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Longitudinal sound mode of a Bose-Einstein condensate in an optical lattice

J.-P. Martikainen* and H. T. C. Stoof†

Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
~Received 29 August 2003; published 12 February 2004!

We examine the effect of the transverse breathing mode on the longitudinal sound propagation in a Bose-
Einstein condensate in a one-dimensional optical lattice. In particular, we discuss how the coupling with the
transverse breathing mode influences the sound velocity in an optical lattice. Using a variational approach we
calculate the dispersion relations for the longitudinal sound mode and the transverse breathing mode analyti-
cally, and find that the shift in the sound velocity from the uncoupled result can be large enough to be
experimentally relevant. We also find that the effective mass of the transverse breathing mode is affected
considerably by the coupling to longitudinal sound.
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I. INTRODUCTION

Repulsive contact interactions between atoms in a di
Bose gas cause a qualitative change in the low-energy e
tations of the system. In particular, the noninteracting sing
particle dispersion equal to\2k2/2m is replaced with the
sound dispersionck that is linear in the momentum@1#. The
existence of this sound mode is important as it allows for
possibility of superfluid flow@2#. Sound propagation in a
trapped Bose-Einstein condensate was studied experim
tally by Andrewset al. @3,4# and Stamper-Kurnet al. @5# in
the regime where the condensate can be considered as
homogeneous in one direction. The experimental obse
tions were in good agreement with theoretical predictions
that case@6–8#.

Bose-Einstein condensates can also be placed in an
cal lattice. The periodic structure of the lattice has enab
studies of Bloch oscillations@9#, number squeezing@10#, col-
lapses and revivals@11#, and a number of superfluid prope
ties of Bose gases@12,13#. Importantly, the Bose-Einstein
condensates in an optical lattice realize the Bose-Hubb
model @14# and can be used to study the quantum ph
transition from the superfluid into a Mott-insulator state@14–
16#.

Apart from these phenomena, sound propagation is
possible in a Bose-Einstein condensate in an optical latt
There exists several theoretical calculations for the so
velocity of a Bose-Einstein condensate in a one-dimensio
optical lattice @16–21#. All these theories for the soun
mode are based on the idea that the condensate w
function in siten is, in tight-binding approximation, essen
tially one dimensional and has the formFn(x,y,t)
5c(x,y)ANn(t)einn(t). This implies that the only dynamica
variables of these theories are the total number of ato
Nn(t) and the global phasenn(t) in every site, but there is no
time dependence in the wave function describing the tra
verse directions. Physically, it is nota priori clear that this is
a valid assumption because in the presence of repulsive
teractions between the atoms the profilec(x,y) does not
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remain constant as the number of particles in the site
changed. For example, increasing the number of atoms f
its equilibrium value causes the condensate to exp
whereas a reduction of the number of atoms causes the
densate to contract. Therefore, number fluctuations in ev
site of the lattice are coupled to collective modes of the c
densate in each site.

As far as we know, the coupling between the sound mo
and the collective modes is absent in all the existing theo
except in the recent work by Taylor and Zaremba@22#,
whose formulation in principle contains such a coupling
though the effect is neglected in all applications discussed
these authors. In a one-dimensional optical lattice where
lattice runs in the longitudinal direction~thez direction!, the
coupling predominantly excites the breathing mode in
transverse direction~the xy plane!. These transverse mode
were studied previously in Ref.@21#, in the approximation
that the coupling with longitudinal sound can be neglect
While a coupling definitely exists between the sound mo
and the transverse breathing mode, a coupling between
transverse quadrupole modes and the sound mode doe
exist because these modes are orthogonal. Therefore, th
sults in Ref.@21# for the quadrupole modes are not affect
by the coupling with the sound mode.

In this paper we go beyond the approximation used
Refs.@16–21#, by providing a unified theory of longitudina
sound and the transverse breathing mode in a o
dimensional optical lattice. Using a variational approach
obtain the magnitude of the change to the sound velo
when the coupling with the transverse breathing mode
taken into account. It turns out that the relative shift in t
sound velocity from the uncoupled result approaches a c
stantA3/421'20.13 as the strength of the interactions
increased, i.e., in the Thomas-Fermi limit. Therefore,
shift is rather large and should be taken into account w
quantitative results are required. Likewise the shift in t
effective mass of the transverse breathing mode from
result in Ref.@21# also turns out to be large and should al
be taken into account.

