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Phonon exchange in dilute Fermi-Bose mixtures: Tailoring the Fermi-Fermi interaction
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We consider a mixture of a single-component Bose gas and a two-component Fermi gas at temperatures
where the Bose gas is almost fully condensed. In such a mixture, two fermionic atoms can interact with each
other by exchanging a phonon that propagates through the Bose condensate. We calculate the interaction
potential due to this mechanism, and determine the effestivave scattering length for two fermions that
interact, both directly by the interatomic potentials as well as by the above-mentioned exchange mechanism.
We find that the effective scattering length is quite sensitive to changes in the condensate density, and becomes
strongly energy dependent. In addition, we consider the mechanical stability of these mixtures, and also
calculate the dispersion and the damping of the various collisionless collective modes of the gas.

PACS numbe(s): 03.75.Fi, 32.80.Pj, 42.50.VK, 67.46w

[. INTRODUCTION condensates in optical traps, the phase diagram and collec-
tive modes have been considerg2b,26. In the case of

The experimental realization of Bose-Einstein condensaFermi-Bose mixtures, the density profiles for gases confined
tion in trapped atomic Bose gasiis-3] has stimulated both in a harmonic trap have been studied at nonzero temperatures
theoretical and experimental efforts to investigate new andn @ Thomas-Fermi approximatig@7-29. In all these cases
interesting physics in ultracold atomic gases. In particular, ithe theory is based on a mean-field treatment of the interac-
has spurred a great deal of interest in achieving a BCS trarfions and neglects the effect of fluctuations.
sition in trapped fermionic gases, also because a spin- Inspired by the well-known physics dHe-*He mixtures
polarized gas of atomi€Li has theoretically been shown to [30], we here go beyond mean-field theory and study the
undergo a transition into a superfluid state at a critical temeffective interaction between two fermions due to density
perature that is comparable to those realized in the experfluctuations in a Bose condensate. In particular, we calculate
ments with trapped Bose gasp$5]. This relatively high the resulting effective interatomiswave scattering length
critical temperature is due to its anomalously large and negdor two fermions in different hyperfine states with the aim of
tive scattering length of 216, [6]. To reach the tempera- Manipulating it in such a way that a BCS transition becomes
ture regime where the quantum degeneracy of the atomic g4geasible. The two hyperfine states form an effective spin-1/2
becomes important, evaporative cooling is used. This techsystem, and therefore the mixture of fermions in two differ-
nique, however, requires a fast thermalization rate and ther@nt hyperfine states can be treated as a Fermi gas with spin
fore a high collision frequency. For doubly spin-polarized 1/2. We mostly take the populations of the two spin levels to
Fermi gases this is not possible due to the exclusion prinbe equal because, if a BCS transition can be achieved at alll,
ciple, and such a high collision frequency must be obtainedhis will be the optimal situation. Moreover, we also consider
by using a mixture of either Fermi-Bose gadgs8] or  the system to be homogeneous, for the following reason: If
Fermi-Fermi gasef9]. Experimentally, this method of sym- the mixture would be trapped in an isotropic harmonic po-
pathetic cooling has already been used to produce the firégntial with trapping frequency, a measure for the overlap
two-component Bose condensi®], and has also recently Of the Bose condensate with the fermionic cloud is given by
been reported to be successful for a fermionic two-the ratio of the zero-temperature Thomas-Fermi radii for an
component*® mixture [11]. interacting Bose-condensed gas and that of an ideal Fermi

