23

A NATURAL DATA TYPE WITH A PINITE EQUATIONAIL FINAIL SEMANTICS SPECIFICATION
BUT NO EFFECTIVE EQUATIONAIL INITIAL SEMANTICS SPECIFICATION

J.A. Bergstra
1 Department of Computer Science, University of Leiden

J.V. Tucker
Department of Computer Science, Mathematical Centre, Amsterdam

Argent, machinisme', algébre. Les trois monstres
de la civilisation actuelle. Analogile compléte,
SIMONE WEIL

INTRODUCTION

Suppose you want to define a4 data type by a set of operators & satisfying
some axioms E. Initial and final algebra semantics are two natural ways of
assigning to the specification (I,E) a unique meaning 1in the class
ALG(L,E) of all I-algebras satisfying the properties of E. Initial seman-
tics inslists that two terms t,t' over I are’'identical iff ¢,t' can be
proved equal from axioms E while final semantics agrees to identify t,t'
as long as t = t' is consistent with the axioms E. Both techniques have
been discussed in the programming methodology and thedretical literatures
with varying degrees of partiality: we assume the reader is aware of at
least ADJ[7], BROY et al [6], GUTTAG & HORNING[8], xaMIN[9], wanD[13].
Here we wish to point out a pleasing mathematical symme'try: if (X,E) 1is a
specification in which E is an r.e. set of equations then the initial se-
mantics of (I,E) is an r.e. semantics while the final semantics of (IL,E)
is a co-r.e. semantics. So a data type possessing effective specifications
with respect to both initial and final algebra semantics must be computable,
(A more formal statement of this 1is Basic Lemma 2.1.)

Clearly, it is easy to find natural data types which fail to possess
effective equational final algebra specifications for algebras with r.e.,

but not recursive, word problems abound. For natural systems with co-r.e.,

b

but not recursive, equaiity problems we look to the denotational semantics
of those program languages where the program equivalence problem is un-
decidable but co-r.e. The easiest example is PR the unary primitive re-
cursive functions PR on the natural numbers w (because as a function al-
gebra, made from the usual operators on PR and w, it is a total algebra).
In §3 we organise PR into a 2~sorted algebra A and prove it can be speci-
fied by finitely many equations and hidden operators with respect to final
semantics. In 84 we present, as a curio, an initial specification of an
impoverished fragment of A.

This little paper introduces final algebra semantics inteo our series
of mathematical studies of the power of definition and adequacy of alge-
braic methods for data type definition {1,2,3,4], see also [5]. We would
like to thank G. RozZenberg for encouraging us to write down these notes.

1. DATA TYPE SPECIFICATIONS

We assume the reader accustomed to working with many~-sorted algebras
and record here only terminology not to be found in the standard reference
ADJ[7].

Let A be a many-sorted algebra. Then A is minimal if it is finitely
generated by elements named in its signature I. All signatures are assumed
finite, but not all algebras are minimal. By a unit congruence on A we mean

a congruence which identifies all elements in one domain of A. Let

S ¢ A XA, By = we denote the smallest congruence on A containing the

nin (S)

identifjcations of S. By = < (S) we denote the largest congruence on A
ma

containing S which is not a unit congruence, if such exists, and otherwise
we take

“max (S) to be a unit congruence. The word "largest" in this context

means that if = is any congruence, except a unit congruence, containing S

I

then = ig contained in = .
max (S)

Let L be a signature. A set of equations E over I determines a set of

basic identifications D(E} between elements of the term algebra T(L). Let

TI(E,E] be T(Z)/:miﬁxEl'where abbreviates =

“min (E)
1F(E,El be T(E]/Emax(El'where nax (E)

min (D (E)) and let

tH
I

abbreviates =nax (D(E)} °

25

The pair (I,E) is said to be a finite equational specification of al-
gebra A with respect to (1] initial algebra semantics ox (2) final algebra
semantics 1f E is a finite set of equations over L and (1) TI(E,E) = A or
(2) TF(E,E} = A,

We now define our favoured method of making hidden function specifica-
t.ions.

