
Spontaneous squeezing of a vortex in an optical lattice
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We study the equilibrium states of a vortex in a Bose-Einstein condensate in a one-dimensional optical
lattice. We find that quantum effects can be important and that it is even possible for the vortex to be strongly
squeezed, which reflects itself in a different quantum-mechanical uncertainty of the vortex position in two
orthogonal directions. The latter is observable by measuring the atomic density after an expansion of the
Bose-Einstein condensate in the lattice.
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I. INTRODUCTION

Vortices play a crucial role in explaining the rotational
and dissipative properties of superfluids. In the superfluid
systems studied until now, such as liquid helium[1], super-
conductors[2], and Bose-Einstein condensates[3–11], a vor-
tex line behaves as a classical object. However, placing a
Bose-Einstein condensate in an optical lattice[12–16] leads
to an unprecedented control over the system parameters,
which has already enabled experimental studies on quantum
phase transitions[15,17,18], superfluidity[12,13], and num-
ber squeezing[14]. Furthermore, a Bose-Einstein condensate
in a one-dimensional optical lattice has a layered structure
similar to the cuprate superconductors and is a promising
way to achieve the quantum Hall regime in a Bose-Einstein
condensed gas[19]. This suggests that a careful examination
of the quantum properties of a vortex line in a one-
dimensional optical lattice is warranted.

A characteristic feature of all superfluids is their ability to
support persistent currents. Quantized vortices play a crucial
role in understanding the decay of these currents, and also
the superfluid’s response to rotation or to an external mag-
netic field in the case of a superconductor. In the pioneering
papers, Fetter developed the quantum theory of vortices in
liquid helium [20] and so-called type-II superconductors
[21]. In these systems, quantum fluctuations turned out to
play such a small role that they are experimentally inacces-
sible. Here we show, however, that the truly quantum-
mechanical behavior of the macroscopic vortex occurs in a
Bose-Einstein condensate in a one-dimensional optical lat-
tice. This is due to the reduced dimensionality as well as to
the reduced number of atoms in every well of the optical
lattice. Remarkably, it turns out that the vortex can sponta-
neously become strongly squeezed, which is reflected in the
quantum-mechanical probability distribution of the vortex
position. Unlike coherent states, which are described by the
Gross-Pitaevskii theory, squeezed states are highly nonclas-
sical.

II. BOSE-HUBBARD HAMILTONIAN

We consider a Bose-Einstein condensate in a one-
dimensional optical lattice with lattice spacingl /2, wherel

is the wavelength of the laser beams creating the standing
wave of the lattice. The optical lattice splits the Bose-
Einstein condensate into a stack ofNs weakly coupled
pancake-shaped condensates, each containingN atoms. For
concreteness we always use87Rb atoms in the following. The
depth of the latticeVL can be easily changed and controls the
tunneling of an atom from one pancake-shaped condensate to
the next, i.e., the strength of the interlayer Josephson cou-
pling. The condensate also experiences a harmonic trapping
potential in the radial direction with an oscillator frequency
vr. The longitudinal trapping potential along the direction of
the laser beams is assumed to be so weak that it can be
neglected. While the lattice is taken to be deep enough to
allow us to use a tight-binding approximation and to include
only the weak nearest-neighbor Josephson coupling, it is also
taken to be shallow enough to support a superfluid state as
opposed to the Mott-insulator state[18].

Furthermore, we consider a vortex line that pierces at the
position sxn,ynd through each layer of the stack labeled by
the indexn. In each layer, the density of the pancake-shaped
condensate varies as a function of the radial distance. As a
result, the vortex experiences an effective potential that de-
pends on its distance from the origin[11]. Without rotation
of the gas this potential is approximately an inverted pa-
rabola. Hence, the vortex is energetically unstable and will
tend to spiral out of the system. However, the vortex is sta-
bilized if we rotate the Bose-Einstein condensate with a ro-
tation frequencyV that is larger than a critical frequencyVc.
In the rest of this paper we consider the regime where the
vortex is energetically stable andV.Vc.

