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Abstract ,

We discuss the equivalence of simple while-programs S1 and 52 in all datatypes that
implement a specification (Z,E). A sufficient condition is that $; and S, are indis~
tinguishable in all program Togics HL(Z',E) for 2' > z. A necessary condition is that
for each refinement (z',E') of (z,E) another refinement (2%,E*) of (2',E') exists such
that S, and S, cannot be distinguished in HL(E*,E*).

TECHNICAL INTRODUCTION

1.1. Program equivalence derives its interest both from a fundamental theoretical point

of view (MH{7]) and from its role in a theory of program transformation. Especially

in the case of transformations that replace a complicated, high-level program, S, by

a simpler, lower-level but equivalent one, the correctness proof of such a transforma-

tion T must establish some kind of equivalence between S and T(S). In the present paper

we concentrate on one possible form of equivalence:; behaving equivalent w.r.t. Hoare's

'1ogic.

1.2. At this stage it is necessary to be precise about the main parameters that govern

this situation. These are, in order of importance:

a) The program language. We will use while-programs over various finite signatures z.
WP(z) is the smallest class of programs, working on registers {variables)
XgoXpsXoseens that contains assignments Xy = with © an expression (term) in
L(z), and which is closed under composition, the if b then else fi and the while
b do od constructs. Here b denotes a boolean expression (quantifier free formula)
of t(z), the first oder logic of signature 3.

b) The data structures on which to run our programs. Here each 3'-~algebra with z2' > z,
is a conceivable datastructure on which S ¢ W{P(z) can run.

In general, however, we work relative to a specification E, a theory in L(z).
Semantic program equivalence is then expressed as follows: for 51,52 ¢ WP(z), E

a z—specification we write S, EALG(z,E)SZ if S; and S, compute the same partial
function A"~ @ " on each a ¢ ALG(Z,E), i.e. on the collection of structures that
satisfies the requirements of specification (g,E). The partial function: aan
that S defines on @ s defined using a standard operational semantics. In this
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case we must choose n as the number of variables occurring in S1 or in 52.
For technica) reasons we must assume in proposition 2 and in theorem 1 that (,E)
has no finite models. L

¢) The precise version of Hoare's ‘Togic that is used. For each specification (z,E), a
logic HL(Z,E) is introduced. This is exactly standard Hoare's logic for proving
correctness assertions of the form {p} S {q} with p,q € L(2) S € WP(z) where in
applications of the rule of consequence only those fmplications r -+ s can be used
that are derivable from E.

A detailed account of HL(z,E) can be found in Apt [1], de Bakker [3] or B & T [5].
In [5] a deduction theorem for HL is proved, using a quite straightforward induction
on proof length, which we will need. It reads as follows:
for each closed assertion t, for all p,q,S:

HL(2,E U {t}) + {p} S {q} =

HL(z,E) + {p A t} S {q}

d) Important notational conventions are the following: let (z,E) be a specification, a
refinement of (5,E) is a specification (z',E') with 2' oz and E' |- E. We will
usually assume that E' is consistent whenever E is. A refinement (3',E') of (3,E)
is conservative if for all p ¢ L(z): E' { p implies E { p. Here is our main tech-
nical definition:

S1 SHL(3,E) 52 if for all p,q

HL(2.E) + {p} Sy {a} = HL(Z,E) + {p} S, {a}.

SURVEY OF QUR RESULTS

The following results will be established, all having to do with the relationship

between EHL(Z:E) and EALG(Z,E) '

PROPOSITION 1. There are a signature and programs 51,52 € WP(z) such that

51 2aL6(z.0)52 PUT S1RHL(3,0)%2

This solves a problem posed by J. Tiuryn [8].

PROPOSITION 2. If S Sy then there is a conservative refinement (3',E') of

15ALG(z,E)

(Z;E) such that SIEHL(ZI,EI)SZ.

THEOREM 1. CHARACTERIZATION OF PROGRAM EQUIVALENCE.

