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Excitations of a Bose-Einstein condensate in a one-dimensional optical lattice
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We investigate the low-lying excitations of a stack of weakly coupled two-dimensional Bose-Einstein con-
densates, which is formed by a one-dimensional optical lattice. In particular, we calculate the dispersion
relations of the monopole and quadrupole modes, both for the ground state as well as for the case in which the
system contains a vortex along the direction of the lasers creating the optical lattice. Our variational approach
enables us to determine analytically the dispersion relations for an arbitrary number of atoms in every two-
dimensional condensate and for an arbitrary momentum. We also discuss the feasibility of observing our results
experimentally.
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I. INTRODUCTION We consider the transverse excitations both for the ground
state of the gas, as well as for the case that a vortex pierces
Cold bosons in an optical lattice provide a uniquely tun-through the center of each two-dimensiof@lasjconden-
able environment to explore quantum phenomena. Some afate. We also consider the latter case, because a recent ex-
these phenomena have been known theoretically for quitperiment observed the transverse vibrational modes of the
some time, but with the advent of new experimental toolsvortex line in a trapped Bose-Einstein condensate. These
they have become a focus of attention. For example, Blocimodes are called Kelvin modg40]. In the lattice, three-
oscillations of electrons in a metal are a standard material itlimensional effectg§such as vortex line curvatureare ex-
condensed-matter text books, but advances in the manipulpected to be less important. Therefore, we believe that the
tion of cold atoms have also made their experimental inveskelvin modes, and in particular their coupling to the trans-
tigation possible in this cagel]. In addition, diffraction of  verse collective modes, are easier to study in a lattice than in
matter waves by a pulsed optical lattice was studied bya cigar-shaped three-dimensional condensate. Our results for
Ovchinnikovet al.[2]. Optical lattices have also enabled the a stationary vortex represent the first necessary step towards
observation of some more exotic quantum phenomena suamderstanding the more complicated problem of the Kelvin
as number squeezinfB] and collapses and revivalgt]. modes of a vortex in an optical lattice.
Apart from these examples, Bose-Einstein condensates in There is a number of important theoretical papers on the
optical lattices are particularly promising physical systems talynamics of Bose-Einstein condensates in optical lattices.
study superfluid properties of Bose ga§g$]. Very impor-  For example, dynamical and modulational instabilities were
tantly, they realize the Bose-Hubbard mofig] and can be studied in Refs[11-13 and the adiabaticity of the nonlinear
used to investigate the quantum phase transition from thevave equations was explored by Band and Trippenba¢h
superfluid into a Mott-insulator staf@,8]. This phase tran- Massignan and Modugno derivgd5] a relatively simple
sition was recently indeed observed experimentdly way to solve the three-dimensional Gross-Pitaevskii equation
In this paper we present a variational method to study thend used it to investigate the dynamics and expansion of the
excitations in a stack of weakly coupled two-dimensionalcondensate in a one-dimensional optical lattice. Finally,
(quasjcondensates. Such a system can be created by applrameret al.[16] used hydrodynamic equations to study the
ing a relatively strong one-dimensional optical lattice to anlow-lying collective modes of a harmonically trapped Bose-
ordinary three-dimensional condensate. We focus on th€instein condensate in the presence of a one- or two-
transverse monopole and quadrupole modes, but we alstimensional optical lattice. In particular, they showed that
demonstrate how the method can be applied to study longthe effect of the lattice is to renormalize the interaction cou-
tudinal excitations. We determine the eigenfrequencies of thpling constant and introduce an effective mass that accounts
monopole and quadrupole modes without any other approxifor the different inertia along the lattice potential. With these
mations than those involved in our variational ansatz. In parehanges, it is, for instance, possible to apply the results for
ticular, this means that we can smoothly cross over from théarmonically trapped condensates obtained by Strifd#Fi
noninteracting limit to the Thomas-Fermi regime. Moreover, The study by Kraner et al. is somewhat related to ours.
the longitudinal wavelength of the modulation is arbitrary, The most important difference, however, is that iexet al.
i.e., nearest-neighbor sites can be completely out of phasere interested in different modes than we are. They deal with
Using typical experimental parameters, we predict that théow-energy excitations along the long axis of the cigar-
dispersion relations show a strong dependence on the lattighaped condensate, i.e., the longitudinal modes. In the ab-
potential. sence of a magnetic trap, they correspond to the Bogoliubov
modes with the familiar phonon spectra at large wavelengths.
In the presence of a harmonic trap the spectrum becomes
*Electronic address: J.P.J.Martikainen@phys.uu.nl discrete, and the lowest energetic modes are the center-of-
TElectronic address: stoof@phys.uu.nl mass mode and thdongitudina) quadrupole mode. The
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transverse modes we are interested in have superfluid flowarge, i.e. A <1,=\JA/Mw,, we can, in first instance, ignore
the z direction along the lasers of the optical lattice the con- The lattice potential splits the condensate g two-
densate is, for simplicity, treated as completely periodic. Asdimensional (quasjcondensates with a two-dimensional
we see later, we take in first instance the atom number imiroplet shape. We assume that the lattice is sufficiently deep
equal in evc_ary.site. This removes the Bogoliubov modeswo-dimensional(quasjcondensatg21]. Using a Thomas-
frpm the excitation spectrum, since they correspond to a derFermi approximation for the two-dimensior@uasjconden-

sity modulation propagating along tzeaxis. If desired, they sates, we obtain a lower boundary that can be expressed as
deed, at the end of the paper we briefly discuss the corre-

sponding sound mode when the atom number in each two- Vs> 2%7

dimensional(quasjcondensate is allowed to fluctuate.

