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Spontaneous squeezing of a vortex in an optical lattice
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We study the equilibrium states of a vortex in a Bose-Einstein condensate in a one-dimensional optical
lattice. We find that quantum effects can be important and that it is even possible for the vortex to be strongly
squeezed, which reflects itself in a different quantum-mechanical uncertainty of the vortex position in two
orthogonal directions. The latter is observable by measuring the atomic density after an expansion of the
Bose-Einstein condensate in the lattice.
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I. INTRODUCTION is the wavelength of the laser beams creating the standing
. . . . . wave of the lattice. The optical lattice splits the Bose-
Vortices play a crucial role in explaining the rotational i <tein condensate into a stack dE weakly coupled
and dissipative properties of superfluids. In the SUperﬂ”i(Eancake-shaped condensates, each contaMiagpms. For
systems studied until now, such as liquid helif, super-  concreteness we always UERb atoms in the following. The
conductorg?], and Bose-Einstein condensaf8s11, a vor-  gepth of the lattic/, can be easily changed and controls the
tex line behaves as a classical object. However, placing fnneling of an atom from one pancake-shaped condensate to
Bose-Einstein condensate in an optical latfit2-1§ leads  the next, i.e., the strength of the interlayer Josephson cou-
to an unprecedented control over the system parametergling. The condensate also experiences a harmonic trapping
which has already enabled experimental studies on quantupotential in the radial direction with an oscillator frequency
phase transitiongl5,17,1§, superfluidity[12,13, and num-  ,. The longitudinal trapping potential along the direction of
ber squeezin@l4]. Furthermore, a Bose-Einstein condensatethe laser beams is assumed to be so weak that it can be
in a one-dimensional optical lattice has a layered structur@eglected. While the lattice is taken to be deep enough to
similar to the cuprate superconductors and is a promisingllow us to use a tight-binding approximation and to include
way to achieve the quantum Hall regime in a Bose-Einsteironly the weak nearest-neighbor Josephson coupling, it is also
condensed gad.9]. This suggests that a careful examinationtaken to be shallow enough to support a superfluid state as
of the quantum properties of a vortex line in a one-opposed to the Mott-insulator states).
dimensional optical lattice is warranted. Furthermore, we consider a vortex line that pierces at the
A characteristic feature of all superfluids is their ability to position (x,,y,) through each layer of the stack labeled by
support persistent currents. Quantized vortices play a cruciahe indexn. In each layer, the density of the pancake-shaped
role in understanding the decay of these currents, and alssbndensate varies as a function of the radial distance. As a
the superfluid’s response to rotation or to an external magresult, the vortex experiences an effective potential that de-
netic field in the case of a superconductor. In the pioneeringends on its distance from the origih1]. Without rotation
papers, Fetter developed the quantum theory of vortices iBf the gas this potential is approximately an inverted pa-
liquid helium [20] and so-called type-Il superconductors rabola. Hence, the vortex is energetically unstable and will
[21]. In these systems, quantum fluctuations turned out t@end to spiral out of the system. However, the vortex is sta-
play such a small role that they are experimentally inacceshilized if we rotate the Bose-Einstein condensate with a ro-
sible. Here we show, however, that the truly quantum-ation frequency that is larger than a critical frequen€y.
mechanical behavior of the macroscopic vortex occurs in an the rest of this paper we consider the regime where the
Bose-Einstein condensate in a one-dimensional optical laortex is energetically stable arfd> ().
tice. This is due to the reduced dimensionality as well as to |n the tight-binding approximation the attraction between
the reduced number of atoms in every well of the opticalthe nearest-neighbor parts of the vortex turns out to be har-
lattice. Remarkably, it turns out that the vortex can spontamonic with respect to their separation. We denote the typical
neously become strongly squeezed, which is reflected in thetrength of this attraction byl,. Physically, the attractive
guantum-mechanical probability distribution of the vortexinteraction is due to the energy cost for phase differences
position. Unlike coherent states, which are described by thgetween the two layers. The theory of the resulting coupled
Gross-Pitaevskii theory, squeezed states are highly nonclagarmonic oscillators can be quantized by introducing the
sical. bosonic annihilation operators for the eigenmodes of the vor-
tex line [22—24. These modes are the Kelvin modées
Il. BOSE-HUBBARD HAMILTONIAN kelvc_)ns, a_md correspond physically to a wiggling of the vor-
tex line with a wavelength 2/k. The momentum-space op-
We consider a Bose-Einstein condensate in a oneeratorsy, are related to the coordinate-space kelvon opera-
dimensional optical lattice with lattice spacing2, wherex  torso,, and to the vortex positions through
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displaced vortex precesses around the condensate center with