Iet A be a many-sorted algebra of signature I, and let I be a signa-

-\

ture X < Eh having the same sorts as I_. Then we mean by

A
a!z the I-algebra whose domains are those of A and whose operations

and constants are those of A named in L: the I-reduct of A; and by

ﬂ&}z the L-subalgebra of A geﬂerat&d by the operations and constants

of A named in ¥ viz the smallest I-subalgebra of AIE.
The pair (L,E) is said to be a finite equational hidden enrichment
specification of algebra A with respect to (1) initial algebra semantics

or (2) final algebra semantics if I, < I and I contains exaetly*the sorts

A
of ;A’ and E is a finite set of equations over I such that

(1) T_(Z,B)|. = <T_(I,E)>. = A
T By I L,

W
7

or (2) TF(E,B)IE STL(Z,E) >y

A A

2. COMPUTABLE DATA TYPE SEMANTICS

hny countable many-sorted algebra A with component data domains

Ai,...,hn can be effectively presented in the following sense: to each Ai

i gty Ay

such that for each operation o: Ay %o aXBy T hu of there is a recursive

tracking function . which commutes the diagram

there is agsociated a recursive set I, € w and a surjection «

My e 2,
k | | H

- 'r.:ra 0
Ap g Xo oo KRy ey &)

26

A many-sorted algebrxa A is said to be computable (semicomputable or
cosemicomputable]l if it can be effectively presented, just as above, and,

in addition, each relation E“i defined on ﬂi by

x = vy 1f, and only if, ui(x) = ai(y) in A,
is recursive (r.e. or co-r.e.).

Together with;finiteness, these notions of effectivity are isomorphisnm
invariants and make up four basic properties of algebra semantics. See our

£1] and, in particular, RABIN[11] and MAL'CEV[10] for further information.

2.1. BASIC LEMMA. Let (L,E) be a specification with E a recursively enumer-

able set of equations. Then T_(L,E) is semicomputable and TF(Z,E) 1§ CO=-

semiconmputable. In particularf if algebra A possesses an r.e. egquational
hidden enrichment specification with respect to (1) initial algebra seman-
tics or (2} final algebra semantics then (1) A is semicomputable or (2) A
is cosemicomputable. If A possesses such specifications with respect to

both initial and final algebra semantics then A 1s computable.

In a forthcoming paper we shall prove theorems which may be taken as
strong converses to implications indexed (i) and (2) in Lemma 2.1. These
will yield a neat characterisation of computable data type semantics.

This last fact is taken from the proof of Theorem 3.1 of our [1].

2.2. LEMMA. Let A be a computable minimal algebra of signature-zh- Then

there exists a computable minimal B of signature EB:: ZA having a finite

equational specification {EB,EB) with respect to initial semantics such that

B‘ = _ = A
EA EA
Moreover, B and {EB;EBI can be chosen with (1) each damainiBi of B egqual
to w or to a finite initial segment of w, (2} O € Bi as a constant of sort

1 in EB and with (3) a unary function symbol 's of sort i such that the
family of terms {iSn(Ol: n e Bi}' indexed by the sorts 1 uf'EB, is a

traversal or set of normal forms for oo
' B

27

3. FINAL ALGEBRA SEMANTICS FOR PR

We algebraically structure the primitiwve recursive functions on the
natural numbers into a 2-sorted algebra A with domains w and PR named in
the signature I of A by sorts N and M'(fnr “namber" and "map”"}. A is de-
fined by using a 2-sorted operation to glue a single-sorted arithmetic to
a single-sorted function algehra.

LetgN be the single-sorted algebra on © with constant O e w and
operations x + 1, x = 1, x +y, A({x}) = x—i_/ijz. Let ZN = {0,5,P,+,A} be

the signature of A‘»I

Let AM be a single~-sorted algebra on PR with constants the operations

of AN plus the everywhere zero function and whose operators are

sum{f,qg) {(x} = £(x)+g(x)

1E(£) (x) = {“ it x=0

comp(f,g} (x) = £{g(x)) fx(Ol_ ifEx#0

Let L = {ZERO, SUCC,PRED,ADD, A ,SUM,COMP,IT} be the signature of Ay
Now define A by Jjoining AH and AN with eval: PR X w + @ defined by

eval (£,x) = £(x).

