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Strong Normalization and Perpetual Reduetions
in the Lambda Calculus

By Jan A. Bergstra and Jan Willem Klop

Abstract. A lambda term M is called strongly normalizing if every reduction of M stops
eventually (in the unique normal form), and weakly normalizing if some reduction of M
ends in the normal form. Here we are interested in characterizing those reduction steps
M — M’ such that if M has an infinite reduction, M’ has one too. A sufficient condition
is that in the step M — M’ a redex B = (Az. A) B is contracted where x is free in 4,
i.e. B does not erase its “argument”. (A corollary is the well-known fact that in the AJ-
calculus strong and weak normalization are equivalent.) An R whose contraction preserves
the property of having an infinite reduction is called perpetual. In the present paper the
perpetual redexes which do erase their argument are characterized.

Introduction. The relevance of A-calculus to Computer Science, both practically
and theoretically, is at present well established. The property of Strong Normalization
of a A-term is of obvious importance, becanse it allows one to attach to a A-term a
unique operational meaning, Also in the theory of Term Rewriting Systems (in which
A-calculus occurs as a prime example), much attention is devoted to this topic of
termination (or normalization, as we call it) of reduction sequences.

In this paper we study the behaviour of a A-term w.r.t. normalization in what
seems to be a reversed way: if a A-term M is not strongly normalizing, i.e. admits at
least one infinite reduction, then we are interested in those reduction steps M — M’
which preserve this property of having an infinite reduction. In fact we give a charac-
terization of such steps. In this way we come to an understanding of what happens in
a step M — M’ which is critical in the sense that M has an infinite reduction but M’
not (i.e. M’ is strongly normalizing). Apart from the general insight into the normali-
zation property which this approach via “perpetual’ reductions yields, one may also
think of systems in which non-termination rather than termination is desirable (such
a8 operating systems).

In a technical respect, we have made an essential use of reduction strategies, a
concept which seems to be of independent interest (see [3]). Reduction strategies
occur in the Computer Science literature e.g. in definitions of operational semantics
for data type specifications (see [5]).

We will now give a summary of the main definitions and results.

Let A be the set of A-terms. A term M €A is called strongly normalizing if every
reduction of M stops eventually (in the unique normal form). Let SN be the set of
strongly normalizing A-terms, Instead of M ¢ SN we will write coM, to indicate that
there is an infinite reduction starting from M. Par abus de language we will call such
aterm M an infinite term.



404 v J. A. Bergstra, J. IV". Klop

We will study strong normalization by considering the question : supposing that one
is interested to preserve the property co, which redexes can ‘“‘safely” be contracted
(i.e. without losing o00) in any context ? Let us call such redexes perpetual.

A partial answer to this question ig obtained in [2]: the redex (Az. 4) B is perpetual
if it does not erase its argument, i.e. if z ¢ FV(4). When applied to the A/-calculus
this result yields at once two well-known facts:

(1) in the AI-calculus strong normalization is eduivalent to having a normal form;
(2) a Al-term has a normal form iff all its subterms do.

In this paper we consider the redexes which do erase their argument, and we will
arrive at a characterization of the perpetual redexes among them in terms of a certain
quasi odering =« on A, defined as follows:

A®) 2w B@) iff VC € SN (co B(C)=> co A(0)) .

(So A =« B iff every SN-substitution making B “explode” does the same'for 4.)
To be precise, we will prove that the redex (Az. 4) B where x ¢ FV(4), is perpetual
itf A Z . B. Together with the partial result in [2] for non-erasing redexes this yields
a characterization of all perpetual redexes.

As in the proof of the result for non-erasing redexes in [2], our main tool will be
the concept of a perpetual reduction strategy. An outline of the method employed in
this paper will be given after introducing some terminology and preliminaries.

Acknowledgement. We wish to thank Henk Barendregt for useful criticisms on
a draft of this paper and Dawvid Isles for some stimulating discussions on the subject
in question.

1. Terminology. We will quickly introduce some basic concepts and notations.

A, the set of A-terms, is defined inductively by (i) z; €4 (t € N); (ii) M, Ne A=
(MN) e A; (i) MeAd=> (Az. M) € A.

If in (iii) the proviso z € FV (M) is added, we get the Al-terms. Here F V(M) is the
set of free variables of M. ‘

The usual bracket convention (association to the left) is employed. Writing M(x;,
vy Tp) means V(M) S {x, ..., x,}; then M(N, ..., N,) is the result of simultancous
substitution of Ny, ... , NV, for ay, ... , @y,

Aterm B = (Az- A) B is called a redex; R’ = A[x := B], the result of substituting
B for the free occurrences of » in 4, is the contractum of R. A term not containing
redexes is a normal form. In the sequel B, B’ will exclusively be used for a redex and
its contractum.