Mixtures of dilute atomic gases are, however, interestingyas. The former is equal th(15Ngag/I)** [31], wherel
in their own right, both from experimental as well as theo-= yA/mw is the harmonic oscillator lengthg is the bosonic
retical viewpoints. Indeed, experimental work on the staticscattering length, anig is the number of bosons. The latter
and dynamic properties of a binary mixture of Bose gasesqualsl (48Ng)Y¢[32], whereN is the number of fermions.
has included a study of mean-field effed¢ts?], relative- For typical experimental parameters and the desirable large
phase coherendé 3], the dynamics of component separation numbers of bosonic and fermionic atoms, this overlap of the
[14], and Rabi oscillationd15]. Furthermore, metastable two clouds is rather small. Therefore, in order to maximize
states[16] and quantum tunneling effecfd7] have been the effect of the Bose condensate on the interaction between
observed in spinor Bose-Einstein condensates, and most réte fermions in the mixture, we consider only a spatially
cently a convenient method for the creation of topologicalhomogenous system. Although all the experiments with
excitations in two-component Bose-condensed gases hddnse-condensed gases have been performed with harmonic-
been suggesteld 8] and succesfully carried out experimen- oscillator traps up to now, this is not an unrealistic sugges-
tally [19]. Theoretical work on trapped binary Bose- tion since it is certainly possible to create an external trap-
condensed gases, has for example included the stability anring potential that is more or less a rectangular [83].
static propertie$20—27, the dynamics of the relative phase  Physically, the effect of the Bose condensate on the
[23], and the collective model4]. Also for spinor Bose fermion-fermion interaction is due to the exchange of
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phonons that propagate in the Bose-condensed gas. In order 1
to calculate the effect on the interatomic interaction quanti- Zgr:f d[¢*]d[¢>]d[¢*]d[¢]exp{ - g(SB[d’*,d’]
tatively, we thus have to accurately know the density-density
correlation function in the Bose gas. This is straightforward N . .
in the Bogoliubov approximation, whose validity is well es- TSy 1S 0T YD) @)
tablished at such low temperatures that the Bose gas is es-
sentially fully condensed. In this manner we obtain the actuaénd consists of an integration over a complex figlk, 7),
interaction potential from which we then extract the inter-which is periodic on the imaginary-time intenjd s 3], and
atomic scattering length. In addition to the effective fermion-over the Grassmann fieldg,(x,7), which are antiperiodic
fermion interaction, we consider the important question ofon this interval. Thereforeg(x, ) describes the Bose com-
the stability of the three-component system against demixingonent of the mixture, whereag,(x,7) is associated with
of the various Bose and Fermi components of the gas. Wi Fermi components. For the latter we actually need two
also calculate the excitation spectrum for the Fermi-Bosdi€lds, because the fermionic atoms can be in either one of
mixture far below the Bose-Einstein transition temperaturethe two hyperfine statdgr). Furthermore, the total action of
where the dynamics of the gas is in the collisionless regimetN€ mixture consists of a term for the Bos-gas,
Theoretically, this amounts to doing a so-called random-
phase approximation calculation for this mixture. As a result S.Tdb* b= fhﬁ J

! : sl O* D)= dr | dx
we find not only the eigenmodes of the gas, but also the 0
Landau damping of these modes due to the imaginary part of

the “RPA-bubble” diagram. Note that from a fundamental X1 % (x T)(ﬁi_ﬁzvz_ﬂ>¢(x 7)
point of view the stability and the excitation spectrum are ' ar  2mg '
strongly related, because a signature of the demixing insta- T

bility is the occurrence of a mode with a purely imaginary + _B|¢(X, T)|4], 2)
frequency. 2

The paper is organized as follows. In Sec. Il we first Cal_a term for the Fermi gas that accounts for the fact that the

culate the effective interaction and scattering length of W05 i principle forbidss-wave scattering between fermionic
fermions in the presence of a Bose condensate. In particulaé,[omS in the same hyperfine state

we show that for realistic conditions, the scattering length
strongly depends on the collision energy of the atoms, which 7B
is important when considering the prospects of a BCS tran- S [y*, y]= E f de dx
sition in a spin-polarized potassium gas. In Sec. Il we then a JO

consider the stability of the three-component system, and

2y 2
show that in general this does not lead to very stringent X w*(x,7)<ﬁi_ v —Ma)l//a(X,T)
constraints on the densities. Finally, in Sec. IV, we calculate ¢ JT  2mg
the long-wavelength collective-mode spectrum and damping T
for the Fermi-Bose mixture. We end with a summary in Sec. + 7F| (%, 7| ,/,_Q(X’THZ]’ 3
V.

and a term describing the interaction between the three com-
L. EFFECTIVE INTERACTION ponents of the Fermi-Bose mixture,

In this section, we calculate the effective interaction and . . hp 5 )
scattering length of two fermions. The calculation is per- SIL¢™ . ¢.¢ :'/f]:% T“fo de dx| (X, 7) |7 p(X, 7).
formed by means of functional methof34], because even (4)
in the presence of a Bose condensate, the RPA calculation
for the collective modes can then be performed in a purelyn these expressions we have introduced the two-body
algebraic manner in Sec. IV, and avoids the complications oposon-boson T  (transiton matrix element Tg
an explicit evaluation of Feynman diagrams. Moreover, it— 4723, /mg, the two-body fermion-fermiod-matrix el-
gives some more insight into the physical nature of the colement T.=4##2%a. /m:, and the two two-bodyT-matrix
lisionless collective modes. Of course, it is also possible tQementsT = 27#%a,, /mg that describe the interactions be-
do the same calculation in the operator formalism. If peryween a boson and a fermion in the spinstate. Here o
formed correctly, it gives identical results. ={1,]} denotes the hyperfine components of the Fermi gas
in the effective spin language. In additiop, denotes the
chemical potential of the Bose gas, apg, denotes the
chemical potentials of the two components of the Fermi gas.

