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Phonon exchange in dilute Fermi-Bose mixtures: Tailoring the Fermi-Fermi interaction
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We consider a mixture of a single-component Bose gas and a two-component Fermi gas at temperatures
where the Bose gas is almost fully condensed. In such a mixture, two fermionic atoms can interact with each
other by exchanging a phonon that propagates through the Bose condensate. We calculate the interaction
potential due to this mechanism, and determine the effectives-wave scattering length for two fermions that
interact, both directly by the interatomic potentials as well as by the above-mentioned exchange mechanism.
We find that the effective scattering length is quite sensitive to changes in the condensate density, and becomes
strongly energy dependent. In addition, we consider the mechanical stability of these mixtures, and also
calculate the dispersion and the damping of the various collisionless collective modes of the gas.

PACS number~s!: 03.75.Fi, 32.80.Pj, 42.50.Vk, 67.40.2w
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I. INTRODUCTION

The experimental realization of Bose-Einstein conden
tion in trapped atomic Bose gases@1–3# has stimulated both
theoretical and experimental efforts to investigate new
interesting physics in ultracold atomic gases. In particula
has spurred a great deal of interest in achieving a BCS t
sition in trapped fermionic gases, also because a s
polarized gas of atomic6Li has theoretically been shown t
undergo a transition into a superfluid state at a critical te
perature that is comparable to those realized in the exp
ments with trapped Bose gases@4,5#. This relatively high
critical temperature is due to its anomalously large and ne
tive scattering length of22160a0 @6#. To reach the tempera
ture regime where the quantum degeneracy of the atomic
becomes important, evaporative cooling is used. This te
nique, however, requires a fast thermalization rate and th
fore a high collision frequency. For doubly spin-polariz
Fermi gases this is not possible due to the exclusion p
ciple, and such a high collision frequency must be obtain
by using a mixture of either Fermi-Bose gases@7,8# or
Fermi-Fermi gases@9#. Experimentally, this method of sym
pathetic cooling has already been used to produce the
two-component Bose condensate@10#, and has also recentl
been reported to be successful for a fermionic tw
component40K mixture @11#.

Mixtures of dilute atomic gases are, however, interest
in their own right, both from experimental as well as the
retical viewpoints. Indeed, experimental work on the sta
and dynamic properties of a binary mixture of Bose ga
has included a study of mean-field effects@12#, relative-
phase coherence@13#, the dynamics of component separati
@14#, and Rabi oscillations@15#. Furthermore, metastabl
states@16# and quantum tunneling effects@17# have been
observed in spinor Bose-Einstein condensates, and mos
cently a convenient method for the creation of topologi
excitations in two-component Bose-condensed gases
been suggested@18# and succesfully carried out experime
tally @19#. Theoretical work on trapped binary Bos
condensed gases, has for example included the stability
static properties@20–22#, the dynamics of the relative phas
@23#, and the collective modes@24#. Also for spinor Bose
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condensates in optical traps, the phase diagram and co
tive modes have been considered@25,26#. In the case of
Fermi-Bose mixtures, the density profiles for gases confi
in a harmonic trap have been studied at nonzero tempera
in a Thomas-Fermi approximation@27–29#. In all these cases
the theory is based on a mean-field treatment of the inte
tions and neglects the effect of fluctuations.

Inspired by the well-known physics of3He-4He mixtures
@30#, we here go beyond mean-field theory and study
effective interaction between two fermions due to dens
fluctuations in a Bose condensate. In particular, we calcu
the resulting effective interatomics-wave scattering length
for two fermions in different hyperfine states with the aim
manipulating it in such a way that a BCS transition becom
feasible. The two hyperfine states form an effective spin-
system, and therefore the mixture of fermions in two diffe
ent hyperfine states can be treated as a Fermi gas with
1/2. We mostly take the populations of the two spin levels
be equal because, if a BCS transition can be achieved a
this will be the optimal situation. Moreover, we also consid
the system to be homogeneous, for the following reason
the mixture would be trapped in an isotropic harmonic p
tential with trapping frequencyv, a measure for the overla
of the Bose condensate with the fermionic cloud is given
the ratio of the zero-temperature Thomas-Fermi radii for
interacting Bose-condensed gas and that of an ideal Fe
gas. The former is equal tol (15NBaB / l )1/5 @31#, where l
5A\/mv is the harmonic oscillator length,aB is the bosonic
scattering length, andNB is the number of bosons. The latte
equalsl (48NF)1/6 @32#, whereNF is the number of fermions
For typical experimental parameters and the desirable la
numbers of bosonic and fermionic atoms, this overlap of
two clouds is rather small. Therefore, in order to maxim
the effect of the Bose condensate on the interaction betw
the fermions in the mixture, we consider only a spatia
homogenous system. Although all the experiments w
Bose-condensed gases have been performed with harm
oscillator traps up to now, this is not an unrealistic sugg
tion since it is certainly possible to create an external tr
ping potential that is more or less a rectangular box@33#.

