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Excitations of a Bose-Einstein condensate in a one-dimensional optical lattice

J.-P. Martikainen* and H. T. C. Stoof†

Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
~Received 15 April 2003; published 24 July 2003!

We investigate the low-lying excitations of a stack of weakly coupled two-dimensional Bose-Einstein con-
densates, which is formed by a one-dimensional optical lattice. In particular, we calculate the dispersion
relations of the monopole and quadrupole modes, both for the ground state as well as for the case in which the
system contains a vortex along the direction of the lasers creating the optical lattice. Our variational approach
enables us to determine analytically the dispersion relations for an arbitrary number of atoms in every two-
dimensional condensate and for an arbitrary momentum. We also discuss the feasibility of observing our results
experimentally.
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I. INTRODUCTION

Cold bosons in an optical lattice provide a uniquely tu
able environment to explore quantum phenomena. Som
these phenomena have been known theoretically for q
some time, but with the advent of new experimental to
they have become a focus of attention. For example, Bl
oscillations of electrons in a metal are a standard materia
condensed-matter text books, but advances in the manip
tion of cold atoms have also made their experimental inv
tigation possible in this case@1#. In addition, diffraction of
matter waves by a pulsed optical lattice was studied
Ovchinnikovet al. @2#. Optical lattices have also enabled th
observation of some more exotic quantum phenomena s
as number squeezing@3# and collapses and revivals@4#.
Apart from these examples, Bose-Einstein condensate
optical lattices are particularly promising physical systems
study superfluid properties of Bose gases@5,6#. Very impor-
tantly, they realize the Bose-Hubbard model@7# and can be
used to investigate the quantum phase transition from
superfluid into a Mott-insulator state@7,8#. This phase tran-
sition was recently indeed observed experimentally@9#.

In this paper we present a variational method to study
excitations in a stack of weakly coupled two-dimension
~quasi!condensates. Such a system can be created by a
ing a relatively strong one-dimensional optical lattice to
ordinary three-dimensional condensate. We focus on
transverse monopole and quadrupole modes, but we
demonstrate how the method can be applied to study lo
tudinal excitations. We determine the eigenfrequencies of
monopole and quadrupole modes without any other appr
mations than those involved in our variational ansatz. In p
ticular, this means that we can smoothly cross over from
noninteracting limit to the Thomas-Fermi regime. Moreov
the longitudinal wavelength of the modulation is arbitra
i.e., nearest-neighbor sites can be completely out of ph
Using typical experimental parameters, we predict that
dispersion relations show a strong dependence on the la
potential.

*Electronic address: J.P.J.Martikainen@phys.uu.nl
†Electronic address: stoof@phys.uu.nl
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We consider the transverse excitations both for the gro
state of the gas, as well as for the case that a vortex pie
through the center of each two-dimensional~quasi!conden-
sate. We also consider the latter case, because a recen
periment observed the transverse vibrational modes of
vortex line in a trapped Bose-Einstein condensate. Th
modes are called Kelvin modes@10#. In the lattice, three-
dimensional effects~such as vortex line curvature!, are ex-
pected to be less important. Therefore, we believe that
Kelvin modes, and in particular their coupling to the tran
verse collective modes, are easier to study in a lattice tha
a cigar-shaped three-dimensional condensate. Our result
a stationary vortex represent the first necessary step tow
understanding the more complicated problem of the Kel
modes of a vortex in an optical lattice.

There is a number of important theoretical papers on
dynamics of Bose-Einstein condensates in optical lattic
For example, dynamical and modulational instabilities we
studied in Refs.@11–13# and the adiabaticity of the nonlinea
wave equations was explored by Band and Trippenbach@14#.
Massignan and Modugno derived@15# a relatively simple
way to solve the three-dimensional Gross-Pitaevskii equa
and used it to investigate the dynamics and expansion of
condensate in a one-dimensional optical lattice. Fina
Krämeret al. @16# used hydrodynamic equations to study t
low-lying collective modes of a harmonically trapped Bos
Einstein condensate in the presence of a one- or t
dimensional optical lattice. In particular, they showed th
the effect of the lattice is to renormalize the interaction co
pling constant and introduce an effective mass that acco
for the different inertia along the lattice potential. With the
changes, it is, for instance, possible to apply the results
harmonically trapped condensates obtained by Stringari@17#.