Intriguingly, our approach leads to a very simple theory
Josephson oscillations coupled to just one transverse de
of freedom. Such a theory has some analogies with the th
ries describing damped relative phase dynamics of wea
©2004 The American Physical Society08-1
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coupled condensates@23,24#. In these theories the dampin
of the relative phase is caused by the coupling into quasi
ticles. Our minimal theory can be used to study the ph
dynamics of the Bose-Einstein condensate in a o
dimensional optical lattice and with considerable modific
tions even the~quasi-! irreversible damped phase dynamic

This paper is organized as follows. In Sec. II, we outli
the theoretical foundation of our work and explain the var
tional ansatz we use. In Sec. III we write down the equati
of motion and solve for the eigenmodes. We then procee
discuss, in Secs. III A and III B, the dispersion relations
the sound and the transverse breathing modes separ
Previous experimental studies of the condensate sound m
@3,4# tracked the time evolution of a density dip. Therefore
Sec. IV, we apply our theory to solve numerically the tim
evolution of such a dip in the condensate density in an o
cal lattice. In addition, in Sec. IV we also solve the tim
evolution of the system that was prepared with a localiz
breathing-mode disturbance. We conclude with a brief d
cussion of our results in Sec. V.

II. VARIATIONAL ANSATZ AND LAGRANGIAN

The theory we use is similar to the one presented e
where@21#. In this paper the only difference with the theo
presented in Ref.@21# is the use of the grand-canonic
Hamiltonian, i.e., inclusion of the chemical potential term
2mN̂ into the energy functional. Due to the presence of
global phase factors and the atom-number fluctuations in
ferent sites, this turns out to be more convenient for
purposes.

We consider a Bose-Einstein condensate trapped by a
monic trap with a radial trapping frequencyv r . The longi-
tudinal trapping frequencyvz!v r is assumed to be so sma
as to be irrelevant. The Bose-Einstein condensate also e
riences a one-dimensional optical lattice in the longitudi
direction and this lattice splits the condensate into a stac
weakly coupled two-dimensional condensates. Furtherm
we use trap units, i.e., the unit of energy is\v r , the unit of
time is 1/v r , and the unit of length isl r5A\/mv r , wherem
is the atomic mass. The energy functional for the stack
two-dimensional condensates is then

E@F* ,F#5(
n
E d2r H 2

1

2
Fn* ~x,y!¹2Fn~x,y!

1F1

2
~x21y2!1

U2D

2
uFn~x,y!u22mG

3uFn~x,y!u2

2J (
^n,m&

E d2rFm* ~x,y!Fn~x,y!J , ~1!

where the lattice sites are labeled byn and ^n,m& indicates
nearest neighbors. This energy functional is characterize
two tunable parameters: the strength of the interactionU2D
in every two-dimensional Bose-Einstein condensate and
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strengthJ of the Josephson coupling between the cond
sates in the neighboring sites. In terms of the scatter
lengtha, the trapping frequencyvL in every site due to the
optical lattice, and the characteristic length scalel L

5A\/mvL, the interaction strength is given by

U2D54Ap

2 S a

l L
D . ~2!

Moreover, approximating the lattice potential near its ma
mum by an upside-down parabolic potential we obtain
the Josephson coupling

J5
1

8p2 S vL

v r
D 2S l

l r
D 2Fp2

4
21Ge2(l/4 l L)2

, ~3!

wherel is the wavelength of the laser beams creating
optical lattice.

We use a variational approach to study the sound and
transverse breathing modes of the condensate. For this
pose we use the Gaussian ansatz

Fn~x,y,t !5AN@B01en8~ t !#@11dn~ t !#

p

3expS 2
@B01en~ t !#~x21y2!

2
1 inn~ t ! D

~4!

for the two-dimensional wave function at siten. The varia-
tional parametersen5en81 i en9 are complex and describe th
amplitude of the breathing mode, whereasdn andnn are the
relative number fluctuation and the global phase at siten,
respectively. Furthermore,N is the equilibrium number of
atoms at the site andB0 gives the equilibrium size of the
two-dimensional condensate. The latter is obtained by m
mizing the equilibrium energy functional.

Using this ansatz we can calculate the energy functio
We find that in equilibrium the condensate size parameterB0
is given by

B05
1

A112U
, ~5!

where, for convenience, we defined the strength of the in
action as

U5
N

A2p
S a

l L
D . ~6!