Physically, the effect of the Bose condensate on
fermion-fermion interaction is due to the exchange
©2000 The American Physical Society01-1
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phonons that propagate in the Bose-condensed gas. In o
to calculate the effect on the interatomic interaction qua
tatively, we thus have to accurately know the density-den
correlation function in the Bose gas. This is straightforwa
in the Bogoliubov approximation, whose validity is well e
tablished at such low temperatures that the Bose gas is
sentially fully condensed. In this manner we obtain the act
interaction potential from which we then extract the inte
atomic scattering length. In addition to the effective fermio
fermion interaction, we consider the important question
the stability of the three-component system against demix
of the various Bose and Fermi components of the gas.
also calculate the excitation spectrum for the Fermi-B
mixture far below the Bose-Einstein transition temperatu
where the dynamics of the gas is in the collisionless regi
Theoretically, this amounts to doing a so-called rando
phase approximation calculation for this mixture. As a res
we find not only the eigenmodes of the gas, but also
Landau damping of these modes due to the imaginary pa
the ‘‘RPA-bubble’’ diagram. Note that from a fundament
point of view the stability and the excitation spectrum a
strongly related, because a signature of the demixing in
bility is the occurrence of a mode with a purely imagina
frequency.

The paper is organized as follows. In Sec. II we first c
culate the effective interaction and scattering length of t
fermions in the presence of a Bose condensate. In partic
we show that for realistic conditions, the scattering len
strongly depends on the collision energy of the atoms, wh
is important when considering the prospects of a BCS tr
sition in a spin-polarized potassium gas. In Sec. III we th
consider the stability of the three-component system,
show that in general this does not lead to very string
constraints on the densities. Finally, in Sec. IV, we calcul
the long-wavelength collective-mode spectrum and damp
for the Fermi-Bose mixture. We end with a summary in S
V.

II. EFFECTIVE INTERACTION

In this section, we calculate the effective interaction a
scattering length of two fermions. The calculation is p
formed by means of functional methods@34#, because even
in the presence of a Bose condensate, the RPA calcula
for the collective modes can then be performed in a pur
algebraic manner in Sec. IV, and avoids the complication
an explicit evaluation of Feynman diagrams. Moreover
gives some more insight into the physical nature of the c
lisionless collective modes. Of course, it is also possible
do the same calculation in the operator formalism. If p
formed correctly, it gives identical results.

A. Theory

In accordance with the previous remarks, we thus s
from the functional-integral expression for the gran
canonical partition function of the mixture. It reads
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Zgr5E d@f* #d@f#d@c* #d@c#expH 2
1

\
~SB@f* ,f#

1SF@c* ,c#1SI@f* ,f,c* ,c#!J , ~1!

and consists of an integration over a complex fieldf(x,t),
which is periodic on the imaginary-time interval@0,\b#, and
over the Grassmann fieldsca(x,t), which are antiperiodic
on this interval. Therefore,f(x,t) describes the Bose com
ponent of the mixture, whereasca(x,t) is associated with
the Fermi components. For the latter we actually need
fields, because the fermionic atoms can be in either one
the two hyperfine statesua&. Furthermore, the total action o
the mixture consists of a term for the Bos-gas,

SB@f* ,f#5E
0

\b

dtE dx

3H f* ~x,t!S \
]

]t
2

\2
“

2

2mB
2m Df~x,t!

1
TB

2
uf~x,t!u4J , ~2!

a term for the Fermi gas that accounts for the fact that
Pauli principle forbidss-wave scattering between fermion
atoms in the same hyperfine state,

SF@c* ,c#5(
a

E
0

\b

dtE dx

3H ca* ~x,t!S \
]

]t
2

\2
“

2

2mF
2maDca~x,t!

1
TF

2
uca~x,t!u2uc2a~x,t!u2J , ~3!

and a term describing the interaction between the three c
ponents of the Fermi-Bose mixture,

SI@f* ,f,c* ,c#5(
a

TaE
0

\b

dtE dxuca~x,t!u2uf~x,t!u2.

~4!

In these expressions we have introduced the two-b
boson-boson T ~transition! matrix element TB
54p\2aB /mB , the two-body fermion-fermionT-matrix el-
ement TF54p\2aF /mF , and the two two-bodyT-matrix
elementsTa52p\2aa /mR that describe the interactions be
tween a boson and a fermion in the spinstateua&. Here a
5$↑,↓% denotes the hyperfine components of the Fermi
in the effective spin language. In addition,m denotes the
chemical potential of the Bose gas, andma denotes the
chemical potentials of the two components of the Fermi g
Note that the latter do not need to be identical, because
Fermi gas is in general not in equilibrium in spin space, d
to the generally slow relaxation rates between the hyper
1-2
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degrees of freedom. Finally, the masses of the bosonic at
and the fermionic atoms are denoted bymB andmF , respec-
tively. The reduced mass is denoted bymR5mFmB /(mF
1mB).

