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How to protect the interpretation of the wave function against protective measurements

Jos Uffink*
Institute for History and Foundations of Mathematics and Science, University of Utrecht, P.O. Box 80.000,

3508 TA Utrecht, The Netherlands
~Received 3 March 1999!

A new type of procedures, called protective measurements, was proposed by Aharonov, Anandan, and
Vaidman@Phys. Rev. A97, 4616~1993!; Found. Phys.26, 117~1996!#. These authors argued that a protective
measurement allows the determination of arbitrary observables of a single quantum system, and claimed that
this favors a realistic interpretation of the quantum state. This paper proves that only observables that commute
with the system’s Hamiltonian can be measured protectively. It is argued that this restriction saves the coher-
ence of alternative interpretations.@S1050-2947~99!01511-5#

PACS number~s!: 03.65.Bz
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I. INTRODUCTION

Recent work by Aharonov and co-workers@1–3# intro-
duced a new type of procedure in quantum mechanics, w
they called ‘‘protective measurements.’’ In these procedu
one can measure, under certain conditions and for a spe
set of states, the expectation value of an arbitrary observ
of an individual system. Remarkably, such expectation v
ues are obtained while avoiding the subsequent entangle
of the states of the system and the apparatus, even if
system was initially not in an eigenstate of the measu
observable. In this respect, the protective measuremen
very different from the more well-known von Neuman
measurement procedure.

Aharonov and co-workers attributed this feature of p
tective measurements to a physical manifestation of the w
function of the system~Ref. @2#, p. 4619!. They claimed that
by means of these measurements one can directlyobserve
the wave function~or quantum state! of an individual sys-
tem, and concluded from this that this quantum state sho
be given an ontological interpretation: if it is possible
observe the state of an individual system, it must corresp
to a real property of this system.

This conclusion stands in sharp contrast to received o
ion. To be sure, there is no consensus in the literature on
interpretation of the quantum state. But there does seem t
consensus that the state of an individual system is unobs
able ~i.e., not empirically accessible!. In fact, it is only be-
cause of this generally shared opinion that so many diffe
views on its meaning can peacefully coexist today. Howev
according to the above claims, we can decide the issue o
interpretation of the wave function by exploiting theoretic
possibilities for measurement allowed by quantum theory
self. This poses a serious threat for many of these inter
tations.

Several critical discussions of these exciting claims h
already been published~See Refs.@4–11#!. In this paper I
will address an issue which, to my knowledge, has not p
viously been dealt with. I show that the conditions assum
in a protective measurement imply that the observable th
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being measured commutes with the Hamiltonian of the s
tem. While this limitation still allows the possibility of a
unique determination of the quantum state within the spec
set considered in a protective measurement, it underm
the claim that one sees its direct physical manifestation
conclude that the threatened interpretations of the wave fu
tion can be saved in the face of protective measurement

This paper is organized as follows. In Sec. II the theor
ical background of protective measurements is review
Section III discusses its consequences for the interpreta
of quantum mechanics in more detail. In Sec. IV I prove t
limitations on the observables that can be measured pro
tively. Section V provides an explanation of the mechani
of protective measurement that does not involve the mani
tation of the wave function, and applies this to a thoug
experiment of Aharonov and co-workers. Section VI argu
that alternative interpretations are not endangered by pro
tive measurements, and discusses some possible objec
to this conclusion.

II. PROTECTIVE MEASUREMENTS

The notion of a protective measurement is introduced
means of a concrete measurement model. Consider a sy
S in interaction with some measurement apparatusA and let
HS^ HA be their composite Hilbert space. Assume that
total Hamiltonian of this composite system is of the form

H tot~ t !5HS1HA1g~ t !H int , ~1!

whereHS andHA denote the free Hamiltonians of the syste
and apparatus, respectively, andH int is the interaction Hamil-
tonian.~As usual,HS andHA are shorthand for the operato
HS^ 1 and1^ HA .) Further,g(t) is a switch function, which
takes a constant value 1/t during a very long interval@0,t#,
and vanishes smoothly and rapidly before and after this
terval. We take

H int5O^ P, ~2!

whereO is an observable of the system andP is the canoni-
cal momentum conjugate to the pointer position of the ap
ratus.
3474 ©1999 The American Physical Society
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In general, the evolution generated by a time-depend
Hamiltonian such as Eq.~1! is given by

U5Te2 i *H tot(t)dt, ~3!

whereT is the time-ordering operator. In the present case,
Hamiltonian commutes with itself during the period@0,t#
„i.e., @H tot(t),Htot(t8)#50 for 0<t,t8<t…, so that time order-
ing is unimportant during this period. If we neglect the sm
interaction during the switching on and off periods, we c
write

U5e2 i [ t(HS1HA)1O^ P] . ~4!

