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How to protect the interpretation of the wave function against protective measurements
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A new type of procedures, called protective measurements, was proposed by Aharonov, Anandan, and
Vaidman[Phys. Rev. A97, 4616(1993; Found. Phys26, 117(1996]. These authors argued that a protective
measurement allows the determination of arbitrary observables of a single quantum system, and claimed that
this favors a realistic interpretation of the quantum state. This paper proves that only observables that commute
with the system’s Hamiltonian can be measured protectively. It is argued that this restriction saves the coher-
ence of alternative interpretatiof$1050-29479)01511-5

PACS numbd(s): 03.65.Bz

[. INTRODUCTION being measured commutes with the Hamiltonian of the sys-
tem. While this limitation still allows the possibility of a

Recent work by Aharonov and co-workeis—3] intro-  unigue determination of the quantum state within the specific
duced a new type of procedure in quantum mechanics, whicBet considered in a protective measurement, it undermines
they called “protective measurements.” In these procedureghe claim that one sees its direct physical manifestation. |
one can measure, under certain conditions and for a specifi@nclude that the threatened interpretations of the wave func-
set of states, the expectation value of an arbitrary observabléon can be saved in the face of protective measurements.
of an individual system. Remarkably, such expectation val- This paper is organized as follows. In Sec. I the theoret-
ues are obtained while avoiding the subsequent entanglemei§gl background of protective measurements is reviewed.
of the states of the system and the apparatus, even if theection Ill discusses its consequences for the interpretation
system was initially not in an eigenstate of the measure®f quantum mechanics in more detail. In Sec. IV | prove the
observable. In this respect, the protective measurement |gnitations on the observables that can be measured protec-
very different from the more well-known von Neumann tively. Section V provides an explanation of the mechanism
measurement procedure. of protective measurement that does not involve the manifes-

Aharonov and co-workers attributed this feature of pro-tation of the wave function, and applies this to a thought
tective measurements to a physical manifestation of the waveXperiment of Aharonov and co-workers. Section VI argues
function of the systeniRef.[2], p. 4619. They claimed that that alternative interpretations are not endangered by protec-
by means of these measurements one can dirmrve tive measurements, and discusses some possible objections
the wave function(or quantum stadeof an individual sys- to this conclusion.
tem, and concluded from this that this quantum state should

be given an ontological interpretation: if it is possible to Il. PROTECTIVE MEASUREMENTS
observe the state of an individual system, it must correspond _ ) o
to a real property of this system. The notion of a protective measurement is introduced by

This conclusion stands in sharp contrast to received opinfeans of a concrete measurement model. Consider a system

ion. To be sure, there is no consensus in the literature on th@ in interaction with some measurement apparatuend let
interpretation of the quantum state. But there does seem to Hés® Ha be their composite Hilbert space. Assume that the
consensus that the state of an individual system is unobserotal Hamiltonian of this composite system is of the form
able (i.e., not empirically accessibleln fact, it is only be-
cause of this generally shared opinion that so many different Hio(t) =Hs+Ha+g(t)Hiq, (1)
views on its meaning can peacefully coexist today. However,
according to the above claims, we can decide the issue of thghereHg andH 5 denote the free Hamiltonians of the system
interpretation of the wave function by exploiting theoretical and apparatus, respectively, drg; is the interaction Hamil-
possibilities for measurement allowed by quantum theory ittonian.(As usual,Hg andH , are shorthand for the operators
self. This poses a serious threat for many of these interpréds®1 andl®H,.) Further,g(t) is a switch function, which
tations. takes a constant value7lfluring a very long interval0,7],
Several critical discussions of these exciting claims havend vanishes smoothly and rapidly before and after this in-

already been publisheGee Refs[4—11)). In this paper | terval. We take
will address an issue which, to my knowledge, has not pre-
viously been dealt with. | show that the conditions assumed Hinw=0®P, (2
in a protective measurement imply that the observable that is

whereO is an observable of the system aRds the canoni-

cal momentum conjugate to the pointer position of the appa-
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In general, the evolution generated by a time-dependent The second important feature is that there is no entangle-
Hamiltonian such as Ed1) is given by ment in the final stat€9). That is to say, we can read the
value of (O), from the pointer position without causing a
collapse or reduction of the system-plus-apparatus state vec-
éor. In fact, the state vector of the system changes merely by
a phase factor. Since state vectors differing by a phase factor
represent the same state, this means that the state of the
system remains completely unchanged in this procedure.
Hence the name “protective measurement.”