In accordance with the previous remarks, we thus starlNote that the latter do not need to be identical, because the
from the functional-integral expression for the grand-Fermi gas is in general not in equilibrium in spin space, due
canonical partition function of the mixture. It reads to the generally slow relaxation rates between the hyperfine

A. Theory
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degrees of freedom. Finally, the masses of the bosonic atonfsgher than second order i’ or ¢’'*. Note that we have
and the fermionic atoms are denotedroy andmg, respec- implicitly also neglected the depletion of the condensate and
tively. The reduced mass is denoted mg=mgmg/(mz  putthe condensate density equal to the total demgjtyf the
+mg). Bose gas. For a weakly interacting gas withBa35<1 and
Since we only consider the gas at such low temperatureat low temperatures, this is clearly justified. In this manner

that the Bose gas is essentially fully Bose condensed, weve end up with the Bogoliubov approximatid®®| ¢*, ¢ |
proceed by performing the usual Bogoliubov substitution for=% gV Tgn3/2+ Sg[ ¢'*,¢'], whereV is the total volume of
the Bose fields, i.e.¢=Jng+ ¢', and neglect all terms of the gas, and the action for the fluctuations can be written as

ho(#8
SB[¢,*,¢/]=—EJ drdr’jdxdx’¢’T(x,r)~G‘1(x,7-;x’,T’)-¢’(x’,r’), (5)
0

if we introduce the vector field

Seff * — * 1 Jh'Bd d+'
[lﬂ !l//]_SF[l// v¢]+ﬁ 0 a7

PN S ©
¢ ( vT)_ ¢,*(X,T) l :
X | dxdx'I'(x,7)-G(X,7;x",7")-I(X',7")
and the corresponding Green’s functi@{x,;x’,7') that
obeys * 1 hb / /
=Se[y* ]+ 5 > drd7’ | dxdx
—hG Y(x, X, 7") aa’ 70
ﬁ&r—ﬁZVZ/Zm-i-TBnB TnB X|(Ila(X’T)|2Va‘a’(X’ T;X,’T,)
:< Tng —ﬁa,—ﬁ2V2/2m+TBnB) X|thor (X', 72, (11
whereV,, ..(x,7;x",7") is the effective interatomic potential
X o(x—=x")o(r—1"). (7)  due to phonon exchange. At this point, it is important to note

) - . that to be able to use in Eq&), (3), and(4) the two-body
Note that the linear terms ip" and¢'* have dropped outof T-matrix elements, instead of the real interatonsinglet

the action because of the Hugenholtz-Pines relation and triple} potentials, we have already integrated out fluc-
tuations with momenta higher than a certain cutbff.

w=Tang+ > TNy, (8)  Thus, in principle, there is a cutoff on all the momentum

a integration in the rest of this paper. We will comment on the

_ _ ) effects of this shortly. Hence, inverting E(f) by means of
which also incorporates the mean-field effects due to the Fourier transformation, we find that, ,.(x,7;x’,7') is

nonzero spin densities, in the Fermi gas. The same relation given by
is also used to eliminate the chemical potential from &g.

In addition, the interaction term in the total action becomes dk
in the Bogoliubov approximation Vo (X7X 1) ==2T, TN, 3
n Jk=A(2)
1 (8 (el (o !
S|[¢’*,¢’,lﬂ*,¢]2§f drf dx{JT(x,7)- &' (x,7) @ik (x=x") =iwn(r=7")
0
+ 6 1x,7)-3(x, 7)) © el
X, T)- X, T) g, ’
(hwg)®+e(k)(e(k)+2Tgng)
with a “current source” defined by (12)
1 — 722 _
_ 2 where e(k) =r“k/2m and w,=2mn/# B are the even Mat-
Ix,7)= ‘/n—Bza: Tol al,7)] 1)' (10 subara frequencies that account for the periodicity of the

Bose field ¢(x,7) and therefore of the Green’s function
To include the effect of phonon exchange on the interacG(x,7;x’,7"). The phonon-exchange mechanism thus also
tion between two fermions, we now need to integrate oveinduces an interaction between fermions with the same spins.
the Bose fields. This is straightforward, since it only involvesDue to the Pauli principle, however, this interaction can
the evaluation of a Gaussian integral. The result for the totahgain at best be of prwave nature, and is in general negli-
effective fermion action is thus gible. As a result, we from now on only consider the contri-
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butions to the interaction potential between particles with B. Results

opposite spin. We.also neglect the.frequer.\cy eren(jer}ce IN With this interaction potentiaV®f(r), we want to deter-
Eq. (12), and consider onlly.the static contribution. Th|s M mine the effectives-wave scattering Iengtlaﬁff for two fer-
plies that the relevant collision energies of the fermions MUSE ions also interacting through the mechanism of phonon ex-

be much less than the bosonic mean-field interaction. . . off
; . L . change. We can associate sfwave scattering lengtlag
The resulting instantaneous potential is given bywith the effective interactiove(r) as follows:
V(x,7;x",7")=Ve(|x=x'|) 8(r—7'), with :
9o(K)

K

(18)

f’mga;a, fAd k sin(kr) ag"=—Ilim

ffrry= —
vefir) = R 10

2mm3agé?r
Here §p(k) denotes the phase shift of the partial wave with

Here we have defined the coherence length angular momenturh=0. The phase shiify(K) is defined in