We further need two specific assumptions about Ham
tonian~1!. First, it is assumed that the system Hamiltonian
completely nondegenerate and discrete. ThusHS has a com-
plete orthonormal set of nondegenerate eigenvec
$uf1&,uf2&,...% in HS such that

HSufn&5Enufn&. ~5!

Second, we will assume that the pointer momentumP com-
mutes with the free Hamiltonian of the apparatus, i.e.,

@HA ,P#50. ~6!

Now let the initial state be of the form

uC& i5ufn&ux&, ~7!

whereux& is an arbitrary normalized state inHA . Evolution
~4! will transform this into

uC& f5UuC& i5e2 i [ t(HS1HA)1O^ P] ufn&ux&. ~8!

At this point we note that sinceg is slowly varying and
ug(t)u!1 during the entire interval@0,t#, one can apply the
adiabatic theorem and first-order perturbation theory. I w
not go into the details of these approximation theorems,
merely note the result: for the special choice of Eq.~8!, and
in the limit t→`, the following approximation for the fina
state is obtained:

uC& f'e2 i tEnufn& e2 i [ tHA1^O&nP] ux&, ~9!

where

^O&n5^fnuOufn&. ~10!

~See Refs.@2,11# for more details.!
Result~9! has two important features. First, the appara

state has been changed, not only by the free evolu
e2 i tHA, but also by the additional action of the operat
e2 i ^O&nP. Since @HA ,P#50, this second operator corre
sponds to a shift, proportional tôO&n , in the pointer posi-
tion variableQ that is canonically conjugate toP. Thus if
e2 i tHAux& is a state such that the pointer position is reas
ably well defined~i.e., the wave packet̂que2 i tHAux& van-
ishes outside of an interval smaller than minn,mu^O&n2^O&mu)
we can infer the value of̂O&n with a certainty by a reading
of Q after the interaction is over. Thus the measurem
procedure indeed yields the expectation value of the obs
ableO of the system.
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The second important feature is that there is no entan
ment in the final state~9!. That is to say, we can read th
value of ^O&n from the pointer position without causing
collapse or reduction of the system-plus-apparatus state
tor. In fact, the state vector of the system changes merely
a phase factor. Since state vectors differing by a phase fa
represent the same state, this means that the state o
system remains completely unchanged in this proced
Hence the name ‘‘protective measurement.’’

This is in sharp contrast to the usual von Neumann m
surement scheme, where measurement of an arbitrary
servable generically leads to entanglement. In this case
subsequent reading~or permanent registration! of the pointer
observable leads to a disruption of the coherence of this
tanglement, because of the projection postulate. In a pro
tive procedure, however, the system is still available in
original state after the measurement. We can then repea
procedure for other observablesO8,O9,..., anddetermine
their expectation values as well. Continuing in this mann
one eventually obtains sufficient data to determine the ex
quantum state of the system uniquely~up to an overall phase
factor!. For example, ifHS is two-dimensional, three linearly
independent observables will suffice. This is the basis for
conclusion of Aharonov and co-workers that one can obse
the state by means of protective measurements on an
vidual system.

Note that this conclusion is obtained only under the co
dition that the system was initially in an eigenstate ofHS .
Indeed, as pointed out by Aharonov and co-workers if
system is initially described by a superpositionuc&
5(ncnufn& the protective measurement brings about
evolution

(
n

cnufn&ux&→(
n

cne2 i tEnufn&e
2 i (tHA1^O&nP)ux& ,

~11!

which results in an entangled superposition, just as in the
Neumann measurement.

However, they argued that in this case a protective m
surement may still be feasible, by tailoring the Hamiltoni
~e.g., by applying external fields! such thatuc& becomes a
nondegenerate eigenstate.