Since we only consider the gas at such low temperatu
that the Bose gas is essentially fully Bose condensed,
proceed by performing the usual Bogoliubov substitution
the Bose fields, i.e.,f5AnB1f8, and neglect all terms o
f

th
n

e
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ve
es
ot
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higher than second order inf8 or f8* . Note that we have
implicitly also neglected the depletion of the condensate
put the condensate density equal to the total densitynB of the
Bose gas. For a weakly interacting gas withAnBaB

3!1 and
at low temperatures, this is clearly justified. In this mann
we end up with the Bogoliubov approximationSB@f* ,f#
.\bVTBnB

2/21SB@f8* ,f8#, whereV is the total volume of
the gas, and the action for the fluctuations can be written
SB@f8* ,f8#52
\

2E0

\b

dtdt8E dxdx8f8†~x,t!•G21~x,t;x8,t8!•f8~x8,t8!, ~5!
l
ote

c-

m
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n
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if we introduce the vector field

f8~x,t!5S f8~x,t!

f8* ~x,t!
D , ~6!

and the corresponding Green’s functionG(x,t;x8,t8) that
obeys

2\G21~x,t;x8,t8!

5S \]t2\2
“

2/2m1TBnB TnB

TnB 2\]t2\2
“

2/2m1TBnBD
3d~x2x8!d~t2t8!. ~7!

Note that the linear terms inf8 andf8* have dropped out o
the action because of the Hugenholtz-Pines relation

m5TBnB1(
a

Tana , ~8!

which also incorporates the mean-field effects due to
nonzero spin densitiesna in the Fermi gas. The same relatio
is also used to eliminate the chemical potential from Eq.~7!.
In addition, the interaction term in the total action becom
in the Bogoliubov approximation

SI@f8* ,f8,c* ,c#.
1

2E0

\b

dtE dx$J†~x,t!•f8~x,t!

1f8†~x,t!•J~x,t!%, ~9!

with a ‘‘current source’’ defined by

J~x,t!5AnB(
a

Tauca~x,t!u2S 1

1D . ~10!

To include the effect of phonon exchange on the inter
tion between two fermions, we now need to integrate o
the Bose fields. This is straightforward, since it only involv
the evaluation of a Gaussian integral. The result for the t
effective fermion action is thus
e

s

-
r

al

Seff@c* ,c#5SF@c* ,c#1
1

2\E0

\b

dtdt8

3E dxdx8J†~x,t!•G~x,t;x8,t8!•J~x8,t8!

[SF@c* ,c#1
1

2 (
a,a8

E
0

\b

dtdt8E dxdx8

3uca~x,t!u2Va,a8~x,t;x8,t8!

3uca8~x8,t8!u2, ~11!

whereVa,a8(x,t;x8,t8) is the effective interatomic potentia
due to phonon exchange. At this point, it is important to n
that to be able to use in Eqs.~2!, ~3!, and~4! the two-body
T-matrix elements, instead of the real interatomic~singlet
and triplet! potentials, we have already integrated out flu
tuations with momenta higher than a certain cutoff\L.
Thus, in principle, there is a cutoff on all the momentu
integration in the rest of this paper. We will comment on t
effects of this shortly. Hence, inverting Eq.~7! by means of
a Fourier transformation, we find thatVa,a8(x,t;x8,t8) is
given by

Va,a8~x,t;x8,t8!522TaTa8nB(
n
E

k<L

dk

~2p!3

3eik•(x2x8)2 ivn(t2t8)

3F e~k!

~\vn!21e~k!~e~k!12TBnB!
G ,

~12!

wheree(k)5\2k2/2m andvn52pn/\b are the even Mat-
subara frequencies that account for the periodicity of
Bose field f(x,t) and therefore of the Green’s functio
G(x,t;x8,t8). The phonon-exchange mechanism thus a
induces an interaction between fermions with the same sp
Due to the Pauli principle, however, this interaction c
again at best be of ap-wave nature, and is in general neg
gible. As a result, we from now on only consider the cont
1-3
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butions to the interaction potential between particles w
opposite spin. We also neglect the frequency dependenc
Eq. ~12!, and consider only the static contribution. This im
plies that the relevant collision energies of the fermions m
be much less than the bosonic mean-field interaction.

The resulting instantaneous potential is given
V(x,t;x8,t8).Veff(ux2x8u)d(t2t8), with

Veff~r !52
\2mBa↑a↓

2pmR
2aBj2r

E
0

L

dk
k sin~kr !

k211/j2
. ~13!

Here we have defined the coherence lengthj
51/A16pnBaB in the Bose-condensed gas. The effective p
tential depends on three parameters: the cutoffL, the coher-
ence lengthj, andmBa↑a↓ /mR

2aB . As we will show now,
however, there is a separation of length scale, and 1/L is in
general much smaller than the other relevant length scale
coherence lengthj. This means that we can safely ignore t
cutoff and take the limitL→`. To estimate the magnitud
of the cutoff, we make use of the fact that it is determined
the requirement that the bare interatomic interaction
renormalized to the two-body scattering matrix. This ren
malization of the bare interaction is described by t
Lippmann-Schwinger equation

1

TL
5

1

V0
1E

L,k<La

dk

~2p!3

1

2e~k!
. ~14!

HereLa denotes the ultraviolet cutoff provided by the inte
atomic potential, andL is the momentum scale up to whic
fluctuations in the Bose gas are integrated over. The b
interactionV0 is chosen such that, in the limitL50, the
result does not depend on the high-momentum cutoffLa
@35#. Requiring the renormalized interaction to be within a
proximately a fractionx from the two-body transition matrix
leads to

L.
xp

2aB
. ~15!