If B = (lz. 4) B then Arg(R), the argument of R, is B.If x € FV(A), R is called an
I-redex. (But R need not be a Al-term.) If x ¢ FV(4), R is a K-redex and we will
write £ = KAB (inspired by Combinatory Logic).

One step (B)-reduction is defined by C[R] — C[R’] where R, R’ are as above and
O 1is a context. Contexts are A-terms containing one hole []; they can be inductively
defined as follows: (i) [] is a context, the trivial one; (ii) it M € A and N is a context
then (MN) and (VM) are contexts; (ili) if M is a context then (Ax - M) is a context.

C[M] is the result of substituting M for [ in C[ 1. The subterm relution < is defined
by: M & N & 3C[ ] N = C[M]. (= denotes syntactical equality.)

R .
Sometimes we will write M — N to indicate which redex R is contracted in the
reduction step M — N. (As everywhere in this paper we will tacitly assume that it is
clear that we are speaking about occurrences of subterms, in casu R.) The fransitive
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reflexive closure of — is denoted by —». Reduction sequences My, — M; — My — ... —
M, — ... will be denoted by R, plus possibly subscripts. Although it is an abuse of
notation, we will sometimes shorten R = My — ... - M, to R = M, » M,.

If M is not a normal form, the leftmost redex of M is that redex whose head-symbol A
is to the left of the head-2 of every other redex in M.

If 4, B S M we will write 4 <€ B to denote that 4 and B are disjoint (i.e. incom-
parable w.r.t. &) and 4 is to the left of B.

2.1. Definition (Descendants and underlining). (I) Let M — M’ and N & M.
The subterm(s) N’ & M’ which can be “traced back” to N are the descendunts of N
in M’. N is also called the ancestor of N'). (Notation: N >— N').

The concept of descendant was first formulated in [7], [8]. Since {7], [8] are not

generally accessible we will state the definition here. So let M 2 M’ be a reduction
step where R = (Az. 4) B is the contracted redex, and let I’ = A[x := B] be the
contractum in M’. Suppose N’ & M’. According to the relative positions of N’ and R’
we distinguish four cases and define the ancestor N of N'.

(1) NNn B = @ (N', I are disjoint). Then there is a corresponding subterm
N € M which is the ancestor of N’.

(2) N' 2 R (R is a proper subterm of N’). Then there is a unique N & M such
that N = N'; and for this ¥ we define N >— N'.

(3) N’ = C[x :=B] for some C' where C & A but C =k x; then ¢ >— N".

(4) N’ is a subterm of some “copy” of B in A{x := B]. Then the ancestor of N’
is N’ itself as a subterm of B in M.

The notion >— extends in the obvious way from one step reductions to arbitrary
finite reductions. The transitive reflexive closure of >— is denoted by »—. So if
R=My— . = My (n=0), NS M, and N' & M,, then N >— N’ means that N’
;s & descendant of N (via f).

Remark. (i) The notion of descendent of N & M can easily be visualized by
tracing the brackets which surround N.

(ii) Note that in the step M L M the contracted redex R = (Ax. A} B has no
descendants in M’. Also the (occurrences ofy X in 4 have no descendants in M'.

(iii) Note that every N’ & M’ has a unique ancestor N & M. On ‘the other hand,
an N & M can have & descendants for every k = 0.

(IT) Often it is useful to attach some extra information to a A-term, by specifying
some of its subterms. This specification can be made simply by wnderlining those
subterms. We define the set /4 of underlined A-terms as follows: (1) ; and %, € 4 for
all £ = 0y (2) M, N e A= (MN), (MN), (Az. M), (z. M) € A. Reduction extends in

a simple way to /, by requiring that descendants of underlined subterms (and only
those) are again underlined. E. g. (}n: ) (VM) — NM(NM).

9,2, Definition. Consider the reduction & = M, — M, — ... and some subterm
Ly & M,. The descendants of L, in & form a tree; c.g. see Fig. 1. :
Now we define a line of descendants (1.0.d.) to be a branch in that tree.
Note that the lLo.d. £ = Ly >— Ly »— Ly »— ... i8 in general not a reduction
sequence, since there may be substitutions from “outside” into the L.
20 BIXK, Bd. 18, H. 7/8



406 J. 4. Bergstra, J. W. Klop

Mo N, Mz Ma——-....
°
® >—~——o< e
. ® ® L
Ly Ly E 2 e
L, e Fig. 1

Ry R,

2.3. Definition. Let & = M, — M, 22 a1, = m, ...
Ul Ul Ul Ul

and a lLo.d. & = Ly>— Ly >— Ly >— Lg ...
be given. Then 7 is called passive if for all 4, R, & L,.

