g E R is x-bisimilar to some g' E R without infinite x-paths.

PROOF. Follows from considering Figure 2.7. n

Figure 2.7

We conclude this section with an observation illuminating the difference between -~x and

~rc" The easy proof is left to the reader (or, see Bergstra & Klop [88]).

2.1.4.17. REMARK. Let g,h ~ G and let xg, xh be the result of prefixing a x-step. Then:

g ~ x h ¢=~ xg'~-rxXh.

2.2. An analysis of r x - b i s i m u l a t i o n .

The main result of this section is that an r~-bisimuladon R between g,h ~ R can be analysed into

91

more simple parts:

g O--r~ h
$ $

A(g) A(h)
$ $

E(A(g)) -* E(A(h))

(Corollary 2.2.4). I.e. g ~rx h iff g,h after 'preprocessing' (by means of some simple operations

A, E: G ~ G), are bisirnilar in the ordinary sense where x does not play its special role. This

analysis is the basis for the completeness theorem in the sequel where axioms are given describing

r~-bisimulation.

2.2.1. The operation A

First we need some terminology: if g E G, then an arc in g is a part of the form (a) in Figure 2.9

(here u e Ax). In case n = m = 0, the arc is a double edge as in (b). Other special cases are in

Figure 2.9(c), (d): these are calledA-arcs. It is not required that the three nodes displayed in (a)-(d)

are indeed pairwise different. The u-step between nodes s,t is called the primary edge of the arc.

t ¢

t t

m x-steps

(a) (b) (c) (d)

Figure 2.9

Now the operation A: G --~ G is defined as follows: whenever g e G contains a path

Sl --'~x s2 "-~u s3 (where Sl,S2,S 3 need not be pairwise different), an edge s 1 "--~u s3 is added if not

yet present. Likewise for every path s 1 "-~u s2 -'~x s3" A(g) is the result of this completion of g with

edges as indicated.

Further, we say that g e G is A-saturated i f A(g) = g.

92

2.2,2. EXAMPLE.

Figure 2.10

2.2.3. PROPOSITION. (i) A(g) '*x g i fg e G; (ii) A(g) -*-r~ g i fg E GP,

PROOF. The identity relation R gives a (r)x-bisimulation. n

2.2.4. The operation E

Call a node of g ~ GP internal if it is not the root, and an edge of g internal if it is between internal

nodes. Further, call an internal x-step s -->~ t in g ~ GO an e-step if s,t are x-bisimilar. Finally,

consider the set of internal nodes of g e GP and the equivalence relation on this set given by

x-bisimilarity. We will call the equivalence classes: clusters. So e-steps always occur 'inside' a

cluster (see Figure 2.11).

a

e

Figure 2.1 t

clusters are indicated with 0

93

2.2.4.1. NOTATION. If s,s' arc in the same cluster we write also s ~ s'.

The concept of clusters of nodes makes the structure of a process graph more perspicuous.

In particular, A-saturated process graphs g have a local structure as indicated in Figure 2.12:

S

a

7'

Figure 2.12

cluster ~/ha g

Namely, if y i s a cluster in g and s "-*a t is an ' incoming' edge, then the endpoint t is carried in the

direction of the e-steps, thus providing arrows s "-~a t', s "~a t". Vice versa, if t' -">b P is an

outgoing edge, the starting point t' is carried backwards along e-paths. This is a simple

consequence of A-saturation and in fact it does not depend on the particular nature of e-steps.

Moreover, and this does depend on the definition of cluster in terms of o-- x, if~/has an outgoing

edge ~ to some cluster y , then from every point in T there is an edge ---~b to ~t. We will need this

last fact so let us prove it:

2.2.4.2. PROPOSITION. Let g e ~ be A-saturated. Le t s -">u t be an edge o f g and let s' ~ s. Then

g contains an edge s' ~ u t ' for some t' ~ t.

PROOF. Consider an rx-bisimulation R of g with itself relating s to s'. (R can be taken to be the

union of the identity relation on g and a x-bisimulation from (g)s to (g)s") Now by definition of

x-bisimulation, given the edge s "-~u t and s ~ s' there is a path n: s' --, t' with label xnux m in g for

some n,m > 0 and some t' with t' ~ t. By virtue of A-saturation, we now have an edge s' "-~u t'. n

Now we would like, in order to obtain the 's tructure theorem' 2.2.4.7 concerning

(r)x-bisimulation as well as the completeness result in Section 2.3, to omit all e-steps in a

A-saturated graph g, resulting in a graph g' which is still rx-bisimilar to g. Here the need for

A-saturation comes in, for omitting e-steps could make a non-A-saturated graph g disconnected, as

in Example 2.2.2: there the x-step in g (which clearly is an e-step) cannot be removed, but it can in

A(g).

94

2.2.4.3. DEFINITION. E is the operation from GO to GO which removes in g e GP all e-steps (as

well as parts of g which become disconnected in that process). I f g = E(g), g is called prenormal.

The straightforward proofs of the next two propositions are omitted (they can be found in

Bergstra & Klop [88]).

2.2.4.4. PROPOSITION. E preserves A-saturation.

2.2.4.5. PROPOSITION. (i) l f g ~ GO is A-saturated, then g -Orz E(g),

(ii) For g ~ GP: E(A(g) nrx g"

Now we arrive at a key 1emma:

2.2.4.6. LEMMA. Let g,h ~ Ca, ° be A-saturated andprenormal. Then:

g - r x h ~ g - o h .

PROOF. (1) Let R be an rx-bisimulation between g,h. Then there is no x-step in g which is

"contracted" by R in h, as in Figure 2.13 (and likewise with g,h interchanged):

Figure 2.13

Namely, if s = r, the root of g, then this claim follows by definition of °--rr. Otherwise, s ---~ s' is

an internal step (s' ~ r since g ~ CuP) and now by Proposition 2.1.4.7(ii):

(g)s ---x (h)t °-x (g)s'"
That is: s -~x s' is an e-step. But then g is not prenormal.

(2) Let s -'~u s' (u e A t) be a step in g (see Figure 2.14, next page). By definition of the

rt-bisimulation R, there is given a t such that (s,t) ~ R, a path t - , t' with label xnuz m, for some t'

such that (s',t') ~ R. By A-saturation of h, there is now a step t -~u t'. (1) and (2) together imply

that the rx-bisimulation R is in fact an ordinary bisimulation. ~3

95

g h

Figure 2.14

2.2.4.7. COROLLARY. Let g,h e GO and let g ~-rx h. Then E(A(g)) ~- E(A(h)).

PROOF. By Proposition 2.2.3, Ag ---r~ Ah. By Proposition 2.2.4.5, E(Ag) ---rz E(Ah). By

Proposition 2.2.4.4, E(Ag) and E(Ah) are A-saturated. Hence by Lemma 2.2.4.6 these two graphs

are bisimilar in the ordinary sense, n

2.3. Complete inference systems for rx.bisimulation.
(This section will be slightly informal and gloss over some details; for these we refer to Bergstra &

Klop [88].) A corollary of the preceding section (Corollaries 2.1.4.16 and 2.2.4.7) is that an

r~-bisimulation between two graphs g, h e RP can be analyzed in the following parts. (See Figure

2.15.)

g ~ t1~ h

contractionof~ re ?
~-cycles

g' x-cycle free h '

saturation (A) ~ /

A (g') x-cycle free A (h')

pruning (E) ~ saturated ?
E(A (g')) ~ E(A (h'))

Figure 2.15

So, in order to have a cornplete proof system for ' - ' rv it suffices to have:

96

I . A complete proof system for ,-,;

II. Proof rules which make 'cont rac t ion of z-cycles provable';

III. Likewise for saturation (the operation A);

IV. Likewise for pruning (the operation E).

First we have to explain the syntax used for regular processes, and the interpretation of

expressions in that syntax into the semantic domain R = 9.J~rx. Precise syntax definitions can be

found in Bergstra & Klop [88]; here we will be more informal and give some suggestive examples

instead.

Our syntactic expressions, denoting regular processes in R, will be either of the form t where

t is a c losed BPA- te rm (see Table 1) or recursive expressions <X 1 1 E> where E = {X i =

ti(X 1 Xn) t i = 1 n}. Here ti(X) (= ti(X 1 Xn)) is a BPA- te rm possibly involving formal

recurs ion var iables f rom {X 1 Xn}. Moreover, the t i(X) are ' s i m p l e ' terms, defined as

follows.*)

2.3.1. DEFINITION. (i) Every u ~ Axis a simple term.

(ii) Let X be a recursion variable and let u ~ A x. Then uX is a simple term.