In addition, the chemical potential is given by

m5
3

2B0
2

B0

2
22J, ~7!

because this choice for the chemical potential removes
terms linear indn from the energy functional.
8-2
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As we are interested in the collective modes we m
expand the LagrangianL5T2E up to second order in the
variational parameters. Due to the technical simplicity of
number and global phase fluctuations we choose, for the
being, to treat them exactly and only expand inen . It then
turns out that the contribution from the time-derivative te
in the Lagrangian is

T/N5
i

2 (
n
E d2r FFn*

]Fn

]t
2Fn

]Fn*

]t G
5(

n
~11dn!F2 ṅn1

ėn9

2B0
S 12

en8

B0
D G , ~8!

whereas the energy functional becomes

E/N5HJ1(
n

H S 11dn

2B0
D S 12

en8

B0
D 1S en8

B0
D 2

1
B0

2
~11dn!

3F11
en8

B0
1S en9

B0
D 2G1UB0~11dn!2S 11

en8

B0
D

2mN~11dn!J . ~9!

In Eq. ~9! we have explicitly split off the contribution from
the Josephson coupling,

HJ52J (
^n,m&

@cos~nn2nm!I nm8 2sin~nn2nm!I nm9 #,

~10!

where I mn5*d2rFm* (x,y)Fn(x,y) is the overlap integral.
Expanding the overlap integral up to second order, now a
in the number and global phase fluctuations, we readily
tain

HJ5
J

8B0
2 (

^n,m&
@~en82em8 !212~en92em9 !214B0

2~nn2nm!2

1B0
2~dn2dm!224B0~nn2nm!~en92em9 !#. ~11!

From this expression it is clear how the global phase fl
tuations are coupled to the transverse breathing mode. T
nically this is due to the imaginary part of the overlap in
gral which has a contribution linear in (en92em9 ). Such a
contribution does not exist, for example, for the quadrup
modes which preserve the condensate volume. There
quadrupole modes will not be affected by the presence of
sound mode.

In the above result for the Josephson energyHJ we ex-
panded also in terms of the numberdn and global phasenn
fluctuations. In the problem we are focusing on here th
fluctuations are small and the above procedure is justified
principle, however, number and global phase fluctuations
also be included exactly. By including them exactly we c
also capture the physics of modulational and dynamical
stabilities in an optical lattice@25–27#, but this is outside the
scope of the present paper.
02360
t

e
e

o
-

-
h-

-

e
re,
e

e
In
n

n
-

III. EQUATIONS OF MOTION AND THE EIGENMODES

The results obtained in the preceding section enable u
derive the linearized Euler-Lagrange equations of motion
the variational parameters. They read

]en8

]t
52B0en91J (

^n,m&
~en92em9 !, ~12!

]en9

]t
52

2

B0
en822UB0

2dn2J (
^n,m&

~en82em8 !, ~13!

]nn

]t
52~113U !en823B0Udn

2
J

2 (
^n,m&

F ~dn2dm!1S en82em8

B0
D G , ~14!

and

]dn

]t
52J (

^n,m&
F ~nn2nm!2

~en92em9 !

2B0
G . ~15!

These equations of motion can also be written in a m
formal way as

]en8

]t
52B0

2S ]E

]en9
D 1B0S ]E

]nn
D , ~16!

]en9

]t
522B0

2S ]E

]en8
D , ~17!

]nn

]t
52S ]E

]dn
D2B0S ]E

]en8
D , ~18!

and

]dn

]t
5

]E

]nn
. ~19!

While the first form of the equations is eventually needed
the actual calculations, the second way of writing the eq
tions provides some additional insight. In particular, by
specting Eqs.~16!–~18! it becomes clear how the globa
phases influence the behavior of the breathing mode thro
the term B0(]E/]nn) in Eq. ~16!, and how the breathing
mode influences the dynamics of the global phase thro
the term2B0(]E/]en8) in Eq. ~18!. Without these terms we
could treat the condensate density fluctuations independe
from the transverse breathing mode.

The four first-order differential equations, Eqs.~12!–~15!,
for the variational parameters can be cast into two coup
second-order differential equations foren8 and dn . We are
looking for solutions of the typeen85ek8(t)sin(nkl/2) and
dn5dk(t)sin(nkl/2). By inserting these into the equations
motion we obtain
8-3
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d2ek8

dt2
52~2B012J~k!!S 2

B0
12J~k! D ek8

1~B0
221!@2B012J~k!#dk ~20!

and

d2dk

dt2
54J~k!S B02

1

B0
2J~k! D dk2

2J~k!

B0
S 323B0

2

2
2

B0
D ek8 , ~21!

where J(k)5J@12cos(kl/2)#. The two eigensolutions o
these equations correspond to the longitudinal sound m
and the transverse breathing mode. These equations of
tion and their solutions are the main results of this paper

In Fig. 1 we show a typical behavior of both the sou
mode and the transverse breathing-mode frequencies
function of momentumk for two different values of the in-
teraction strength. This figure demonstrates how the smak
behavior of the sound modes is linear whereas that of
breathing mode is quadratic. It also shows that both mo
become stiffer as the strength of the interactions is increa
We devote the following two sections to the discussion
both modes separately.