If we compare this value for the cutoff with the coheren
lengthj, the product of the two is given by

jL.
xp

8ApnBaB
3

. ~16!

Due to the presence of the factorAnBaB
3 in the denominator,

this quantity is in general much larger than 1, and we c
safely take the limitL→`. The effective interaction in this
case becomes simply

Veff~r !52
\2mBa↑a↓
4mR

2aBj2r
e2r /j, ~17!

and has the form of a purely attractive Yukawa potential
05360
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B. Results

With this interaction potentialVeff(r ), we want to deter-
mine the effectives-wave scattering lengthaF

eff for two fer-
mions also interacting through the mechanism of phonon
change. We can associate ans-wave scattering lengthaF

eff

with the effective interactionVeff(r ) as follows:

aF
eff52 lim

k↓0

d0~k!

k
. ~18!

Hered0(k) denotes the phase shift of the partial wave w
angular momentuml 50. The phase shiftd0(k) is defined in
terms of the asymptotic form

lim
r→`

u0~r ;k!→sin„kr1d0~k!… ~19!

for the l 50 partial waveu0(r ;k), that can be calculated
from the radial Schro¨dinger equation

S 2
d2

dr2
1

mF

\2
Veff~r !2k2D u0~r ;k!50. ~20!

At this point, we have to keep in mind that there is alread
scattering lengthaF for the fermions due to the interatomi
potential. We can take this interatomic scattering length i
account by imposing suitable boundary conditions on
partial waveu0(r ;k), such that we recoveraF if the interac-
tion due to phonon exchange vanishes, i.e., ifVeff(r )50.
The boundary conditions imposed are such that the der
tive and the magnitude of the wave function atr 50 are
equal to those of the function sin@k(r2aF)#. In the case of a
positive scattering length, an alternative procedure would
to add a hard-core potential with a rangeaF to Veff(r ). Both
these procedures are justified because the range of the i
atomic potential is much smaller than the range of the eff
tive potential, and we have checked that numerically th
indeed yield the same results.

The phase shifts due to the effective potentialVeff(r ) for
mixtures of40K and 6Li with 87Rb are show in Figs. 1 and 2
respectively. The interatomic scattering lengths for40K- 40K,
6Li- 6Li and 87Rb-87Rb collisions are taken to be 160a0 ,
22160a0, and 109a0, respectively@6,36#. The scattering
lengths for 40K and 6Li with 87Rb are, as far as we know
not known, and we have taken them to be equal to 100a0,
which is presumably a typical value. In Fig. 3 the pha
shifts for a mixture of40K and 39K are also shown, where
the scattering length for39K- 39K and 40K-39K collisions has
been taken to be 5a0 and 1000a0, respectively@36#. The
various lines corresponds to different values of the cond
sate density. It is clear from these figures that for a giv
mixture, the phase shifts as a function of momentum asym
totically all have the same slope independent of the value
the condensate density. This slope corresponds to the in
atomic scattering lengthaF . However, at long wavelength
the phase shifts can be significantly different from t
asymptotic limit, and can depend strongly on the collision
energy. For a mixture of40K- 87Rb this is certainly the case
1-4
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The effective interaction can even become attractive, inst
of repulsive, around the Fermi momentum, which opens
possibility for a BCS transition to a superfluid phase just l
the exchange of phonons in the lattice leads to supercon
tivity in metals @37#. For a mixture of6Li- 87Rb the effects
are less pronounced, and amount to a slight enhanceme
the already very large and negative scattering length.
case of40K- 39K may be exciting, because of the possibili
of a rather large scattering length for40K- 39K collisions,
which can be of the order of 1000a0 @36#. If this value is
correct, there are resonances in the effective scatte
length, as shown in Fig. 4. This strongly resembles the e
tence of Feshbach resonances in the scattering length
function of the applied bias magnetic field@38#.

III. STABILITY

To be able to interact, the Bose and two-component Fe
gases have to be overlapping. Therefore, we want to cons

FIG. 1. The phase shiftd0 as a function of the momentumk, for
a mixture of 40K and 87Rb. The condensate densities are~1! nB

5131010 cm23, ~2! nB5131013 cm23, and ~3! nB51
31014 cm23.

FIG. 2. The phase shiftd0 as a function of the momentumk, for
a mixture of 6Li and 87Rb. The condensate densities are~1! nB

5131010 cm23, ~2! nB5131013 cm23, and ~3! nB51
31014 cm23.
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the stability of the gas against demixing of the Fermi a
Bose components. To determine the stability of the mixtu
we consider the matrix of second-order derivatives with
spect to the densities of the free energyF5FF1FB1FI ,
which consists of a fermion termFF , a boson termFB , and
an interaction termFI . For the mixture to be stable we hav
to require that all eigenvalues of this matrix are larger th
zero, i.e., that the free-energy surface is convex. At the
temperatures of interest to us, the free-energy densit
equal to the average energy density^E&/V, and we obtain

^E&/V5^EF&/V1^EB&/V1^EI&/V

5
3

10
~6p2!2/3~n↑

5/31n↓
5/3!

\2

mF
1TF

effn↑n↓1TB

nB
2

2

1~T↑n↑1T↓n↓!nB . ~21!