(iii) Let t, t' be simple terms. Then t + t' is a simple term.

So, aX + xY + c is a simple term, but abX + c, b(aX + c) and aXY + bYY are not.

The semantics of an expression <X I E> in R is obvious: to <X 1 E> there corresponds in an

immedia te way, suggested by the next example, a process graph in R , call it g<XIE>; now the

semantics [<X I E>~ R is g<XlE>/"*rx"

2.3.2. EXAMPLE. The semantics of x-<X I X = xY + aY, Y = xX + b> is the graph g in Figure

2.19(a), modulo ~rx" The semantics of t .<X I X = aX + b> is h / ~ r x , h as in Figure 2.16(b).

Actually, g '-*r~ h; we will return to this example and show that the two expressions just mentioned

are provably equal.

(a)

Figure 2.16

g

v

b

O

a

Co)

(*) (Actually, we have to be slightly more liberal w.r.t, the form of the t i in E = {X i = ti(X 1 ,...,X n) I i = 1,...,n}. In
fact, we will allow substitutions for variables in the t i, in order to have equalities like e.g. <X 1 X = t(X,Y), Y =
s(X,Y)> = <X I X = t(X,Y), Y = s(tfX,Y),Y)>. For a more precise Ireatment see Bergstra & Klop [88].)

97

I. Having thus established our syntax and semantics, we turn to the question of finding a

complete proof system for the easier case of bisimulafion, 2 . This question was solved in Milner

[84b], using the syntax of Ix-expressions. Mi lner ' s complete proof system ' M ' for regular

processes is given in Table 23.

M
x + 0 = x A0
x + y = y + x A1
(x+ y)+ z = x + (y+ ~ A2
x + x = x A3

I.IX,T(X) = I.tY.T(Y) I10

I/X.T(X) = T01X.T(X)) I, tl

x = T (x)
T(X) guarded

x = p_X.T(X)

taX(X + T)= g X ~ ~3

Table 23

2.3.3. EXAMPLE. Consider the ~t-expressions t.tX. aX and gY. (aY + a~tX.aX), denoting the

graphs g, h (modulo ~) in Figure 2.17. Since g ~ h, we must be able to prove equality between

the two Ix-expressions. Indeed: abbreviate ~X. aX by L, and the other g-expression by R. Then, in

M, one proves: L = aL = aL + aL and R = aR + aL. Hence L, R are solutions of the same guarded

recursion equation X = aX + aL. Therefore L = R.

a ~ a

Figure 2.17

In the present framework we have the equivalent proof system BPAre c (equivalent, modulo

some inessential details, discussed in Bergstra & Klop [88]) as in Table 24 below. Here E = {X i =

Ti(X 1 Xn) I i = 1 n}. The rules R1,2 correspond to Ixl,2 in Table 23. In particular, R1

inaplies the following axiom (which is equivalent to R1):

<X 1 I E> = TI(<X 1 l E> <X n 1E>)

and this axiom corresponds exactly to IXl.

The axiom t.t3 in M has no counterpart in BPAre c. The axioms A4, A5 come in here since

multiplication is general (i.e. not merely 'prefix-multiplication').

Rule R3 states that 'conversions' in the right-hand sides of the equations in <X I E> are allowed.

98

BPAre c

x + y = y + x
(x + y) + z = x + (y + z)
X + X-----X

(x + y)z = xz + yz
(xy)z -- x(yz)

x i = <X i I E>, i=l,...,n

x 1 = Tl(Xl,...,Xn)

x i = Ti(x 1 ,...,x n), i = 1,...,n

= < X 1 I E > x 1

E = E '

<X 1 I E> = <X 1 I E'>

A1
A2
A3
A4
A5

Table 24

R 1

Ti(X 1,.,.,X n) is guarded R2

R3

II. Next, we discuss the problem of making the contraction o f z-cycles provable. Of course, we

start with adopting the z-laws T1-3 as in Table 16 or 22. Now, for instance, we want to be able to

prove

<X 1 X = xX + a> = <X I X = xa> (= xa)

in view of the rt-bisimilarity of the corresponding process graphs. Note that a proof rule like

x = xx + a ~ x = "ca would not do the job; while it is true that xa is a solution of the equation

X = xX + a (since xa = x(xa) + a, using the x-laws), it is unfortunately the case that also "c(a + q) for

arbitrary q is a solution:

x(a + q) = x(a + q) + (a + q) = x(a + q) + (a + q) + a = x(a + q) + a = x(x(a + q)) + a.

The solution is the use o f the abstraction operator x I (renaming every i ~ I into x, see Table 15 or

22), and the proof rule K F A R (see Chapter 1, Section 1.10), enabling us to conclude from

x = ix + a that ~{i}(x) = xa. This is an instance of the proof rule KFAR1:

x = i x + y

xCi }(x) = x.'c{i} (Y)

which in turn can be derived from KFAR2:

99

x = i y + z , y = j x + z '

X{ij}(X) = '~-X{ij}(Z + z')

The desired equation can now be proved as follows. Put x = <X IX = iX + a>, so x = ix + a. By

KFARI: x{i}(x) = x-x{i}(a) = xa. Furthermore, x{i}(x) = x{i}(<X I X = iX + a>) = <X t X = xX +

a>, which proves the result.

Using KFAR 2 we can "contract in a provable way" every x-cycle in (the graph

corresponding to) a system <X I E>. That KFAR 2 already suffices, and that one does not need

KFAR n for n > 2, is demonstrated in Example 2.3.7 below.

III. Making the operation A (saturation) provable is no problem at all: here the x-laws T1-3

suffice. We will not prove this here (see Bergstra & Klop [88]), but refer to the examples below.

IV. More consideration is required to see that also 'pruning' of internal e-steps (by means of the

operation E) is provable. Suppose g is a saturated, x-cycle free graph ~ RP. Then in order to

execute operation E, we can successively remove the e-steps. In each such removal the node set of

g is not affected, since e-steps are internal and g is saturated; furthermore, the "x-bisimilarity

character" of all nodes in g remains invariant. Hence also the cluster structure of the initial g

remains invariant. At the end of the pruning operation, i.e. in E(g), each cluster still is a

,-,z-equivalence class. Moreover, by similar arguments as used in the proof of Corollary 2.2.4.7

one proves:

2.3.4. PROPOSITION. Let hi, 132 ~ R be saturated, x-cycle free, and suppose all e-steps in hi, h 2

(i.e. "c-steps between "c-bisimilar nodes) have been removed (including possible ones to or from the

root). Then:

h l ~ , : h 2 ~ h l ~ h 2.

Using this proposition we observe that in E(g) with g as above (saturated, x-cycle free, e RP)

every cluster only contains nodes s, t which are bisimilar in the ordinary sense ((g)s ~ (g)t)" Here

(g)s, (g)t are hi, h 2 from Proposition 2.3.4.

Now our way to make the transformation from g to E(g) provable, is to start with E(g) and

then add e-edges to arrive at g. Using the observation just made this is easy, and instead of a proof

we just give an example.

2.3.5. EXAMPLE. Let E(g) and g be as in Figure 2.17.

100

E(g) ~ g

a ~ ~
b b b

i,

: ~ b

Figure 2.17

The corresponding expressions <X I E>, <X' I E'> (written as systems of equations where the first

recursion variable is the 'designated' one) are:

E: X=aY+aZ E: X' = aY' + aZ'
Y = bY + bZ Y' = bY' + "cZ' + bZ'

Z = b Z Z' = bZ'

We now prove <X I E> = <X' I E'> as follows; here we use some of the proof rules from the proof

system below in Table 25.

Abbreviat ing X = < 1 E>, Y = <Y I E>, Z = <Z I E> and similarly for X', Y_y_', Z', we have:

X = a Y + a Z

Y = b Y +b_Z

Z_ = bZ.

Now consider the expression Y* = x_Y.. Then F- ..Y Y* = Y + "cY = Y + xZ = bY + bZ + "~Z = b~._YY + b ZZ

+ zZ = bY* + bZ + zZ. Here we used that F- Y = Z, which follows from the fact that the graphs

corresponding to Y, Z are bisimilar as stated in Proposition 2.3.4, and from the fact that the proof

system is complete for ordinary bisimulation. Therefore:

X = a_Y + ~ = axY + aZ = aY* + aZ_

Y_* = bY* + bZ + xZ

z = b_Z_.