dimensional optical latticefl,5,6,18—2Q but none of these whereN is the number of atoms per site aads the three-
address the problem we consider in this paper. Eoal.  dimensional scattering length. As a numerical example, we
[20] measured longitudinal excitation frequencies of the contake a®Rb condensate in a trap with a radial trapping fre-
and this is the experimental paper most closely related to our 800 nm. When the atom number in each site is between
work. In particular, for the breathing mode Feital.[20] do 100 and 1000, the lower bound on the trap deyghis be-

not report any dependence on the lattice depth, and this is itween 0.0&, and 0.1%,, whereE, =#%2(2m/\)%/2M is the
Kramer et al. [16]. While we do not predict dependence on laser beam.

the lattice depth, we do predict dependence on the modula- Although we are interested in a deep lattice, we consider
tion of the excitation along the axis. In particular, we ex- here only the case that there is still full coherence across the
phase with each other, and these changes can be large fiential should not be so deep as to induce a Mott-insulator
typical experimental parameters. So far, such phenomerisansition. Typically, the required lattice depth to reach the
have not been probed experimentally. Mott-insulator transition in a three-dimensional lattice with a
the theory used in this paper. In Sec. Ill, we apply this theorydimensional lattice, the number of atoms in each lattice site
to a Bose-Einstein condensate without vortices and calculatie typically much larger than in a three-dimensional lattice
the dispersion relation of the monopole and gquadrupoleénd the transition into the insulating state requires a much
repeating similar calculation for the vortex state of the Bosetion in such a system occurs wheky>8NJ [22], whereUg
Einstein condensate. We end with a discussion of our resulgndJ are, respectively, the characteristic renormalized inter-
in Sec. V. action and hopping parameters of the effective single-mode

orthogonal to the long axis of the condensate. Moreover, inhe magnetic trapping potential in tizedirection.
each two-dimensionalquasjcondensate to be constant and such that its depth is larger than the chemical potential of the
can, however, be easily incorporated into our approach. In-
Mo, 1/4
hN?
There are several experiments on condensates in a one-
densate in the presence of a one-dimensional optical latticguency ,/27=100 Hz and a laser-light wavelength af
agreement with our result as well as with the result ofrecoil energy of an atom that absorbed one photon from the
pect changes in the eigenfrequency if the sites are out afondensate array. Specifically, this means that the lattice po-
The paper is organized as follows. In Sec. Il, we derivefilling factor of 1 is of the order of 1B,. In a one-
modes in the presence of a lattice. In Sec. IV, we proceed bgleeper lattice. In mean-field theory the Mott-insulator transi-
Bose-Hubbard model with Hamiltonian

Il. GROSS-PITAEVSKII THEORY

S b BB S A
Our starting point is a cigar-shaped Bose-Einstein conden- H= _J<i . byb;i+ —- : ni(ni—1). (4)
sate trapped by the potential ’

Using the same numerical values as in the previous para-
V(I’)=M(w2r2+w222), (1) graph, we est_ir_nate the critical lattice depth for the Mott-
2T z insulator transition to be betweenB6and 8E, , when the
number of atoms in each site is again between 100 and 1000.
where w, and w, are the radial and axial trapping frequen- To the best of our knowledge, the Mott-insulator transition in
cies, respectively, anill is the atomic mass. As we assume aa one-dimensional optical lattice has not yet been observed.
cigar-shaped trap, we further have thgt w, . The conden- We use trap units from now on, i.e., the unit of energy is
sate also experiences a one-dimensional optical lattice, A w,, the unit of time is 1b,, and the unit of length i$;
=Jh/Mw,. The Gross-Pitaevskii energy functional, which

27z describes the system at low temperatures, is then
Vo(r):VO S|n2<T), (2)
1 1
E[lIf*,\If]zf dr[——\P*(r)Vz\If(r)+ =(x?+y?)
whereV| is the lattice depth andl is the wavelength of the 2 2
laser light. We assume that the lattice is deep enough so that Vo(r) T28
it dominates over the magnetic trapping potential in the +—+ —|\P(r)|2}|\1'(r)|2} , (5)
direction. When this is true and the number of lattice sites is froor 2
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whereT?B is the two-bodyT matrix. In the above units the 1 (o |2\ 72 ,
latter is related to the three-dimensiorsavave scattering J= —2(—) I_> [T—l e~ (MAI) (12)
lengtha throughT?2=47all, . 8mro\ @r/ \lr

For a deep lattice potential it is natural to expand the

condensate wave function in terms of wave functions that are The energy functional in E¢(9) is now almost two di-

well localized in the sites. More precisely, we expand mensional. The third dimension is visible only in the last
term that describes the coupling between neighboring layers.
The energy is characterized by two parametdgg andJ,