Here the first term is the kinetic energy of the tw
component Fermi gas, the second and third terms are
interaction energies of the individual Fermi and Bose gas

FIG. 3. The phase shiftd0 as a function of the momentumk, for
a mixture of 40K and 39K. The condensate densities are~1! nB54
31012 cm23, ~2! nB5531012 cm23, ~3! nB5631012 cm23, ~4!
nB5731012 cm23, ~5! nB5831012 cm23.

FIG. 4. The scattering lengthaF
eff as a function of the density o

condensed atomsnB , for a mixture of 40K and 39K.
1-5
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respectively, and the fourth term is due to the interact
between these gases. We have neglected the kinetic en
of the Bose gas because of the low temperatures and d
ties. Note that the effective fermion-fermionT-matrix ele-
ment TF

eff54p\2aF
eff/mF has to be used, that includes th

effect of phonon exchange. This is the case because, as
as the Fermi energy is much less than the average mean
energy of the Bose condensate, we have to include the e
of fluctuations, which change the static properties of the m
ture by renormalizing the fermion-fermion interaction as
have just discussed.

The matrix of second-order derivatives is given by

S ]2F

]n↑]n↑

]2F

]n↑]n↓

]2F

]n↑]nB

]2F

]n↓]n↑

]2F

]n↓]n↓

]2F

]n↓]nB

]2F

]nB]n↑

]2F

]nB]n↓

]2F

]nB]nB

D .

Assuming that we start in the stable part of the phase
gram, the onset of an instability is signaled by the po
where its determinant becomes equal to zero. Therefore
quiring the determinant of this matrix to be larger than ze
is a sufficient condition for stability. It reads

4S p

k↑aF
effD S p

k↓aF
effD 2

2

aBaF
eff

mBmF

mR
2 F S p

k↓aF
effD a↑

2

1S p

k↑aF
effD a↓

2G18
a↓a↑
aBaF

eff

mBmF

mR
2

216>0, ~22!

whereka5(6p2na)1/3 denotes the Fermi momentum asso
ated with the spin stateua&. Note thataF

eff is a function of the
condensate densitynB . In evaluating the derivatives of th
free energy with respect to the density of the Bose gas,
have not taken this implicit dependence into account, wh
is sufficiently accurate for our purposes as long as we are
too close to a resonance. Near a resonance a more invo
treatment is necessary, also because the phase shift is
very strongly momentum dependent.

The surface in thena2nB volume where the equality sig
holds is called the spinodal surface. The spinodal surf
divides the phase space into a region where the mixtur
~meta!stable, and one where it is unstable and separates
distinct phases in the stable part of the phase space. If
effect of phonon exchange is optimized by puttingn↑5n↓ ,
we havek↓5k↑[kF , and Eq.~22! becomes
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4S p

kFaF
eff

22D S p

kFaF
eff

12D 2
~a↑1a↓!2

aBaF
eff

mBmF

mR
2

3S p

kFaF
eff

22D 2
~a↑2a↓!2

aBaF
eff

mBmF

mR
2 S p

kFaF
eff

12D >0.

~23!

If we also puta↑5a↓5aFB , the condition further simplifies
to

S p

kFaF
eff

22D S p

kFaF
eff

122
aFB

2

aBaF
eff

mBmF

mR
2 D >0. ~24!

The first factor on the left-hand side of Eq.~24! corresponds
to the demixing of the two fermion components of the g
@4#, whereas the second factor represents the demixing o
Bose-Einstein condensate and the fermion components@39#.
Note that which of the two instabilities occurs first depen
on the various masses and scattering lengths involved.
equal scattering lengths, i.e.,aF

eff5aB5a↑5a↓[a, the de-
mixing of the Bose and Fermi gases always occurs first,
we reproduce the result of van Leeuwen and Cohen@40#:

p

kFa
>

mB

mF
1

mF

mB
. ~25!

In our numerical calculations, the scattering lengthsa↑
anda↓ have always been taken equal to each other, and
~24! applies. In the case of a mixture of40K and 87Rb this
condition roughly leads for the total fermion densitynF only
to the restrictionnF,1018 cm23. For a mixture of6Li and
87Rb the condition on the total density becomesnF
,1015 cm23, and for a mixture of40K and 39K it reads
nF,1010 cm23. The latter condition seems to be quite r
strictive. However, if we take instead ofaB55a0 a different
value that is within the present uncertainty for this scatter
length, i.e.,aB525a0, the condition for a mixture of40K and
39K becomes onlynF,1012 cm23, which is much more fa-
vorable when one considers the prospects of achievin
BCS transition in this case. The reason is that in BCS the
the critical temperature is given by Tc
5(8eFeg22/kBp)exp$2p cot„d0(kF)…/2%, with g Euler’s
constant. From this expression it follows that if the densit
are low, the critical temperature for the BCS transition is a
very low. Therefore, if the results of Sec. II for a40K and
39K mixture are to be of use, as far as achieving a B
transition is concerned, it is crucial that relatively high de
sities are realizable.