=1/\16mngag in the Bose-condensed gas. The effective poterms of the asymptotic form

tential depends on three parameters: the cutofthe coher- _ _

ence lengthé, andmga,a, /miag. As we will show now, lim ug(r;k)— sin(kr+ 5o(k)) (19

however, there is a separation of length scale, andid/in e

general much smaller than the other relevant length scale; tt}%r the | =

coherence length. This means that we can safely ignore the

cutoff and take the limitA —<. To estimate the magnitude

0 partial waveugy(r;k), that can be calculated
from the radial Schidinger equation

of the cutoff, we make use of the fact that it is determined by 9

the requirement that the bare interatomic interaction has __+Eveff(r)_kz Uo(r:K)=0. (20)

renormalized to the two-body scattering matrix. This renor- dr?  #?

malization of the bare interaction is described by the

Lippmann-Schwinger equation At this point, we have to keep in mind that there is already a

scattering lengtlag for the fermions due to the interatomic

1 1 dk 1 potential. We can take this interatomic scattering length into
— = . 14 account by imposing suitable boundary conditions on the
TV L«wzﬂs 2¢(K) 19 y imposing y

partial waveuy(r;k), such that we recovexg if the interac-

tion due to phonon exchange vanishes, i.eyif(r)=0.

Here A, denotes the ultraviolet cutoff provided by the inter- The poundary conditions imposed are such that the deriva-
atomic potential, and\ is the momentum scale up to which tiye and the magnitude of the wave functionratO are
fluctuations in the Bose gas are integrated over. The bargqua| to those of the function $kfr —ag)]. In the case of a
interactionVy is chosen such that, in the limit=0, the  positive scattering length, an alternative procedure would be
result does not depend on the high-momentum cufoff  to add a hard-core potential with a rangeto Ve(r). Both

[35]. Requiring the renormalized interaction to be within ap-these procedures are justified because the range of the inter-
proximately a fractionx from the two-body transition matrix atomic potential is much smaller than the range of the effec-

leads to tive potential, and we have checked that numerically they
indeed yield the same results.
A X (15 The phase shifts due to the effective potentiéf(r) for
2ag’ mixtures of *°K and °Li with 8’Rb are show in Figs. 1 and 2,

respectively. The interatomic scattering lengths 1d¢- 4%,
If we compare this value for the cutoff with the coherence °Li- °Li and 8'Rb-8Rb collisions are taken to be 18,

length &, the product of the two is given by —2160,, and 109y, respectively[6,36]. The scattering
lengths for*%K and °Li with 8'Rb are, as far as we know,

not known, and we have taken them to be equal toa300

X
gAz—WS, (16)  which is presumably a typical value. In Fig. 3 the phase
8\ mngag shifts for a mixture of*% and 3K are also shown, where

the scattering length fot’K- 3% and “°K-3%K collisions has
Due to the presence of the fact'\:z‘nBagB in the denominator, been taken to be &, and 100@,, respectively[36]. The
this quantity is in general much larger than 1, and we carvarious lines corresponds to different values of the conden-
safely take the limitA —o. The effective interaction in this sate density. It is clear from these figures that for a given
case becomes simply mixture, the phase shifts as a function of momentum asymp-
totically all have the same slope independent of the value of
the condensate density. This slope corresponds to the inter-
5 , (17)  atomic scattering length: . However, at long wavelengths
Amgagésr the phase shifts can be significantly different from the
asymptotic limit, and can depend strongly on the collisional
and has the form of a purely attractive Yukawa potential. energy. For a mixture of%K-87Rb this is certainly the case.

f’mga;a
Vef‘f(r):_ BLI Le—rlg
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FIG. 1. The phase shiff; as a function of the momentuk for

a mixture of “%K and 87Rb. The condensate densities 412 ng FIG. 3. The phase shiffy as a function of the momentuky for
—1x10°cm %, (2) ng=1x102 cm 3, and (3) ng=1 @& Mixture of 4% and *%K. The condensate densities df@ ng=4
C10Mem 3 B ' B X102 ecm3, (2) ng=5%10" cm 3, (3) ng=6% 102 cm 3, (4)