The study by Kra¨mer et al. is somewhat related to ours
The most important difference, however, is that Kra¨meret al.
are interested in different modes than we are. They deal w
low-energy excitations along the long axis of the ciga
shaped condensate, i.e., the longitudinal modes. In the
sence of a magnetic trap, they correspond to the Bogoliu
modes with the familiar phonon spectra at large waveleng
In the presence of a harmonic trap the spectrum beco
discrete, and the lowest energetic modes are the cente
mass mode and the~longitudinal! quadrupole mode. The
©2003 The American Physical Society10-1
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transverse modes we are interested in have superfluid fl
orthogonal to the long axis of the condensate. Moreover
the z direction along the lasers of the optical lattice the co
densate is, for simplicity, treated as completely periodic.
we see later, we take in first instance the atom numbe
each two-dimensional~quasi!condensate to be constant a
equal in every site. This removes the Bogoliubov mod
from the excitation spectrum, since they correspond to a d
sity modulation propagating along thez axis. If desired, they
can, however, be easily incorporated into our approach.
deed, at the end of the paper we briefly discuss the co
sponding sound mode when the atom number in each t
dimensional~quasi!condensate is allowed to fluctuate.

There are several experiments on condensates in a
dimensional optical lattices@1,5,6,18–20#, but none of these
address the problem we consider in this paper. Fortet al.
@20# measured longitudinal excitation frequencies of the c
densate in the presence of a one-dimensional optical lat
and this is the experimental paper most closely related to
work. In particular, for the breathing mode Fortet al. @20# do
not report any dependence on the lattice depth, and this
agreement with our result as well as with the result
Krämer et al. @16#. While we do not predict dependence o
the lattice depth, we do predict dependence on the mod
tion of the excitation along thez axis. In particular, we ex-
pect changes in the eigenfrequency if the sites are ou
phase with each other, and these changes can be larg
typical experimental parameters. So far, such phenom
have not been probed experimentally.

The paper is organized as follows. In Sec. II, we der
the theory used in this paper. In Sec. III, we apply this the
to a Bose-Einstein condensate without vortices and calcu
the dispersion relation of the monopole and quadrup
modes in the presence of a lattice. In Sec. IV, we proceed
repeating similar calculation for the vortex state of the Bo
Einstein condensate. We end with a discussion of our res
in Sec. V.

II. GROSS-PITAEVSKII THEORY

Our starting point is a cigar-shaped Bose-Einstein cond
sate trapped by the potential

V~r !5
M

2
~v r

2r 21vz
2z2!, ~1!

wherev r and vz are the radial and axial trapping freque
cies, respectively, andM is the atomic mass. As we assume
cigar-shaped trap, we further have thatvz!v r . The conden-
sate also experiences a one-dimensional optical lattice,

V0~r !5V0 sin2S 2pz

l D , ~2!

whereV0 is the lattice depth andl is the wavelength of the
laser light. We assume that the lattice is deep enough so
it dominates over the magnetic trapping potential in thz
direction. When this is true and the number of lattice site
01361
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large, i.e.,l! l z5A\/Mvz, we can, in first instance, ignor
the magnetic trapping potential in thez direction.