W(r)= ; W(Z=2p)Pn(X,Y), (6)  both of which are experimentally tunable. The importance of

the on-site interaction term proportional b, can be en-

hanced by increasing the number of particles in the sites or

by making the lattice deeper. Deepening the lattice also de-

creases the strength of the Josephson cougliagd makes

wheren labels the lattice sites argj=2An/2l, is the position
of thenth site. For now we do not specify the wave functions

D (X, f the two-di i d tes, but f : _ N
n(X,y) of the two-dimensionalquasjcondensates, but for the sites more independent. It should be noted that whie

the wave function in thez direction, w(z), we use the ble. it is al L Phvsically. thi h
ground-state wave function of the harmonic approximationfunaPle, it is always positive. Physically, this means that

to the lattice potential near the lattice minimum. This har-there is always an.energetic penalty for having a phase dif-
monic trap has the frequency ference between sites.

2m Ill. EXCITATIONS OF THE CONDENSATE GROUND

In this section we study the transverse excitations of the
ground state of the stack of two-dimensiof@liasjconden-
sates. Using a Gaussian ansatz for the wave functions of the

and the wave functiom(z) is thus given by

1 4 (quasjcondensates, we solve the dispersion relations for the
W(Z)= —=exp — |, ) :
- \/E 212 monopole and the quadrupole modes analytically. In Sec.
Il A we introduce the Gaussian ansatz and solve the excita-
wherel, = \/m tions for an individial two-dimensiondbuasjcondensate. In

Substituting the above ansatz into the energy functionap€C- Il B we proceed to calculate_ the ba”“! structl_Jre of the
and ignoring all but the nearest-neighbor interactions, we gef’onopPole and quadrupole modes in the optical lattice. These
the energy functional sections also include technical details about the calculations.

Such details are not repeated in Sec. IV where we consider
1 the vortex state.
E[0*,@]= 2 j dzr[ — 5 OR (Y VP,(xY)

A. Excitations for a single two-dimensional(quasi)condensate

1 Usp
S (x24y2) + —ICIDn(X,y)IZ} | (x,y)[2 To account for the monopole and quadrupolt_e modes of the
2 2 two-dimensionallquasjcondensates in every site, we use a
general Gaussian ansatz for the wave functions, i.e.,
—J<% dz@fn(x.y)(bn(x,y)], 9

1 2 2
Dp(x,y,t)=Cp(t)ex _E[Bxx,n(t)x +Byy,n(t)y

2B,y (O] . (13

where(n,m) indicates nearest neighbors, and
All  three variational parameters Bj; (t)=B;; (t)

UZDZTZBJ dz|w(z)|4:4\/§<%) o
ij,n

is the two-dimensional coupling strength. Moreovkis the  +iBfj ,(t) are complex. From now on, we always use a

strength of the Josephson coupling between neighboringrime to denote the real part of a complex quantity and a

sites, and we have double prime to denote its imaginary part. The wave func-
tions are normalized to the number of partickest the site,

1 0% Vo2 and therefore

+
2 922 hoy

Jz—f dzw* (2) w(z+\/21,).

11 Ch(t)= \/E[B;x,n(t)s;y,n(t)— Byyn(D2Y4 (19

With these assumptiond,is a time-independent experimen-

tally defined parameter. Approximating the lattice potentialAs we fix the number of particles in every site, we are ex-
near its maximum by an upside-down parabolic potential wecluding the Bogoliubov modes propagating along zteis.

can calculate the Gaussian integral, with the result Itis, however, not difficult to account also for these modes as
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we show later on. The equations of motion for the variationalThe equations of motion fore’ and €’ are the Euler-

parameters can be derived from the Lagrangian Lagrange equations that result in two first-order differential
equations,
Dy (x,y,1)
— 2 * .
L[D*,d]= fd (2 D (xyt)— ¢ + 2By 0,
aD* (X,y,1) 2
— @ (x,y,H) ————| —E[®*,®]. — '+ —€'=0. (21)
at B,
(15

These equations can be cast into a single second-order dif-

Let us first investigate the behavior of an individual two- ferential equation foe’,

dimensional(quasjcondensate. Without the interlayer cou- . ,
pling, the part of the Lagrangian quadratic in the deviations €' =—4e, (22)

€;i(t) turns out to be equal to . . . . _— .
i) d which describes sinusoidal oscillation with a frequency of 2.