Let [=):Nu }:M v {EVAL}.

3.1. LEMMA. A is a finitely generated minimal algebra which is cosemicom-

putable but not computable,

PRODF. That A is finitely generated and minimal follows from ROBINSON[12}]
where it 1s shown that every unary primitive recursive function is the
result of a finite number of applications of sum, comp, it to 0,x + 1, A(x).

The Xest of the result we leave as an exercise in recursive function theory.

Q.E.D.

3.1. THEOREM. The algebra of primitive recursive functions A bhas a finite

equational hidden enrichment specifi‘cation' with respect to final algebra

semantics but fails to possess an r.e. conditional hidden enrichment

P ey = -

28

specification with respect to initial algebra semantics.

PROOF. The second statement follows from Lemma 2.1 and Lemma 3.1. We prove
the existence of a final algebra specification for A.

By Lemma 2.2 there is a computable algebra AN with a finite equational

initial semantica specification (ZN E), with domain w such that

ANJ = <AN>EN A and so T_ (E Eg)lz =-:TI(ES Eg) EN = A_. Define a new

0~N .
algébra AD by replacing AN in A by AN. Clearly, AG‘E = 0>E = A, We will
give AU the required finite equational specification (EO,ED)'with respect
to final semantics.

E. 1s defined to be EO, intexrpreted as eguations over &

0 N
following equations.

0° plus the

EVAL(ZERO,Y) = O EVAL (PRED,Y¥) = P (¥)
EVAL(SUCC,Y) = S(¥)
EVAL(A,Y) = X(Y¥)

EVAL (SUM (X, ,X,},¥) = ADD(EVAL(X,,Y) ,EVAL(X,,Y¥))
EVAL (COMP (X, ,X,) ,¥) = EVAL(X ,EVAL(X,,¥))
EVAL(IT(X),0) =0

EVAL(IT(X) ,S(Y)) = EVAL(COMP (X, IT({X)),¥)

wherein X,X, X, are function indeterminates and Y is a numerical indeter-

1772
minate.

Let ¢ be the unique epimorphism T(E,) + A,. Then A, ¥ T(I))/ =, and so

0 0)

i = = . = 3 ~uni -
what we have to prove is that b is max (Eg) Clearly, " is non—unit (be
cause AD is non-trivial) and =ED = :min(ED) is contained J.n.z¢ (because AO
is an EG-algebra). What remains to be shown is that any non~unit congruence

= extending EEO is contained within E¢.

Let = be any non-unit congruence extending

g, Composed of the two com-

I

nd .
N 9PC y

with =, consisting of = and =, .
¢ J ¢N ¢H

t}

0 .
ponent relations Let ¢ split into component functions ¢H andg ¢M

We consider maximality for the numerical terms first,

(t)
S¢N

3.3, LEMMA, Let t be a numerical term uf”T(EDI. Then t -
0

(0).

Maximality follows easily: let tl,tz'be numerical texms in T(ZOI and

29

suppase b, = t2.. Then by Lemna 3.3 we can write t, =& (Q) for

1 N 1 E
¢ (1) 0 $nits)
i=1,2 and, since = extends %ﬁ)’ we have S¢N(1 (0) =_ 8 NEE2 (0). Now

if ¢H(t1) # ¢N(t2) then, using the predecessor functions, all numerals can be

N This contradicts the non-~triviality of EN because the

n
numerals(S (0):new} were already a complete set of coset representatives for

(Lemma 3.3). Thus ¢N{tll = th{tz} and t1 =¢N t,.
Before proving Lemma 3.3 we consider maximality for the function terms.