The lattice potential splits the condensate intoNs two-
dimensional ~quasi!condensates with a two-dimension
droplet shape. We assume that the lattice is sufficiently d
such that its depth is larger than the chemical potential of
two-dimensional~quasi!condensate@21#. Using a Thomas-
Fermi approximation for the two-dimensional~quasi!conden-
sates, we obtain a lower boundary that can be expresse

V0@29/7FNaS Mv r

\l2 D 1/4G 4/7

\v r , ~3!

whereN is the number of atoms per site anda is the three-
dimensional scattering length. As a numerical example,
take a 87Rb condensate in a trap with a radial trapping fr
quencyv r /2p5100 Hz and a laser-light wavelength ofl
5800 nm. When the atom number in each site is betw
100 and 1000, the lower bound on the trap depthV0 is be-
tween 0.05Er and 0.19Er , whereEr5\2(2p/l)2/2M is the
recoil energy of an atom that absorbed one photon from
laser beam.

Although we are interested in a deep lattice, we consi
here only the case that there is still full coherence across
condensate array. Specifically, this means that the lattice
tential should not be so deep as to induce a Mott-insula
transition. Typically, the required lattice depth to reach t
Mott-insulator transition in a three-dimensional lattice with
filling factor of 1 is of the order of 10Er . In a one-
dimensional lattice, the number of atoms in each lattice
is typically much larger than in a three-dimensional latti
and the transition into the insulating state requires a m
deeper lattice. In mean-field theory the Mott-insulator tran
tion in such a system occurs whenUR.8NJ @22#, whereUR
andJ are, respectively, the characteristic renormalized in
action and hopping parameters of the effective single-m
Bose-Hubbard model with Hamiltonian

Ĥ52J(
^ i , j &

b̂ j
†b̂i1

UR

2 (
i

n̂i~ n̂i21!. ~4!

Using the same numerical values as in the previous p
graph, we estimate the critical lattice depth for the Mo
insulator transition to be between 56Er and 82Er , when the
number of atoms in each site is again between 100 and 1
To the best of our knowledge, the Mott-insulator transition
a one-dimensional optical lattice has not yet been observ

We use trap units from now on, i.e., the unit of energy
\v r , the unit of time is 1/v r , and the unit of length isl r

5A\/Mv r . The Gross-Pitaevskii energy functional, whic
describes the system at low temperatures, is then

E@C* ,C#5E dr H 2
1

2
C* ~r !¹2C~r !1F1

2
~x21y2!

1
V0~r !

\v r
1

T2B

2
uC~r !u2G uC~r !u2J , ~5!
0-2
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whereT2B is the two-bodyT matrix. In the above units the
latter is related to the three-dimensionals-wave scattering
lengtha throughT2B54pa/ l r .

For a deep lattice potential it is natural to expand
condensate wave function in terms of wave functions that
well localized in the sites. More precisely, we expand

C~r !5(
n

w~z2zn!Fn~x,y!, ~6!

wheren labels the lattice sites andzn5ln/2l r is the position
of thenth site. For now we do not specify the wave functio
Fn(x,y) of the two-dimensional~quasi!condensates, but fo
the wave function in thez direction, w(z), we use the
ground-state wave function of the harmonic approximat
to the lattice potential near the lattice minimum. This h
monic trap has the frequency

vL5
2p

l
A2V0 /M , ~7!

and the wave functionw(z) is thus given by

w~z!5
1

p1/4Al L

expS 2
z2

2l L
2D , ~8!

wherel L5A\/MvL.
Substituting the above ansatz into the energy functio

and ignoring all but the nearest-neighbor interactions, we
the energy functional

E@F* ,F#5(
n
E d2r H 2

1

2
Fn* ~x,y!¹2Fn~x,y!

1F1

2
~x21y2!1

U2D

2
uFn~x,y!u2G uFn~x,y!u2

2J (
^n,m&

E d2rFm* ~x,y!Fn~x,y!J , ~9!

where^n,m& indicates nearest neighbors, and

U2D5T2BE dzuw~z!u454Ap

2 S a

l L
D ~10!

is the two-dimensional coupling strength. Moreover,J is the
strength of the Josephson coupling between neighbo
sites, and we have

J52E dzw* ~z!F2
1

2

]2

]z2
1

V0~z!