This is in sharp contrast to the usual von Neumann mea-
surement scheme, where measurement of an arbitrary ob-

U=e il(Hs+Ha) +O®P] (4 servable generically leads to entanglement. In this case the
subsequent readin@r permanent registratipof the pointer

We further need two specific assumptions about Hamil-observable leads to a disruption of the coherence of this en-
tonian(1). First, it is assumed that the system Hamiltonian istanglement, because of the projection postulate. In a protec-
completely nondegenerate and discrete. THyas a com- tive procedure, however, the system is still available in its
plete orthonormal set of nondegenerate eigenvectorgriginal state after the measurement. We can then repeat the

U= Te_ithot(t)dt, (3)

whereTis the time-ordering operator. In the present case, th
Hamiltonian commutes with itself during the peri¢@,r]
(i.e., [Hio(t),Hioi(t)]=0 for 0<t,t’<7), so that time order-
ing is unimportant during this period. If we neglect the small
interaction during the switching on and off periods, we can
write

{|#1),| #2),...} in Hg such that procedure for other observabl€',O”,..., anddetermine
their expectation values as well. Continuing in this manner,
Hglén)=Eq| ¢n)- (5  one eventually obtains sufficient data to determine the exact

. ) guantum state of the system uniquélyp to an overall phase
Second, we will assume that the pointer momenRImom-  acto. For example, ifHs is two-dimensional, three linearly
mutes with the free Hamiltonian of the apparatus, i.e., independent observables will suffice. This is the basis for the
[HA.P]=0 ©) conclusion of Aharonov and Co_-workers that one can obse_rvg
As ' the state by means of protective measurements on an indi-
vidual system.
Note that this conclusion is obtained only under the con-
[¥Yi=]dnd| x), (7) dition that the system was initially in an eigenstatetb.
Indeed, as pointed out by Aharonov and co-workers if the
where|y) is an arbitrary normalized state #, . Evolution  system is initially described by a superpositidn))
(4) will transform this into =3.Cnl#n) the protective measurement brings about the

) evolution
|W)=U|W)=e [THsTHA*O=PT g )5 ). tS)

Now let the initial state be of the form

At this point we note that sincg is slowly varying and

l9(t)|<1 during the entire intervdl0,7], one can apply the > ¢ | ¢} x)— >, c.e” ' En[dyye™ (Ha+(OhP)| 1),
adiabatic theorem and first-order perturbation theory. | will n n

not go into the details of these approximation theorems, but (17)
merely note the result: for the special choice of &), and

in the limit 7—, the following approximation for the final

state is obtained: which results in an entangled superposition, just as in the von
Neumann measurement.
|W)~e "En| ¢,) @ ITHAT(ONPI| ) (9) However, they argued that in this case a protective mea-
surement may still be feasible, by tailoring the Hamiltonian
where (e.g., by applying external fielfisuch that|¢/) becomes a

nondegenerate eigenstate.

<O>n:<¢’n|o|¢n>- (10

(See Refs[2,11] for more details.

Result(9) has two important features. First, the apparatus
state has been changed, not only by the free evolution
e '™a, but also by the additional action of the operator We have seen that by means of a protective measurement,
e OnP Since [Ha,P]=0, this second operator corre- the expectation valug), can be obtained, for arbitrarg,
sponds to a shift, proportional {®),, in the pointer posi- for an individual system in an eigenstdig,) of the Hamil-
tion variableQ that is canonically conjugate t8. Thus if  tonianHg, without altering this state. By a sequence of pro-
e~ '™a|y) is a state such that the pointer position is reasontective measurements it is then possible to completely deter-
ably well defined(i.e., the wave packefg|e™'™4|x) van-  mine the quantum state of that system. What does this entail
ishes outside of an interval smaller than mif{O),—(O)))  for the interpretation of the quantum state? Aharonov and
we can infer the value ofO), with a certainty by a reading Vaidman wrote, “We have shown that stationary quantum
of Q after the interaction is over. Thus the measuremenstates can be observed. This is our main argument for asso-
procedure indeed yields the expectation value of the obsengciating physical reality with the quantum state of a single
able O of the system. particle.” [1]. Indeed, there is immediate intuitive appeal for