R - - A
= 2\,m% ™MGL+0) (1) the frequency
g S

AT A
X, = ——(0,+0p)
n 2N n n

and wy(k=0) = (0 42R?)(1 - T[O,I}/RY]) + Q. (4)
_ The precession frequency of the vortex changes from nega-
O = IRy s tive to positive at the critical rotation frequency
n > ,N(Un Un)y (2)

Q= (0l 12R?)(T[0, IR - 1). (5)
where R is the typical radial size of each pancake-shape . .
condensate. In this way we obtain the dispersion reIatioﬂNhenQ>QC’ the vortex is locally energetically stable. The

_ _ condensate sizR is given by the solution of the transcen-
hax(K) =ha(0) +J[1-Cogkr/2)] of the kelvons{24]. The dental equation(l,/R)4[1-y+2Naymew, /27h -4 In(l,/R)]
energetic stability of the vortex is reflected in a positive _ . .

=1, wherevy is the Euler-Mascheroni constant aads the

value of the dispersion at zero momentum. Physically, th ree-dimensional scattering length. Without the kelvon in-
frequency at zero momentum is the precession frequency P . g ‘ength.
eraction, the ground state of the vortex corresponds to a

a slightly displaced straight vortex line around the center of Ortex line along the symmetry axis of the Bose-Einstein

the Bose-Einstein condensate. X : .
e Bose-Einstein condensate condensate with a quantum-mechanical uncertainty such that

It is crucial for our purposes to realize that, due to the, o — .5 S : X :
Euler dynamics of the vortex, the coordinaesand§, are (X2)=(y5). An attractive interaction will lead to squeezing
’ " with (X% # (72, as we show next.

canonically conjugate variables, and therefore they obey th
Heisenberg uncertainty relatigR,,y,]=iR?/2N. This means
that the position of the vortex is always smeared out by lll. VORTEX SQUEEZING
gquantum fluctuations. For a vortex in a lattice, these fluctua- . )
tions can become large due to the reduced particle numbers First we have to identify the correct order parameter for
in every layer, as opposed to the total number of particlest,he vortex 'I|ne. Sincé) > (), there occurs no que—Elnsteln
and the radial spreading of the pancake-shaped condens&@ndensation of the kelvons, and the appropriate order pa-
wave function as the lattice depth is increased. rameter for the vortex line is ndéb,,), which would signal the

The kelvon dispersion relation was determined by takingabove-mentioned energetic instability and the tendency of
into account only the lowest-order expansion of the effectivehe vortex to move away from the symmetry axis. However,
potential experienced by the vortex. However, expanding ughe correct order parameter can be identified with
to fourth order in the vortex displacements results in an in=Vo(vnn). To arrive at the associated mean-field theory, we
teraction(Vo/2)=,, 00150, for the kelvons. In the regime quadratically expand the Hamiltonian around this order pa-
where the vortex is stabl&/,<0 and this interaction is at- rameter and obtain, apart from a constgz,
tractive. The physics of the vortex line is thus described by a A 3
one-dimensional Bose-Hubbard model with a negative inter- H =2 [fwx(0) + 010, - EV > oo,

n

action strength. The corresponding Hamiltonian is given by (nm)

. ST Y VA Ay A
A= o0 + 30080~ S 8in+ S 616/, "2 { 2" 2 } ©
n (n,m) n n
3 We diagonalize this result by means of a Bogoliubov trans-
] formation. It is most convenient to work in momentum space
where(n,m) denotes the nearest-neighbor layers. where we define new creation and annihilation operators
.We calcu_lat_e the parameters of this Bo_se-Hubbard mOd‘?A/ith the help of the Bogoliubov amplitudeg anduv, asby
using a variational ansatz that we used in our earlier work .. . dbl=us—v'5t . Furth
[24], where the density of the condensate wave function i Yk~ VkV-k an _k_ukvlk__vkv—k- urt erhmorez, to ggslure
each layer was proportional to dxgx?+y%)/R%]. In this Tﬁsomc c_cl)tmn_ﬁutaponEre gt"?”ihwe n(}ust d‘“l’,e :j|vk|,tﬁ "
way we find that the strength of the nearest-neighbor cou—he. ar?l i)r?lan in Eq(6) is then diagonalized wi e
pling is given by choice ot either
|A[?