H

identified under

Eg

Let fc'.l,..'t2 be map terms of T(ED) and assume t1 EH tz. For any n € 4 wa know
that
EVAL(tIrSH(U]) EN EVAL(tern(O)) because = is a congruence;

I = n = =
dJNEVAL(tl,S (0)) = ¢NEVAL(t2,S (0)) Dbecause we have shown -NC-¢N
aval (¢M,t1,n} = Eval.(antz,n] in AO because i is a howmomorphism

and th(S (0)) = n.
Therefore t, = t.-

1 ¢M 2
PROOF OF LEMMA 3.3
This is done by induction on the complexity of numerical term t. Be-
fore describing the argument it is necessary to fix in the mind all the

components of the algebras and specifications involved. These are best

displayed in a diagram of ESI—algebras:

2
1
-
H
P
H"i
s

30

In this diagram 1 is'inﬁlusion; v,v'! denote projection maps; broken arrows
are maps uniquely defined by initiality,

We consider the induction step only. This is divided into cases deter-
mined by the leading function symbol o € Eg u {EVAL} of t. Those cases when

o € EE are routine because Eg c ED' but we do one as an example:; let
t = aADD{t,,t.) where t_ ,t_ are assumed tc be numerical terms in T(iI.} of
17 2 17 2 oy (ts) 0
which Lemma 3.3 1s true. Since ti EEG S (0) for i = 1,2 we can calculate
as follows
b (t) bty
t = ADD(S (0),S (0)) by substitution:
_ 0 oylEpve i) 0
t o S (0) because EN c EO, or, more
0 . .
¢N(ADD(t1,t2)) formally, by dlaggam chasing;
t = 8 (0) because ¢ _ is a I homomorphism
ED N 0 N :

T(Eo)lzg-+-nu.

Let us turn to the interesting case of o = EVAL. This follows directly from
this next fact.

3.4. LEMMA, For any function term t ¢ T(EO) and for any n € w

¢N(EvAL(t,Sn(D))

EVAL(t,S" (0)) s (0)

il

Eo

PROOF. This is done by induction on the complexity of t. The basis cases
are direct calculations. Consider the induction step in case t = SUM{tl,t2)

where tl,t2

3.4 is true. We calculate

are function terms in T(EG) for which it is assumed that Lemma

EVAL (t,8°(0)) =._- ADD(EVAL(tJ,Sn(Gl)rEVAL(tz,Sn(U))L

n n
¢H(EVAL(t1,S (0}) ¢H(EVAL(t2;S (0)1)

=_. ADD(S (Q),S | (0})

by induction;
¢N(ADD(EVAL(t1;Sn(O)]rEVAL(tzpsn(Ol))} '
2 5 T (0}
E
as above:

$ (BVAL(t,S" (0)))
EE S because

el
N
)

31

The case t = CDHP(t1¢t21 follows the same pattern. The case t = IT(tO)
reqquires a secondary induction on n for EVALCPT(tOI,Sn(O}). but it is never-
theless straighitforward. 0Q.E.D.

4. INITIAL ALGEBRA SEMANTICS FOR PR

By stripping down the algebra A an initial algebra specification of
the primitive recursive functions can found. Let B be the 2-sorted algebra,
with domains PR and w, obtained by deleting all the operations of A which
are internal to PR. Thus B consists of AN joined to the sel PR by
eval: PR x w -+ w; put simply: if ¥ = ZN u {EVAL} then B = AIE. Of course,

B is not a finitely generated algebra, but

4.1. THEOREM. With respect to initjial algebra semantics, B possesses a
finite equational specification (L
that

D’EO) involving hidden functions such

=
TI(EG,EO)]E B.

PROOF. We shall first show that B is a computablé algebra.

4.2, LEMMA. There is a computable enumeration of the primitive recursive
functions B: w * PR which is bijective and possesses a recursive universal

function U _{e,x) = B(e) (x).

g

PROOF. Let ¢: S + PR be any standard enumeration of PR having recursive
universal function U , The problem is to remove the repititions in ¢ hence

C .
we define a recursive function h: w + w which will list from § one, and

only one, code for each function. This done we can set B = ch: w -+ PR and

take U (e,x) = Uc{h(e),x) as a recursive universal function.