In the tight-binding approximation the attraction between
the nearest-neighbor parts of the vortex turns out to be har-
monic with respect to their separation. We denote the typical
strength of this attraction byJV. Physically, the attractive
interaction is due to the energy cost for phase differences
between the two layers. The theory of the resulting coupled
harmonic oscillators can be quantized by introducing the
bosonic annihilation operators for the eigenmodes of the vor-
tex line [22–24]. These modes are the Kelvin modes(or
kelvons), and correspond physically to a wiggling of the vor-
tex line with a wavelength 2p /k. The momentum-space op-
eratorsv̂k are related to the coordinate-space kelvon opera-
tors v̂n, and to the vortex positions through
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x̂n =
R

2ÎN
sv̂n

† + v̂nd =
R

2ÎNNs
o
k

eiknl/2sv̂−k
† + v̂kd s1d

and

ŷn =
iR

2ÎN
sv̂n

† − v̂nd, s2d

where R is the typical radial size of each pancake-shaped
condensate. In this way we obtain the dispersion relation
"vKskd="vKs0d+JVf1−cosskl /2dg of the kelvons[24]. The
energetic stability of the vortex is reflected in a positive
value of the dispersion at zero momentum. Physically, the
frequency at zero momentum is the precession frequency of
a slightly displaced straight vortex line around the center of
the Bose-Einstein condensate.

It is crucial for our purposes to realize that, due to the
Euler dynamics of the vortex, the coordinatesx̂n and ŷn are
canonically conjugate variables, and therefore they obey the
Heisenberg uncertainty relationfx̂n, ŷng= iR2/2N. This means
that the position of the vortex is always smeared out by
quantum fluctuations. For a vortex in a lattice, these fluctua-
tions can become large due to the reduced particle numbers
in every layer, as opposed to the total number of particles,
and the radial spreading of the pancake-shaped condensate
wave function as the lattice depth is increased.

The kelvon dispersion relation was determined by taking
into account only the lowest-order expansion of the effective
potential experienced by the vortex. However, expanding up
to fourth order in the vortex displacements results in an in-
teractionsV0/2don v̂n

†v̂n
†v̂nv̂n for the kelvons. In the regime

where the vortex is stable,V0,0 and this interaction is at-
tractive. The physics of the vortex line is thus described by a
one-dimensional Bose-Hubbard model with a negative inter-
action strength. The corresponding Hamiltonian is given by

Ĥ = o
n

f"vKs0d + JVgv̂n
†v̂n −

JV

2 o
kn,ml

v̂m
† v̂n +

V0

2 o
n

v̂n
†v̂n

†v̂nv̂n,

s3d

wherekn,ml denotes the nearest-neighbor layers.
We calculate the parameters of this Bose-Hubbard model

using a variational ansatz that we used in our earlier work
[24], where the density of the condensate wave function in
each layer was proportional to expf−sx2+y2d /R2g. In this
way we find that the strength of the nearest-neighbor cou-
pling is given by

JV =
"vr

4p2GF0,
l r
4

R4GSvLl

vrl r
D2Sp2

4
− 1DexpS−

l2mvL

4"
D

and the interaction strength is given by

V0 =
2"vrsl r/Rd2Gf0,l r

4/R4g − 3"vrsl r/Rd2 − 4"V

4N
,

where vL=Î8p2VL /ml2 is the oscillator frequency of the
optical lattice, l r =Î" /mvr, and Gfa,zg is the incomplete
gamma function[25]. Furthermore, a straight and slightly

displaced vortex precesses around the condensate center with
the frequency

vKsk = 0d = svrl r
2/2R2ds1 − Gf0,l r

4/R4gd + V. s4d

The precession frequency of the vortex changes from nega-
tive to positive at the critical rotation frequency

Vc = svrl r
2/2R2dsGf0,l r

4/R4g − 1d. s5d

WhenV.Vc, the vortex is locally energetically stable. The
condensate sizeR is given by the solution of the transcen-
dental equationsl r /Rd4f1−g+2NaÎmvL /2p"−4 lnsl r /Rdg
=1, whereg is the Euler-Mascheroni constant anda is the
three-dimensional scattering length. Without the kelvon in-
teraction, the ground state of the vortex corresponds to a
vortex line along the symmetry axis of the Bose-Einstein
condensate with a quantum-mechanical uncertainty such that
kx̂n

2l=kŷn
2l. An attractive interaction will lead to squeezing

with kx̂n
2lÞ kŷn

2l, as we show next.

III. VORTEX SQUEEZING

First we have to identify the correct order parameter for
the vortex line. SinceV.Vc, there occurs no Bose-Einstein
condensation of the kelvons, and the appropriate order pa-
rameter for the vortex line is notkv̂nl, which would signal the
above-mentioned energetic instability and the tendency of
the vortex to move away from the symmetry axis. However,
the correct order parameter can be identified withD
=V0kv̂nv̂nl. To arrive at the associated mean-field theory, we
quadratically expand the Hamiltonian around this order pa-
rameter and obtain, apart from a constant[26],