III. CONSEQUENCES FOR THE MEANING OF THE
QUANTUM STATE

We have seen that by means of a protective measurem
the expectation valueŝO&n can be obtained, for arbitraryO,
for an individual system in an eigenstateufn& of the Hamil-
tonianHS , without altering this state. By a sequence of pr
tective measurements it is then possible to completely de
mine the quantum state of that system. What does this e
for the interpretation of the quantum state? Aharonov a
Vaidman wrote, ‘‘We have shown that stationary quantu
states can be observed. This is our main argument for a
ciating physical reality with the quantum state of a sing
particle.’’ @1#. Indeed, there is immediate intuitive appeal f
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3476 PRA 60JOS UFFINK
this conclusion. If the valuêO&n can be determined by in
spection of a single particle, it seems natural to assume
the particle somehow ‘‘knows’’ this value, i.e., that it corr
sponds to a real attribute. When this holds for arbitrary
servablesO, all their expectation values represent real
tributes. But this is equivalent to assuming that the quan
state itself is a real property of the particle.

Note, however, that this claim is established only for t
eigenstates ofHS . That is to say, the protective measureme
determines the state of a single system without disturba
only if it is given beforehand that this state belongs to
orthonormal family$uf1&,uf2&,...%. One might object that
under this restriction the achievement is not surprising.
deed, the same claim could be made for a traditional
Neumann measurement ofHS . In that case, the measureme
brings about the evolution

ufn&ux0&→ufn&uxn& ~12!

for a special initial stateux0&, and withuxn& denoting ortho-
normal pointer states. One can then identifyufn& simply by
reading off the labeln from the pointer state.

Anticipating this type of objection, Aharonov, Ananda
and Vaidman emphasized@2,3# that in a protective measure
ment, one does not need knowledge ofHS . Thus, while in
the above von Neumann measurement one can only re
struct ufn& from the observed value ofn if the Hamiltonian
~or the set of its eigenstates! is known, the protective mea
surement yields the datâO&n ,^O8&n , etc. From this, one
can reconstruct the form ofufn& even whenHS or the precise
form of its eigenvectors are unknown. Thus, even if the
formation obtained in a protective measurement is of
same kind as that in a von Neumann measurement, it is
tained under different conditions.

One may still doubt whether this rebuttal is convincin
Obviously, in a protective measurement, the reconstruc
of the state from the experimental data requires knowle
of the exact form of the observablesO,O8, etc. This require-
ment seems completely analogous to the condition that
HS is known in the case of the von Neumann measurem

However, even if one concludes that the claim that it
possible to determine the state of an individual system, un
the condition that this state is a member of some orthonor
set, is not by itself spectacular, the fact remains that a p
tective measurement achieves this result in a surprising m
ner. The procedure records the expectation value of an
servableO in a single measurement, while the system is
necessarily in an eigenstate ofO. This could never be
achieved in a von Neumann measurement.

Another type of objection concerns the inference
the above argument from observability to physical rea
of the state. Dickson@12# pointed out that this argumen
will not carry appeal for those who adopt an instrumenta
view, i.e., for those who regard the theory as merely
recipe for predicting experimental results; or for empirici
who may accept a theory when it is empirically adequ
without feeling committed to believe any of its ontologic
claims.

However, one can also use the argument, not so muc
infer the reality of the quantum state, but rather as a wea
to attack the internal coherence of other interpretatio
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Indeed, suppose some interpretation of quantum mecha
denies or qualifies the unconditional existence of
wave function of an individual system—as in fact mo
interpretations do. It would then seem most surprisi
to say the least, if one could still determine its exact fo
by measurements on such an individual system. Hen
even if one doubts whether the analysis establishes
physical reality of the wave function, it can still b
effective in establishing incoherence of alternati
interpretations.

Let me mention two of these. The most obvious candid
in danger from the above conclusions is the ‘‘ensemble’’
statistical interpretation. In this view, adopted by autho
such as Einstein, Popper, Blochintsev and Ballentine,
quantum state describes not an individual system, but ra
an ensemble of systems. The quantum-mechanical expe
tion values are then interpreted as averages over the m
bers of the ensemble. Accordingly, one cannot determine
state of an individual system, simply because it is not a pr
erty of a single system. This view appears untenable in
light of the above claims.

Second, in the Copenhagen view, the quantum stat
assumed to give a complete description of the individ
system. But this description is, according to Bohr, ‘‘sym
bolic’’ and does not literally represent physical reality in th
sense of a one-to-one correspondence. While the quan
state encodes complete information about the system,
part of this information is applicable in any given measu
ment context. Due to the principle of complementarity, o
always has to collect experimental data from mutually exc
sive measurement arrangements to obtain a full determ
tion of the state.