hrw, |f](w|_)\)2<772 ) % )\zme> lol?= (7)

Jy=—=T10, 5 [|— | |—-1 -— 2_[A12

VT a2 { Rr\wl/\ 4 ex 4% [E(k) +hwg(K)]° - (A
or
and the interaction strength is given by

2r0,I//IR 2 lul?= [E(K) + Aay(K)]? ®

Vo= 2hao(I,/R)’T[0,I/R*] - 3o (I,/R)* - 4m7 "= 20 + a2~ 1AF"

4N I

where E(k) = \#wy(k)2—|A|? is the dispersion of the Bogo-
where o, =v87?V_ /m\? is the oscillator frequency of the liubov quasiparticles.
optical lattice, |, =\VA/mw,, and I'[a,z] is the incomplete Requiring self-consistency of the approach leads to a gap
gamma function[25]. Furthermore, a straight and slightly equation
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) ) ] FIG. 2. (Color onling The squeezing of the quantum-

FIG. 1. The solution of the gap equation as a function of tem-mechanical position uncertainty ellipse. The figure shows the rela-
perature and rotation frequengy) Shows the order parameter as a tjye squeezing =(§2-%2)/(x2+9?) of the uncertainty ellipse of the
fun_ctio_n of temperature for two different rotation frequt_encies. Theyortex position as a function of rotation frequency at a low tem-
solid line represent§)-():=0.01xX w; and the dashed line repre- perature of 5 nK. Subplots show samples of the Gaussian probabil-
sents()-0.=0.02X w;. The result for the order parameter is scaled iy gistributions for the vortex position for two different rotation
to the precession frequency of the vortélx) Shows the order pa- frequencies. In the subplots, we use the trap lehgth7/ma, as a
rameter as a function of rotation frequency at two different temperagpit of length. In order to ease visual inspection, we use different
tures. The solid line represents a temperaflirel0 nK and the  4gpect ratios for the axes of the subplots. For the parameters used,

dashed line represents the temperaflire20 nK. The curves are the coherence length at the center of the condensate is abolt 0.34
calculated for the parametens=795 nm, w,=27 X100 Hz, N

=1000,N,=51, andV, =15E,, whereE,=27%:2/m\? is the recoil . . . .
axis. In equilibrium, the uncertainty ellipse of the vortex po-

energy of the atom after the absorption of a photon from the lasef””. L .
beam. These parameters are representative of current experimenﬁ%‘i'On distribution is independent of the layer indexThere-

capabilities. We also use this same set of parameters in the othfPre. the measurement of the vortex positions in different
figures. layers samples the same distribution and provides a signature

for the expected transition into a squeezed state. In Fig. 2, we
plot the relative squeezing as a function of the rotation fre-
(9) quency at a fixed temperature. As can be seen from this
figure, the size of the uncertainty ellipse can easily be several
times the radial trap length, and it also becomes very
where N,=1/(e®£9-1) is the Bose distribution. We solve strongly deformed as the rotation frequency is increased.
the gap equation for the order parameter, analogous to theurthermore, the long axis of the uncertainty ellipse can be
BCS theory of superconductofd7]. In Fig. 1 we present the much larger than the vortex core size. The results in Fig. 2
behavior of the order parameter as a function of temperaturgere obtained with only one set of typical parameters. By a
and rotation frequency for typical parameter values. We segareful choice of, for example, lattice depth, number of par-
from Fig. 1 that there is a critical temperature below whichticles, number of layers, or temperature, a considerable de-
the order parameter becomes nonzero and then increasgge of tunability is possible. For example, a shallower lat-
monotonically with decreasing temperature. Furthermore, theice implies a larger relative squeezing.
absolute value of the order parameter at zero temperature is
usually close to the precession frequency. The deviation be-
comes large only very close to the critical rotation frequency
Q.. For our theory to be valid, constraints have to be set for
The complex order parametar|A |€'¢ has an interesting the temperature. Since we assume a pure condensate, we are
physical interpretation in terms of the quantum-mechanicaignoring the influence of the noncondensate atoms on the
uncertainty of the vortex position. It turns out that in a coor-vortex line. Therefore, the temperature should be much lower
dinate system rotated by an anglewe have than the critical temperature for Bose-Einstein condensation
in the layers. This condition is relatively easy to satisfy.
However, a more stringent condition is set by the phase fluc-
tuations of the order parameter. In an infinite one-
dimensional system, phase fluctuations destroy the long-
where ¢ is the phase of the order parameter. This impliesrange order. In the finite system we are considering here,
that a nonzero value of the order parameter is reflected in thghase fluctuations can only be excited if the temperature is
squeezing of the vortex position distribution. The main axishigh enough[28-30Q. In order to calculate the energy cost
of the uncertainty ellipse is at an angle ¢/2 with thex  for a phase gradient of the order parameter, we must deter-