Hence (_X_, Y__*, Z) satisfies E'. Hence F- X = X'. *)

The general case, where g and E(g) differ by more than one e-step, is only notationally more

complicated and left to the reader.

Table 25 presents the complete inference system BPAz,re c.

*) We use here that E' is a guarded system of equations, which enables us to use rule R2 in Table 25. Actually, E' is
only 'essentially' guarded; the x occurring in E' is not a guard (a guard must be a proper atom), but substituting bZ'
for Z' we arrive at a guarded system. It is not hard to prove that indeed, in general, the system E' corresponding to
A(g') as in Figure 2.15 is essentially guarded (i.e. that A(g') is x-cycle free).

10t

BPA~oc
x+y = y + x
(x + y) + z = x + (y+ z)
X + X = X

(x + y)z = xz + yz
(xy)z = x(yz)

X~=X

"~X + X ='~X

a('~x + y) = a('~x + y) + ax

xiCA) =X

xi(a) = x ifa e I
q (a) = a i f a 4 I
xi(x + y) = xi(x) + ~l(y)
xi(~y) = ~. xi(y)
xI(aY) = "~l(a). "el(y)
"cI(<X 1 I E>) = <X 1 I xI(E)>

x i = <X i t E>, i = 1,...,n

x I = T1(Xl,_.,Xn)

x i = Ti(x 1 ,...,x n), i = 1,...,n

X l = < X l t E >

E = E '

< X 1 I E> = < X 1 I E'>

x = i y + z , y = j x + z '

x{i,j)(x) = x.'c{i,j}(z + z')

Ti(X1,...,X n) is guarded

Table 25

A1
A2
A3
A4
A5

T1
T2
T3

TI0
TI1
TI2
TI3
TI4
TI5'
TI5"
TI6

R1

R2

R3

KFAR
2

A ve ry e l egan t a l te rna t ive c o m p l e t e p r o o f sys tem, e m p l o y i n g the f o r m a l i s m of

~t-expressions, is given in Milner [88]. It consists o f the p roof system in Table 23, extended with

the x-laws (T1-3) and the fol lowing two axioms, which play the role o f KFAR2:

~tX(xX + E) = gX(xE)

t.tX(¢(X + E) + F) = txX('cX + E + F).

Here E, F are arbitrary expressions.

W e conclude this chapter with some examples showing the use of the p roof system BPAx,re c.

102

2.3.6. EXAMPLE. W e r e s u m e the ques t i on in E x a m p l e 2.3.2, to p r o v e x . < X t X = "cY + aY, Y =

x X + b> = x . < X 1X = a X + b>. (See F igu re 2.16.) Abbrev i a t e :

X = < X I E > = < X I X = "~Y + aY, Y = "cX + b>, Y = < Y I E>,

X i = < X I El> = < X I X = iY + aY, Y = i X + b>, y i = < y i Ei>.

So w e have X__ i = iY i + aY i and y i = iX i + b. H e n c e by K F A R 2 :

X{i}(_~) = X = "~.'c{i}(aY__ i + b)

w h i c h y i e l d s X = x.(aY__ + b). L i k e w i s e Y = x(aY__ + b). T h e r e f o r e X = Y.Y_, and so X = "c(aX + b).

T h u s

X = < U I U = x (a U + b)> = < U I U = x V , V = a U + b> =

< U I U = •V, V = axV + b> = < U I U = xV, V = a V + b>.

N o w abbrevia te : U_ = < U I U = xV, V = aV + b>, V = < V I U = xV, V = a V + b> =

< V I V = aV + b>. So w e have p r o v e d "cX = x U = "c'cV = x<V I V = a V + b>, w h i c h was our goal.

2.3.7. EXAMPLE. W e w a n t to p r o v e tha t the e x p r e s s i o n s c o r r e s p o n d i n g to t he g raphs in F igure

2.18 are equal .

a
b

d c

O

t

Figure 2.18

So, to p rove :

N o w

X = < X I E > =

< X I X = aU, U = x V + b, V = "cW + d, W = "cU + c> = a(b + c + d).

< X I E > = < X I X = aU , U = x V + b, V = x (x U + c) + d, W = "~U + c > =

< X I X = aU, U = xV + b, V = "c(xU + c) + x U + d, W = z U + c> =

< X I X = a U , U = z V + b , V =xW+'cU + d , W = x U + c > = < X I F>.

T h e las t s y s t e m c o r r e s p o n d s to the g raph in F igu re 2.19(a) .

103

(a) (b)

Figure 2.19

We now introduce:

So:

X i,j = <X I FiJ> = <X I X = aU, U = iV + b, V = j W + iU + d, W = j U + c>.

X i,j = aU i,j, U i , j = iV i,j + b, V i,j = j W iJ + iui , j + d, W i,j = ju i , j + c.

N o w we apply K F A R 2 on the " i -cycle" ; that is, f rom U i,j = iV i , j + b, V i'j = j W i,j + iU i,j + d it

fol lows that "~{i} (U i,j) = "~-'~{i}(jW i,j + d + b) (*). Since

"c{i} (~_i,J) = x J = <X I F J> =

< X I X = a U , U = x V + b , V = j W + x U + d , W = j U + c > ,

we now have: x J = aUJ, uJ = "c(jwJ + d + b) (by (*)), w J = ju J + c. Here uJ = <U t FJ> and w J =

<W I FJ>. Therefore

x J = <X I X = aU, U = "~(jW + d + b), W = j U + c> and

X = "c{j}(.~J) = <X I X = aU, U = 'c(xW + d + b), W = 'cU + c> =

<X IX =aU, U =xV, V = x W +d + b, W = x U +c> =

<X I X = aV, V = x W + d + b , W = xV + c>.

Here the last two recursion expressions correspond to the graphs in Figure 2.19(a,b) respectively.

(a) ~)

Figure 2.19

The remaining x-cycle o f two steps can now be contracted, as in the previous example, by one

more application o f K F A R 2. The result is: X = a(b + c + d).

104

3. A comparison of process models related to bisimulation semantics

In this chapter we compare the class of graph models as defined in Chapter 1 with a class of

'projective' models as well as with a class of metric models as in the work of De Bakker & Zucker

[82a,b]. In doing so, we will restrict ourselves to the simple case of pure interleaving, without

communication; that is, we will consider only models of the axiom system PA, in Tables 1 and 5 of

Chapter 1. The alphabet involved will be A = {a,b,c,..o}; it does not contain x nor 8. Hence, the

notion of bisimutation that is employed is ~ , defined in 2.1.4.1. Two parameters will play an

important role in this chapter: the cardinality ~t of alphabet A, and the branching degree ~ of

process graphs.

3.1. DEFINITION. (i) Process graphs without cycles and without "shared subgraphs' are process

trees. (In Milner [80] these are called 'synchronisation trees'.) More precisely: a process graph is a

process tree if every node has exactly one incoming arrow where the small root arrow also counts

as an arrow. A process graph is finite ff it contains finitely many edges and nodes.

(ii) If g is a process graph, and s e NODES(g) is a node of g, then the branching degree of s is

the number of arrows leaving s. The branching degree of g is the maximum of the branching

degrees of the nodes in g.

(iii) Gcq[3 is the set of process graphs 'over ' an alphabet of cardinality 0c and with branching

degree < 13. Here 0~ > 1 and 13 > t~ 0. (The bound ~ on the branching degree must be infinite since

otherwise the process graph domains below would not be closed under '+ ' , as defined in 1.13.) On

Gc~,~ we define operations +, . , II, ~_ ,()n (n > 1); see Section 1.13 with the understanding that

merge tl is now simply the cartesian product graph, without 'diagonal' edges representing

communications as in Chapter 1, Furthermore, in this chapter we employ the alternative notation

()n instead of r~n().This projection (g)n (n > 1) is defined for trees g: it is the tree obtained by

cutting away all nodes reachable from the root by a path of length > n. The corresponding edges are

also left away. If g is not a tree, then (g)n is defined as (g')n where g' is the tree obtained by

unwinding g.