To be more precise, a measurement context in wh
the nondegenerate observableA is measured is represente
by the eigenbasis of the observable. In this basis
can expand the state, sayuc&5( ici uai&, and uci u2 give
the probabilities of finding the outcomesai . The phase rela-
tions between the coefficientsci are not accessible in thi
context. To determine them, one needs to consider a m
surement of some other observableB that does not commute
with A. But the context defined byB is, according to the
Copenhagen point of view, incompatible with the origin
one. Therefore, we can never obtain sufficient information
determine the quantum state of an individual system in
single context. By contrast, the series of protective meas
ments needed for a determination of the state are not m
ally exclusive. Thus the claim of Aharonov and co-worke
amounts to nothing less than a disproof of the principle
complementarity.

Remarkably, some other interpretations are no better
even if they agree with the point of view that the wave fun
tion of an individual system represents a physically real
tity. For example, in the Bohm interpretation, the modul
R(x) of the wave functionc(x)5R(x)eiS(x)/\ appears in the
quantum potentialU(x)5 (2\2/2m)(DR/R) which repre-
sents an independently existing potential acting on the p
ticle. In some versions of the Bohm interpretation, the ph
S(x) represents a real entity as well~the ‘‘guidance field’’!.
Nevertheless, it has been shown that these fields canno
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determined experimentally from the behavior of an in
vidual particle ~Ref. @7#, pp. 369–378!. Hence the Bohm
interpretation is also committed to the conclusion that o
cannot observe the wave function by inspection of an in
vidual particle.

It follows that in order to avoid damage for the abo
interpretations, one should question the very starting poin
the above argument, i.e., whether it has been sufficie
established that it is possible to perform a protective m
surement for arbitrary observables. In Sec. IV we shall
that there are indeed severe restrictions on the perform
of protective measurements.

IV. RESTRICTIONS ON THE OBSERVABLES THAT CAN
BE MEASURED PROTECTIVELY

It is essential to note that for the purpose of the protec
measurement the form of the evolution obtained in Eq.~9!
should hold for allufn&. Indeed, we are assuming that all w
know about the initial state of the system is that it is one
the eigenstates of a nondegenerate HamiltonianHS , but not
which one. It is the purpose of the procedure to determ
this state. Therefore, one must guarantee that the de
form of the evolution holds for allufn&, i.e., the approxima-
tion must be a good one for all these states. We exploit
to derive a simple but very restrictive property of the evo
tion.

Let us define an operatorUapp that brings about the ap
proximate evolution~9! exactly for all vectors of the form
ufn&ux&, i.e.,

Uapp:ufn&ux&→e2 i tEnufn&e
2 i (HAt1^O&nP)ux&. ~13!

By linearity this extends to a unique definition ofUapp as an
operator onHS^ HA . One can also give an explicit expre
sion for Uapp. Let

Õ5(
n

PnOPn ~14!

be an operator onHS , wherePn5ufn&^fnu. It is easy to see
that

Uapp5e2 i (HS1HA)t2 iÕ ^ P, ~15!

by checking that the right-hand side indeed produces tra
tion ~13! when acting on states of the formufn&ux&.

But then, since@Õ,HS#50, it immediately follows that
@Uapp,HS#50, or, in other words,

Uapp
† HSUapp5HS . ~16!

This means thatHS is conserved under the evolutionUapp.
This already suggests that the observableO appearing in

the interaction Hamiltonian of a protective measurem
must be subject to restrictions. Indeed, if the evolution
eratorU given by Eq.~8! contains an arbitrary self-adjoin
-
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operatorO, one would not expect that, to a good appro
mation,U commutes withHS . One would suspect that thi
is the case only ifO commutes withHS . However, since
Uapp is only an approximation ofU, we have to be careful to
spell this suspicion out.

To say that the approximation involved in Eq.~9! is good
means that

i~U2Uapp!ufn&ux&i→0 if t→`. ~17!

As mentioned earlier, we assume this holds for for alln.
Moreover, the approximation theorems apply for arbitra
ux&. Thus Eq.~17! holds for allufn& andux&. This condition
is then equivalent to

lim
t→`

iU2Uappi50. ~18!

Together with Eq.~16!, this implies1

lim
t→`

iU†HSU2HSi50. ~19!