RY The frequency of the monopole mode is therefore
L 1 ( ” + +2¢! n )+ (6XX €yy)
—=———l(€ e € €l Exy€x —
N 4BS XX yy€yy 8 wo=2, (23
e;f, 1 1 )2 ,2 and it is independent of the strength of interactions. This is in
oot E + 2B, (et eyt Eneyt &) agreement with previous resufta3].
The quadrupolen= *2 modes are captured by the choice
3 1 €xx= — €yy= €. We then have just twécomplex variational
EJFE (€gyt e§y)2— E[(e +€yy)2 parameterse and e, . In the Lagrangian in Eq(16) th.ere
0 0 are no terms that coupleto e, . Therefore, the dynamics of
+2¢ el +6”2 te //2 24 2¢ ,,2 (16) these parameters separates, and both turn out to have the
vy same oscillation frequency. Above we gave the necessary
where technical details in the derivation of the monopole-mode fre-
quency. As the quadrupole-mode frequency can be dealt with
N in a similar fashion, we simply give the result. The
a | . .
U= — WA [ —=. (17) quadrupole-mode frequencies are given by
V2 \lr Wr

w+p=12+2B} (24)
We also defined the equilibrium solution &;(t) as B. r

Hence, Bj;(t)=Bodj; + €;;(t). We also suppressed the site For the ideal gasB,=1 and the quadrupole frequency is
indexn. The equilibrium solutiorB, is given by minimizing  again 2. In the Thomas-Fermi limi, tends to zero and the

the zeroth-order term of the energy, i.e., quadrupole frequencies approaeh ,— 2. Again, this re-
sult is as expectefll7,24,23. Our treatment also captures
E @+UB (18) the scissors modg26], but in the axial symmetric case we
0 0 . . .
2By 2 are considering here, the scissors mode turns out to be de-
generate with the quadrupole mode.
with the result Incidentally, it should be remembered that the degeneracy
of the quadrupole modes is lifted in a rotating trap. If the trap
B — /| 1 (19 is rotating with frequency) around thez axis, we should
0 1+2U° include a term—Q(L,) into the energy functional, where

(L,) is the expectation value of the angular-momentum com-
In Eg. (16) we show only the part relevant for the dynamics ponent in thez direction. The angular momentum of the
and we ignored the zeroth-order term, whose minimizatiorequilibrium solution is zero and the new term will only con-
leads to the result in Eq19). tribute in second order. The new contribution to the energy is
We are now in a position to find the frequencies for the

collective excitations we are interested in. Let us start with 0
the monopolen=0 mode, which is alternatively also called —QLy)= ['Exy'E — €'l (25
the breathing mode. For the monopole mode we careget 0

=e€yy=€ and €,,=0. With this choice the Lagrangian is

greatly simplified to This term couples the dynamics efande,,, but the result-

ing 2X2 matrix problem is easy to solve. The quadrupole-

1 1 mode frequencies in a rotating trap are

[ 6’6//__6!2_8 EUZ ) 20
0 0 ° (20 wizz\/z[(1+B(2))l/2i\/§Q]- (26)
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From this result it is clear that the quadrupole mode withHere Ny is the number of lattice sites which we, for nota-
m=—2 becomes thermodynamically unstable whéh tional convenience, assume to be an odd number. Moreover,
>/(1+B2)/2. This result corresponds to the Landau crite-k is the wave number and the lattice spacinglis\/2.

rion for the quadrupole modes, and has been shown to play First we transform the diagonal terms in the Lagrangian.

an important role in the nucleation of vorticga7—-31. For example,
B. Influence of the lattice on the excitation frequencies > f2= > i > fufwexdiza(k+k')]
N ’
We are now in the position to discuss the influence of the A noskk
lattice potential. To make progress we must determine the
coupling integral =; fif—k
lmn=f d’r®3(x,y) P n(X,y) (27) =3 Ifd2 (32
K

to a sufficient accuracy. This will contribute to the energy A, here the sum over the lattice sitasgave the Kronecker
Josephson coupling

deltady: _, which removed one of the momentum sums. The
last step is a result of the fact thigt was a real function, so

Hy=-1J 2 [ (29 x =f_. Nearest-neighbor terms are somewhat more com-
(n,m) plicated. As an example,

where then,m) indicates nearest neighbors. Here the imagi- 1 .
nary part ofl ,,,, is not relevant since its contribution to the > fofm=5N0 > 2 fidelexdi(kzy+k'z.1)]
energy vanishes when the sum over the nearest-neighbors is s 0k
calculated. For the monopole mode we get, up to second +exdi(kz,+k'z,—1)]}. (33
order in the deviations, the result

We can perform the sum overand get
Imn: 1- iz(er’]z-i- €2+2el?+2el?) + ize'e,'n

N 8B2 " 42" %) fofm= >, cos{k'xlz)fkfk,ak,,_kzg cog k\/2)|fy[2.
, K.k’
1 (34)
+ ——€n€m, (29
2By In Fourier space the Josephson couplihg generally thus
introduces factors of coe(/2)—1 into the Lagrangian.
and for the quadrupole mode we have Now that we know how to transform to Fourier space, we

can proceed to derive equations of motion for each value of

1 1 the wave vectok. Since two different values of the wave
~N -1 — (| enl®+ ] eml®+ | exynl*+ €xyml?) vectors do not couple, this is not technically any more com-
8By plicated than our previous treatment of an individ(calas)-
condensate. The equations for each wave vector can be
1 o noon solved separately. We demonstrate this again for the simplest
+—2(6n6m+ €n€mT Exyn€xy.mT Exy.n€xy.m)- p Y- . 9 ; p
4B§ ot o case, namely, the breathing mode. Let the Fourier transform
30 of €, be .. In Fourier space the Lagrangian for the breath-
(30) ing mode is
In these formulas the first subindex ef, ,, identifies the
o . ) Y - 1 . kN
variational parameter in question and the second one indi- | = — —_ > &% ¢/+{ - —Jlcog — | —1|||e/?
cates the lattice site. For identical nearest-neighbor wave 2B3 | % Bo 2
functions the overlap integral,,, should be exactl|, which ™
is indeed the case in both Eq29) and (30). B 2J< s( ) ) "2
) . - cosg - |—-1 . 35
Some terms in Eq9429) and(30) are purely on site, but 0 2 € (35