ng=7x10" cm3, (5) ng=8x10" cm 3,
The effective interaction can even become attractive, instead . ] o _
of repulsive, around the Fermi momentum, which opens théhe stability of the gas against demixing of the Fermi and
possibility for a BCS transition to a superfluid phase just likeB0S€ components. To determine the stability of the mixture,
the exchange of phonons in the lattice leads to supercondu¥¢® consider the matrix of second-order derivatives with re-
tivity in metals[37]. For a mixture of®Li- 8’Rb the effects ~SPect to the densities of the free enefgy-Fr+Fg+F,
are less pronounced, and amount to a slight enhancement Which consists of a fermion terifie , a boson ternfg, and
the already very large and negative scattering length. Than interaction ternfr, . For the mixture to be stable we have
case of*K- 3% may be exciting, because of the possibility t0 require that all eigenvalues of this matrix are larger than
of a rather large scattering length fdPK-3% collisions, ~ Z€r0. I.e., that the_ free-energy surface is convex. At thg Iovy
which can be of the order of 1089 [36]. If this value is emperatures of interest to us, t_he free-energy derlsny is
correct, there are resonances in the effective scatteringdual to the average energy densiB)/V, and we obtain
length, as shown in Fig. 4. This strongly resembles the exis-
tence of Feshbach resonances in the scattering length as a<E>/V:<EF>/V+<EB>/V+<EI>/V

function of the applied bias magnetic figlag]. 2 2
3 2\2/3 ~5/3_ ~5/3 h eff Ng
21—0(677 )Ny NY )m—+TF nTnlJrTB?
lll. STABILITY F
To be able to interact, the Bose and two-component Fermi + (TN +Tyn )N (2D
gases have to be overlapping. Therefore, we want to ConS'dﬂere the first term is the Kinetic energy of the two-
150 . . . component Fermi gas, the second and third terms are the
interaction energies of the individual Fermi and Bose gases,
3] 2.0e+06
1.00 |
—  1.0e+06 |
Uoo mo
ks
0.50 | 2l 2 o00es00 |
=
£
(m S -1:0e+08
0.00 . : :
000000  0.00005  0.00010 _0.00015  0.00020
k (in units of a, )
-2.0e+06 . .
_ ) 0.0e+00 20e+13 4.00+13
FIG. 2. The phase shif§; as a function of the momentukj for ng {cm”)
a mixture of 6Li and ®Rb. The condensate densities &i& ng
=1x10%m 3, (2) ng=1x10% cm 3 and (3) ng=1 FIG. 4. The scattering lengf™ as a function of the density of
x 10 cm 3, condensed atomsg, for a mixture of*°%K and %K.
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between these gases. We have neglected the kinetic energy 4

respectively, and the fourth term is due to the interaction ( - 2)( - 2) (a¢+al)2 MeMe
eff eff -
of the Bose gas because of the low temperatures and densi- FaF Kear

eff 2
agag mg

ties. Note that the effective fermion-fermiofrmatrix ele- (a,—a,)% mgm
ment T&"=47#2a"/m:- has to be used, that includes the x( T ﬁ_z) _ A fif BZF( 7 _+2|=>0.
effect of phonon exchange. This is the case because, as long keap agap mg | keag

as the Fermi energy is much less than the average mean-field (23)
energy of the Bose condensate, we have to include the effect

of fluctuations, which change the static properties of the mix4f we also puta;=a;=arg, the condition further simplifies
ture by renormalizing the fermion-fermion interaction as weto

have just discussed.

The matrix of second-order derivatives is given by T T aZ; mgm
- — BB Flz0. (29
kea' keall agad” m3
Pr= 9°F 9°F The first factor on the left-hand side of EQ4) corresponds

to the demixing of the two fermion components of the gas
[4], whereas the second factor represents the demixing of the
9*F P°F P*F Bose-Einstein condensate and the fermion compori&sis
an;gn; dnjgn; ongong | Note that v_vhich of the two instabiliti_es occurs fi_rst depends
2 5 5 on the various masses and scattering lengths involved. For
J°F JI°F JI°F : e 2
equal scattering lengths, i.eag' =ag=a;=a ;=a, the de-
dngdn; dngdn; dngdng mixing of the Bose and Fermi gases always occurs first, and
we reproduce the result of van Leeuwen and Coli:

gn;on, dn;an;  9n;dng

Assuming that we start in the stable part of the phase dia-

gram, the onset of an instability is signaled by the point 7T _Me Me 25
where its determinant becomes equal to zero. Therefore, re- kra™ mg mg

quiring the determinant of this matrix to be larger than zero

is a sufficient condition for stability. It reads In our numerical calculations, the scattering lengéhs

anda; have always been taken equal to each other, and Eq.
(24) applies. In the case of a mixture 6fK and &'Rb this
condition roughly leads for the total fermion density only

T T 2 mgme T\, to the restrictiome<10'® cm 3. For a mixture of°Li and
4 o |\ ka| o me | \kas a; 8Rb the condition on the total density becomes
19F L9F BAF R 19F <10 cm™3, and for a mixture of*K and K it reads
ne<<10Y cm™ 3. The latter condition seems to be quite re-
ar 2 alaT mBm;: .. . . _ .
+ -|af|+8——— ———-16=0, (22) strictive. However, if we take instead ag=5a, a different
(af agap Mg value that is within the present uncertainty for this scattering

length, i.e.ag=25a,, the condition for a mixture of’K and

3% becomes onlyng<10'? cm™3, which is much more fa-
wherek,,= (672n,)Y® denotes the Fermi momentum associ- vorable when one considers the prospects of achieving a