As in Chapter 1, it tunas out that bisimilarity _o is a congruence on G~,~ with respect to the

operations just defined. Hence we can take the quotient

~ , ~ = G~,~/-~

The quotient structures are models of PA, i.e. process algebras for PA. Using the usual distance

function d, defined by

105

d (x , y) = 2 -m if 3n (X)n # (Y)n; m = rnin{n I (X)n # (Y)n}

0 otherwise, i.e. Vn (X)n = (Y)n

we have that Ga,[~ is a pseudo-metric space but not yet a metric space. (For instance, in G1,R1 the

elements determined by the process graphs ~n~>l an and ~n>_l an + a¢° in Figure 1.13 are different

but have distance 0.) It becomes a metric space after dividing out the congruence induced by the

Approximation Induction Principle (AIP), discussed also in Chapter 1:

Vn (X)n = (Y)n

x = y

The result of 'dividing out' AIP is

G°c¢,~ = ~ct,~/AIP.

The ~°c~,~ have been defined as a 'double quotient' by f~rst dividing out o. and next AIP. The

same result can be obtained by defining a suitable equivalence relation at once; this is done in

Golson & Rounds [83] where 'weak equivalence' is divided out° In Milner [80], p.42 this notion is

called 'observation equivalence'. It is defined as follows:

3.2. DEFINITION. (i) If s e NODES(g), then (g)s is the subgraph of g with root s, and nodes: all

nodes in g reachable from s, and edges as induced by g.

(Warning: the notation (g)s should not be confused with (g)n for the n-th projection of g.)

(ii) On a process graph domain Gct,~ we def'me transition relations ~ a for each atom a: if s --)a t

is a step (edge) in g e Ga, P then (g)s - ~ a (g)r

(Note the difference in notation: open arrows stand for transitions between process graphs, normal

arrows denote steps between nodes in one process graph.)

3.3. DEFINITION. On G(x,i ~ we define equivalences -n for each n > 0:

(i) g -0 h for all g,h;

(i_i) g =n+l h if

(1) whenever g - '>a g' there is a transition h "->a h' with g' =n h';

(2) as (1) with the roles of g,h interchanged.

Furthermore, g = h if g =n h for all n > 0.

106

An alternative, equivalent definition i s :

3.4. DEFINITION. Let g,h e G u , ~ be process graphs. Then g ---n h i f (g)n -- (h)n (n > 1).

Furthermore, g ~ h if g --n h for all n > 1.

The proof that these definitions are indeed equivalent is left to the reader. W e also omit the

routine proof of the next proposition, where _=_ denotes isometry.

3.5. PROPOSITION. G°cql~ =_ Gct,~/-. n

3.5.1. REMARK. For finitely branching graohs (i.e. ~ = 1~0) and arbitrary alphabet, we have in fact

Gcq~0/_-- -- Gcx, R0/o_.

That is, weak equivalence (or observational equivalence) coincides with bisimulation equivalence. In fact, the proof
follows from Lemma 1.13.7.1. We give an alternative proof for the present simpler case here: Suppose g,h are
finitely branching process graphs and suppose g ~ h, or equivalently: Vn (g)n _o (h)n" Now consider

B n = {R I R is a bisimulation from (g)n to (h)n},
B = Un>l B n.

This collection of 'partial' bisimulations between g,h is ordered by set-theoretic inclusion (~). In fact, B' = B u
{(s0,t0) } where s0,to are the roots of g,h respectively, is a tree w.r.t. ~. Because g,h are finitely branching, this tree
is also finitely branching: there are only finitely many extensions of a bisimulation between (g)n' (h)n to a
bisimulation between (g)n+l, (h)n+l" Moreover, because Vn (g)n _o (h)n ' the tree B' has infinitely many nodes.
Therefore, by K0nig's Lemma, B' has an infinite branch. This infinite branch is a chain of partial bisimulations R i
(i>-l):

R1 ~ R2 _c ... ~ Rn ~...

such that R i is a bishnulation from (g)i to (h) i. Now R = Un>_tR i is a bisimulation from g to h.

The structures ~3°a,p are also process algebras for PA. While all of the ~3°ct,$ are metric

spaces, they are not all complete. An example is given in Golson & Rounds [83]: (3 ° l ,~0 i s

incomplete. (Consider the approximations of ~n_>l an') Another example is as follows.

3.6. EXAMPLE. ~ ° R co, R ¢o is an incomplete metric space.

PROOF (sketch). The alphabet is {a i I i < Rc0 }. Define a sequence of process graphs gn (n >- 1) by

gn = ~il<~t 1 ~i2<1,12 "'" ~in<Rn ailai2"..ain.

Let brd(g) be the branching degree of process graph g, defined as follows: if s is a node of g, then

brd(s) is the (cardinal) number of arrows leaving s; furthermore, brd(g) is the cardinal sum of the

brd(s), s e NODES(g). W e claim:

107

(i) brd(gn) = R n for gn as defined above,

(ii) brd((g)n) < brd(g) for all g E Ga , ~,

(iii) h _.o gn ~ brd(h) > brd(gn) for gn as defined above.

Claim (ii) is trivial; the inductive proofs of the other two claims are left to the reader. Using these

claims, one shows immediately that there is no limit g/= for the sequence of elements gn/- =- in

G°gc0,go~as this would require a process graph g with branching degree at least ~n<c0 Rn = Rot t3

We will now define projective models A°°tx,13 of PA for arbitrary t~ > 1 and 13 > ~ 0" These

will all be complete metric spaces. Furthermore, modulo isometry A~a,~ is an extension of G°~,~,

so the projective model can be considered as the metric completion of G°a,~. (In case G°ct,~ is also

complete, it is of course isometric to the projective model.) The projective models defined below

differ from the ones in Kranakis [86,87]; there an element of a projective sequence is a sequence of

terms (modulo derivable equality), below it is a sequence of finitely deep process graphs (modulo

bisimilarity).

3.7. DEFINITION. (i) Gnt~,~ = {g ~ Gct,t ~ I g = (g)n}"

(ii) ~3nct,l 3 = Gna,~/__.,

(iii) Let gi ~ ~3nct,l~ (i > 1). Then the sequence (gl,g2,'") is projective if for all i: gi = (gi+l)i"

(iv) A~'ct,B is the projective limit of the Gnct,~ (n -> 1); the elements of A~ct,~ are the projective

sequences. The operators +, . , II, n are defined as follows: if y = (gl,g2, '") and ~/= (gl' ,g2', '")

then y . ~/= ((gl " g l ') l , (g2 "g2')2, '") and likewise for the other operators.

3.8. THEOREM. A~ct,13 is a complete metric space.

PROOF (sketch). Consider a converging sequence Yi = (gil, gi2), i > 1. For growing i and

fixed k, the sequence gik will eventually be constant, say after N(k) steps. We may suppose that N

is a monotonic function. Now y = (gN(1),l, gN(2),2) is the required limit, t3

Van Glabbeek (personal communication) remarked that for finite t~, there is no need to

consider uncountably branching process graphs, see statement (i) in Corollary 3.12. His

observation can be generalized to infinite G. First some notation.

3.9. NOTATION. Let t~ be a cardinal number (finite or infinite). Then t~* = ~-'n<to an, where G O =

108

tz, COn+ 1 = 2 an. For f'mite c¢, we have ix* = ~0- For t~ = ~0, the numbers c~ n are known as the

beth-numbers "t n and o~* = :kt0. The cardinality of a set X is card(X). If ~: is a cardinal, then ~+

denotes the least cardinal larger than ,:.

3.10. PROPOSITION. (i) For infinite a: card(C-~na,a,) = an.

(ii) card(Un>>l Gna,a,) = a*.

(ffi) For any a,~: Gna,a. ~ Gna,a,+~ ¢.

PROOF. (i) Induction on n. For n = 1 the statement is clear, since the process graphs gI = Y'ae I a

for arbitrary non-empty I _c A are mutually non-bisimilar, and since every process graph in G, la, a .

is bisimilar with some gI" Suppose the statement has been proved for n. Let)~n ~ Gna,a , be a set

of representatives of the ~x n bisimulation equivalence classes of Gn+la ,a . , so c a r d (~ n) = tx n.

Now every element of Gn+la,a, is bisimilar to one of the process graphs

ghJ,f = h + ~aeI ~xe f(1) ax

where h e X n, I ~ A (possibly empty) and f: I ---> ~o(~n). Moreover, for different triples h,I,f

the corresponding gh,I,f are not bisimilar. Hence card(Gna,ct,) = t~n-O~l.t~n+ 1 = O~n+ 1. Here the

factor a n stems from the variation in h, o~ 1 from the variation in I while for each I the choice of f

contributes a factor (2card(Xn)) card(1) = 2 an = an+l.

Part (ii) is by definition; (iii) is left to the reader, t3

3.1 t. THEOREM. A**a,a, =_ A~a,a,+ 1< f o r any cardinal ~:

PROOF. The isometry follows at once from Proposition 3.10(iii). [3

3,12. COROLLARY.