terms of the typee,e,, are not. This complication is rem-

edied by going to Fourier space. We define the Fourier transkeeping in mind that = €} , we get equations of motion
form in such a way that the functidn, in coordinate space is for ¢, and e . For example, by considering the variation of
expressed in terms of its transforip as the Lagrangian with respect & , we get

(2aIN)[1 - (1Ng)]

1 . K\
fo=—= > exdikz,lf.. (31 e|’(—2[BO—2J cos(—)—l ] =0, (36)
VNg k=—(@/AL - (1Ng)] 2
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and by considering variations with respecteto, we get the
differential equation fore ,

/,////..,.

7
U
T
)
i
W
o
4
%

7
)
o

D
4

n
l

)y
7
Y

: N
S \\\\\\\\
_ 1 K\ g\
ect2i5-—Jjcog —|—1|;g=0 (37) &&@W\
B, 2 : , AR R 3 T ik
5+ AR R T T T
(] T]®
The dispersion relation for the monopole mode can now beg- 4
; ) ) . R R T} ’ T
simply read out from this pair of equations. The quadrupole 3 3 W&@M \\\\&\\\\\\\\\\\i\t\\\\\\\
L. AR R T T T} T
modes can be dehalt \|IVIth in the same way although the equa WW&&@“@W\
tions are somewhat longer 2 L A A R R T ]}RT ]
. X _— A R ] R R TR R i s €  k
For convenience we assume that the contribution from 3 R T T T T ’; 100
2 R R R T T’ R
H H H H 4 N S
terms proportional td< are very small. With this simplifica- 5 N%ﬁﬁ@@&&w
. . . . AMRnRhIkRRaEkE aaaa
tion we get the dispersion relations for the monopole and \*\*\ilzzttli\\\\\tix\\\\\\‘\\\\\\\::‘@i\\\“ 50
guadrupole modes, <
ka2 00 U
2 k)\ 1/2
wo(K)=2)1-J| Bo+ B.]|€%% % -1 , (39 FIG. 1. Monopole-mode frequency as a functionkoéind U,
0 whenJ=0.05. The surface in this figure was calculated using Eqg.
39).
, 1 K\ 12 (39)
w+o(K)=12{ 1+B2-J 3Bo+ || cog o |~ 1|} -
0 the monopole mode. This can be understood by considering

(39 the overlap integral between neighboring sites. For the

We emphasize that our results where terms under the squaf@®nopole mode the coupling between the nearest neighbors
root proportional ta)? are ignored should be used with some IS 10 & large extent, determined by the integral

caution. The terms proportional t&f are not always negli-

gible compared to the other contributions. In particular, if the 2 2, 2. 2.2

trap depth or the on-site number of particles is small, there is f %[ Ro(x.y)[F(X*+y%)%,

a range of experimentally relevant parameter values where

terms proportional td* can be relatively large and should be whered(x,y) is the equilibrium wave function. In contrast,
included. They will not change the qualitative behavior of for the quadrupole mode the coupling is determined by the
the dispersion relations, but can affect quantitative resultsntegral

While we choose to work in the regime where terms propor-

tional to J? are small, it is not difficult to include these miss-

ing terms. For example, Eq$36) and (37) show that the f d2r|Do(x,y)|2(x2—y?)2.

exact frequency for the monopole mode obeys
kA 1
{31 [5;-2
0 of the nearest-neighbor coupling, the quadrupole mode there-
(40) fore has a bigger effective mass.
In Fig. 1 we show the dispersion relation for the monopole The fact that the dispersion relation is similar to the free-
mode as a function df andU. particle dispersion relation is reflected in the dynamics. A
In the limit of long wavelengths, it is permissible to ex- sinusoidal modulation moves with velocity=7%(k)/m* in

pand the cosine factors. The excitation has then the santbe z direction. In a finite system a pure sinusoidal modula-
dispersion as that of a free-partidlet #.°k?/2m* with some  tion is not possible and the excitation corresponds to a wave
effective massn* and a gap\. For the monopole mode we, packet centered aroung) and with some nonzero width

2 As the effective mass is inversily proportional to the strength

kX It is clear that the latter integral is smaller than the first one.
w5(k)=4{ By—2J co -1

therefore, predict an effective mass Ak. If the system is large enough, i.e., much bigger than
27/ Ak, the width of the packet can be small and one should
N 4B, h be able to observe such propagation before the excitation hits
mo (4D the outer edge of the condensate.