IlI. CONSEQUENCES FOR THE MEANING OF THE
QUANTUM STATE
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this conclusion. If the valu¢O), can be determined by in- Indeed, suppose some interpretation of quantum mechanics
spection of a single particle, it seems natural to assume thakenies or qualifies the unconditional existence of the
the particle somehow “knows” this value, i.e., that it corre- wave function of an individual system—as in fact most
sponds to a real attribute. When this holds for arbitrary obinterpretations do. It would then seem most surprising,
servablesO, all their expectation values represent real at-to say the least, if one could still determine its exact form
tributes. But this is equivalent to assuming that the quantunpy measurements on such an individual system. Hence,

state itself is a real property of the particle. even if one doubts whether the analysis establishes the
Note, however, that this claim is established only for theppysical reality of the wave function, it can still be

eigenstates dfs. Thatis to say, the protective measurementgffactive in establishing incoherence of alternative
determines the state of a single system without d'Sturbanci?lterpretations.

only if it is given beforehand that this sta_te belo_ngs to the Let me mention two of these. The most obvious candidate
orthonormal family{|¢1),[¢2),...;. One might object that in danger from the above conclusions is the “ensemble” or

under this restriction the achievement is not Surprising. In'statistical interpretation. In this view, adopted by authors
deed, the same claim could be made for a traditional von

such as Einstein, Popper, Blochintsev and Ballentine, the
Neumann measurementld. In that case, the measurement . Lo
brings about the evolution quantum state describes not an individual system, but rather

an ensemble of systems. The quantum-mechanical expecta-
tion values are then interpreted as averages over the mem-
12 . ;
|00 1x0) = b)) (12 bers of the ensemble. Accordingly, one cannot determine the
state of an individual system, simply because it is not a prop-

for ial initial stat nd with noting ortho- . U ;
or a specia al statexo), and |xn) denoting ortho erty of a single system. This view appears untenable in the

normal pointer states. One can then identidy,) simply b i _
readingpoff the labeh from the pointer statg?.)(1> Py light of the e_lbove claims. _ .
Anticipating this type of objection, Aharonov, Anandan, Second, in _the Copenhagen View, _the quantum ,St,ate IS
and Vaidman emphasizdd, 3] that in a protective measure- aSsumed to give a complete description of the individual
ment, one does not need knowledgerbf. Thus, while in sygtem. But this de;cnpnon is, accordlng.to Bohr, ‘_‘sym-
the above von Neumann measurement one can only recoR9lic” and does not literally represent physma_l reality in the
struct| ¢,,) from the observed value of if the Hamiltonian ~ Sense of a one-to-one correspondence. While the quantum
(or the set of its eigenstates known, the protective mea- State encodes complete information about the system, only
surement yields the da®D),,(O’),, etc. From this, one part of this information is applicable in any given measure-
can reconstruct the form ¢&,) even wherHg or the precise  ment context. Due to the principle of complementarity, one
form of its eigenvectors are unknown. Thus, even if the in-always has to collect experimental data from mutually exclu-
formation obtained in a protective measurement is of thesive measurement arrangements to obtain a full determina-
same kind as that in a von Neumann measurement, it is oliion of the state.
tained under different conditions. To be more precise, a measurement context in which
One may still doubt whether this rebuttal is convincing.the nondegenerate observableis measured is represented
Obviously, in a protective measurement, the reconstructiopy the eigenbasis of the observable. In this basis we
of the state from the experimental data requires knowledggan expand the state, say)==3c|a;), and |c|? give
of the exact form of the observabl€sO’, etc. This require-  the probabilities of finding the outcomaes. The phase rela-
ment seems completely analogous to the condition that thgsns petween the coefficients are not accessible in this
Hs is known in the case of the von Neumann measurementoniext To determine them, one needs to consider a mea-

However, even if one concludes that the claim that it IS, ament of some other observaBlehat does not commute
possible to determine the state of an individual system, und%ith A. But the context defined b@ is, according to the

the condition that this state is a member of some Orthonorma&openhagen point of view, incompatible with the original

set, is not by itself spectacular, the fact remains that a PT5ne. Therefore, we can never obtain sufficient information to
tective measurement achieves this result in a surprising man- ~* '

ner. The procedure records the expectation value of an Otgi_etermlne the quantum state of an individual system in a

servableO in a single measurement, while the system is nolsingle context. By contrast, the series of protective measure-
necessarily in an eigenstate @. This could never be ments needed for a determination of the state are not mutu-

achieved in a von Neumann measurement ally exclusive. Thus the claim of Aharonov and co-workers