A. The longitudinal sound mode

Theories of bosons in a lattice that reduce the problem
that of a global phase and an atom number in each site ca
used to solve the dispersion relationvS(k) of the sound
mode. We refer to these theories as phase-only theories
small values of the momenta, the dispersion relation of
sound mode is linear in momentum, i.e.,vS(k)5c0k. By
using the ansatz~4!, but removing the breathing modes, w
find the phase-only sound velocity

c05lAJB0U5lS JU

A112U
D 1/2

. ~22!

FIG. 1. Eigenmode frequencies of Eqs.~20! and~21! as a func-
tion of momentum, whenJ50.1, U5100 ~solid line!, andU510
~dashed line!.
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This agrees with the results of Refs.@16–21#.
However, this result is changed when the transve

breathing mode is taken into account. Using the unified
scription of sound and breathing modes that we have p
sented in this paper, we obtain a different sound veloc
namely,

c5lAJ

8 S 3

B0
22B02B0

3D5lAJU~213U !

2~112U !3/2
. ~23!

To obtain this simple expression we ignored contributio
proportional toJ2 as these are in general very small.

In the noninteracting limit the sound velocity calculate
from the phase-only theory coincides with the real sou
velocity, but the relative shiftc/c021 becomes more pro
nounced with increasing interaction strength. In particu
the real sound velocity is smaller than the one predicted
the phase-only theories. Asymptotically we obtain in t
limit of strong interactions limU→`(c/c021)5A3/421
'20.13. While this shift is not enormous, it is still larg
enough to be kept in mind when quantitative results are
quired. Intuitively, the reduction of the real sound veloc
due to the transverse breathing mode is expected, since
transverse degree of freedom makes the condensate less
Rather than all the energy of the density disturbance be
pushed forward in the longitudinal direction, some of t
excess energy is lost in exciting the transverse degree
freedom.

It is interesting to observe that while a ‘‘pure’’ breathin
mode, unaffected by the global phase dynamics, is poss
when all the sites are breathing in phase, a pure sound m
is never possible. The sound mode relies on global ph
differences and number fluctuations between sites, and t
will inevitably couple into the transverse breathing mode

B. The transverse breathing mode

At small values of momenta the transverse breath
mode in the absence of sound mode has a dispersion rel
@21#

v0521
Jl2

8 S B01
2

B0
D k2. ~24!

However, in line with our previous result for the soun
mode, Eqs.~20! and~21! predict a different behavior for the
term proportional tok2; namely, we have

vB521
Jl2

16 S B01
5

2B0
1

B0
2

2 D k2, ~25!

where we again ignored contributions proportional toJ2.
The breathing-mode dispersion relations can be given

terms of effective massesm0* and mB* for the transverse
breathing mode asv0521k2/2m0* and vB521k2/2mB* .
The relative shift
8-4



ap
i

d
s.

fo
m
s
b
e
o

od
di
n
th

o
t

ca

u-
ia

ts
u

is
fo

n-
ai
ly

ing
he

n
ode
The

-
m-
l

his
nce
ons
ri-

ga-
tein

a
of

are
nd
large

tita-
nd
ode
me
der
ode
mi-

d
a-

he

iti
ns
ca

ate

al
ce.

is
ed

ag-

LONGITUDINAL SOUND MODE OF A BOSE-EINSTEIN . . . PHYSICAL REVIEW A69, 023608 ~2004!
mB* 2m0*

m0*
5

312B0
22B0

3

512B0
21B0

3
5

6UA112U15A112U21

10UA112U17A112U11
~26!

in the effective mass is always quite large and quickly
proaches an asymptotic value 3/5 as the strength of the
teraction increases. This shift, therefore, must be include
making quantitative predictions for upcoming experiment

IV. TIME EVOLUTION OF THE COUPLED SYSTEM

Earlier in this paper we solved the equations of motion
the sound and the transverse breathing modes by assu
plane-wave solutions. This enabled us to obtain analytic
lutions for the dispersion relations, but our theory can
used to solve also more complicated problems. In this s
tion we demonstrate this by solving the coupled dynamics
the density fluctuations and the transverse breathing m
when the initial state of the condensate has a density
This problem is interesting since the earlier experiments o
condensate sound mode first created a density dip and
tracked the evolution of the condensate density@3,4#. In this
case calculating the time evolution of the coupled system
the sound mode and the transverse breathing mode is
complicated to be attacked analytically, but the problem
be readily tackled numerically.