For each specification (z,E) and all pairs of programs 5.5, € WP(z) the following
are equivalent:

1) 51 =p65.6)°2
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i1) for each refinement (5',E') of (Z,E) there is a refinement
(z*,E*) of (z',E') such that

S1 EHL(Z*,E*)SZ .
THEOREM 2, A sufficient condition for S1 EALG(z,E)SZ is that for all »' extending 2:

51 %HL(z',E) 2
We have the impression that this criterion could well be the basis for a formal proof

system for program equivalence. This will be a subject of further work by the first
author and J.W. Klop (Mathematical Center, Amsterdam).

RELATIONS TO PREVICUS LITERATURE

Let us introduce the notation 51§PC(Z E)Sz to express that for all p,q ¢ L(z):
ALG(ZsE) F {P} Sl {g} = ALG(Z$E) }: {P} 52 {q} .
MH [7] and BTT (4] study the relationship between =ALG(2.E) and =pe(z,E) °
] ]

Obviously =ALG(3.E) c 2pC(3.E) and, depending on (=,E) the inverse inclusion may or
may not hold. If HL(z,E) is complete, i.e. for all p,q,S5 HL(Z,E) +{p} S {q} =
ALG(2,E) | {p} S {q} the relations *HL(z,E) and =pC(z,E) coincide.

£l s

In general, however, the relations are not so clear, because, according to Wand (3]
HL(s,E) may be incomplete. Semantic work on program equivalence occurs for instance
in De Bakker [2].

SKETCHES OF PROOFS

5.1. Let 3 be fhe signature {0,5,P}. Then we can construct the following programs
SO,S',S",SI,S2 :

S0 =y :=0; while y # x do if y = PS{y) then y := 5(y) else DIV fi od.
§' =y :=0; while x # 0 do y := S(y); x := P(x) od

S' =y = x3 x =0

S1 = SO; S! 52 = SO; s'.

Here DIV = while x = x do x := x od.

First observe that 515ALG(2,¢)52' To see this note that So(x,y) + if for some

nx=g" 0) and for all m<n PSm+1(0) = s .Then, however, S, just 1ike S, results
: 1 2

giving y the value of x and putting x := 0. Then we consider HL(z,s). It is obvious
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that
HL(Z.6) + {x=z} S, {x=0 A y=z}

On the other hand HL(z,4) # {x=z} S; {x=0 A y=2}.
To prove this consider the structure A = ( Z,S,P,0). If
HL{Z.$) + {x=2} Sy {x=0 A y=z} then also HL(Z,Th(A)) proves this fact.
Suppose that r(x,y,z) is the invariant of the while loop in S' .(in this second proof),
then one can show that, in A,r defines the predicate x+y = z.
This, however, cannot be done by a first order formula of L(Z).

This proves proposition 1. In this situation we can already observe a version of
the phenomenon indicated in proposition 2. Let 2' =z U {+} and
E' = {x+t0 = X, O+x = x, x # 0 P(x) + S(y)} = x+y} plus all induction axjoms. Then
with some work one can show SIEHL(Z.’E.)S2 .
5.2. For further proofs we need a lemma that is immediate from B & T [6].
Assume that (z,E) is a specification without finite models.
Let T, be the signature of N = (w,+,-,0,1). Hith z, we denote a disjoint union of 2
and rm . We denote with Em the theory E plus Peano arithmetic, over Pm, plus all in-
duction axioms of L(z ). First of all we observe that (zw,Em) is conservative over (g,E)
To prove this assume that ¢ ¢ L(Z), ¢ closed, and E } ¢ ; acoording to the complete-
ness theorem there is a countable model A of E U {"¢} . Expanding A to a zm-structure
A' such that A'|rm is a standard model of arithmetic, A' satisfies E, and "¢, thus

Em i

5.3. LEMMA. For all p,S there is a formula SP(p,S) in L(zw) such that the following
properties hold:

i) HL(stEm) | {p} S {SP(p,S)}

ii) for all q: HL(zm,Em) F {p} S {q} if and only if Ew I SP(P,S) -+ q.

iii) if A ¢ ALG(zm,Em) and A]rm =N then SP(p,S) defines in A the
strongest postconditon w.r.t. p of S.

i) E_F ¥(p <> q) » (SP(psS) + $P(q,S)). Here y(p +» q) is the
universal closure of p « q.

v) if x ¢ VAR(S) then E, b SP(3xp,S) + 3xSP(p.S)
vi) if FV(q) n VAR(S) = @ then
Ew - SP(p A 9,5) «= q A SP(p,S) .