2.4. Detfinition. (i) Let R be as above. R is called SN-substituting if for all 4,
Arg(E;) € SN.

(ii) Let M = M2y, ..., xy) and O, ..., 0y € SN. Then M(Cy, ..., Cp) is called an
SN-substitution of M.

2.5. Definition. Let & be as above where R; = (Ax;. 4,) B, are the contracted
redexes. A is called simple (w.r.t. substitution) if it is not the case that
F I > 3B S M,(Bi >— B; &2 € FV(B;)) .

(Here a; is the bound variable of the redex R, contracted in the step M; — M, of
R.)

Remark. This means that into a ‘“substituted”” subterm (i.e. a descendant B; of
B,) there is no substitution (of B;) allowed; roughly said: there are no double sub-
stitutions allowed. An example where such a double substitution occurs, is

(A. ((Ay. yI) (@2))) @ — (2. a2l) 0 — wol .

Note that although this reduction is SN-substituting, the result of the double sub-
stitution is that the descendant wwl of yI is not an SN-substitution of yI (here
w = Az. zz). Note also that the reduction is not standard.

Ry By o sopes .
2.6. Definition. Let R = M, — M, — ... be a finite or infinite reduction sequence.
In each M, we will attach to some of the redex-A’s a marker * (meaning: this redex ig
henceforth forbidden to contract) as follows.

Basis. In M, all redex-A’s to the left of that of R, are marked.

Inductionstep. In M, ; the following redex-A’s are marked:

(1) those that had already a mark in M,,

(2) those to the left of the head-A of R, .

i is called a standard reduction if the restrictions imposed by the marks are not
violated, i.e. if no marked redex is contracted.

2.7. Lemma. Standard reductions are simple (w.r.t. substitutions).

Proof. Let R = M, i M, & ... where R; = (Azy. 4,) By be a standard reduction.
Consider a step
My wenedgy - Ay = (A Ade)) Blt oo ) e
l
Mgy = - A¥yy == A¥yg ---- Ai(Bt(?/y Yas )) """
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Obviously the free variables y; in B; (which are not free in M,) must be bound by
A’s before 2;. Hence by Definition 2.6 those y; are ,frozen’ after this step. So R
cannot make a substitution anymore into (a descendant of) B;. [

2.8. Proposition. Let R be a simple, SN-substituting reduction. Let £: M »>— M’
be a passive l.o.d. tn R. Then M’ 1s an SN-substitution of M.

Proof. Say M = M(x,, ... , @,). Now it is obvious that the only thing happening
in £ is that some of the variables x; in M are replaced by SN-terms C;: e.g.

M(xl} T xn) S M(xls ey QJn) > M(wly 02, :L‘a, ey fc”) -
M(Ol, 02, Xgy sery .'E‘n) e e M.

Since A is simple, there cannot be substitutions into the C, and since .2 is passive
there are no reductions inside the displayed terms. Hence M’ = M(Cy, C,, ... , Cy)
where some of the C; may have remained x;, and indeed all C; ¢ SN. [

2.9. Definition (Reduction diagrams and projections). We will give a quick
sketch of the definition of those concepts; precise definitions can be found in[1], [61.

B L% M- N are two “divergent” reductions, it is by the well-
known Church-Rosser theorem possible to find “converging” reductions I — % —
— P — % N,

A stronger version of the CR-theorem asserts that this can be done in a canonical
way, by adjoining “elementary diagrams” as suggested in Fig. 2. In this way the
reduction diagram D(R;, R,) originates, and in [1], [6] it is proved that it “closes”,
i.e. the construction terminates and yields R; and R, as desired.

\ .o
22 Ry= ‘2’2/21
DIRy Ry
e Y
. |
L R3=R,[R, P

Fig. 2
(here —pp meang —»)

It is fairly evident how to define these elementary diagrams; we only give two
examples:

R & >T RE KAR o0 KAR'
‘T’ R'R
PR X Y— s R'R’ Ao v A

Notice that we have to introduce “empty steps” to keep things rectangular,

Now the in this way canonically found Ry is called the projection of 2y by s,
written: Rg == A [|NR,. Similarly Ry = R,[R,.
20+
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Another notation: the reduction step M, Lu o will be denoted by {R}. So by the
above, #/{ R}, the projection of R by { R}, is the reduction displayed in the figure

/3
M, e —»e M,
R DR {R})
M, s % M,
R R}

(The reduction {R}/R = M, - M, is known as a “complete development” of the
descendants of E in M,.)