(i) For f inite ct: A**a,g o = A*~a, go + ,: f o r any cardinal ~:.

(ii) For countably infinite alphabet: A**go,:2 co --" A*°~o, ~ + • f o r any cardinal v:.

We will now turn our attention to the models ~3°a,[i in order to compare them with the

projective models.

3.13. PROPOSITION. If ~ is sufficiently large, ~3°a& is complete.

PROOF. We will try to prove that G°a,l~ is isometric to A**a, ~ and deduce from that attempt a

requirement on [$.

109

We will drop the subscripts cz,[3. So let us try to establish an isometry q~ from G ° to AO,.

Let g ~ ~3 °. Then tp(g) = ((g)l,(g)2,'")" It is easy to prove that this is a projective sequence. The

hard part is to prove that cp is a surjection. Consider an element (gl, g2) E A °*. Let gi be a

representing process graph of gi (i > 1). We would like to find a graph g such that (g)i ~ gi for all

>_ 1. (Cf. the construction in Theorem 3.5 of Golson & Rounds [83] by 'blowing up' trees; we wil

use another construction.) For the rest of this proof, we will suppose that all process graphs are

trees. Let gi' be (gi+l)i. So gi " gi'; say R i is a bisimulation from gi to gi" Let Si: NODES(gi') --->

NODES(gi+t) be the obvious embedding function, obtained by the projection mapping. Now if s is

a node of depth k in gk (so s is 'appearing' for the first time in gk), we define some sequences

starting with s, which we will callfibres, as follows. Any sequence

s = Sk, Sk',Sk+l,Sk+l',Sk+2,Sk+2',...

where s i e NODES(gi), s i' e NODES(gi'), (si,si') e R i and Si(si') = si+ 1 (i _> k) is a fibre. We will

say that this fibre starts in gk" If 6,x are fibres, starting in gk and gk+l respectively, we define

transitions ~ "-'~a x if there are a-steps between the elements of these sequences:

(~: Sk,Sk',Sk+ 1,Sk+ l',Sk+2,Sk+2',...

,La Sa Sa -l,a ,La

'~: tk+l,tk+l', tk+2, tk+2',...

Now we construct the process graph "t with as nodes the fibres and transitions as just defined.

More precisely: the root of y is the fibre through the roots of gl,gl' ,g2 and the other nodes of ~/

are those fibres reachable from the root of ~ via transitions between fibres.

We claim that the projection (~/)n is bisimilar to gn" A bisimulation Pn is given as follows: if s

NODES(g n) and cra NODES((~t)n) then (s,~) e Pn iff s is an element of cr. The verification of the

claim is easy. An illustration is given in Figure 3.1 where ~ is 'reconstructed' from the sequence of

process graphs a, a+a 2, a+a2+a 3 Interestingly, the result is not 'Y-'n___l an but Y'n_>l an + ac°"

(See the 'black fibers' in Figure 3.1.)

However, the problem is now to prove that the branching degree of 7 is strictly bounded by

13. We claim that this is so if 13 > (a*) ~0. Proof of the claim: let us take the gi (i ~ 1) above as small

as possible with respect to the cardinalities of their node sets. From the proof of Proposition 3.100)

it is clear that we can take the gi such that card(NODES(gi)) < o~ i (in fact we can even take

card(NODES(gi)) -< q-I)" Hence we may suppose that the union of the node sets of the gi, gi' (i>l)

is bounded by tx*. Now every fibre (a node of the tree y) is an o-sequence of nodes of the gi, gi'"

Hence there are at most ~: = (0t*) ~t° such fibres; so 7has at most ~: nodes, so the branching degree

of T is bounded by m t]

110

Figure 3.1

3.14. REMARK. (i) In the example above, in Figure 3.1, the process graph ~ is closed (see

Definition 3.23.1 for the definition of 'closed process graph'). In general, this needs not to be the

case: e.g. if in the proof of Proposition 3.13, gi = ('f'n_-.1 an)i for i > 1 (so gl consists of infinitely

many a-steps attached at the root) then T = Y ~ I an and this graph is not closed.

(ii) Another way of constructing a process graph g with projections (g)n bisimilar to gn as in the

proof above, is by taking g as the canonical process graph of the projective sequence (gl, g2)

A ~', See Definition 3.23.2. One can prove that this graph is closed indeed, for 13 > (~ ,)~0

3.15. DEFINITION. Let X,X' c Ga,13. (i) Then (X)n = {(g)n I g e X}.

(ii) X -=n X' if Vge X 3g 'e X' g =-n g' and Vg 'e X' 3ge X g -n g"

(iii) X = X' if X -=n X' for all n.

3.16. DEFINITION. Let g e Ga,[t. The a-derivation of g is the set of all subgraphs of g reachable by

an a-step from the root. Notation: g/a.

3.17. PROPOSITION. Let g,h e Ga,~. Then g,h determine the same element in G°c~,~ iff for all a,

g/a - h/a.

PROOF. Routine. D

t l l

3.18. PROPOSITION. Let X C G0~,l 3. Then there is an X' ~ Ga,f~ such that X = X' and card(X') -<
a*.

PROOF. Consider the collection Un_>l(X)n of finitely deep process graphs. We will construct a

graph (not a process graph) with node set Un>_l(X)n, and arrows g ---> h for g e (X)n, h e (X)n+ 1

whenever g = (h)n. See Figure 3.2.

(X) l ["t '"t '"r "~ " '1 1 J , , l ! I 1

[Z2 [2Z] US3 I~$23 i iii2:!i :illiiiili

Figure 3.2

The boxes in Figure 3.2 are the -~-equivalence classes. We note (Proposition 3.10(i)) that there are

at most a n boxes at level n, hence at most a* boxes in total. Now every g e X corresponds with a

path in this huge graph (not necessarily vice versa). We now construct X' as follows. If g a X is

finitely deep (i.e. determines a terminating path in the graph of Figure 3.2), then g e X'.

Furthermore, in each box we select one node (i.e. a process graph g e (X) n for some n) and

choose an arbitrary path through this node. This path (which in fact is a projective sequence of

process graphs) determines a process graph, call it g~. Now we put g~ e X'. Obviously, card(X')

< a* and it is not hard to prove that X = X'. t]

3.19. PROPOSITION. For all a,~:: G°a,(a,)+ ~ G°a,(cx,)+ +4

PROOF. Consider a process graph g e Ga,(a.)+ +~. We must show that g can be pruned to a g'

Gcx,(a.)+ such that g and g' determine the same element after dividing out _o and AIP (or dividing

out = at once). This follows directly from the preceding two propositions.

3.20. COROLLARY. For a//a,~,~.: A~a,c~, + ~ =- ~3°a,(a,)+ + ~.

PROOF. This follows from Theorem 3.11 and Propositions 3.13 and 3.19. n

The cardinality of the models constructed above is for infinite alphabets quite large (this was

already noticed in Golson & Rounds [83] for the process model of De Bakker & Zucker [82a,b];

1 t2

see our remarks below). In fact:

3.21. PROPOSITION. (i) Forfinite ~: card(A*~m~o) = 21~°

(ii) For countably infinite alphabet: card(A"°l~o, ~o~) = --~o~+1

(iii) For general c¢: card(/k~a,a,) = 2 (a*) = (a*) ~°.

PROOF. (We will assume the Axiom of Choice in our calculations with cardinals.) Statements (i)

and (ii) follow from Off). Proof of (iii): Let)~ be card(A~'a,c~.). Using Proposition 3.10 and noting

that every element of A~a ,a , is a map from 03 into the union of the Gnma., we have 9~ _< (ct*) e°.

In view of the isomorphism with the graph models (Corollary 3.20), we find X -> 2 (c~*). The

argument is as follows: there are oc* finitely deep process graphs which are mutually not bisimilar.

(This is in fact Proposition 3.10(ii).) Let jr be the set of these process graphs. For every subset X

of Jr we define a process graph g x as ~ g e X a.g for a fixed atom a. Now g x -~ gl A i f f X = tJ.

Moreover, for different X,I.J the corresponding graphs are not identified after dividing out AIP. So

we now have:

2 (a*) < ~k < (o~*) e°.

We also have: 2 (c~*) = (~ .)a* _> (a .) e 0 (here AC is used, in the equality step), ttence the result

follows. [3

3.22. QUESTIONS. At present we do not know the answers to the following questions. For what

tx,~ is (3°ct,[~ a complete metric space? What is the cardinality of (3°ct,~ and A°°ct,~? If G°ct,~ is a

complete metric space, is 13°c~,~, for ~5' > 13 also complete?