Ĥ = o
n

f"vKs0d + JVgv̂n
†v̂n −

JV

2 o
kn,ml

v̂m
† v̂n

+ o
n
FD

2
v̂n

†v̂n
† +

D*

2
v̂nv̂nG . s6d

We diagonalize this result by means of a Bogoliubov trans-
formation. It is most convenient to work in momentum space
where we define new creation and annihilation operators

with the help of the Bogoliubov amplitudesuk andvk as b̂k

=ukv̂k
†−vkv̂−k and b̂k

†=uk
* v̂k−vk

* v̂−k
† . Furthermore, to ensure

bosonic commutation relations we must haveuuku2− uvku2=1.
The Hamiltonian in Eq.(6) is then diagonalized with the
choice of either

uvku2 =
uDu2

fEskd + "vKskdg2 − uDu2
s7d

or

uuku2 =
fEskd + "vKskdg2

fEskd + "vKskdg2 − uDu2
, s8d

whereEskd=Î"vKskd2− uDu2 is the dispersion of the Bogo-
liubov quasiparticles.

Requiring self-consistency of the approach leads to a gap
equation
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1

V0
= −

1

Ns
o
k

1 + 2Nk

2Eskd
, s9d

where Nk=1/sebEskd−1d is the Bose distribution. We solve
the gap equation for the order parameter, analogous to the
BCS theory of superconductors[27]. In Fig. 1 we present the
behavior of the order parameter as a function of temperature
and rotation frequency for typical parameter values. We see
from Fig. 1 that there is a critical temperature below which
the order parameter becomes nonzero and then increases
monotonically with decreasing temperature. Furthermore, the
absolute value of the order parameter at zero temperature is
usually close to the precession frequency. The deviation be-
comes large only very close to the critical rotation frequency
Vc.

The complex order parameterD= uD ueif has an interesting
physical interpretation in terms of the quantum-mechanical
uncertainty of the vortex position. It turns out that in a coor-
dinate system rotated by an angleu, we have

kŷn
2l − kx̂n

2l =
uDuR2cossf − 2ud

uV0uNNs
, s10d

where f is the phase of the order parameter. This implies
that a nonzero value of the order parameter is reflected in the
squeezing of the vortex position distribution. The main axis
of the uncertainty ellipse is at an angleu=f /2 with the x

axis. In equilibrium, the uncertainty ellipse of the vortex po-
sition distribution is independent of the layer indexn. There-
fore, the measurement of the vortex positions in different
layers samples the same distribution and provides a signature
for the expected transition into a squeezed state. In Fig. 2, we
plot the relative squeezing as a function of the rotation fre-
quency at a fixed temperature. As can be seen from this
figure, the size of the uncertainty ellipse can easily be several
times the radial trap length, and it also becomes very
strongly deformed as the rotation frequency is increased.
Furthermore, the long axis of the uncertainty ellipse can be
much larger than the vortex core size. The results in Fig. 2
were obtained with only one set of typical parameters. By a
careful choice of, for example, lattice depth, number of par-
ticles, number of layers, or temperature, a considerable de-
gree of tunability is possible. For example, a shallower lat-
tice implies a larger relative squeezing.

IV. PHASE FLUCTUATIONS

For our theory to be valid, constraints have to be set for
the temperature. Since we assume a pure condensate, we are
ignoring the influence of the noncondensate atoms on the
vortex line. Therefore, the temperature should be much lower
than the critical temperature for Bose-Einstein condensation
in the layers. This condition is relatively easy to satisfy.
However, a more stringent condition is set by the phase fluc-
tuations of the order parameter. In an infinite one-
dimensional system, phase fluctuations destroy the long-
range order. In the finite system we are considering here,
phase fluctuations can only be excited if the temperature is
high enough[28–30]. In order to calculate the energy cost
for a phase gradient of the order parameter, we must deter-

FIG. 1. The solution of the gap equation as a function of tem-
perature and rotation frequency.(a) Shows the order parameter as a
function of temperature for two different rotation frequencies. The
solid line representsV−Vc=0.013vr and the dashed line repre-
sentsV−Vc=0.023vr. The result for the order parameter is scaled
to the precession frequency of the vortex.(b) Shows the order pa-
rameter as a function of rotation frequency at two different tempera-
tures. The solid line represents a temperatureT=10 nK and the
dashed line represents the temperatureT=20 nK. The curves are
calculated for the parametersl=795 nm, vr =2p3100 Hz, N
=1000,Ns=51, andVL=15Er, whereEr =2p2"2/ml2 is the recoil
energy of the atom after the absorption of a photon from the laser
beam. These parameters are representative of current experimental
capabilities. We also use this same set of parameters in the other
figures.