IV. DISPERSION OF COLLECTIVE EXCITATIONS

We next want to consider the excitation spectrum of
gas. The collective excitations of the mixed gas are coup
modes of the fermionic spin densities, and the Bose cond
sate. It is therefore convenient to perform a Hubba
1-6
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Stratonovich transformation to these fermionic densit
@41#. This amounts to introducing two real auxiliary field
r↑(x,t) and r↓(x,t), by rewriting in the integrant of the
functional integral for the partition functionZgr , the factor
due to the fermion-fermion interaction as

expH 2
TF

\ E
0

\b

dtE dxuc↑~x,t!u2uc↓~x,t!u2J
5E d@r↑#d@r↓#expH TF

\ E
0

\b

dtE dx

3@r↑~x,t!r↓~x,t!2r↑~x,t!uc↓~x,t!u2

2uc↑~x,t!u2r↓~x,t!#J . ~26!

For reasons that will become clear shortly, we denote
resulting action for the fermions bySF

H@c* ,c#. It is qua-
dratic in the fermion fields, and reads

SF
H@c* ,c#5(

a
E

0

\b

dtE dxH ca* ~x,t!F\ ]

]t
2

\2
“

2

2mF
2ma

1TFr2a~x,t!1Tauf~x,t!u2Gca~x,t!J . ~27!

Upon integrating over the fermionic fields, the gran
canonical partition function describing the gas is equal t
functional integral over the Bose field and the density fie
only, with an effective action that reads

Seff@r↑ ,r↓ ,f* ,f#52\(
a

Tr$ ln~2Ga
21!%1SB@f,f* #

2E
0

\b

dtE dxTFr↑~x,t!r↓~x,t!,

~28!

in terms of the Green’s functions

Ga
21~x,t;x8,t8!52

1

\H \
]

]t
2

\2
“

2

2m
2ma1TFr2a~x,t!

1Tauf~x,t!u2J d~x2x8!d~t2t8!.

~29!

Expanding this action around its minimum, by requirin
the linear terms in the fluctuations to be zero, will result
the Hartree approximation for the equilibrium densities. T
is sufficiently accurate because we are dealing with a fer
onic gas in a nonmagnetic phase, where the Fock term in
self-energy is zero, due to the spin-symmetry of the action
also explains the use of the symbolH ~Hartree! in Eq. ~27!.
Inserting thus into the right-hand side of Eq.~28!,

ra~x,t!5na1ra8 ~x,t! ~30!
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f~x,t!5AnB1f8~x,t!, ~31!

we obtain, from the requirement that the linear terms in
fluctuations vanish again, the Hugenholtz-Pines relation

2m1TBnB1(
a

TaGa
H~x,t;x,t!50, ~32!

and in addition the expected equation for the average s
densities

na5Ga
H~x,t;x,t!, ~33!

where

Ga
H21

~x,t;x8,t8!

52
1

\H \
]

]t
2

\2
“

2

2m
2ma1TFr2a1TanBJ

3d~x2x8!d~t2t8! ~34!

is the usual fermionic one-particle propagator, or two-po
correlation function, in the Hartree approximation. W
therefore recognize, in Eqs.~32!, ~33!, and ~34! the self-
consistent Hartree equations for the boson and fermion d
sities at given chemical potentialsm, m↑ , andm↓ .

To find the theory describing the fluctuations around t
equilibrium, we have to perform the expansion around t
minimum up to second order in the fluctuationsra8 andf8.
The poles in the Green’s function of the resulting theory g
us the desired dispersion of the collective modes, for they
also the poles in the linear response of the densities to
external perturbation. If we again introduce the vector no
tion

fk,n8 5S fk,n8

f82k,2n* D , ~35!

and also

rk,n8 5S r↑;k,n8

r↓;k,n8
D , ~36!

the quadratic part of the effective action for the fluctuatio
ra8 andf8 can be conveniently written in momentum spa
as
1-7
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S(2)@f8,r8#5
1

\bV (
k,n

1

2 S fk,n8

rk,n8
D †

•S Mff~k,ivn! Mfr~k,ivn!

M rf~k,ivn! M rr~k,ivn!
D •S fk,n8

rk,n8
D , ~37!

where we have defined the matrices

Mff~k,ivn!5S 2 i\vn1e~k!1S~k,ivn! S~k,ivn!

S~k,ivn! i\vn1e~k!1S~k,ivn!
D , ~38!
s,

re

e

s

e
ure.
ion,
ion

t

wer
f
is
M rr~k,ivn!5TFS TFP↓~k,ivn! 21

21 TFP↑~k,ivn!
D ,

~39!

and

M rf
T ~k,ivn!5Mfr~k,ivn!

5TFAnBS T↓P↓~k,ivn! T↑P↑~k,ivn!

T↓P↓~k,ivn! T↑P↑~k,ivn!
D .

~40!

We have also introduced the self-energy of the Bose ga

S~k,ivn!5TBnB1@T↑
2P↑~k,ivn!1T↓

2P↓~k,ivn!#nB ,

~41!

and the RPA bubble, or equivalently the density-density
sponse function, of the ideal Fermi gas

Pa~k,ivn!5E dp

~2p!3

n„ea~k1p!…2n„ea~p!…

2 i\vn1ea~k1p!2ea~p!
,

~42!

where the dispersions obeyea(k)5\2k2/2m1TFr2a
1TanB2ma , andn(e)51/„exp(be)11… is the usual Fermi-
Dirac distribution function. Note thatS(k,ivn) and
Pa(k,ivn) are invariant under the substitution (k,ivn)
→(2k,2 ivn), due to the time-reversal symmetry of th
problem.