. . off - . BCS transition in this case. The reason is that in BCS theory,
ated with the spln.statlez). Note th_a'raF is afqnct!on of the the critical temperature is given by T,
condensate d¢n3|uyB. In evaluating the derivatives of the = (8epe? 2kgm)exp—mcol(Sy(ke))/2l, with y Euler's
free energy with respect to the density of the Bose gas, Wggnstant. From this expression it follows that if the densities
have not taken this implicit dependence into account, whichye |ow, the critical temperature for the BCS transition is also
is sufficiently accurate for our purposes as long as we are n%ry low. Therefore, if the results of Sec. Il for 8K and
too close to a resonance. Near a resonance a more involveéék mixture are to be of use, as far as achieving a BCS
treatment is necessary, also because the phase shift is thgansition is concerned, it is crucial that relatively high den-
very strongly momentum dependent. sities are realizable.
The surface in tha,— ng volume where the equality sign

h_ol_ds is called the spinoqlal surfac_e. The spinodal _surfac_e IV. DISPERSION OF COLLECTIVE EXCITATIONS
divides the phase space into a region where the mixture is
(metastable, and one where it is unstable and separates into We next want to consider the excitation spectrum of the
distinct phases in the stable part of the phase space. If thgas. The collective excitations of the mixed gas are coupled
effect of phonon exchange is optimized by puttimg=n, modes of the fermionic spin densities, and the Bose conden-
we havek| =k, =kg, and Eq.(22) becomes sate. It is therefore convenient to perform a Hubbard-
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Stratonovich transformation to these fermionic densitiesand

[41]. This amounts to introducing two real auxiliary fields

pi(X,7) and p (x,7), by rewriting in the integrant of the

functional integral for the partition functio®,,, the factor d(X, )= \/n—B+ d'(X,7), (32
due to the fermion-fermion interaction as

To (hp we obtain, from the requirement that the linear terms in the
F i : : i :
exp{ - Wfo de dx| ¢T(X,T)|2|%(X,T)|2] fluctuations vanish again, the Hugenholtz-Pines relation

Te (16
:fd[PT]d[Pi]eXp{XL de dx — p+Teng+ > T, GH(x,m:x,7)=0, (32)

X[pT(X!T)pl(XvT)_pT(X!T)l¢L(XIT)|2

5 and in addition the expected equation for the average spin
=l (D% ()]} (26 gensities

For reasons that will become clear shortly, we denote the H _
resulting action for the fermions b§F[ ¢*,y]. It is qua- No=Go(X 7X,7), (33)
dratic in the fermion fields, and reads

where

Sy DY fﬁﬁde * ) hEve

F[l// ,l,b]— ~ 0 T X lpa(X,T) E__ 2mF By )

G T(x,mx', 1)
+TFp—a(XiT)+Ta|¢(XiT)|2 ¢a(X'T)]- (27) 1 J ﬁZVZ
:_g ﬁz__ 2m _Ma+TFp—a+TanB

Upon integrating over the fermionic fields, the grand-
P iniegrating ov rmionic Telds g X S(x—=x")o(7—17") (34)

canonical partition function describing the gas is equal to a

functional integral over the Bose field and the density fields

only, with an effective action that reads is the usual fermionic one-particle propagator, or two-point
correlation function, in the Hartree approximation. We,
therefore recognize, in Eq$32), (33), and (34) the self-

ff] * — _ -1 *
SMpi.p, . %, d]= ﬁ; Tr{In(=G, )+ Ssl 4. 9" ] consistent Hartree equations for the boson and fermion den-
0B sities at given chemical po?e_ntia}s. JIR andm. _
_J de dXTep:(X,7)p| (X, 7) To find the theory describing the fluctuations around this
0 P IEAT equilibrium, we have to perform the expansion around this

(29) minimum up to second order in the fluctuation's and ¢'.
The poles in the Green'’s function of the resulting theory give

in terms of the Green'’s functions us the desired dispersion of the collective modes, for they are
also the poles in the linear response of the densities to an
1 9 #2v2 external perturbation. If we again introduce the vector nota-
-1 ! A — _ — i
G, (x,;x',7") h(ﬁ(% >m Mot Tep_o(X,7) tion
+Ta|¢(x,r)|2] S(x—x")8(r—1"). , Pin
¢k,n: ¢/~k ' (35)
(29 —k-n
Expanding this action around its minimum, by requiring
. . . . 2 and also
the linear terms in the fluctuations to be zero, will result in
the Hartree approximation for the equilibrium densities. This
is sufficiently accurate because we are dealing with a fermi- p %_k N
onic gas in a nonmagnetic phase, where the Fock term in the Pn=\ , |, (39
self-energy is zero, due to the spin-symmetry of the action. It Plk.n
also explains the use of the symbel(Hartreg in Eq. (27).
Inserting thus into the right-hand side of H@8), the quadratic part of the effective action for the fluctuations
p,, and ¢’ can be conveniently written in momentum space