Remark. In one of the two examples of elementary diagrams above we saw that
a reduction step may vanish when taking a projection of it; namely if & & B, then
{R}|C[KAB] — C[A] = ¢, the empty reduction.

3. Definition. (i) A map I': A — A is called a one step reduction strategy if M —
— F(M) unless M is in normal form, in which case F(M) = M. All the strategies in
this paper arc one step strategies, so we will omit this qualification from now on.
Reduction strategies were introduced in [2], see also [1].

Notation. fp, 5 will he the reduction generated by repeated application of F':
‘%ﬁ‘, M = ‘ZW —> F(M) b FE(M) F3(M) > aee

It is infinite or ends in the normal form of M.

(ii) A redex R is perpetual ift WC[ ] (co C[R]=> oo €' [£']), where R’ is the contrac-
tum of R and co M < M ¢ SN as defined in 0.

(ili) A reduction strategy F is perpetual if
VM (oo M= co F(M)) .
4, Definition. Let 4 = A(ay, ..., 2,) and B = B(z,, ... , #). Then 4 = B iff

V0 ..., 0 € SN(OO B(Cy, ..., Cp)= 0 A(CY, .., Cn)). Obviously, =« i8 a quasi
ordering on A (i.e. reflexive and transitive).

5. Examples. Define M > N iff M Zo N and — M = N. Then it is not
hard to prove that

(i} zxx > 22;

(i) a2l > 2z (L = Ay y);
(iii) afz and xx are incomparable w.r.t, 2

(iv) A2 B=>4 =2« B;

(v) 0 A VBA 2o B
(vi) Be SN* < VA A = B.
Here £ is defined for subsets X € A as follows:

X2 = { My, oo, 20) € X | VN, oo y Ny X M(Ny, ..., Ny)e X}

(Using well-known properties of substitution one can verify that X* & X and
X = X.)
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(i) If A’ = A =0 B> B, then 4' = B.

(viii) The property 4 = B is not invariant under SN-substitution; for consider
A =y, B = Az zyx and the substitution [¢ := aa]. Then A[x := aa] = y = A’ and
B[z 1= aa] = Az. zylaa) = B, and now B £, 4. This fact will cause us some
trouble later on.

Outline of the proof. As in [2], we employ the following method of proving that
some redex R is perpetual. We search for a reduction strategy S such that

(i) S is perpetual,

(ii) if O[] is an arbitrary context, M = CO[R] and oo M (so by (i) Ry, » is intinite),
then the projection Rg, /{ B} is also infinite.

(So if such an § exists, it delivers an infinite reduction Rg a/{ R} of C[R'], hence R
is perpetual.)

To this end we define firstly a strategy F: A — A, which is perpetual, SN-sub-
stituting, and yields standard reduction sequences Ry, . However, as the example
in Section 14 shows, property (ii) fails for I,

From I' we define another strategy #F* (this is our desired S) which has the same
properties as F we just mentioned, and moreover satisfies (ii). J'* operates on /-terms
plus some extra information: an underlining of some K-redexes in M. Now F* is
designed to have the following property. If M = C[KAB] is an infinite term such
that 4 = B, then Ry 5 is an infinite reduction such that (if the descendants
KA,B; of KAB are also underlined throughout Rps 3) no reduction step in Aps,
is taking place inside a By & KA;B;. This guarantees that the projection Rp« af
{KAB) is also infinite, since no reduction steps of Apx, 3y vanish when we take the
projection (recall the remark at the end of Section 3). Hence oo C{A4]. So KA B with
A = B is a perpetual redex. The reverse implication is easily established.

6. Definition. Let I be a reduction strategy, defined by induction on the structure
of A-terms as follows.

(1) if M € A is in normal form, then F(M) = M ;
(2) otherwise, let (Az. A) B be the leftmost redex in M = C[(Az. 4) B]:

(i) if — oo B, i.e. B € SN, then F(M) = ([4[z := B]]
(ii) if co B then F'(M) = C[(Az. 4) F(B)}].

It is easily proved that an equivalent definition of F is ag follows.
Let M € A and Ry, Ry, Ry, ... be the “special sequence of redexes” in M defined by:

— Ry is the leftmost redex of M,
— R, is the leftmost redex of Arg(R,), if Arg(R,) is not in normal form; otherwise
the sequence stops with I2,.

Now let I be the first redex in this special sequence such that Arg(R;) € SN. Then
F contracts the redex Ry in M. If the special sequence is empty, which can only be
the case if M is in normal form, then F(M) = M.