In the long-wavelength limit, i.e., for smallk, Eq.~42! can
be rewritten as

Pa~k,ivn!5
mka

2\2p2E0

`

de
]na

]e
AeF12

xa,n

Ae
arctan

Ae

xa,n
G ,

~43!

wherexa,n5mvn /\kak,

na~e!5@eb(eae2ma1TFr2a1TanB)11#21, ~44!

and we have defined the Fermi energies and wave vector
ea5ma2TFr2a2TanB[\2ka

2/2m. The analytic continua-
tion of Eq. ~43! to physical energiesv5 ivn reads
05360
-

by

Pa~k,v!5
mka

2\2p2E0

`

de
]na

]e F12
xa

2
logUxa1Ae

xa2Ae
U

2 i
p

2
uxauu~Ae2uxau!G , ~45!

with xa5mv/\kak. We want to find the zero-temperatur
result and the lowest-order corrections in the temperat
This can be done by means of a Sommerfeld expans
which amounts to expanding the real part of the express
between square brackets in Eq.~45! arounde51. Doing so,
we find, in first instance,

Pa~k,v!5
mka

2\2p2E0

`

de
]na

]e H 12
xa

2
logUxa11

xa21U
2F12

xa
2~xa

223!

~12xa
2 !2 G ~e21!2

8
1O@~e21!4#

2 i
p

2
uxauu~Ae2uxau!J . ~46!

Integrating then overe, we obtain, for the real part in lowes
order,

Pa
(0)~k,v!52

mkana~0!

2\2p2 F12
xa

2
logUxa11

xa21UG , ~47!

and, for the imaginary part, exactly

Im@Pa~k,v!#5
mkana~0!

2\2p2

p

2na~0!
uxauna~ uxau2!.

~48!

At zero temperature, Eqs.~47! and ~48! reduce to the well-
known result for the zero-temperature RPA bubble@42#.
Note that the imaginairy part in Eq.~48! is valid for all
temperatures, and cannot simply be expanded as a po
series in kBT/eF . This is not true for the real part o
Pa(k,v), and the lowest-order temperature correction
given by

Pa
(2)~k,v!52

mka

16\2p2 F12
xa

2~xa
223!

~12xa
2 !2 G S kBT

ea
D 2 p2

3
.

~49!
1-8
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To find the long-wavelength dispersion, i.e.,v5ck or
equivalentlyxa5mc/\ka , of the collective modes of the
mixture, we require that the determinant of the fluctuat
matrix in Eq.~37! equals zero. Calculating the determina
the terms ofO(k0) drop out, indicating that the collectiv
excitations are indeed gapless as assumed by our ansav
5ck. Leaving out terms that are ofO(k4), because they do
not affect the linear part of the dispersion relation, and
viding out an overall factor ofk2, we ultimately find the
result

@TF
2P↑~c!P↓~c!21#@2mc21S~c!#

2TFnB@TFP↑~c!T↓P↓~c!2T↑P↑~c!#T↓P↓~c!

2TFnB@TFP↓~c!T↑P↑~c!2T↓P↓~c!#T↑P↑~c!50.

~50!

Here we have for convenience introduced the shorthand
tation Pa(c)5Pa(k,ck). If we put T↑5T↓50, this simply
gives

@TF
2P↑~c!P↓~c!21#@2mc21S~c!#50. ~51!

The first factor describes the collective modes of the Fe
gas and the second factor describes the Bogoliubov mode
the condesate, which are of course decoupled in this c
For small values ofT↑ andT↓ these modes also exist, but th
dispersion is changed. The lowest-order correction in
boson-fermion scattering lengthsaa to the Bogoliubov speed
of soundc05ATBnB /m is determined by

mc1
25S~c0!

2
TFnB@TFP↑~c0!T↓P↓~c0!2T↑P↑~c0!#T↓P↓~c0!

@TF
2P↑~c0!P↓~c0!21#

2
TFnB@TFP↓~c0!T↑P↑~c0!2T↓P↓~c0!#T↑P↑~c0!

@TF
2P↑~c0!P↓~c0!21#

.

~52!

To find the full solution we can just iterate Eq.~52! and the
result converges rapidly to a solution of Eq.~50!. Note that
Eq. ~52! has an imaginary part, and therefore also descri
the damping of the Bogoliubov mode. Under the circu
stances that we have studied in Secs. II and III, the correc
on the speed of sound due to the presence of the Fermi g
small and at most about 5% of the uncoupled Bogoliub
result. This is important for our purposes, because it sh
that for the calculation of the effective fermion-fermion i
teraction, we do not need to selfconsistently include the
fect of the Fermi gas on the density fluctuations of the c
densate.
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To find the other propagating solutions of Eq.~50! we
need to be more careful. For clarity, we first again treat
case whereT↑5T↓50. The zero-sound modes are now t
solutions of

@TF
2P↑~c!P↓~c!21#50. ~53!