5.4. Suppose SlgALG(z,E)SZ' With 8 we denote the universal closure of the formula
SP(X = Z,Sl) « SP(X = 2,52),»where X is a Tist containing VAR(Sl) u VAR(SZ) and Z

is a list of variables disjoint from X. Now Em U {8} is conservative over E as well

because the model A' constructed in 5.2 satisfies @ in view of property iii) of the
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SP construct and the operational equivalence of Sy and 82 in A.

At this stage proposition 2 is proved by taking 3' = z and E' = Em U {e} . We
find that for all p,q:
HL(z'SE') + {p} Sq (9} = (by the deduction Temma)
)

HL(z .E ) + {6 A P} Sy {9} = (by property I1I))
E £ SP(oa psSy) > g = (by vi))
w
E_+ 8 A SP(pSy) = (by iv))
E
w

-
*..
8 A SP(IZ(X=Z A p[X/Z]1),S;)= (by v))
E + o A3Z SP(X=Z A p[X/Z1),$;) = (by vi))
F oo A3Z{pIX/Z] A SP(X=Z,51)) = (by assumption)
t o ATZ(PIX/Z] A SP(X=L,S,}) =

HL{Z',E') + {p} 52 {q} by arguing backwards in a symmetrical way.

5.5. The i) = ii) part of 1 now follows by observing that S1 EALG(Z,E)SZ implies

R L * . _
S1 EALG(Z.’E. )32 and then taking 2 = z;) and £ = ECo U {8}, repeating the above argu

ment for (2*,E*).

5.6. At last we arrive at proving the negative parts, i.e. those working from the
assumption Sl ’éALG(z E)SZ' For theorem 2 we have to find an extension signature '

such that S1 ’%HL(Z' ,E)525 and for the §i) = i) part of theorem 1 we must find a refine-

1 . * * '
ment (Z',E') such that for each refinement (2 ,E ) of (3',E ),Sl ’éHL(Z*,E*)SZ .

Let us assume that for some A € ALG(Z,E) and some vectors a and b of elements of

AA Sl[a] =band A } 52 {a]l = b. (The symmetric other case is dealt gith simi-
larly.) Extend Z to I° by adding constant names for the a's and b's,z =32° U {a,b}.
AO is the corresponding zo—structure. Then AO = S; [al = Db but AO # Sz[g] = b.
Now choose a closed assertion t of L(ZO), true in AY such that t k Spal=b (the
construction of such t is quite straightforward, see BTT{4] for instance). Observe
that A [ {X = a}S,{"(X = b)}, with X a vector of variables.

0 and

E' = E, U {t} USP(X = a, S,) > ~(X = b).

Take Z' = 2

Then (2',E') is a (consistent) refinement of (Z,E).

Suppose now that (2¥,E®) refines (2',E'), then clearly HL(Z®,6%) (X = Al Syt (X = bk

* [ B - _ N
But because E |- t, ALG(z",E") W{X = a} S {"(X = b)}. This proves S, TR

and theorem 1.

5.7. To obtain theorem 2 choose a closed assertion r such that E' |- r and
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HL(z',E U {r}) } {X = 8} S, {7(X = b)}. This r exists due to the (obvious) finite-
ness lemma from BT [5]. By the deduction Temma mentioned in the introduction this

gives HL(2',E)  {X =2a A r} So {7(X = b)¥; but if HL(Z',E) b {X =aa risy {7(X = b)}
then arguing the other way around HL(Z',E') |- {X = a} S (X = b)2which is not true,
because of soundness.

This ends our proofs. It will not he so easy to extend these results to more com-
plicated languages, including recursion and concurrency, because Lemma 1 depends
heavily on the 'algebraic' structure of HL(Z,E) for WP(2). But it is in fact quite
Tikely that similar results can be obtained for each sound and relatively complete
HL proof system.
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