It is interesting to compare the projective model A°°a,~, with the process model P~ as

constructed by De Bakker & Zucker [82a,b] as a solution of the domain equation

P = {P0} u fOc(A x P).

In Pet, processes can terminate with P0 or with ~ ('successfully' or "unsuccesfully'). Leaving this

double termination possibility aside (one can extend PA to PA 8 and have the same double

termination possibility) or using a variant of the domain equation:

P_= fOc(A• (AxP)) ,

113

we can state that our projective model A~'a,a, is isometric to the process domain Pa" For finite c¢,

this follows from the proof in Golson & Rounds [83] that Pa is isometric to the graph domain

(3°a,g 1; hence it is also isometric to A~a, g0, by Corollary 3.20. For infinite tz the proof is similar.

(The proof proceeds by noting that our spaces of finitely deep processes Gna,a, are isometric to the

Pn in De Bakker & Zucker [82a,b] or Golson & Rounds [83]; hence the completions of

Un> 1 (3ha,a, and Un>_l Pn' respectively, must also be isometric.) So the cardinality statements in

Proposition 3.21 apply also to the models in De Bakker & Zucker [82a,b].

For a systematic (category-theoretic) treatment of De Bakker-Zucker domain equations like

the two above, showing that they have unique solutions modulo isometry, we refer to America &

Rutten [88].

3.23. Closed process graphs

We conclude with some remarks about a trade-off between closure properties of processes and the

Approximation Induction Principle used in the construction of G°a ,a .. These remarks are

suggested by the fact that the model of De Bakker and Zucker is a solution of their domain

equation; loosely speaking this means that the elements of that model can be perceived as

'hereditarily closed sets'. (Note, however, that these 'sets' are not well-founded. For a treatment of

non-well-founded sets, including the connection with bisimulations, see Aczel [87].) One may ask

whether the closure property can replace, when constructing a model from process graphs such as

G°a,a,, taking the quotient with respect to AIP. We will make this question more precise using the

definition of 'closed process tree' which was suggested to us by R. van Glabbeek (personal

communication).

3.23.1. DEFINITION. (i) For process trees g,h e Ga, ~ we define the distance ~(g,h) as follows:

8(g,h) = 2 "m

0

ifHn g ~ n h ; m = m i n { n l g ~ n h }

otherwise, i.e. g - h.

(ii) Let H ~ Ga. ~ be a set of process trees. Then H is closed if every Cauchy sequence (gi)L>.l

with respect to 5 in H converges to a limit g in H (i.e. Vk 3N Vn>N g -w. k gn)"

(iii) Let g e Ga, ~ be a process tree. Then g is closed if all its nodes s are closed; and a node s in

g is closed when (g)sJa is a closed set of trees for every a e A. Here (g)s is the subtree of g at s.

Futhermore, a process graph is closed if its tree unwinding is closed, The set of all closed process

graphs is GCa,13.

3.23.1.1. REMARK. Note that the closure property of process graphs is invariant under

114

bisimulat ion equivalence: if g _o h and g is closed, then h is closed.

3.23.2. DEFINITION. Let I~ be a a process algebra for PA.

(i) F rom the e lements x,y,z of I~ we construct a t ransi t ion d iagram (i.e. a 'process graph'

without root and not necessari ly connected) as follows. Wheneve r x = ay + z there is a transition

x---~ a y. In the case that x = ay we have the same transition. I f x = a, then there is a transition

x---)a0 where 0 is the termination node. More concisely, we have x---~ a y i f f x = ay + x and x---~aO

iff x = a + x. (To see this, use the axiom x + x = x.)

(ii) The canonicalprocess graph ofx in M is the process graph with root x, and as nodes all the

elements of I~ reachable f rom x in zero or more transition steps as just defined, including possibly

the terminat ion node. Notat ion: cani~(x) or just can(x) when it is clear what I~ is meant. (See

Figure 3.3 for the canonical process graph of (]~n_>l an)/= in G°a,[~.)

a

Figure 3.3

3.23.3. PROPOSITION. Let g/- be an element of G°a,~ . Then:

(i) can(g/=) = g.

(ii) can(g/=) - n can(h/=-) ¢~ g --n h.

(iii) can(g/x) is a closed proces graph.

PROOF. (i) With induction on n we prove that g ---n can(g/-=) for n > 0 (see Defini t ion 3.3). The

basis of the induction, n = 0, is trivial. Suppose (induction hypothesis) that we have proved

Vg g =n can(g/--). In order to prove g ----n+l can(g/=), we have to show (1) and (2):

(1) for every transition g "-~a g' there is an initial step in can(g/-) : g/-- --)a h / - such that

g'-=n (can(g/=))(h/-~) = can(h/ -) .

(Remember that g/--, h / - are nodes in can(g/ -) .) Now g / - "--~a h/=- is (by definit ion of canonical

115

process graph) the same as: g/-= = a(h/-) + r/--- for some graph r. Or, equivalently: g -= ah + r. So,

given the transition g - '~a g' we have to find h,r with g - ah + r and g' =n can(h/-). This is

simple: take h = g' and r as given by g " ~ a g' (i.e. g = a.g' + r for some r). Now apply the

induction hypothesis.

(2) For every initial step in can(g/=): g/~ "~a h/-- there is a transition g "~a g' such that

g ' - n can(h/=).

So, let g / - "-~a h/= be given. This means g - ah + r for some r. In particular, g ~-n+l ah + r, i.e.

(g)n+l - (ah + r)n+ 1 = a(h) n + (r).+ 1. (*)

From the induction hypothesis we know that h ~n can(h/x), i.e.

(h) n ~ (can(h/-)).. (**)

Combining (*),(**) we have

(g)n+l o a(can(h/_=)) n + (r)n" ***)

Now we have to find a step g --~a g' such that g' - n can(h/=), i.e. (g')n o_ (can(h/-))n. This is

easily obtained from (***): consider the a-occurrence displayed in the right-hand side of (***). By

definition of o__, this a-step is matched in (g)n+l by an a-step (g)n+l "--)a (g')n with (g')n _o

(can(h/=)) n.

(ii) Write g* = can(g/=). To prove (~) , suppose g =n h. Then g* = g -n h - h*, using (i). So

g* --n h*. The proof of (~) is similar.

(iii) Consider can(#--). (See Figure 3.4.) Let s be a node of this graph (so s ~ G°c~,~). Consider

the a-derivation of s, i.e. the set of subgraphs of can(g/-=) determined by the a-successors of s.

Clearly, this a-derivation is the set of canonical graphs of some elements t i (i E I) of G°c~,[~.

Suppose this set {can(ti) t i e I} contains a Cauchy sequence (with respect to 5 as in Definition

3.23.1):

can(ti0), can(til) can(tin)

We claim that the elements ti0,til tin form a Cauchy sequence in G°a,l~. This follows at once

1t6

from (ii) of this proposition. So there is a limit t E ~3°a,l~ of the last Cauchy sequence. Now can(t)

is easily seen (using again (i i)) to be a limit (in the 8-sense) for the Cauchy sequence can(ti0),

can(ti l)
We still have to prove that s "--~a t, or equivalently (see Definition 3.23.2(i)) s = at + s in

~3°cc,[~. Let s denote a representing process graph from the ----equivalence class s, and likewise for t

etc. Then we must prove that s - a_t + s. To this end, take _tik such that_thk w- n t. Since _s = a_tik + _s we

have s --n at + ~. Hence s -= at +_s. n

Figure 3.4

The preceding proposition enables us to define the closure of a process graph g : Gm[5,

notation gC, as can(g/-=) w.r.t. G°ml3, such that g - gC. Next, we define operations +c, .c,]lc, ~_e

on Gc~,~ as follows: g I! c h -- (g II h) e and likewise for the other operators. Here II is the merge

operation on Gin[~.

5.4. REMARK. IfGC0t,~ would have been closed under the operations +, -, 1[, 11 the preceding

closure operation in (g 11 h) c (etc.) would not have been necessary. However, for an infinite

alphabet GCml 3 is not necessarily closed under If, as the following example shows. (We conjecture

that for finite alphabets GCa,t] is closed under the operations ii etc.)