\v r
Gw~z1l/2l r !.

~11!

With these assumptions,J is a time-independent experimen
tally defined parameter. Approximating the lattice poten
near its maximum by an upside-down parabolic potential
can calculate the Gaussian integral, with the result
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J5
1

8p2 S vL

v r
D 2S l

l r
D 2Fp2

4
21Ge2(l/4l L)2

. ~12!

The energy functional in Eq.~9! is now almost two di-
mensional. The third dimension is visible only in the la
term that describes the coupling between neighboring lay
The energy is characterized by two parametersU2D and J,
both of which are experimentally tunable. The importance
the on-site interaction term proportional toU2D can be en-
hanced by increasing the number of particles in the sites
by making the lattice deeper. Deepening the lattice also
creases the strength of the Josephson couplingJ and makes
the sites more independent. It should be noted that whileJ is
tunable, it is always positive. Physically, this means th
there is always an energetic penalty for having a phase
ference between sites.

III. EXCITATIONS OF THE CONDENSATE GROUND
STATE

In this section we study the transverse excitations of
ground state of the stack of two-dimensional~quasi!conden-
sates. Using a Gaussian ansatz for the wave functions o
~quasi!condensates, we solve the dispersion relations for
monopole and the quadrupole modes analytically. In S
III A we introduce the Gaussian ansatz and solve the exc
tions for an individial two-dimensional~quasi!condensate. In
Sec. III B we proceed to calculate the band structure of
monopole and quadrupole modes in the optical lattice. Th
sections also include technical details about the calculatio
Such details are not repeated in Sec. IV where we cons
the vortex state.

A. Excitations for a single two-dimensional„quasi…condensate

To account for the monopole and quadrupole modes of
two-dimensional~quasi!condensates in every site, we use
general Gaussian ansatz for the wave functions, i.e.,

Fn~x,y,t !5Cn~ t !expF2
1

2
@Bxx,n~ t !x21Byy,n~ t !y2

12Bxy,n~ t !xy#G . ~13!

All three variational parameters Bi j ,n(t)[Bi j ,n8 (t)
1 iBi j ,n9 (t) are complex. From now on, we always use
prime to denote the real part of a complex quantity and
double prime to denote its imaginary part. The wave fun
tions are normalized to the number of particlesN at the site,
and therefore

Cn~ t !5AN

p
@Bxx,n8 ~ t !Byy,n8 ~ t !2Bxy,n8 ~ t !2#1/4. ~14!

As we fix the number of particles in every site, we are e
cluding the Bogoliubov modes propagating along thez axis.
It is, however, not difficult to account also for these modes
0-3
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we show later on. The equations of motion for the variatio
parameters can be derived from the Lagrangian

L@F* ,F#5
i

2E d2r S (
n

Fn* ~x,y,t !
]Fn~x,y,t !

]t

2Fn~x,y,t !
]Fn* ~x,y,t !

]t D 2E@F* ,F#.

~15!

Let us first investigate the behavior of an individual tw
dimensional~quasi!condensate. Without the interlayer co
pling, the part of the Lagrangian quadratic in the deviatio
e i j (t) turns out to be equal to

L

N
52

1

4B0
2 ~exx8 ėxx9 1eyy8 ėyy9 12exy8 ėxy9 !1

U

B0
F ~exx8 2eyy8 !2

8

1
exy8

2

2 G12S 1

2B0
3

1
1

2B0
D ~exx8

21eyy821exx8 eyy8 1exy8
2!

1S 1

4B0
3

1
3

4B0
D ~exx8 1eyy8 !22

1

4B0
@~exx8 1eyy8 !2

12exx8 eyy8 1exx9
21eyy9212exy9

2#, ~16!

where

U5
N

A2p
S a

l r
DAvL

v r
. ~17!