1

NS

VO Ns k

1+ 2N,
2E(K)

IV. PHASE FLUCTUATIONS

|A|R%coq ¢ - 26)

G2\ _ /52\ —
<yn> <Xn> - |V0| N NS 1 (10)
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mine the associated stiffness or superfluid dengigr). 400
Since the lattice breaks the Galilean invariance, this calcula-
tion is not entirely standard. Taec

The superfluid density is defined by the system’s response B00F - - - - 1
to an imposed phase gradief®l]. Therefore, we want to
study the long-wavelength effects of the transformatiqn

~ . . <
—>yne"””/2- The phase gradients enter only in the nearest- <200 Unsqueezed Squeezed
neighbor coupling and result in an interaction energy =
R o< ot
Hi=== 2 omodli(8n = /2 = (6~ B8], 100/ T
2 (n,m 9

which can be considered as a disturbance in the long-
wavelength limit. With this interaction energy, we calculate 00 0.02
the contribution to the free energy of the phase gradients in Q-Q /o,

second-order perturbation theory. Up to second order, the

effective imaginary time action for the phase fluctuations is_ F!G- 3. The phase diagram for the vortex squeezing transition.
The uppermost solid line is the critical temperature for the squeez-

he 1 (" (A ing transition. The assumption of a pure condensate implies tem-
S¢=f dr(H(7)) - 2% f dr d7'(H(DH,(7)). peratures well below the critical temperature of the Bose-Einstein
0 0 0 condensation indicated by the dashed line. Phase fluctuations can be
Furthermore, it is sufficient to keep only the terms up toignored well below the lowest line.
second order in the phase differences between layers. In this

way, we find the action for the phase gradients as In order to avoid phase fluctuations, we should be well below
1B ; this temperature scale.
S‘/’:J dr—L > {cogk M2)[|ue PN + [N + 1)] At temperatures higher thaf, the vortex can still be
0 8Ns " squeezed, but the phase fluctuations result in a different main

axis of the vortex position uncertainty ellipse in different
— JyB SIP(K' M2)N (N + 1)} > Kby (11)  layers. In Fig. 3 we plot the critical temperature for Bose-
k Einstein condensation, the critical temperature for the transi-
This result should be compared with the standé@alilean tion into a squgezed vortex, and the temperature scale _of the
invariany Landau[27] result phase fluctuations for typical parameter values. This figure
indicates that the vortex spontaneously squeezes at a tem-

hb h? 2 perature that is easily accessible experimentally. Below this
S= fo dTJ dzz_mAps(T)(V o), (12) temperature there is a region in which the vortex is squeezed,
but with fluctuating main axes. At even lower temperatures,
where the superfluid density at temperatiires the phase fluctuations become negligible and long-range or-

der over the size of the system is established.

1 h?
ps(T) = mz |:|uk|2Nk+ o (N + 1) = _IBksz(Nk"' 1.
Nk My V. SUMMARY AND CONCLUSIONS
(13) We studied the equilibrium squeezing of the vortex line in
When we take the lattice spacing to zero while keegi)tt ~ an optical lattice and predicted that strong squeezing is in-
constant, we can see that H41) recovers the standard re- deed possible in the experimentally realistic parameter re-
sult when the mass of the pairing field is definedmag  gime. Although the kelvon interaction induced by the vortex

=2my, where displacement is the most important one, other mechanisms
5 for kelvon interactions also exist. In principle, the kelvons
m. = 4n° (19 are also coupled to the collective modes of the Bose-Einstein
K JUN? condensate, for example, to the quadrupole mie32.

Such processes typically induce an effective attractive

is the effective mass of the kelvons. Furthermore, from thig.a|yon interaction, and thus renormalize the value of the in-
we see that the superfluid density in our case is defined byieraction strength, but do not make it positive. Therefore, we

1 expect that the squeezing transition is robust with respect to
ps(T) = N_)\E {cogkN/2)[|uy> N + ol 2(N + 1)] coupling to the collective modes of the condensate.
s/t k
= JyB Sirf(KA/2)NW(N, + 1)}. (15) ACKNOWLEDGMENTS
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