The productP↑(c)P↓(c) diverges logarithmically for two
value ofc, i.e., for the Fermi velocitiesca5\ka /m. In prin-
ciple there are therefore four solutions to this equati
which can be found by expanding around eitherc↑ or c↓ .
Without loss of generality, we assume thatc↑.c↓ . To find
then the solution that is not overdamped, we have to exp
aroundc↑ and find the solution which is slightly larger tha
c↑ , i.e., c5c↑1dc, with dc.0. In this way we make sure
that the imaginary parts of bothP↑(c) andP↓(c) are equal
to zero at zero temperature. Experimentally we are alway
the weak-coupling limit, which implies thatTF!\2/mk↑ . In
this case the zero-temperature expressions forP↑(c) and
P↓(c) explicitly become

P↑
0~c↑1dc!52

mk↑
2\2p2 F12

1

2
log

2c↑
dc G1O~dc! ~54!

and

P↓
0~c↑1dc!52

mk↓
2\2p2F 12

1

2 S c↑
c↓

D log
S c↑
c↓

D11

S c↑
c↓

D1
dc

c↓
21

G
1O~dc!, ~55!

respectively. In the limit that (c↑2c↓)!dc we thus obtain

dc52c↑expS 2
4p2\2

mk↑TF
22D , ~56!

where we have made use of the fact that in this limitk↓
2k↑5O(dc). Note that our result differs from that of Fette
and Walecka@42#. They use an approximation that does n
obey the Pauli exclusion principle, because there iss-wave
scattering between particles that are in the same spin s
As a result, their mean-field energy for an atom in the s
stateua& is TF(ana instead ofTFn2a . For n↑5n↓ this ef-
fectively means a factor of 2 reduction of the interacti
strength. In the limit that (c↑2c↓)@dc we find, at zero tem-
perature,

dc52c↑expS 2
4p2\2

mk↑TF
2P↓

0~c↑!
22D . ~57!

Let us now consider the effect of the presence of the B
condensate and do the same calculation for the mixture
the Bose-condensed gas with the two-component ferm
gas. In the limit that (c↑2c↓)!dc, we again find
1-9
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dc52c↑expS 2
4p2\2

mk↑TF
22D . ~58!

This is the same result as in Eq.~56!, where the fermionic
and Bose-condensed gas are decoupled, which is due t
fact that in this limit the zero-sound mode is a pure s
wave. The density profile is therefore constant and, since
fermionic and the Bose-condensed gases couple only thro
the density fluctuations, there is no effect of the presenc
the Bose gas. On the other hand, in the limit that (c↑2c↓)
@dc, we now obtain

dc52c↑expS 2
4p2\2

mk↑TFx
22D , ~59!

where we have defined the quantity

x

5
TF~2mc↑

21TBnB1T↓
2P↓

0~c↑!nB!

TF
2P↓

0~c↑!~2mc↑
21TBnB!2T↑

2nB12TFT↓T↑P↓
0~c↑!nB

.

~60!

Hence, Eq.~59! reduces to Eq.~57! if we takeT↑5T↓50, as
it should. The same is of course true ifnB50. Note that Eq.
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~49! offers the opportunity to obtain also the small nonze
temperature corrections to the above results, if this turns
to be necessary for a particular application.

V. CONCLUSIONS

We have calculated the effect of phonon exchange on
scattering length for two fermions with different spins. U
der the right circumstances this effect can be quite large,
is then a possible way to experimentally tune the fermio
fermion scattering length. This may in particular be use
for the achievement of a BCS transition in a mixture of40K
and 39K, although it appears that a more precise determi
tion of the various scattering lengths involved in this case
necessary to make sure of this. In addition, we have analy
the stability and the mode structure of the Bose-Fermi m
ture. Our results in the latter case, which are valid for
arbitrary ratio of the densities of the three components, ag
in limiting cases with expressions obtained by other auth
@43#.

ACKNOWLEDGMENTS

We would like to thank C. J. Pethick and E. Braaten f
useful comments.
.J.
s.

.P.

e,

E.

ys.

.

B

.

hys.
@1# M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wiem
and E.A. Cornell, Science269, 198 ~1995!.

@2# C.C. Bradley, C.A. Sackett, J.J. Tollett, and R.G. Hulet, Ph
Rev. Lett.75, 1687 ~1995!; C.C. Bradley, C.A. Sackett, an
R.G. Hulet,ibid. 78, 985 ~1997!.

@3# K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Drute
D.S. Durfee, D.M. Kurn, and W. Ketterle, Phys. Rev. Lett.75,
3969 ~1995!.

@4# M. Houbiers, R. Ferwerda, H.T.C. Stoof, W.I. McAlexande
C.A. Sackett, and R.G. Hulet, Phys. Rev. A56, 4864~1997!.

@5# See also A.G.K. Modawi and A.J. Legget, J. Low Temp. Ph
109, 625~1997!; M.A. Baranov and D.S. Petrov, Phys. Rev.
58, R801 ~1998!; G. Bruun, Y. Castin, R. Dum, and K. Bur
nett, Eur. Phys. J. D7, 433 ~1999!.

@6# E.R.I. Abraham, W.I. McAlexander, J.M. Gerton, and R.
Hulet, Phys. Rev. A55, R3299~1997!.
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