Another type of objection concerns the inference in@mounts to nqthing less than a disproof of the principle of
the above argument from observability to physical realitycomplementarity.
of the state. Dickso12] pointed out that this argument Remarkably, some other interpretations are no better off,
will not carry appeal for those who adopt an instrumentalisteven if they agree with the point of view that the wave func-
view, i.e., for those who regard the theory as merely dion of an individual system represents a physically real en-
recipe for predicting experimental results; or for empiriciststity. For example, in the Bohm interpretation, the modulus
who may accept a theory when it is empirically adequateR(x) of the wave functiony(x) = R(x)e'S®/* appears in the
without feeling committed to believe any of its ontological quantum potentiald (x) = (—#%2/2m)(AR/R) which repre-
claims. sents an independently existing potential acting on the par-
However, one can also use the argument, not so much tiicle. In some versions of the Bohm interpretation, the phase
infer the reality of the quantum state, but rather as a weapoB8(x) represents a real entity as wélhe “guidance field.
to attack the internal coherence of other interpretationsNevertheless, it has been shown that these fields cannot be
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determined experimentally from the behavior of an indi-operatorO, one would not expect that, to a good approxi-
vidual particle (Ref. [7], pp. 369-378 Hence the Bohm mation,U commutes withHs. One would suspect that this
interpretation is also committed to the conclusion that onds the case only ifO commutes withHg. However, since
cannot observe the wave function by inspection of an indi-U,,is only an approximation df/, we have to be careful to
vidual particle. spell this suspicion out.

It follows that in order to avoid damage for the above To say that the approximation involved in E§) is good
interpretations, one should question the very starting point ofeans that
the above argument, i.e., whether it has been sufficiently
established that it is possible to perform a protective mea-
surement for arbitrary observables. In Sec. IV we shall see
that there are indeed severe restrictions on the performance
of protective measurements.

H(U_Uapp)|¢n>|)(>|‘_’o if 7—o0. (17

As mentioned earlier, we assume this holds for forrall
IV. RESTRICTIONS ON THE OBSERVABLES THAT CAN Moreover, the approximation theorems apply for arbitrary
BE MEASURED PROTECTIVELY |x). Thus Eq«(17) holds for all| ¢,,) and|y). This condition

. . . is then ivalen
It is essential to note that for the purpose of the protectlveS then equivalent to

measurement the form of the evolution obtained in ).

should hold for all ¢,,). Indeed, we are assuming that all we

know about the initial state of the system is that it is one of lim [U— U zpdl=0. (18
the eigenstates of a nondegenerate HamiltoRrign but not K

which one. It is the purpose of the procedure to determine

this state. Therefore, one must guarantee that the desired . o
form of the evolution holds for ali,), i.e., the approxima- | °9ether with Eq(16), this implies
tion must be a good one for all these states. We exploit this

to derive a simple but very restrictive property of the evolu-

tion. lim[UTHsU—H4|=0. (19
Let us define an operatdy ,,, that brings about the ap- T

proximate evolution(9) exactly for all vectors of the form

[én)x). ie.,

Now consider the matrix element

Usappi | dn) x)— €' Fn| ) e (AT OP) 3) - (13)

t _
By linearity this extends to a unique definition 0f,,, as an {éml(x|(UTHsU =Hg)[¢n)lx)- (20
operator onHs®H, . One can also give an explicit expres-

sion for Ugpy. Let Since, for any self-adjoint operator, the operator norm ma-

jorizes the absolute value of its matrix elements, we con-
~ clude from Eq.(19) that, asT— o,
0=, P,OP, (14)
n

t _
be an operator oft(g, whereP,=|¢,){¢,|. It is easy to see (X[(bmlUHsU | ¢n)|x)— (x[( bl Hsl n)|x)= Enaﬂﬁ&'ﬂ)
that

_ e i(HgtHp7—i00P (15) Let {|p,a)} be a complete orthonormal set Gfmprope)

U.p— i
app common eigenstates iH, of both H, andP:

by checking that the right-hand side indeed produces transi-
tion (13) when acting on states of the forfw,,)|x).