T RZ: o 2
J(Bo+2) | ek More generally, we can expand the dispersion relation

around any value of the wave vector. In terms of a function
C(J,B,) that depends on the mode in question, the excitation

480\/5 Z energy up to lowest order i looks like
(42)
kN
. o . _ cos —|—1|. (43
It is quite interesting to observe that the effective masses of 2
different modes are different. In particular, the effective mass
of the quadrupole mode is bigger than the effective mass dExpanding this expression aroukg, we get

and for the quadrupole mode we get

mi,=
2 3(3B2+1) | w,\2

o(K)=w(0)+C(J,Bo)
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)N Ko\ duce the known results for the individual two-dimensional
w(k)=w(k) = C(J,Bo)| 5 sin(7>(k—ko) droplet to a good accuracy, and thus our expectations are
indeed well justified.
A2 Ko\ Using similar techniques as for the condensate without a
+ T cos( T)(k—ko)z}. (44) vortex, we calculate the monopole mode of a condensate
with a vortex as
i 1 K\ 1/2
Whenky=0 we get the results fo_r the effective masses we wo(k)zz( 1-3J| B+ — cos( _) -1 ] . (46)
presented earlier, but some special cases are also of interest. Bo 2

In particular, wherkA/2=, we obtain the same expansion where we have again assumed thfaterms under the square

; — H (_ 2
as W'Fh k—.O, but the constant in front_ ofk(=ko) . has a root can be ignored. The equilibrium solution is now given
negative sign. In this regime the effective mass is thereforg

negative. In the regime of a negative effective mass one en-
counters modulational instabilities as discussed in Réfs- 2
13]. Bo= V570" (47)

The result is similar to Eq(38), but the constant in front of
IV. EXCITATIONS OF THE VORTEX STATE the cosine term is different indicating a difference in the
0effective mass. For the monopole mode in the presence of a

In this section we consider a system of weakly couple
vortex, we get

two-dimensional (quasjcondensates, which has a vortex

piercing through the center of ea¢fuasjcondensate. For 4B %
such a system our earlier ansatz in Etg) is inadequate. Mg, = 20 51 (48
For an individual condensate it is known that the presence of 3J(Bot+1) \ ok

a vortex shquld.not. change the dispersion of the monopolg\/e can see that the effective mass of the monopole mode of
mode, but 't. will I'ﬁ. the degeneracy of the quadrupole the vortex state is somewhat smaller than the effective mass
modes. Physically, this is due to the fact that the quadrupolg, he apsence of a vortex. This can be understood by com-
excitation, depending on the sign of the quantum nummer ,a.ing the relevant overlap integrals for the wave functions
travels either in the same direction of the superfluid flow onyith and without the vortex. Since thguasjcondensate
opposite to it. As the monopole mode is easier to tackle thagave function with a vortex is more extended than without a
the quadrupole modes, we start with that in Sec. IV A. Inyortex, the strength of the nearest-neighbor coupling is in-
Sec. IV B we solve for the quadrupole modes of an indi-creased and, therefore, the effective mass is reduced.
vidual two-dimensionalquasjcondensate and in Sec. IV C

we include also for the quadrupole mode the optical latticeB. Quadrupole modes of the single two-dimensional droplet in

into our discussion. the presence of a vortex

As we mentioned before the quadrupole modes are more

A. Monopole mode in the presence of a vortex complicated. For the quadrupole modes, we use the ansatz

The vortex state has a superfluid flow around the vortex ) Bor?
core. This flow diverges in the core, and for this reason thePn(r: @)1 exfli¢lexp — —
density of the condensate must vanish in the vortex core. The ,
simplest ansatz having these two desired propertie§nis (x*=y?) .
poIaFL)r coordinates g brop xex;{—e—z — e XY|[1+ a exd —2i¢]]
_ Bor? en(t)r? _ Bor? €,
D, (r,p)cr exgiolexp — 5 expg — 5 |- =rexdiolexp — - 1+cog2¢)| a— Er
(45)
€
—sin(2¢)| ia+ %yrZ) , (49)

The ansatz is almost the same as in the preceding section for
the monopole mode of the state without a vortex. The onlyyhere o« denotes a new variational parameter and the last
differences are the first two factors that give the vortex theexpression is an expansion of the first line to the first order in
properties we were after. The size of the vortex core regionthe deviations. This ansatz looks somewhat complicated, but
in Eq. (45) is about 14B, and it does not diminish as the this is needed to build in the relevant physics. This is most
number of particles is increased. This is in principle incor-easily seen by considering the noninteracting limit where the
rect, since the length scale for the vortex core size is set bwave functions are known analytically.

the coherence length, and the coherence length in the center In the noninteracting limit the vortex states with angular-
of the condensate gets smaller as the number of particles f/fomentum projections equal ta N are degenerate. This
increased. We expect that this unphysical behavior close timplies that linear superpositions of these states have the
the vortex core is not relevant to the physics of the collectivesame energy. As a result, there exists a quadrupole mode
modes at hand. In the end of the calculations we can reprowith zero frequency in this limit. To capture this mode, the
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n

as for the monopole mode and is given by E&j7). To sec-
ond order in the deviations, the various contributions to the
Lagrangian are

1.5r

o U U U U U U U 00 e “

. 3
L= —Za’a”—?(e €'+ e €xy)
0

1 S ) .
+B—O[a (€"+ ey ta"(e,—€)],

_ 3 2 2 1 ' ’ " ne _n !
LV_4_BS(|E| +|€xy| )_Z_Bo[a (€ _GXY)+a (€ +Exy)]’

0 20 40 60 80
v —i 2 2 no_ o m_t
L= (|€| +|Exy| +4Er€xy 4e 5xy)
FIG. 2. Splitting of the quadrupole modes for the Bose-Einstein 4Bo

condensate with a vortex as a function of the interaction strength. 1

The solid line is the analytical result based on the ansatz if4=y. +-[a'(e' — fzy) +a’(e"+ E)’(y)]v
and the open circles are calculated by solving the Bogoliubov—de 2

Gennes equations numerically.