pa(xaT):na_'—p;(XiT) (30) as
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SO’ p']= 1 1 bin|’ (Mw(k’iwn) M¢p(kvi‘”n)> b (37)
PUTRBY G 2\ i) IMukion) Mukien) | pla )
where we have defined the matrices
. — it +e(k) +3(K,iwp) S(kiiwp)
MM(""“’”)_( S (Kyiwp) ihwn+e(K) +3(Kiwp) |’ 38)
|
Tell (K iwy) -1 ) mk, (= dn X X, T e
M (Kiop)=T ], _ M (TNl g Xoyo o Xa
op(Kiip) F( 1 TeIT (K, wp) ,(k,w) on22)o 965 1-—og -
(39
T
and —'§|Xa|9(\/z—|xa|) : (45
M, 4(K,i0q) =M 4,(K,iwp) with x,=mw/#k, k. We want to find the zero-temperature

result and the lowest-order corrections in the temperature.
This can be done by means of a Sommerfeld expansion,
which amounts to expanding the real part of the expression
(40) between square brackets in E45) arounde=1. Doing so,

we find, in first instance,

T (Kiwg) Ty (Kiwg))

oy

We have also introduced the self-energy of the Bose gas,

mk, (=, dn, Xa  [Xet1
Ha(k,w)ZT de&_ 1—7|0 1
3 (K i wg) = Tgng+[ T2, (K,iw,) + T2 (K,i 0,) Ing , 2n=m=Jo € Xa
(4D X2(x2—3) | (e—1)2
. . . 1 X I ope-1y
and the RPA bubble, or equivalently the density-density re- (1—x2)2 8
sponse function, of the ideal Fermi gas
|21l O(\e— | DJ (46)
—i=|X, €—|X,|) (-
M(kio )_f dp  n(el(k+p))—n(ea(p)) 2
el EnS 8 —ihwyt e (k+p)— ’
(2m) Ont €K+ D)~ €al(p) 42) Integrating then ovee, we obtain, for the real part in lowest
order,
where the dispersions obeysa(k)=_ﬁ2k2/2m+TFp_a_ mk,n..(0) X, |x,+1
+T,Ng— i, , andn(e)=1/(exp(Be)+1) is the usual Fermi- MOk, w)=— > | 1— 5] , (4D
Dirac distribution function. Note thatX(k,iw,) and 2h* 2 7%, —1
IT,(k,iw,) are invariant under the substitutiork,{w,) . )
—(—k,—iw,), due to the time-reversal symmetry of the @nd. for the imaginary part, exactly
problem. k.n,(0)
In the long-wavelength limit, i.e., for smak| Eq.(42) can _MKaNg 2
be rewritten as IM[T1,(k,®)] 2422 zna(o)lxa|na(|xa| ).
(48)
Ha(kan):& wdeﬂ\/; 1— Marctanﬁ , At zero temperature, Eq$47) and (48) reduce to the well-
2h2%m?Jo de Ve Xan known result for the zero-temperature RPA bubbfe].
(43 Note that the imaginairy part in Eq48) is valid for all
temperatures, and cannot simply be expanded as a power
wherex, ,=mw,/fk K, series inkgT/eg. This is not true for the real part of
IT,(k,w), and the lowest-order temperature correction is
n,(e)=[efleac #atTrr—atTale) + 1171 (44) given by
2,2 2, 2
and we have defined the Fermi energies and wave vectors by H(Z)(k w)=— mk, _ Xa(Xg—3) (kB_T) 77_.
€= ta—Tep_o— T ng=%2k%/2m. The analytic continua- o 164272 (1-x3)2 || €a) 3
tion of Eq. (43) to physical energie®=iw, reads (49
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To find the long-wavelength dispersion, i.e=ck or To find the other propagating solutions of E&0) we
equivalentlyx,=mc/7k,, of the collective modes of the need to be more careful. For clarity, we first again treat the
mixture, we require that the determinant of the fluctuationcase wherél, =T, =0. The zero-sound modes are now the
matrix in Eq.(37) equals zero. Calculating the determinant, solutions of
the terms ofO(k® drop out, indicating that the collective
excitations are indeed gapless as assumed by our amsatz
=ck. Leaving out terms that are @(k?), because they do [TﬁHT(C)Hl(c)—l]zo. (53
not affect the linear part of the dispersion relation, and di-
viding out an overall factor ok?, we ultimately find the