7. Theorem. If R is an I-redex, then R 1s perpetual.

Proof (see [2], 5.8). The proot there is an application of a certain perpetual strategy
Iy, (the remarkable thing about ' is that it is a recursive perpetual strategy, see
[2] or [1]. It is defined as follows: I's, scans the special sequence of redexes of M, and
picks out the first I-redex of that sequence, if there is one, otherwise it picks out the
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last redex in the special sequence to contract). This Fo, satisfies for I-redexes the
requirements (i), (ii) mentioned in the “outline of the proof” above. []

8. Lemma. F 1s a perpetual sirategy.
Proof. By induction on the structure of A-terms we prove:
oM = oo F(M). (1)

Se let co M and suppose (induction hypothesis) that (1) is proved for all proper sub-
terms of M.
Let M = C[(Az. A) B] where the leftmost redex is displayed.

Case 1. If co B, then F(M) = C[(Az. 4) F(B)] and by the induction hypothesis
oo I'(B), hence oo F(M).

Case 2. If — oo B, then F(M)= C[4(z :=DB]].

Case 2.1. If (Av. A) B was an I-redex, then by Theorem 7 co F(M).

Case 2.2. If not, then F(M)= C[4]. Now take an infinite reduction sequence
R=M — M, —~ M, - My — ...

Case 2.2.1. No descendant of (Aw. 4) B= KAB is ever contracted in & So
M,=C[KA,B;], for == 1, 2, ... Now since — oo B and since K4,B; remains the left-
most redex of M;, we have for some m: B, = B, ., = .. But then evidently the
projection

jl/{KAB} = O[A] pug 01[A1] S Cm[Am] e O'n[An] e

—

is an infinite reduction (sinee some of the steps up to Cp[4 ], but not afterwards, may
be trivial),

Case 2.2.2. A descendant of KA B is contracted in &. So
R = C[KAB] — C[KA,B|] — ... » Cp[KAnB,] —
= Culd ] - Coaldmer] — -
As in cage 2.2.1, the projection J/{ KA B} is an infinite reduction (after deleting some
empty steps) starting with C[4] = F(M). Hence co F(M). ]

9, Remark. From the definition it is clear that F is SN-substituting, i.e. R,
is SN-substituting. We remark that there is no perpetual NF-gubstituting strategy
(VT is the set of normal forms); for consider M = (Ax. aw) (Zz. KI (zz)), then oo M,
but every NF-substituting strategy F' yields the reduction

Rpryg = M — (A, 2x) Az I) — (e 1) (M. I) — I,
10. Definition. Let A, & A be the set of A-terms in which only K-redexes may

be underlined. To be precise:
(1) a4 6_41‘ for all 7 € NV;
() M, N € Ax=> (MN) € Ag;
(i) if M = Av. 4 (where « ¢ FV(4)) and B € Ay, then (Az. 4) B\= KAB) € A,
(i) M e Ag= Ao M €dg.

11. Definition. From F we define another perpetual, SN-substituting strategy
F*:AK —> {1_1(- Let M E:/_ll(.
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Case (i). If M = C[KAB] where c0 4 and KAB is the leftmost underlined K-
redex such that co 4, then F*(M) = C[KF*(4) B].
Case (ii). Otherwise F'*(M) = I'(M).

12. Remark. So what happens is that F'* “zerces in” via a chain (w.r.t. &) of
infinite underlined A4;’s on its final target A,, in which no infinite underlined 4’s
appear; see Fig. 3.

[s =}
M= —— e KA B ——m——

1 1
/N
K A, B,

N
A

K A, 8,
/N
(2x. P, )a,
/N,
(Ax. P14,
\,
(ax.h)a,
/ oo
(Ax.R)q,
Pig. 3. Here the A, for ¢ =1,...n — 1, are the “intermediate targets”

of F*; and 4, is the final target of I"*,

After F has found its final target 4,, it changes into F, the strategy which descends
the chain of special redexes of 4, in search of the first one with SN-argument.

13. Notation and Remark. (i) Let F*¥[M] be the final target of F* applied on
M, and let F*{M> be the redex which is selected by F* as the one to contract
((Az. Py) Q. ahove).

(ii) Analogous: F{IM > is the redex selected for contraction by F.
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We note that
(1y M ZE0, p(M) and M 90, pr(,
(2) FHM) G M= oo F¥[M],
(3) FHUM = FF*[ M),
(4) F*M]= M if M does not contain a K4 B such that co 4.