In Fig. 2 we show an example of the typical time evol
tion. In this figure we prepare the system with a Gauss
density disturbancedn(t50)520.1exp@2(n/10)2# and then
let it evolve. The density minimum splits into two par
propagating into opposite directions. We find that the n
merically calculated propagation velocity of the density d
turbance is in good agreement with our analytical result
the sound velocity in Eq.~23! and very different from the
phase-only result in Eq.~22!. The excess energy of the de
sity dip excites the transverse breathing mode that rem
well localized in the center of the lattice and only slow

FIG. 2. The time evolution of~a! the density disturbancedn(t)
and ~b! the transverse breathing-mode amplitudeuen(t)u2. We
used J50.1, U5100, and the number of sites was 101. T
initial state had a Gaussian density disturbancedn(t50)
520.1exp@2(n/10)2# and the unit of time is 1/v r . In the figure
dark color indicates the disturbance. It can be seen how the in
density dip splits into two dips propagating into opposite directio
whereas at this time scale the breathing mode remains well lo
ized around the location of the initial density disturbance.
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spreads out further. This slow spreading of the breath
mode is hardly visible at the relatively short time scale of t
figure.

In Fig. 3 we demonstrate the ‘‘inverse’’ problem of a
initial state that has a localized transverse breathing-m
disturbance and a homogeneous density distribution.
time evolution of the density distribution is then more com
plicated, but the time evolution of the breathing-mode a
plitude is similar to that in Fig. 2. In Fig. 3 the fractiona
change of the condensate size was225% in the center of the
lattice and such a deformation is quite large. Despite t
strong deformation, the magnitude of the density disturba
remains small, below 1%. Therefore, under these conditi
it would be difficult to image the density disturbance expe
mentally.

V. SUMMARY AND CONCLUSIONS

We have presented a unified theory of the sound propa
tion and the transverse breathing mode of a Bose-Eins
condensate in a one-dimensional optical lattice. Using
variational ansatz we calculated the dispersion relations
both modes, and found out that the dispersion relations
quite strongly modified by the coupling between the sou
and the transverse breathing modes. These changes are
enough that they should be included when making quan
tive predictions for experiments. In principle, the sou
mode is coupled not only to the transverse breathing m
but also to modes with higher energy that have the sa
symmetry. In this paper we have ignored such higher-or
effects, since the overlap with the transverse breathing m
is the largest and therefore the coupling to this mode do
nates.

In principle, the theories studying two weakly couple
condensates@28–30# would also be influenced by the mech

al
,
l-

FIG. 3. The time evolution of~a! the density disturbancedn(t)
and~b! the transverse breathing-mode amplitudeuen(t)u2. We used
J50.1, U5100, and the number of sites was 101. The initial st
had a Gaussian transverse breathing-mode disturbanceen(t50)
5B0/2exp@2(n/10)2#. This choice corresponds to the fraction
change of225% of the condensate size in the center of the latti
The unit of time is 1/v r . In ~a! dark color indicates a region of low
density. In~b! it would seem that the breathing-mode amplitude
initially zero. This is a result of plotting the amplitude squar
uen(t)u2 as opposed to plotting just the real parten8(t). Typically the
imaginary part of the breathing-mode amplitude has a larger m
nitude and therefore dominates in the amplitude squared plot.
8-5
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nism we have discussed in this paper. This makes the s
of the phase dynamics of the weakly coupled condensate
the presence of the transverse degrees of freedom an i
esting topic for further research.

When the sound mode in an ordinary elongated Bo
Einstein condensate is excited, by using, for example, a b
detuned laser beam as in the experiments of Andrewset al.
@3,4#, the transverse profile of the condensate is modifi
close to the laser beam. After removing the laser beam,
density dip starts propagating with the sound velocity. Ho
ever, we have seen that in principle in addition to this als
surface disturbance starts propagating in the condensate.
is analogous to the problem we have studied in this pape
contrast with the Bose-Einstein condensate in an optical
tice, in a cigar-shaped three-dimensional Bose-Einstein c
densate the influence of the transverse degrees of freedo
expected to be small, and theories ignoring them@6–8# are
.

.

A

A.

o,

02360
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indeed in agreement with the experiments@3–5#.
Our theory can also be used to study how the transve

breathing mode excites density modulations of the cond
sate in an optical lattice. In this paper we gave one numer
example along these lines, but when the transve
breathing-mode amplitude is very large or strongly mod
lated, we expect that nonlinearities will play an importa
role. Under such conditions instabilities might arise, reve
ing possibilities for studying nonlinear matter wave dyna
ics.
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