But then, sincd O,Hg]=0, it immediately follows that Plp)=plp,a), Halp)=E(p,a)[p,a). (22)
[Uapp,:Hs]=0, or, in other words,

Here the indexx is used to allow for degeneracy I and
Ul HsUap=Hs. (16)  Ha. We expand the left-hand side of E@1):

This means thakis is conserved under the evolutidiy,.

This already suggests that the observablappearing in 1Because [UTHSU —Hd|=[|lUTHU - ngd" Uapd =I(U
the interaction Hamiltonian of a protective measurement-u, )THU + U], Hs(U— U <2|U— Ul [Hd|—0, at least
must be subject to restrictions. Indeed, if the evolution op+f Hg is bounded. However, ifi5 is unbounded, the argument can
eratorU given by Eqg.(8) contains an arbitrary self-adjoint be rerun, while replacingis with the set of its spectral projections.
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((nlU M1 0=3, [ [ dpap(xlp’ )P B BalUTHSUI 8)lp. (Pl
=§,ﬁ ffdpdp’<x|p’,ﬂ><p,alx>
><<pf,ﬁ|<¢m|ei{f[Hs+E(p’,B)]+p’O}HSe*i{f[Hs+E(p,a)]+p0}|¢n>|p,a>
=> ffdpdp’(xlp’,B><p,alx><p’,ﬂlp,a>
af

X el TE(P" A =E(P.a)l( ¢ | (THs+P O)y @~i(7Hs*PO)| 4 )

=§ f dpl(p, a|x)|%( ppe'(sTPOH g™ (THstPO)| ¢, ) (23)

According to Eq.(21) this expression will approach zero if argue here that this claim is still true, but at the same time
m#n, and E,, otherwise. But, sincey) is arbitrary, this that this need not be interpreted as evidence for the physical
happens only if for almost all values pf reality of the quantum state.

To see this, let us compare the approximative evolution

i(tHg+pO) —i(tHg+pO) ; X X
(@l eSTPIHge ST o) — B S, (15) with the (almosi exact evolution(4). This shows that

or, equivalently the approximations involved amount to the replacement of
E B ol o the original observabl® by the sandwiched observahi®
e'"EmTEn)( | ePOHge ™ 'PC| ) — Endmn. But this observable combines two interesting virtu@:it

commutes withHg, and (i) its expectation value in any
‘ _ eigenstate| ¢,) equals that of0: (0),=(0),. Thus the
ePOHge PO=Hjq, (24 measurement dD, which is compatible wittH, suffices to
determine the value gfO),,.
Thus we can give an alternative explanation for what hap-
[O,Hg]=0. (25) pens in a protective measurement, which does not appeal to
the idea that an individual system carries information about
Thus we conclude that ,, is a good approximation t)  its quantum state. The interaction between system and appa-
only if the observabl€d commutes with the system Hamil- ratus is produced by a very small interaction term, viz.
tonian. g(t)O® P, that works for a very long time. The smallness is
Not_ice that we did not rely on the diﬁerent_ial forr_n of responsible for the fact thdip,) remains unchanged; the
evolution(4). Had we done so, we would have immediately |onq time explains that nevertheless a nonvanishing effect of
obtained the result the interaction builds up in the state of the apparatus. How-

[Het+Ha+g(1)O®P,Hs]=g(t)[O,Hs]® P—0, (26) ever, the effect that builds Ep in the course of time is due
. . o only to the part 0O (namely,O) that commutes witlidg. It
by noting that the switch functiog is of the ordeg~7"'so s only this operator whose expectation value is revealed.
that commutator(26) vanishes automatically in the limit  The procedure is insensitive, however, to to the remainder
—o0. Thus, this approach would not reveal a constraint MH-d, ie., the part oD that does not commute witHs. In

[O.Hs]. fact, this statement can indeed be immediately verified: if we
replace| ¢,) in the initial state with an arbitrary superposi-
tion of the form =.c,|¢,), the protective measurement
brings about transitioril1). Here a reading of the pointer
We have reached the conclusion that the assumptions irvariable invariably leads to a disruption of the coherence of
volved in a protective measurement entail that the observablidae terms, and we are cut off from establishing the phase
whose expectation value is obtained commutes with theelations between the coefficients. In Aharonov and co-
Hamiltonian Hg of the system. This obviously presents aworkers’ terminology, this is expressed by saying that super-
major restriction. In Copenhagen terms, it means that th@ositions of the eigenstatdg,) are not protected in this
information provided by a protective measurement is reparticular procedure. But from the present point of view, the
stricted to that belonging to a single measurement contexncapability of a protective measurement to reveal the phase
only. Indeed, in view of this, one might even doubt whetherrelations in a superposition, i.e., the incapability of discrimi-
the claim that the quantum state can be uniquely determinedating the superpositio ,c,,|¢,) from the corresponding
by means of protective measurement is valid at all. | shalmixture =,|c,|?| ¢,){ ¢n|, can also be interpreted by saying