FIG. 2. (Color online) The squeezing of the quantum-
mechanical position uncertainty ellipse. The figure shows the rela-
tive squeezing«=kŷ2− x̂2l / kx̂2+ ŷ2l of the uncertainty ellipse of the
vortex position as a function of rotation frequency at a low tem-
perature of 5 nK. Subplots show samples of the Gaussian probabil-
ity distributions for the vortex position for two different rotation
frequencies. In the subplots, we use the trap lengthl r =Î" /mvr as a
unit of length. In order to ease visual inspection, we use different
aspect ratios for the axes of the subplots. For the parameters used,
the coherence length at the center of the condensate is about 0.34l r.
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mine the associated stiffness or superfluid densityrSsTd.
Since the lattice breaks the Galilean invariance, this calcula-
tion is not entirely standard.

The superfluid density is defined by the system’s response
to an imposed phase gradient[31]. Therefore, we want to
study the long-wavelength effects of the transformationv̂n
→ v̂ne

ifn/2. The phase gradients enter only in the nearest-
neighbor coupling and result in an interaction energy

ĤI = −
JV

2 o
kn,ml

v̂m
† v̂nfisfn − fmd/2 − sfn − fmd2/8g,

which can be considered as a disturbance in the long-
wavelength limit. With this interaction energy, we calculate
the contribution to the free energy of the phase gradients in
second-order perturbation theory. Up to second order, the
effective imaginary time action for the phase fluctuations is

Sf =E
0

"b

dtkHIstdl −
1

2"
E

0

"b E
0

"b

dt dt8kHIstdHIst8dl.

Furthermore, it is sufficient to keep only the terms up to
second order in the phase differences between layers. In this
way, we find the action for the phase gradients as

Sf =E
0

"b

dt
JV

8Ns
o
k8

hcossk8l/2dfuuk8u
2Nk8 + uvk8u

2sNk8 + 1dg

− JVb sin2sk8l/2dNk8sNk8 + 1djo
k

k2fkf−k. s11d

This result should be compared with the standard(Galilean
invariant) Landau[27] result

SL =E
0

"b

dtE dz
"2

2mD

rssTdk¹fl2, s12d

where the superfluid density at temperatureT is

rssTd =
1

Nsl
o
k
Fuuku2Nk + uvku2sNk + 1d −

"2b

mD

k2NksNk + 1dG .

s13d

When we take the lattice spacing to zero while keepingJVl2

constant, we can see that Eq.(11) recovers the standard re-
sult when the mass of the pairing field is defined asmD

=2mK, where

mK =
4"2

JVl2 s14d

is the effective mass of the kelvons. Furthermore, from this
we see that the superfluid density in our case is defined by

rssTd =
1

Nsl
o
k

hcosskl/2dfuuku2Nk + uvku2sNk + 1dg

− JVb sin2skl/2dNksNk + 1dj. s15d

Equating the energy cost due to a 4p /Nsl phase gradient
with the thermal energy gives us an estimate for the tempera-
ture scaleTf=JVrSsTdp2l /2NskB of the phase fluctuations.

In order to avoid phase fluctuations, we should be well below
this temperature scale.

At temperatures higher thanTf, the vortex can still be
squeezed, but the phase fluctuations result in a different main
axis of the vortex position uncertainty ellipse in different
layers. In Fig. 3 we plot the critical temperature for Bose-
Einstein condensation, the critical temperature for the transi-
tion into a squeezed vortex, and the temperature scale of the
phase fluctuations for typical parameter values. This figure
indicates that the vortex spontaneously squeezes at a tem-
perature that is easily accessible experimentally. Below this
temperature there is a region in which the vortex is squeezed,
but with fluctuating main axes. At even lower temperatures,
the phase fluctuations become negligible and long-range or-
der over the size of the system is established.

V. SUMMARY AND CONCLUSIONS

We studied the equilibrium squeezing of the vortex line in
an optical lattice and predicted that strong squeezing is in-
deed possible in the experimentally realistic parameter re-
gime. Although the kelvon interaction induced by the vortex
displacement is the most important one, other mechanisms
for kelvon interactions also exist. In principle, the kelvons
are also coupled to the collective modes of the Bose-Einstein
condensate, for example, to the quadrupole mode[24,32].
Such processes typically induce an effective attractive
kelvon interaction, and thus renormalize the value of the in-
teraction strength, but do not make it positive. Therefore, we
expect that the squeezing transition is robust with respect to
coupling to the collective modes of the condensate.
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FIG. 3. The phase diagram for the vortex squeezing transition.
The uppermost solid line is the critical temperature for the squeez-
ing transition. The assumption of a pure condensate implies tem-
peratures well below the critical temperature of the Bose-Einstein
condensation indicated by the dashed line. Phase fluctuations can be
ignored well below the lowest line.
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