3 | .
Here is an h, defined inductively, which will find the smallest c«code for

each primitive recursive function. Base: h{0) = 0, Induction Step: suppose
h(0),...,h{n) have been computed. To compute h{n+l) search out the smallest
bound h ¢ w for which there is a c~code e < b such that

(1} (Ve'<e) (ax«cb)liuc(e',x) # Uc(e,xu and (2) e ¢ {h{0),...,h(n)}. Now seek

32

the smallest c-code ad < b satisfying (1} and (2] and take h(n+l) = €n-
we leave the reader to check h satisfies the required conditions. Q.E.D.
Thus we may now fix up a computable numbering for B by using the
identity map i: w + w and fB: w -+ PR of Lemma 4.2. The operatiocons <f B are
all recursive with respect te this pair (i,8) as are the induced equality
relations (because both maps are bijections). Theorem 4.1 now follows from

this next lemma used in connection with Lemma 2.2.

4.3, LEMMA. Let A be any many-sorted computable algebra of signature L one

of whose domains is w. Then there exists a finitely generated minimal

computable algebra A , of éignature L . o I such that A _, = 2.
min min mlnlz
PROQF. To make Rmin from A first add 0 € w as a constant and successor

x+1 as a unary operation to A, Next choose any computable numbering £ of

. W+ A,
i i

and 1t is cléarly minimal and computabhle

A each of whose component mappings Bi have domain w and add each B
as a new operation. This is A

‘ min
(even without the informal hypothesis that B is effective for B as an

operation of A n is officially tracked by the identity in the original

mi
B coding of Al). Forgetting all these new operations, we see
A.minlz = A, Q-E-D-
REFERENCES

{1] BERGSTRA, J.A. & J.V. TUCKER, Algebraic specifications of computable
and semicomputable data structures, Mathematical Centre, De-

partment of Computer Science Research Report IW 115, Amsterdam,
1979.

{2] , A characterisation of computable data types by means of a

finite, equational specification method, Mathematical Centre,
Department of Computer Science Research Report IW 124, Amsterdam,
1979. (To appear in ICALP'80 Springer Verlaqg, Berlin 1980.)

[3] - , Equational specifications for computable data types: s5ix hidden

functions suffice and other sufficiency bounds, Mathemarical
Centre, Department of Computer Science Research Report IW 128,
Amsterdam, 1980,

33

(4] BERGSTRA, J.A. & J.V. TUCKER, On bounds for the specification of finite

data types by means of eQuatians and conditional equations,

Mathematical Centre, Department of Computer Sclence Research

Report IW 131, Amsterdam, 1980.

(5] , On the adequacy of finite equational methods for data type

specification, ACM-SIGPLAN Notices 14 (11) (1979) 13~18.

(6] BROY, M., W. DOSCH, H. PARTSCH, P. PEPPER, M. WIRSING, Existential
quantifiers in abstract data types, in H. MAURER (ed.) Automata,
languages and programming, 6th Collogquium, Graz, July 1979

Springer;VErlag, Berlin, 1979, 72-87.

HER & E.G. WAGNER, An initial algebra approach

F7] GOGUEN, J.A., J.W. THATC
to the specification, correctness and Implementation of abstract

data types, in R.T. YEH {(ed.) Current trends in programming

methodelogy YV, Data structuring, Prentice-Hall, Engelwood Cliffs,

New Jersey, 1978, 80-149,

(8] GUTTAG, J.V. & J.J. HORNING, The algebraic specification of abstract
data types, Acta Informatica 10 (1978) 27-52.

(9] KAMIN, S., Final data type specifications: a new data type specification
method, 7th POPL Conference, Las Vegas, ACM, 1980, 131-138,
(10] MaL'CEV, A.I., Constructive algebras, I., Russian Mathematical surveys,

16, (1961) 77-129.

(111 RABIN, M.O0., Computable algebra, general theory and the theory of com=-
putable fields, Transactions American Mathematical Society, 95

(1560} 341-360.
(12] ROBINSON, R.M., Primitive recursive functions, Bull. American Math.

S0cC., EE'(1947) 925-942,

[13] wAND, M., Pinal algebra semantics and data type extensions, J. Computer
Systems Sciences 19 (1979), 27-44,