Let the alphabet be {a i I i > 1 } t3 {b,c}. We define process graphs H, G, gn (n > 1):

H =][i>-1 aic°

gn = an II Io n

G = ~__1 c.g. .

t17

Now H is a closed process graph. This can be easily seen, noting that H is a deterministic process

graph, i.e. a graph where two different edges leaving the same node must have different label, and

noting that deterministic graphs are always closed. Also G is closed: the c-derivation G/c,

consisting of the graphs gn, does not contain a Cauchy sequence since the graphs gn are already

different in their first level, due to the 'spoiling effect' of the a n in gn" Now G]l H is, we claim, not

closed. For, consider the c-derivation

(G II H)/c = {H tt gn In > 1 }.

Since H II an ~ H, we have

(G I1 H)/c = {H I Ib n In >_ 1},

modulo --- which does not affect the closure properties (as remarked in 5.1.1). The last set is a

Cauchy sequence: in general, if {qi I i > 1 } is a Cauchy sequence of process graphs, then {p II qi I

i > 1 } is again a Cauchy sequence for arbitrary p. However, there is no limit for this sequence in

the set (G II H)/e, and hence it is not closed. So G II H is not closed.

This counterexample may seem somewhat surprising in view of a related result in De

Bakker, Bergstra, Klop & Meyer [84], where it is stated (Theorem 2.9) that the collection of closed

trace languages (containing possibly infinite traces) is closed under the merge operation, for

arbitrary alphabet. Here a trace language is obtained as the set of all maximal traces of a process (or

process graph). Note however that closure of processes does not very well correspond to closure

of the corresponding trace sets; cf. also Example 4.4 in De Bakker, Bergstra, Klop & Meyer [84]

of a closed process graph with a trace set which is not closed.

Next, we define the quotient structure

Gc,13 =GC,~ / o_.

Here GCc~,[~ is supposed to be equipped with the operations as just deemed. It is left to the reader to

show that o_. is indeed a congruence with respect to these operations. Now there is the following

fact, showing that indeed taking the quotient with respect to the congruence induced b y A I P can be

exchanged for the restriction to closed process graphs:

3.23.5. THEOREM. Gc(x,lB - ~°(x,[B.

Figure 3.5

PROOF. Remember that Gcct,~ = GCct,13 / -~ and G°~,l~ = Gc~,~/---. Define the map

9: Gca,l~ / --" ~ Ga,13 / -=

by (p(g/a) = (g/=). Here g e GC~t,i ~ and g/~'- is the equivalence class modulo ~-; likewise g/-- is the

equivalence class of g modulo - .

(1) To prove that cp is injective, let g,h e Gea,l~ and suppose g -- h. W e must prove g ~ h.

Define R ~ NODES(g) x NODES(h) as follows: (s,t) ~ R iff (g)s -= (g)t" We claim that R is a

bisimulation f rom g to h. Proof o f the claim: The roots are related, by the assumption g -= h.

Further, suppose (s,t) e R and suppose there is a step s "-~a s' in g, (See Figure 3.5.)

1 1 8

Since (g)s = (h)t we have for all n > 1: (g)s =n (h)r This means that there are t n such that (g)s' -n

(h)tn for all n _> 1. The t n (or rather the (h)t n) form a Cauchy sequence with respect to 8, hence

there is, since h is closed, a node t' such that t -'-~a t' and (h) t, is a limit for the Cauchy sequence t n,

n > 1. So (h)t, =n (h)tm for some m > n, Therefore (h)t, -=n (h)tm --In (g)s" and since m > n, (h) t, =n

(g)s" This holds for all n > 1, so (h) t, = (g)s', i.e. (s',t') ~ R.

The same argument shows that if (s,t) ~ R and there is a step t --'>a t' in h, then there is a step

s "-~a s' with (s',t') ~ R.

This shows that R is a bisimulation from g to h, and ends the proof o f (1).

(2) To prove that (p is surjective, we have to show that

Vg e Gcm~ 3g' ~ Gcct,t3 g = g'.

This follows by taking g' = can(g/=) and applying Proposition 3.23.3(iii). n

119

In the case that 1~ is large enough, so that Gcml ~ is isometric to the process model Pet of De

Bakker and Zucker, this isometry leads to an 'explicit representation' of i~ct, as follows. First a

definition:

3.23.6, DEFINITION. (i) A process graph g is minimal if

"v's,t~ NODES(g) (g)s -~ (g)t ==> s = t.

(ii) A process graph is normal if

Vs,t,t'eNODES(g) V a e A s --->a t & s--->at' & (g)s ~- (g)t ~ s = t .

Clearly, normality is implied by minimality. Also note that a process tree can never be minimal,

unless it is linear (has only one branch); this is the reason for introducing the concept 'normal'.

It is not hard to prove that if g,h are minimal process graphs and g o__ h, then g,h are in fact

identical. Moreover, the canonical process graphs (of elements of G°u,l~) are precisely the closed

and minimal process graphs in Gm~. Thus every dement in Pet can be represented by a closed,

minimal process graph with branching degree at most o~*, and the operations in Ptx can be

represented by the corresponding operations in Gcet,[3 followed by minimalisation (collapsing all

bisimilar subgraphs). Another explicit representation can be given, using trees instead of graphs

and observing that normal, bisimilar process trees are identical. Then the elements of Ptx

correspond to closed, normal process trees with branching degree at most ct*. This representation

is closer to the idea of elements of Pet as 'hereditarily closed and possibly not well-founded sets'.

Summarizing our comparisons with Pt~ we have established isometries (for all r):

Pet = A'*ct,et*+r = ¢3°et,(cx*)++K •

Furthermore, writing Gcrnct,[3 for the set of closed minimal graphs in Gtx,[~ and Tcnml 3 for the set of

closed normal trees in Gtt,[~, there are the isometries

Pet = GC~,(et*)++~ = Gcmm (et*)+ +r =Tenet, (a*)++K ,

where the last two complete metric spaces can be seen as 'explicit representations' of Pa.

120

References

ACZF~L, P. (87), Lecture Notes on Non-Well-Founded sets, CSLI, Lecture Notes Nr.9, 1987

AMERICA, P. & RUTTEN, LJ.M.M. (88), Solving reflexive domain equations in a category of complete metric
spaces, in: Prec. of the Third Workshop on Mathematical Foundations of Programming Language Semantics (M.
Main, A. Melton, M. Mislove, D. Schmidt, eds.), Springer LNCS 298, 1988, p.2540288. Also to appear in the
Journal of Computer and System Sciences.

BAETEN, J.C.M. & BERGSTRA, J.A. (88), Global renaming operators in concrete process algebra, Information
and Computation, Vol.78, Nr.3 (1988), 205-245.

BAETEN, J.C.M., BERGSTRA, J.A. & KLOP, J.W. (86), Syntax and defining equations for an interrupt
mechanism inprocess algebra, Fund. Inf. IX (2), p.127-168, 1986.

BAETEN, J,C.M., BERGSTRA, J.A. & KLOP, J.W. (87) On the consistency of Koomen's Fair Abstraction Rule,
TCS 51 (1987), 129-176.

BAETEN, J,C.M., BERGS'IRA, J.A. & KLOP, J.W. (87a), Decidability of bisimulation equivalence for processes
generating context-free languages, ha: Prec. PARLE, VoLII (Parallel Languages), (eds. J.W. de Bakker, A.J. Nijman,
P.C. Treleaven), Eindhoven 1987, Springer LNCS 259, p.94-113, 1987.

BAETEN, J.C.M., BERGSTRA, J.A. & KLOP, J.W. (87b), Conditional axioms and ~t/~ calculus in process
algebra, in: Prec. IFIP Conf. on Formal Description of Programming Concepts--Ill, Ebberup 1986, (M. Wirsing,
ed.) North-Holland, Amsterdam 1987, p.53-75.

BAETEN, J.C.M & VAN GLABBEEK, RJ. (87), Another look at abstraction in process algebra, in: Prec. 14th
ICALP 87, Karlsruhe (Th. Ottman, ed.), Springer LNCS 267, p.84-94, 1987.

DE BAKKER, J.W., BERGSTRA, J.A., KLOP, J.W. & MEYER, J.-J.CH. (84), Linear time and branching time
semantics for recursion with merge. Theoretical Computer Science 34 (1984), p.135-156.

DE BAKKER, J.W. & ZUCKER, J.I. (82a), Denotational semantics of concurrency, Prec. 14th ACM Syrup.
Theory of Comp., p. 153 - 158, 1982.