Now consider the matrix element

^fmu^xu~U†HSU2HS!ufn&ux&. ~20!

Since, for any self-adjoint operator, the operator norm m
jorizes the absolute value of its matrix elements, we c
clude from Eq.~19! that, ast→`,

^xu^fmuU†HSUufn&ux&→^xu^fmuHSufn&ux&5Endnm .
~21!

Let $up,a&% be a complete orthonormal set of~improper!
common eigenstates inHA of both HA andP:

Pup&5pup,a&, HAup&5E~p,a!up,a&. ~22!

Here the indexa is used to allow for degeneracy inP and
HA . We expand the left-hand side of Eq.~21!:

1Because iU†HSU2HSi5iU†HSU2Uapp
† HSUappi5i(U

2Uapp)
†HSU1Uapp

† HS(U2Uapp)i<2iU2Uappi iHSi→0, at least
if HS is bounded. However, ifHS is unbounded, the argument ca
be rerun, while replacingHS with the set of its spectral projections
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^xu^fmuU†HSUufn&ux&5(
ab

E E dpdp8^xup8,b&^p8,bu^fmuU†HSUufn&up,a&^p,aux&

5(
ab

E E dpdp8^xup8,b&^p,aux&

3^p8,bu^fmuei $t[HS1E(p8,b)] 1p8O%HSe2 i $t[HS1E(p,a)] 1pO%ufn&up,a&

5(
ab

E E dpdp8^xup8,b&^p,aux&^p8,bup,a&

3ei t[E(p8,b)2E(p,a)]^fmuei (tHS1p8O)HSe2 i (tHS1pO)ufn&

5(
a

E dpu^p,aux&u2^fmuei (tHS1pO)HSe2 i (tHS1pO)ufn& ~23!
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According to Eq.~21! this expression will approach zero
mÞn, and En otherwise. But, sinceux& is arbitrary, this
happens only if for almost all values ofp:

^fmuei (tHS1pO)HSe2 i (tHS1pO)ufn&→Endmn ,

or, equivalently,

ei t(Em2En)^fmueipOHSe2 ipOufn&→Endmn .

This means that for almost allpPR,

eipOHSe2 ipO5HS , ~24!

which implies

@O,HS#50. ~25!

Thus we conclude thatUapp is a good approximation toU
only if the observableO commutes with the system Hami
tonian.

Notice that we did not rely on the differential form o
evolution ~4!. Had we done so, we would have immediate
obtained the result

@HS1HA1g~ t !O^ P,HS#5g~ t !@O,HS# ^ P→0, ~26!

by noting that the switch functiong is of the orderg't21 so
that commutator~26! vanishes automatically in the limitt
→`. Thus, this approach would not reveal a constraint
@O,HS#.

V. AN ALTERNATIVE LOOK AT PROTECTIVE
MEASUREMENTS

We have reached the conclusion that the assumption
volved in a protective measurement entail that the observ
whose expectation value is obtained commutes with
Hamiltonian HS of the system. This obviously presents
major restriction. In Copenhagen terms, it means that
information provided by a protective measurement is
stricted to that belonging to a single measurement con
only. Indeed, in view of this, one might even doubt wheth
the claim that the quantum state can be uniquely determ
by means of protective measurement is valid at all. I sh
n

in-
le
e

e
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ed
ll

argue here that this claim is still true, but at the same ti
that this need not be interpreted as evidence for the phys
reality of the quantum state.

To see this, let us compare the approximative evolut
~15! with the ~almost! exact evolution~4!. This shows that
the approximations involved amount to the replacement

the original observableO by the sandwiched observableÕ.
But this observable combines two interesting virtues:~i! it
commutes withHS , and ~ii ! its expectation value in any

eigenstateufn& equals that ofO: ^Õ&n5^O&n . Thus the

measurement ofÕ, which is compatible withHS , suffices to
determine the value of̂O&n .