result The productlI;(c)IT (c) diverges logarithmically for two

value ofc, i.e., for the Fermi velocities,=#k,/m. In prin-
ciple there are therefore four solutions to this equation,
[TEHT(C)Hl(c)—1][—mcz+2(c)] which can be found by expanding around eitieeror c, .
Without loss of generality, we assume titat>c, . To find
— Teng[ Tell; ()T 11, (c) =T 1L, () JT 1T (c) then the solution that is not overdamped, we have to expand
—Teng[ Tell ()T, 11,(c)— T,I1,(c)]T,I1,(c)=0. aI’OU_ndCT and find the_ solution which is slightly larger than
Cy, i.e.,c=c;+dc, with 6¢>0. In this way we make sure
(500 that the imaginary parts of boffi,(c) andIl (c) are equal
to zero at zero temperature. Experimentally we are always in
Here we have for convenience introduced the shorthand nahe weak-coupling limit, which implies that-<#2/m k. In
tationIT,(c)=1I,(k,ck). If we putT; =T, =0, this simply  this case the zero-temperature expressionslfefc) and

gives IT,(c) explicitly become
M.+ 50) = — 11— ot o(se) (54
[T2I1,(c)II, (c)— 1] -m+3(c)]=0. (1) H(e+d0)== "5 5|17 510055 | T0(%) (54

and
The first factor describes the collective modes of the Fermi

gas and the second factor describes the Bogoliubov modes of
the condesate, which are of course decoupled in this case.

For small values of’; andT, these modes also exist, but the H?(CPL 5c)=— mk, 1— _(ﬂ)| !
dispersion is changed. The lowest-order correction in the 2fi 27 2\c (ﬁ +§_1
boson-fermion scattering lengthg to the Bogoliubov speed ¢,/ ¢
of soundcy=+/Tghg/m is determined by +0(50), (55
respectively. In the limit thatd; —c ) < c we thus obtain
mc;=3(co)
47%h2
B Teng[ Tell (co) T 11 (co) — T (co) I T 1T (Co) oc=2ciexpg — mk T -2, (56)
[TEIT;(co)TT (o) —1] o
where we have made use of the fact that in this liknit
Teng[ Tell | (co) T4 1T, (co) — T 1T (co) I T4 1T (co) —k;=0(éc). Note that our result differs from that of Fetter

[T2I1,(co)IT | (Co)— 1] and Walecka[4_2]. They use an 'approximation that QOes not
e obey the Pauli exclusion principle, because thers\igave
(52 scattering between particles that are in the same spin state.
As a result, their mean-field energy for an atom in the spin
i i o state|a) is T2 N, instead ofTen_, . Forn;=n, this ef-
To find the full solution we can just iterate E(i2) and the  fectively means a factor of 2 reduction of the interaction

result converges rapidly to a solution of E§0). Note that strength. In the limit thatd, —c,)> dc we find, at zero tem-

Eqg. (52) has an imaginary part, and therefore also describeﬁerature

the damping of the Bogoliubov mode. Under the circum- ’

stances that we have studied in Secs. Il and Ill, the correction 247252
oc= ZcTexp( -

on the speed of sound due to the presence of the Fermi gas is )
mk, TEI(c;)

small and at most about 5% of the uncoupled Bogoliubov
result. This is important for our purposes, because it shows
that for the calculation of the effective fermion-fermion in-  Let us now consider the effect of the presence of the Bose
teraction, we do not need to selfconsistently include the efeondensate and do the same calculation for the mixture of
fect of the Fermi gas on the density fluctuations of the conthe Bose-condensed gas with the two-component fermion
densate. gas. In the limit that ¢, —c|) < éc, we again find

(57)
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Amlh2 (49) offers the opportunity to obtain also the small nonzero-
5C:2CTEXF< T kT ) (59 temperature corrections to the above results, if this turns out
TF to be necessary for a particular application.

This is the same result as in EG6), where the fermionic

and Bose_—conglen_se_d gas are decoupled, Wh_ich is due to the V. CONCLUSIONS

fact that in this limit the zero-sound mode is a pure spin

wave. The density profile is therefore constant and, since the We have calculated the effect of phonon exchange on the

fermionic and the Bose-condensed gases couple only througitattering length for two fermions with different spins. Un-

the density fluctuations, there is no effect of the presence dfler the right circumstances this effect can be quite large, and

the Bose gas. On the other hand, in the limit that<c) is then a possible way to experimentally tune the fermion-

> dc, we now obtain fermion scattering length. This may in particular be useful
for the achievement of a BCS transition in a mixture*8k

Se=2c.exd — 4m?h? P (59 and K, although it appears that a more precise determina-
il mk, Tex ' tion of the various scattering lengths involved in this case is
. . necessary to make sure of this. In addition, we have analyzed
where we have defined the quantity the stability and the mode structure of the Bose-Fermi mix-
ture. Our results in the latter case, which are valid for an
X arbitrary ratio of the densities of the three components, agree
Te(— mcﬁ+TBnB+TfH?(cT)nB) |[r21é|]m|t|ng cases with expressions obtained by other authors
(60) ACKNOWLEDGMENTS
Hence, Eq(59) reduces to Eq’57) if we takeT,=T,=0, as We would like to thank C. J. Pethick and E. Braaten for
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