DE BAKKER, J.W. & ZUCKER, J.I. (82b), Processes and the denotational semantics of concurrency, Information
and Control 54 (1/2), p. 70 - 120, 1982.

BERGS'IRA, J.A. & KLOP. J.W. (84a), Process algebra for synchronous communication, Information & Control
60 (1/3), p. 109 - 137, 1984.

BERGSTRA, J.A. & KLOP, J.W. (84b), The algebra of recurively defined processes and the algebra of regular
processes, in: Proc. llth ICALP (ed. J. Paredaens), Antwerpen 1984, Springer LNCS 172, p.82-95, 1984.

BERGSTRA, J.A. & KLOP, J.W. (85), Algebra of communicating processes with abstraction, TCS 37 (1), p. 77 -
121, 1985.

BERGSTRA, J.A. & KLOP, J.W, (86a), Verification of an alternating bit protocol by means of process algebra, in:
Math. Methods of Spec. and Synthesis of Software Systems '85 (eds. W. Bibel and K.P. Jantke), Math. Research 31,
Akademie-Verlag Berlin, p.9-23. 1986.

BERGSTRA, LA. & KLOP, J,W. (86b), Algebra of communicating processes, in: CWI Monographs I, Proceedings
of the CWI Symposium Mathematics and Computer Science (eds. J.W. de Bakker, M. Hazewinkel & J.K. Lenstra)
North-Holland, Amsterdam, 1986, p.89-138.

121

BERGSTRA, J.A. & KLOP, J.W. (86c), Process algebra: specification and verification in bisimulation semantics,
in: CWI Monograph 4, Proceedings of the CWI Symposium Mathematics and Computer Science II (eds. M.
Hazewinkel, J.K. Lenstra & L.G.L.T. Meertens), North-Holland, Amsterdam 1986, p.61-94.

BERGSTRA, J.A. & KLOP, J.W. (87), A convergence theorem in process algebra, CWI Report CS-R8733, Centre
for Mathematics and Computer Science, Amsterdam, 1987.

BERGSTRA, J.A. & KLOP, J.W. (88), A complete inference system for regular processes with silent moves, in:
Proc. of Logic Colloquium, Hull '86, (eds. F.R. Drake and J:K. Truss), North-Holland 1988.

BERGSTRA, J.A., KLOP, J.W. & OLDEROG, E.-R. (86), Failure semantics with fair abstraction, CWI Report
CS-R8609, Amsterdam 1986.

BERGSTRA, J.A., KLOP, J.W. & OLDEROG, E.-R. (87), Failures without chaos: a new process semantics for fair
abstraction, in: Proceedings IFIP Conference on Formal Description of Programming Concepts--III, G1. Avernaes
(Ebberup) 1986 (ed. M. Wirsing), North-Holland, Amsterdam, p.77-103, 1987.

BERGSTRA, J.A., KLOP, J.W. & OLDEROG, E.-R. (88), Readies and failures in the algebra of communicating
processes, CWI Report CS-R8523, Amsterdam 1985. To appear in SIAM J. of Computing, 1988.

BERGSTRA, J.A. & TIURYN, J. (87), Process algebra semantics for queues, Fund. Inf. X, p.2t3-224, 1987.

BERGSTRA, J.A. & TUCKER, J.V. (84), Top down design and the algebra of communicating processes, Sci. of
Comp. Progr. 5 (2), p. 171 - 199, 1984.

BROOKES, S.D. (83), On the relationship of CCS and CSP Proc. 10th ICALP (ed. J. Diaz), Barcelona 1983,
Springer LNCS 154, 83-96.

BROOKES, S.D., HOARE, C.A.R. & ROSCOE, A.W. (84), A theory of Communicating Sequential Processes,
JACM Vol.31, No.3 (1984) 560-599.

DE NICOLA, R. & HENNESSY, M. (83), Testing equivalences for processes, TCS 34, p.83-133.

VAN GLABBEEK, R.J. (87), Bounded nondeterminism and the approximation principle in process algebra. In: Proc.
of the 4th Annual Symposium on Theoretical Aspects of Computer Science (eds. F.J. Brandenburg, G. Vidal-Naquet
and M. Wirsing), Passan (W. Germany) 1987, Springer LNCS 247, 336-347.

VAN GLABBEEK, R.J. & VAANDRAGER, F.W. (88), Modular specifications in process algebra--with curious
queues, Centre for Mathematics and Computer Science, Report CS-R8821, Amsterdam 1988; extended abstract to
appear in: Proc. of the METEOR Workshop on Algebraic Methods: Theory, Tools and Applications, Springer
LNCS.

GOLSON, W.G. & ROUNDS, W.C. (83), Connections between two theories of concurrency: metric spaces and
synchronization trees. Information and Control 57 (1983), 102-124.

HENNESSY, M. (88),Algebraic theory of processes, The MIT Press, 1988.

HENNESSY, M. & MILNER, R. (85), Algebraic laws for nondeterminism and concurrency, JACM 32, 137-161.

HESSELINK, W. (88), Deadlock and fairness in morphisms of transition systems, Theor. Comp. Sci. 59 (1988)
235-257.

HOARE, C.A.R. (78), Communicating sequential processes, Comm. ACM 21, p. 666 - 677, 1978.

HOARE, C.A.R. (84), Notes on communicating sequential processes, International Summer School in
Marktoberdorf: Control Flow and Data Flow, Munich 1984.

122

HOARE, C.A.R. (85), Communicating sequentialprocesses, Prentice HaU 1985.

KOYMANS, C.P.J. & MULDER, J.C. (86), A modular approach to protocol verification using process algebra,
Logic Group Preprint Series Nr.6, Dept. of Philosophy, State University of Utrecht, 1986; to appear in:
Applications of Process Algebra, (J.C.M. Baeten, ed.), CWI Monograph, North-Holland, 1988.

KOYMANS, C.P.J. & VRANCKEN, J.L.M. (85), Extending process algebra with the empty process e, Logic
Group Preprint Series Nr.1, Dept. of Philosophy, State University of Utrecht, 1985.

KOSSEN, L. & WEIJLAND, W.P. (87), Correctness proofs for systolic algorithms: palindromes and sorting,
Report FVI 87-04, Computer Science Department, University of Amsterdam, 1987.

KRANAKIS, E. (86), Approximating the projective model, in: Proc. Conf. on Math. Logic & its Applications,
Druzhba (Bulgaria), 1986 (Pergamon Press).

KRANAKIS, E. (87), Fixed point equations with parameters in the projective model, Information and Computation,
Vol.75, No.3, 1987.

MAUW, S. (87), A constructive version of the Approximation Induction Principle, Report FVI 87-09, Computer
Science Department, University of Amsterdam, 1987.

MILNER, R. (80), A calculus of communicating systems, Springer LNCS 92, 1980.

MILNER, R. (84a), Lectures on a Calculus for Communicating Systems, Working Material for the Summer School
Control Flow and Data Flow, Munich, July 1984.

MILNER, R. (84b), A complete inference system for a class of regular behaviours, Journal of Computer and System
Sciences, Vol.28, Nr.3, 439-466, 1984.

MILNER, R. (85), Lectures on a calculus for communicating systems, in: Seminar on Concurrency, Springer LNCS
197 (1985), 197-220.

MILNER, R. (88), A complete axiomatisation for observational congruence of finite-state behaviours, Preprint,
Univ. of Edinburgh 1985; to appear in Information and Computation 1988.

MOLLER, F. (88), Non-finite axiomatisability in Process Algebras, preprint, Univ. of Edinburgh, 1988

MULDER, J.C. (88), On the Amoeba protocol, CWI Report CS-R8827, Centre for Mathematics and Computer
Science, Amsterdam 1988.

PARK, D.M.R. (81), Concurrency and automata on infinite sequences. Proc. 5th GI Conference, Springer LNCS
104, 1981.

PHILLIPS, I.C.C. (87), Refusal testing, TCS 50 (2), 1987.

VAANDRAGER, F.W. (86), Verification of two communication protocols by means of process algebra, CWI
Report CS-R8608, Centre for Mathematics and Computer Science, Amsterdam 1986.

VRANCKEN, J.L.M. (86), The Algebra of Communicating Processes with empty process, Report FVI 86-01,
Computer Science Department, University of Amsterdam, 1986.

WEIJLAND, W.P. (87), A systolic algorithm for matrix-vector multiplication, Report FVI 87-08, Computer
Science Department, University of Amsterdam, 1987; also in: Proc. SION Conf. CSN 87, p.143-160, CWI,
Amsterdam 1987.