14. Example. To illustrate the working of F'*, consider the following reductions
shown in Fig. 4. Here w: = Az. az and Q = oo,

M = w[ix. K(zw) (zw)] o —————30 iz, 2w)
F*M>
= (M)

M = [lx. K(zw) (zo)] [z K(zo) (zo)] 5% (A aw) (Av. zw)

MY
= (M

M = KA. K(v0) (v0)] ©) (. K(zo) (zo0)] 0) § ————n¥ (lz.20) 0

M = K(KQ2) ([lx. K(zo) (zw)] w) PG SN

M//u = ]‘/.['" ‘ __»\:./ 0D

Fig. 4 ¢7l1;w’ M R

Note that the projection R = Rp+, y{K{rw) (zw)} is again infiﬁite, which 1is
what we wanted. Compare also Ry, ar and note that Rp y|{K(zw) (xw)} is finite
(mamely: wlz. zw — (Az. zw) (Az. 20) — (Av. 20) o).

1b. Proposition. F* 4s perpetual and SN-substituting.

Proof. Immediately from the definition and because F has the same properties,
by Lemma 8 and Remark 9. [

16. Proposition. Let M ¢ A, Then Rp, 3 ©8 a standard reduction.

Proof. See Fig. 5. Consider M and say that R, is the first redex in the special
sequence of redexes of M with Arg(ZR,) € SN. Then P in its search “jumps” from
By to Ry and contracts R, Mark every redex-A to the left of that of R,; so if Ry, 5 19
to be standard. Fy, Ry, ..., By—1 plus the redexes in Py, Py, ..., P,_; are henceforth
forbidden to contract.

Now it is easy to see that F respects those restrictions, since in all following steps
F will also jump over all in this step marked A’s because the perpetuality of I conserves
the property co of (the descendants of ) @y, @y, +v s Q1.

Similarly the marks originating in the following steps of Ry, 5 are respected by F.
Hence F yields a standard reduction. []
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% o3 ©
R, = (2x.F 10,

0

U, . e
R, = (A% P, )4,

\Muu

N
U,
R,, = N Ax B 8y
o

R, = F(M) = (Ax. £ 18,
Tig. &

17. Proposition. Let M € Agx. Then Rps, pr 18 a standard reduction.

Proof. Let Rpx, 3y be M = M, MASIDN M, chiSLOAR Suppose (induction hypothesis)
that we have proved that My — ... — M, is standard. See Fig. 6.

FH*{My 1]
i

My p= o K A P oo
Iy -
(Axy. Py) @

U -

(Mg, Py) Qg

U

i _
s
Fig- 6 (;‘xm- Pp) Qu=T*My-1)

Consider M, _, the special sequence of F*[M,,_,], and the contraction of F*{ M, _1).
There are two cases.

Case 1. In the step M,_; — M, a new KF@ redex with colF' appears. That is,

there is a KI"G' & M, where — oo F' such that K'Y »— KFG S M, where
co I, o o

This is only possible if there is a substitution into #, ie. I’ & P, and hence
EI'¢" € Py,

This implies that F*{M,] S the contractum of F*(M,_1> = (Azy. Py) Qu. Hence
F#M,] and a fortiori F*(M,>, are to the right of the descendants in M, of (Ax;. P;),
ooy (A —1. Pp—1). So indeed the standard requirement is fulfilled.

Case 2. Otherwise, it is evident that F*[M,] = the descendant of F*[M, 1]
(here we use the perpetuality of ).
Then Proposition 16 yields the result. [
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18. Proposition. Let M € A and let (Ax. A) B be a redex tn M. Then
(iy F{M> < B= co B and
ity F{M> & A.

Proof. Routine. [

19. Proposition. Let M € Ag and KAB & M. Then:

(i) F¥M) & B=> 00 B;
(it) F*M> S 4 => co A.

Proof. (i) Suppose M 2KAB 2 B2I*(M>. If M°=F*M]=2 KAB, we
are through by Proposition 18(i). So suppose M° 2 KA B. Then, since M° 2 F*(M),
we must have B 2 M° 2 I'*(M>. By the remark in Section 13, co M9, Hence co B.

(ii) Suppose M =2 KAB 2 A 2 F*{M). There are 3 cases.

1. M°® 2 KAB is not possible, by Proposition 18(ii).
2. If A 2 M° we are done since then M°® & M, hence co M?, hence co A.
3. The only remaining case M° = KA is impossible by definition of M°. []

20. Proposition. Let M 64K and let KAB & M, say M = C[KAB). Let M' =
= C[KA’B] where 4 X5, 4’ Then F*(M'> S A’ .

Proof. Since F*{M> & A and F*(M) € F* [M], clearly either F'*[M] & 4 or
I*[M] 2 A. The latter case is impossible since F*{M> = F(F*[M]> cannot be a
subterm of the function part of a redex (Proposition 18(ii)). So F*[M] & 4. Hence
oo F*¥{ M1, and by perpetuality of F, the descendant of F*[M]in M’ is again infinite.
Hence oo 4’. Therefore F*(M'> € 4’. [

21. Proposition. Let M € Ax and KAB & M where oo A. Then F¥{M) < A or
¥ My < A. -

Proof. An easy induction on the number of steps in which I zeroes in via the
intermediate targets (see Section 12) on its final target M® = F*[M], shows that
ML A or M°S 4.