Thus we can give an alternative explanation for what h
pens in a protective measurement, which does not appe
the idea that an individual system carries information ab
its quantum state. The interaction between system and a
ratus is produced by a very small interaction term, v
g(t)O^ P, that works for a very long time. The smallness
responsible for the fact thatufn& remains unchanged; th
long time explains that nevertheless a nonvanishing effec
the interaction builds up in the state of the apparatus. Ho
ever, the effect that builds up in the course of time is d

only to the part ofO ~namely,Õ) that commutes withHS . It
is only this operator whose expectation value is revea
The procedure is insensitive, however, to to the remain

O2Õ, i.e., the part ofO that does not commute withHS . In
fact, this statement can indeed be immediately verified: if
replaceufn& in the initial state with an arbitrary superpos
tion of the form (ncnufn&, the protective measuremen
brings about transition~11!. Here a reading of the pointe
variable invariably leads to a disruption of the coherence
the terms, and we are cut off from establishing the ph
relations between the coefficientscn . In Aharonov and co-
workers’ terminology, this is expressed by saying that sup
positions of the eigenstatesufn& are not protected in this
particular procedure. But from the present point of view, t
incapability of a protective measurement to reveal the ph
relations in a superposition, i.e., the incapability of discrim
nating the superposition(ncnufn& from the corresponding
mixture (nucnu2ufn&^fnu, can also be interpreted by sayin
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FIG. 1. A proton is in superpositionuf1& of
two states localized in boxesL andR. In between
the boxes there is an external constant potentiaV
which lifts the degeneracy ofuf1& and uf2&.
When the location of the proton is measured pr
tectively, by sending an electron through th
middle between the boxes, the electron will pa
the boxes on a straight trajectory.
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that one is actually measuring the observableÕ rather than
O.

In short, an alternative explanation for the surprisi
features of a protective measurement is that when
enforces the adiabatic conditions, i.e., the validity
approximation~9!, the observableO is effectively replaced
by Õ. This has no effect on its expectation value in t
eigenstatesufn& but a large effect on its commutatio
relation withHS .

Let us try to illustrate these conclusions by means of
example. Perhaps one of the most striking examples
cussed in Ref.@2# is that of a charged particle~say a proton!,
which is described by a superposition of two states locali
in distant boxesL andR,

uf1&5
1

&
~ ufL&1ufR&), ~27!

whereufL& andufR& are the ground states of the box pote
tials. The question is whether one can demonstrate tha
proton is in this delocalized state.

If the two boxes are bordered by infinite potential wal
state~27! is degenerate with

uf2&5
1

&
~ ufL&2ufR&), ~28!

so that the analysis of Sec. II would not be applicable. Bu
one arranges that in the region between the two boxes
potential has a large but finite constant valueV, the states
ufL& and ufR& develop small tails this middle region, an
one achieves thatuf1& and uf2& are no longer degenerat
~see Fig. 1!.

Now suppose we measure the position of the proton
somewhat more crudely, the observable:

O52ufL&^fLu1ufR&^fRu. ~29!

This can be done be sending a charged test particle,
an electron, straight through the middle between
boxes, perpendicular to the line joining the two box
and observing whether its trajectory deviates from a stra
line. Aharonov and co-workers showed that if the proced
is that of a conventional von Neumann measureme
e
f
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e
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ht
e
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one will find a deflection of the electron to the left or righ
with equal probability. Therefore, this procedure does
yield evidence that the proton is in the delocalized st
uf1&.

However if the measurement is protective, the result
very different. The trajectory of the electron is now on
sensitive tô O&150 and, therefore, it will continue throug
the boxes without deviation. This then seems a clear dem
stration that the proton is really in a delocalized superpo
tion. In the words of Ref.@2#, ‘‘the interaction is as if half of
@the particle# is in box @L# and the other is in box@R# ’ ’ and
‘‘the protective measurement shows the manifestation of
wave function as an extended object.’’

How should one analyze this example from the point
view proposed above? In this view, the protective measu
ment does not measureO, but rather a related observableÕ.
If, for simplicity, we restrict ourselves to the two
dimensional Hilbert space spanned byuf1& and uf2&, an
easy calculation shows that, in this example,

Õ5 (
j P$1,2%

uf j&^f j uOuf j&^f j u50. ~30!

This means the null result of the experiment should not s
prise us: this particular protective measurement is incapa
of yielding any other result.

This conclusion can be straightforwardly verified by co
sidering the case where the procedure is carried out o
proton prepared in a localized state, sayufL&. Since this state
is not protected in the procedure, one obtains the evolut

ufL&ux&5
1

&
~ uf1&1uf2&)ux&

→ 1

&
~ uf1&ux0&1uf2&ux08&), ~31!

whereux08& is the final state of the electron in the case wh
the proton was initially in the stateuf2&. Since ^O&1

5^O&250, the electron travels a straight trajectory in t
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stateux08& as well as inux0&.
2 Thus, the electron will indeed

travel on a straight path, regardless of whether the proto
delocalized or not. Therefore, this experiment provides
evidence for the spatial delocalization of the proton.