Ln=UBof |a|?+ %(6,2— €%+ e;()z,— €’

variational parametet is included in the ansatz. To under- 2 Xy

stand this, assume that=0 and expand the exponent in Eq.

(49). We get 1 , ,
F{ ey 4Bo[a (5€’ + ey, +a"(5¢,—€")], (51
e _ . o
whereLt is due to the part of the Lagrangian containing the
er? €2 time derivativesl y is due to the potential energlyy is due
=1- Tcos(2¢>)— ; sin(2¢) + O( ez,eiy,eexy). to the kinetic energy, andy, is the contribution due to the
interactions between atoms.
(50 With this result we can solve for the eigenmodes of the

system. The problem is essentially that of solving the eigen-
For clarity, assume also that is real ande,,=—ie. The values of a X3 matrix. This matrix has thregenerally
disturbance then couples to the wave function nondegenerate eigenvalues and two of these correspond to
the quadrupole modes. The third mode is of no interest to us
5 . here. In this modes the deviation from the equilibrium is a
reexd—2i¢], superposition of various trap states, among whichnthe5
component has an incorrect short distance behavior that

which is the wave function of the antivortex state multiplied causes the energy of this mode to strongly increase with
by r2. This state has obviously a different energy than thdncreasing atom number. The frequencies of the quadrupole
true antivortex wave function. As a result, the ansatz withoufnodes can be calculated analytically, but the results are too
a gives a wrong frequency for this mode in the ideal-gasond to be given here. However, they do not cause any com-
limit. To avoid this problem we need the additional varia- Putational problems. In Fig. 2 we show the frequencies of the
tional parameter to give a nonvanishing amplitude for the quadrupole modes based on our ansatz and compare them
correct antivortex wave function in the ideal gas limit. The@9ainst the values computed numerically with the
fact that this ansatz really couples to the correct antivorteX80goliubov—de Gennes equatiof82]. The agreement is
wave function is most clearly seen by settiag e,,=0 in ~ VerY gooq over the wholg range of interaction strengths.

Eq. (49). Otherwise, the ansatz is very similar to the ansatz N the limit of a nearly ideal gas, the quadrupole frequen-
we used for théquasjcondensate without the vortex. In the CieS arew ,=U and w,=2. For large atom numbers the
noninteracting limit then=+ 2 mode requires coupling to a duadrupole-mode frequencies are given by

wave function with angular momentum=3 and with a

Bor?

rexdi ¢]ex;{ 5

small distance behavior that should be proportional®toln O = \/§+L (52)
Eq. (49) this is indeed the case, as can be verified by setting =2 “Jou’
a equal to 0.

Using the above ansatz we can determine the quadrupolind the splitting between the modes ds— w_,=2/U.
modes of a single two-dimensional droplet analytically forZambelli and Stringari33] used sum rules to show that the
the full parameter regime from the noninteracting limit to thesplitting between the quadrupole modes in the limit of large
Thomas-Fermi regime. The equilibrium solution is the sameatom numbers should be
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FIG. 4. Dispersion of the quadrupole mode with=2 for the

Bose-Einstein condensate with a vortex wilden0.05. The figure is
based on the wave-function ansatz in Etf). Note that for clarity,

the viewing angle is different from the previous figures.

FIG. 3. Dispersion of the quadrupole mode witl= — 2 for the
Bose-Einstein condensate with a vortex widen0.05. The figure is

based on the wave-function ansatz in Ep).

2(L)
(r?)

Herel, is thez component of the angular-momentum opera-

In the limit of large particle numbers the effective mass of

the quadrupole modes thus becomes

(53

1 and{r?)=2/B,, and
the splitting of the quadrupole modes is indeed the same as

the result based on the sum-rule approach.

tor. With our ansatz we havfl_,)

(56)

This result indicates that we expect the quadrupole modes to

C. Influence of the lattice on the quadrupole modes of the

have about three times larger effective mass than the breath-
ing mode. Again, this can be understood by overlap argu-

ments.

vortex state

Including the lattice structure makes the already compli-

In Fourier
space the nearest-neighbor interaction introduces a new term

cated equations even more complicated].
to the Hamiltonian,

V. SUMMARY AND CONCLUSIONS

We have calculated the band structure of the most impor-
tant transverse collective excitations of a stack of two-

3

(|6k|2+|6xy,k|2)

dimensional Bose-Einstein condensates in a one-dimensional
optical lattice with and without a vortex. Our variational ap-

2B2

e

proach enables us to cross over smoothly from the ideal gas
into the Thomas-Fermi regime and to treat the interlayer cou-

(54

pling without other approximations that those involved in the

variational

il

!

xy,k

"+ e

€k

"

k™€) — ai(

XY,

,(6

k

L2
BoL”

ansatz. We have also calculated the short-

4

wavelength part of the excitation spectra, which means that

in our approach neighboring sites can be completely out of

phase with each other. Using our general results for the ex-

citation frequencies

applies to the

we derived predictions for the effective

!