Henece F(M® = F¥My LA or S 4. []

22. Definition. Let M 6_4,(.

(i) Aredex KAB & M such that 4 =, B is a p-redex.
(ii) A redex KAB & M such that — oo B is a g-redex.

(iii) Xf every KAB & M ig a p-redex, M is a p-term.

(iv) If every KAB & M is a p- or g-redex, M is a pg-term.
23. Proposition. An SN-substitution of a p-redex vs a p- or q-redez.
Proof. Let KAB be a p-redex and let KA’ B’ be an SN-substitution. Suppose co B’

Then by definition of =, 00 4’. Hence (Section 5(V)) A = B, ie. KA'B is a
p-redex. If — oo B, then KA'B is &' ¢g-redex. [] )

24. Proposition. Let M € Ag be a p-term and let Ry, 3 be

R,

M % ron & pon &
Then for all i, F¥(M) 1s o pg-term.
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Proof. Consider the original p-redexes KAB in M. Evidently, it suffices to take
an arbitrary such KA.B and an arbitrary l.o.d. # through & starting with that K4 B:
£ = KAB >— KA'B' >— KA"B"' >— ... >— KAOBD -
i [l il Al
Rpwag =M —B oy, By, M,

and to prove that every KAMBW in £ is a p- or g-redex.

Now say that j is the least natural number such that B, & KANBW@, So the initial
part of £, KAB »— KADBY is a passive l.o.d. Since Rp» g is standard (Proposition
17), it is sxmple (Lemma 2.7). Since Rp+, 3r is also SN- substltutmg, by Proposition 2.8
KADBD is an SN-substitution of KAB; now by Proposition 23 it is a p- or g-redex.
Likewise the KA®B® for k < j are p- or g-redexes. (The same argument in case there
is no § as supposed.)

To treat the other part of £, which is no longer passive, we distinguish the following
cases.

not & descendant of that redex) and we are through

Case 2. Ry & AYD, By Proposition 19 (ii) we have: R;,; & AU+ for all k; and
by Proposition 20, co AU+® for all k. Therefore by Section 5(v) all KAYU+E BU+H are
p-redexes.

Case ‘3 R S B(j). Since Rp», a is standard, there will be no more substitutions into

head-A is to the left of BY, hence of ).
Now if KADBY ig a g-redex, i.e. B ig finite, then we are through: BU+H will

remain finite for all k. And if it is a p-redex then we are also through, since by Section
5(vii) 4 Zo B ~» B’ implies 4 = B'.

26, Lemma. In the situation of Proposition 24, R+ y contains no reduciion steps
inside an argument of an underlined K-redex (t.e. no B, & BS KAB & M,, for all
1= 0 and all KABin M,).

Proof. By Proposition 24, all the M, are pg-terms. Now suppose that there is an ¢
and a KAB & M, such that B; & B & KAB. There are two cages:

1. KAB is a ¢-redex, i.e. B is finite. But this is impossible by Proposition 19.

2. KAB is a p-redex, i.e. 4 =, B. By Proposition 19, co B. Hence cod. But then
by Proposition 21 it is impossible that R, is to the right of 4. — Contradiction. [

26. Corollary. co C[KAB] & A 2 B= co C[A].

Proof. Underline KA B. The resulting underlined term M, = C[KA B] is then a p-
term. Since co M, and F* ig perpetual, the reduction Rpx, 5 is infinite.
Now consider the projection &’ == g, y[{ KAB)} shown in Fig. 7.

Claim. Each reduction M; — M, is in fact one step.

Proof. Consider in the figure showing D(Rp», 31, { KAB}) the subdiagram D(M, —
— M1, Ry). Here R; = {KAB}M,-» M, is a complete development of the
underlined K-redexes KA4,B,.
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N M, M, M, MR =FXM) M,
\ Fa‘é’M - L — —— -—-—-/c‘ —_——
KA, 8 j{ R/‘,1 ;
N PN
KA B R, Y
KAB Ja,.J k) 52 o
\
)
U7 TN S S, . ;
’ !
MD N1' Mz, M; i/¢1
Fig. 7

(see Remark to Fig. 2)

Now by Lemma 25, B; = F*(M,> is not a subterm of the argument of an under-

lined K-redex. Hence N; , By, N;41,1 18 indeed one step and B; ; is again not covered
by the argument of an underlined K-redex, etc. This proves the claim.