At first sight, the conclusion that the electron is not d
flected, even if the proton is localized, may seem counte
tuitive because of the asymmetry of the Coulomb field p
duced in this case. But note that the adiabatic limit in t
experiment involves letting the distance between the box
and the value of the potential in the middle region, go
infinity. Consequently, the electrostatic force on the electr
and hence the curvature of its trajectory also vanishes in
limit.

VI. CONCLUSION AND DISCUSSION

It has been shown here that for a system with a n
degenerate free HamiltonianHS , a protective measuremen
is only possible of observablesO that commute withHS .
This is not in conflict with the claim that the measureme
procedure is able to yield the expectation value of an a
trary observableO. The explanation is simply that in the
regime in which the conditions and approximations for t
adiabatic theorem and first-order perturbation theory
valid, the procedure actually measures another observabÕ
which commutes withHS but which, for the considered se
of states, has the same expectation value asO. A similar
conclusion was reached by Rovelli@8# by analysis of a con-
crete example.

In this explanation we do not need recourse to a manif
tation of the wave function in the individual system. Rath
it is clear that in a protective measurement we are dea
with what from the Copenhagen point of view would b
characterized as a single measurement context only: tha
the HamiltonianHS . All the information obtained is in fact
compatible with this context. Hence there is no threat to
complementarity principle.

Similarly, the ensemble interpretation of the wave fun
tion can be saved from incoherence. Assume thatufn& de-
scribes an ensemble of similarly prepared systems. The
semble is dispersionless for the Hamiltonian, and hence
members will produce identical outcomes whenHS is mea-
sured. The same holds for a measurement ofÕ: sinceÕ is a
function of HS , andufn& is its eigenstate, with

Õufn&5^O&nufn&, ~32!

2There may be slight distinction betweenux0& andux08& because of
a different acceleration experienced by the electron, due to the
ferent shape of the tails ofuf6& in the region between the boxes
However, in the adiabatic limit, this distinction will disappear.
.
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all the members of the ensemble will therefore reveal
same valuê O&n in the measurement ofÕ. It is not neces-
sary to conclude that, paradoxically, an individual syst
carries complete information about the quantum state,
that it ‘‘knows’’ to which ensemble it belongs.

Finally, I want to discuss two possible objections to t
present conclusions. First, an essential assumption I h
used in Sec. IV is that the approximation~9! is valid for all
statesufn&. However, one may object that this is too restr
tive. A protective measurement might still be of interest,
the approximation is valid only for some subset, call itJ, of
$uf1&,uf2&,...%.

In that case, the procedure would allow us to determ
the state only when it is given that the initial state belongs
the subsetJ. However, sinceHS is conserved in the subspac
spanned by the setJ, the final state lies in the same subspa
Thus, effectively, it then suffices to restrict our attention to
reduced Hilbert space, spanned byJ. But in this reduced
space we can make the same argument as above, becau
approximation will now by valid for all eigenvectors ofHS
in the reduced space. Hence this escape route will not b
about any essential change in our conclusions.

A second objection may be that I have not discussed
possibility of changingHS between two protective measure
ments ~e.g., by applying or varying some external fields!.
Indeed, one can imagine that a first protective measurem
measures an observableO which commutes withHS , and
that then the Hamiltonian is changed toHS8 whereafter an
observableO8 such that@O8,HS8#50 is measured protec
tively, etc.

Thus, if @H,H8#Þ0, we might still be able to combine
information from incompatible measurement contexts in
one experiment. The problem with this proposal is of cou
that one must take care of what happens to the state of
system. IfHS is changed abruptly, the system will genera
not be in an eigenstate ofHS8 at the start of the second mea
surement. On the other hand, ifHS is changed quasi-
statically, so that the adiabatic theorem is applicable, one
arrange that the system’s state will transform into an eig
state of the new Hamiltonian.

A more careful analysis than that offered here is nec
sary to decide whether such a proposal would lead to a r
tation of the complementarity principle or whether one c
still maintain that this measurement defines a single but tim
dependent context. In any case, this proposal would di
from that of Aharonov and co-workers in the sense that h
not only the protectivenessof the measurements but als
what is in betweenthe measurements is essential.
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