!

eke
resulting dispersion relations for the quadrupole modes as

function ofk and interaction strengtt.

2
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mass of the monopole and quadrupole modes. We noticed
that the effective mass is sensitive to the mode in question as

well as to the presence of a vortex. In this paper we have

Even though the general formulas are too complictated t

Bnly focused on the linear response of the system. For large

be given here, the ideal-gas limit and the Thomas-Fermi limit,,
give us simple formulas. In the limit of weak interactions we 1

, honlinear effects can become imporfdit-
3]. In particular, assumptions about a nearly homogeneous
condensate can break down as the system becomes dynami-

cally unstable towards large density modulations.

odulations

2J[coskn/

and in the limit of strong interactions or large par-

have w_,=U—2J[cosk\/2)—1] and w,=2
ticle numbers we have

2)

1]

, the kind of excitations we have discussed

in this paper can be created by modulating the radial trapping

frequencyw, as a function ofz. One possible way to excite

Experimentally

the monopole modes is to have two counterpropagating laser

(59

-4}

kA
2

o]

u

2

V

3J

4

@[1—

2v

w +
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3 T T T i the phase fluctuations are not expected to play a major role.
: : : : At nonzero temperatures phase fluctuations become more
important, but are expected to be more pronounced between
sites that are well separated. In our parameter regime the
tunneling term coupling neighboring sites will establish
phase coherence between neighbors. As a result, the two di-
mensional (quasjcondensates are not strictly two-
dimensional since they “see” the third direction through the
tunneling term. As the distance between the sites increases,
the phases become less correlated, but as we are only inter-
ested in the nearest-neighbor couplings, such effects are not
important. Consequently, we expect our model to be appli-
cable also at small but nonzero temperatures. Phase fluctua-

% 20 40 60 80 100 tions may cause a slight reduction in the strength of the
N Josephson coupling, but would leave our results otherwise
] ) unchanged.
FIG. 5. The quantity)JU as a function of the number fRb In this paper we have chosen to fix the number of atoms

In our varia-
tional approach it is not difficult to include atom number as
well as global phase fluctuations by replacing in our varia-
tional ansatzyN by N, (t)e'"n"), where N, denotes the
number of atoms and, the global phase of th@uasjcon-
beams with a Gaussian intensity profile. Due to the opticafiensate in every site. In the simplest case where we neglect
dipole force, the intensity profile of each one of the beamghe couplings with the transverse modes, we find that at long
would provide the trapping in the radial direction, while the wavelengths there exists a phonon mode with the sound ve-
interference between the beams would provide the necessalgcity

modulation. To excite equal superpositionrmof +2 quad-

atoms in the each lattice site for different lattice depths. The soliqn every two-dimensionalquasjcondensate.
line is for the depth/y=8E, , the dashed line is fov,=9E, , and
the dot dashed line is fovy=10E, . The wavelength of the laser
light was taken to ba =800 nm, and the radial trapping frequency
was o,/27m=100 Hz.

rupole modes, sheets of laser light can be considered. (UN] hw,
In the limit of large interactions the constant in front of Cs= Jit2u!| m M, (57)

the k-dependent part of the dispersion relations always scales

with Jy/U. This number is a good measure of how strong theyhich agrees exactly with the results obtained previously
effects due to the lattice are. If this number is small, the[g 16, 3g.

lattice effects are hard to distinguish experimentally from the | 3 recent experiment the Kelvin modes of a Bose-

dominant single-site result. In Fig. 5, we plbyU as a func-  Einstein condensate with a vortex were obseri). In the

tion of the on-site atom number for a few different lattice model that we have presented in this paper the vortex is

depths. As can be seen, the effects of the lattice for th@lways in the center of each pancake. In the future we plan to

modes we are considering can be very pronounced anglax this condition and consider also the dynamics of the

should be easily observable. vortex. In this manner it is possible to study the Kelvin
In the system we have discussed in this paper, émh-  modes in an optical lattice, and in particular their coupling to

sijcondensate becomes very quickly two dimensional as thehe transverse excitations, which were our main focus here.
depth of the lattice is increased. In particular, the coherence

length in the center of the two-dimension@guasjconden-
sate quickly becomes larger than the thickness of the two-
dimensional droplet. In low dimensions phase fluctuations This work was supported by the Stichting voor Funda-
are expected to be more pronound&3%—37. In our treat- menteel Onderzoek der MateiEOM), which is supported
ment we ignore such fluctuations. In a two-dimensional sysby the Nederlandse Organisatie voor Wetenschaplijk Onder-
tem there is a true condensate at zero temperature, and theoek (NWO).
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