This means that for almost gile R,

which implies

V. AN ALTERNATIVE LOOK AT PROTECTIVE
MEASUREMENTS
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FIG. 1. A proton is in superpositiop ) of
two states localized in boxésandR. In between
| ¢ ) the boxes there is an external constant potektial
- which lifts the degeneracy ofp, ) and |¢_).
4 ) When the location of the proton is measured pro-
R —— tectively, by sending an electron through the
|4 \A\x middle between the boxes, the electron will pass
|¢ +> h the boxes on a straight trajectory.
P

that one is actua”y measuring the 0bserv£|eather than one will find a deflection of the electron to the left or rlght,

0. with equal probability. Therefore, this procedure does not
In Short, an a|ternative exp|anation for the Surprisingyield eVidence that the pI‘Oton iS in the delocalized state

features of a protective measurement is that when on +)-

enforces the adiabatic conditions, i.e., the validity of However if the measurement is protective, the result is

approximation(9), the observabl®© is effectively replaced Very different. The trajectory of the electron is now only

by O. This has no effect on its expectation value in theSensitive t0<Q>+:O and, therefore, it will continue through
eigenstates|¢,) but a large effect on its commutation the boxes without deviation. This then seems a clear demon-

relation withHs. stration that the proton is really in a delocalized superposi-

Let us try to illustrate these conclusions by means of aiion. In the words of Refl2], “the interaction is as if half of

example. Perhaps one of the most striking examples di ‘tt?]e par'iiclét_is in box[L] andtthﬁ othet;] IS in b?cE(Rt]”t.andfth
cussed in Ref[2] is that of a charged particlsay a protoh € protective measurement shows the maniiestation ot the

which is described by a superposition of two states localized'aV€ function as an extended .ObleCt' .
in distant boxed. andR How should one analyze this example from the point of

view proposed above? In this view, the protective measure-

1 ment does not measu€®, but rather a related observattde
[¢1)=—dL)+|dr), (27 If, for simplicity, we restrict ourselves to the two-
V2 dimensional Hilbert space spanned fy.) and|¢_), an

where| ¢, ) and| ¢g) are the ground states of the box poten-easy calculation shows that, in this example,

tials. The question is whether one can demonstrate that the
proton is in this delocalized state.
If the two boxes are bordered by infinite potential walls, =_ AV N
state(27) is degenerate with © je;,_} | i) 41Ol ;)] =0- (30

1
l¢p-)= 5(|¢L>_|¢R>)y (28)  This means the null result of the experiment should not sur-
prise us: this particular protective measurement is incapable
so that the analysis of Sec. Il would not be applicable. But i1‘Of y|e.|d|ng any pther result. . -
one arranges that in the region between the two boxes the This conclusion can be straightforwardly verified by con-

potential has a large but finite constant vaMiethe states sidering the case where_the procedure |s_carr|eq out on a
|6.) and |¢g) develop small tails this middle region, and proton prepared in a localized state, $ay). Since this state

one achieves thd . ) and|¢_) are no longer degenerate is not protected in the procedure, one obtains the evolution
i _

(see Fig. 1
Now suppose we measure the position of the proton, or 1
somewhat more crudely, the observable: I )= — () +|d-_Nx)
V2
O=—|d (oLl +|dr)(PR- (29 1
- — +ld)xoN). 31
This can be done be sending a charged test particle, e.g., f2(|¢+>|xo> |4-)1x0) @D

an electron, straight through the middle between the

boxes, perpendicular to the line joining the two boxes,

and observing whether its trajectory deviates from a straightvhere| x() is the final state of the electron in the case when
line. Aharonov and co-workers showed that if the procedurghe proton was initially in the statés ). Since (O),

is that of a conventional von Neumann measurement=(O)_=0, the electron travels a straight trajectory in the