So we proved that &' is infinite, and hence co C[4]. []
27. Proposition.

00(Ays v ne A2y, ooy 20)) O oo Oy & Oy, oo, Oy € SN=> 004 (Cy, oo, )
Proof. Induction on n.

Basis. n = 1. Let M = (A». A(z)) C where O ¢ SN and suppose oo M. Take an
infinite reduction & of M.

Case 1. M’s head-redex is never contracted in . Then clearly, since C € SN,
0o A(x). Hence also oo 4(0).

Case 2. Otherwise R = M — (Ja. A'(x) ¢" — A’ (C") — ... Hence oo A’(C"), and
because 4(z) —» 4’ (x), O — ¢’ imply A(C) —> A’(C"), also oo A(C).

Induction step. The same argument. [
28. Theorem. The redew KAB is perpetual & A = B.
Proof. (&) is Corollary 26.

(=) Let A =A®) = A(z), ..., %) and B = B@) = B(xy, ... , x) where {2y, ...,
2} = FV(A) v TV (B). . N .

Suppose — A(#) Ze B(@). Then for some ' € SN, (i) co B(C) but (ii) — oo A(C).
Now consider the context C[ ] = (7. [) G.

Since o0 KA(C) B(O) by (i), we have oo (i&. KA@®) B®) 0, ie. oo O[KAB]

But — oo (8. A[®)) € by (ii) and Theorem 28, i.e. — co C[A]. Hence KAB is not
perpetual, contradiction. [

29. Corollary. The redex (Ax. A) B s perpetual & x € FV(4) or A =« B.
Proof. Corollary 29 and Theorem 7. []

e e e,
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Pesiome

A-tepm M HABBIBACTCH CTPOr0 HOPMAINBYEMBIM, €CIH KAKIAA LEHOYHA NPHBeIeHHs
o0pniBaercs, NPUBOKA K ONHOSHAUHO ONIpPENeNeHHOl HopMaNLHOI (opMe, U cIa6o HOP-
MaJU3yeMbiM, €CJIH CyIiecTByeT XoTda Obl omgHa ofpbizaiomiasdcd yernouxa. B crarse
paccMaTPUBAIOTCS CBOMCTBA TAKUX LWIaron npusegeHus M — M/, s koropeix M’ umeer
0ecKOHCUNYI0 LENOYKY NPHBEEHNA, eCAH TaKoBYI0 umeetr M. I{0CTATOMHEIM yCEOBHEM
9TOro ABJIAETCS TO, UTO BO Bpems wara M — M’ coRpamenno IoABepraeTesi Takol PereKe
(ocrarou) £ = (Ax.4) B, B KoTopoM @ cBoGogHo Bxonutr B A, T. e. B He TepHeT CBO-
ero ,aprymenra‘‘. (CJeTCTBMEM 9TOI0 SBJIAETCA TOT XOPONIO U3BECTHLIT (AKT, uTO B
AM-ucuucnenun crporaf M caafas HOPMAJM3yeMmocTH coBmapaior.) Pemexc I, Tmpu
COKDAILCHNHN KOTOPOI0 COXPAMACTCA CYIHecTBOBAHME HeoOpBIBAIOLIEICA I[eNOUKM IIPH-
BEJCHUS, HASBIBAETCA coxpaumslomwmM. B macrosuiell paGore paceMatTpHBaloTcst CoX-
PasTIOIHE PENEKCh, KOTOPLIE TEPAIOT CBOH apryMenT.

Kurzfassung

Ein A-Term heiBlt streng normalisierbar, falls jede Reduktionskette ablricht (in der
eindeutigen Normalform), und schwach normalisierbar, falls eine Reduktionskette zur
Normalform fithrt. Hier interessieren wir uns fiir die Charakterisierung solcher Reduk-
tionsschritte M — M’, fitr die M’ eine unendliche Reduktionskette hat, falls M eine hat.
Eine hinreichende Bedingung dafiic ist, daB im Schritt M — M’ ein solcher Redex
R = (Ax. A) B kontraktiert wird, bei dem 2 in 4 frei vorkomunt; d. h., R verliert sein
»Argument’‘ nicht. (Eine Folgerung ist der wohlbekannte Falks, daB im A7-Kaliiil strenge
und schwache Normalisierbarkeit zusammenfallen.) Ein B mit der Eigenschaft, daB seine
Kontraktion die Existenz unendlicher Reduktionsketten erhiilt, heilt vererbend. In der
vorliegenden Arbeit werden diejenigen vererbenden Redexe charakterisiert, die thr Argu-
ment verlieren.
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