3480 JOS UFFINK PRA 60

state| xo) as well as inlxo).% Thus, the electron will indeed all the members of the ensemble will therefore reveal the
travel on a straight path, regardless of whether the proton isame valug O),, in the measurement @. It is not neces-
delocalized or not. Therefore, this experiment provides nasary to conclude that, paradoxically, an individual system
evidence for the spatial delocalization of the proton. carries complete information about the quantum state, i.e.,
At first sight, the conclusion that the electron is not de-that it “knows” to which ensemble it belongs.
flected, even if the proton is localized, may seem counterin- Finally, | want to discuss two possible objections to the
tuitive because of the asymmetry of the Coulomb field proresent conclusions. First, an essential assumption | have
duced in this case. But note that the adiabatic limit in thisused in Sec. IV is that the approximatié®) is valid for all -
experiment involves letting the distance between the boxesStates ¢,). However, one may object that this is too restric-
and the value of the potential in the middle region, go totlVe. A protective measurement might still be of interest, if
infinity. Consequently, the electrostatic force on the electronth® @pproximation is valid only for some subset, call,itof

and hence the curvature of its trajectory also vanishes in thi b1),| B2). -} .
limit. In that case, the procedure would allow us to determine

the state only when it is given that the initial state belongs to
the subsed. However, sincéd g is conserved in the subspace
spanned by the st the final state lies in the same subspace.

VI. CONCLUSION AND DISCUSSION Thus, effectively, it then suffices to restrict our attention to a

It has been shown here that for a system with a nonf€duced Hilbert space, spanned by But in this reduced

degenerate free Hamiltoniang, a protective measurement SPace we can make the same argument as above, because the
is only possible of observabled that commute withHg. ~ @PProximation will now by valid for all eigenvectors éfs
This is not in conflict with the claim that the measurementl the reduced space. Hence this escape route will not bring
procedure is able to yield the expectation value of an arbi9bOAUtsgggmejS§E.rgft‘ilO%h§]n§et:g ?r?eitclor?;\llltj;lr(])cnsdiscusse d the
trary observableD. The explanation is simply that in the ) Y

regime in which the conditions and approximations for thepossIbIIIty of changing1s between two protective measure-

? . ) ) ments (e.g., by applying or varying some external figlds
adiabatic theorem and first-order perturbation theoLy %hdeed, one can imagine that a first protective measurement

valid, the procedure actually measures another obser@ble measures an observab® which commutes withtHg, and
which commutes wittHs but which, for the considered set that then the Hamiltonian is changed ktf whereafter an
of states, has the same expectation valu€®asA similar  ghservableO’ such that{ O’,H4]=0 is measured protec-
conclusion was reached by Rovelli] by analysis of a con- jyely, etc.
crete example. _ ) Thus, if [H,H’]#0, we might still be able to combine
In this explanation we do not need recourse to a manifesnformation from incompatible measurement contexts into
tation of the wave fUﬂCthﬂ_ln the individual system. R"J‘thfj‘ﬁone experiment. The problem with this proposal is of course
it is clear that in a protective measurement we are dealinghat one must take care of what happens to the state of the
with what from the Copenhagen point of view would be gystem. IfH is changed abruptly, the system will generally
characterized as a single measurement context only: that @bt pe in an eigenstate &f at the start of the second mea-
the HamiltonianHs. All the information obtained is in fact ¢ ,rement. On the other hand Hs is changed quasi-

compatible with this context. Hence there is no threat 10 theyasically, so that the adiabatic theorem is applicable, one can

com_plgmentarity principle. . : arrange that the system’s state will transform into an eigen-
_ Similarly, the ensemb!e interpretation of the wave func-giate of the new Hamiltonian.
tion can be saved from incoherence. Assume [tg) de- A more careful analysis than that offered here is neces-

scribes an ensemble of similarly prepared systems. The €y 1o decide whether such a proposal would lead to a refu-

semble is dispersionless for the Hamiltonian, and hence atLion of the complementarity principle or whether one can

members will produce identical outcomes whdg is mea-  gj|| maintain that this measurement defines a single but time-

sured. The same holds for a measuremer@oéinceO isa  dependent context. In any case, this proposal would differ

function of Hg, and|¢,) is its eigenstate, with from that of Aharonov and co-workers in the sense that here
not only the protectivenessf the measurements but also
what isin betweenthe measurements is essential.
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