We also defined the equilibrium solution ofBii (t) as B0.
Hence,Bi j (t)5B0d i j 1e i j (t). We also suppressed the si
indexn. The equilibrium solutionB0 is given by minimizing
the zeroth-order term of the energy, i.e.,

E05
1

2B0
1

B0

2
1UB0 , ~18!

with the result

B05A 1

112U
. ~19!

In Eq. ~16! we show only the part relevant for the dynami
and we ignored the zeroth-order term, whose minimizat
leads to the result in Eq.~19!.

We are now in a position to find the frequencies for t
collective excitations we are interested in. Let us start w
the monopolem50 mode, which is alternatively also calle
the breathing mode. For the monopole mode we can seexx
5eyy5e and exy50. With this choice the Lagrangian i
greatly simplified to

L

N
52

1

2B0
2 Fe8ė92

1

B0
e822B0e92G . ~20!
01361
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The equations of motion fore8 and e9 are the Euler-
Lagrange equations that result in two first-order differen
equations,

ė812B0e950,

2 ė91
2

B0
e850. ~21!

These equations can be cast into a single second-order
ferential equation fore8,

ë8524e8, ~22!

which describes sinusoidal oscillation with a frequency of
The frequency of the monopole mode is therefore

v052, ~23!

and it is independent of the strength of interactions. This is
agreement with previous results@23#.

The quadrupolem562 modes are captured by the choi
exx52eyy5e. We then have just two~complex! variational
parameters,e and exy . In the Lagrangian in Eq.~16! there
are no terms that couplee to exy . Therefore, the dynamics o
these parameters separates, and both turn out to have
same oscillation frequency. Above we gave the necess
technical details in the derivation of the monopole-mode f
quency. As the quadrupole-mode frequency can be dealt
in a similar fashion, we simply give the result. Th
quadrupole-mode frequencies are given by

v625A212B0
2. ~24!

For the ideal gas,B051 and the quadrupole frequency
again 2. In the Thomas-Fermi limit,B0 tends to zero and the
quadrupole frequencies approachv62→A2. Again, this re-
sult is as expected@17,24,25#. Our treatment also capture
the scissors mode@26#, but in the axial symmetric case w
are considering here, the scissors mode turns out to be
generate with the quadrupole mode.

Incidentally, it should be remembered that the degener
of the quadrupole modes is lifted in a rotating trap. If the tr
is rotating with frequencyV around thez axis, we should
include a term2V^Lz& into the energy functional, where
^Lz& is the expectation value of the angular-momentum co
ponent in thez direction. The angular momentum of th
equilibrium solution is zero and the new term will only co
tribute in second order. The new contribution to the energ

2V^Lz&5
V

B0
2 @exy8 e92exy9 e8#. ~25!

This term couples the dynamics ofe andexy , but the result-
ing 232 matrix problem is easy to solve. The quadrupo
mode frequencies in a rotating trap are

v625A2@~11B0
2!1/26A2V#. ~26!
0-4
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From this result it is clear that the quadrupole mode w
m522 becomes thermodynamically unstable whenV
.A(11B0

2)/2. This result corresponds to the Landau cri
rion for the quadrupole modes, and has been shown to
an important role in the nucleation of vortices@27–31#.

B. Influence of the lattice on the excitation frequencies

We are now in the position to discuss the influence of
lattice potential. To make progress we must determine
coupling integral

I mn5E d2rFm* ~x,y!Fn~x,y! ~27!

to a sufficient accuracy. This will contribute to the energy
Josephson coupling

HJ52J (
^n,m&

I mn8 , ~28!

where thê n,m& indicates nearest neighbors. Here the ima
nary part ofI mn is not relevant since its contribution to th
energy vanishes when the sum over the nearest-neighbo
calculated. For the monopole mode we get, up to sec
order in the deviations, the result

I mn8

N
512

1

8B0
2 ~en8

21em8
212en9

212em9
2!1

1

4B0
2
en8em8

1
1

2B0
2
en9em9 , ~29!

and for the quadrupole mode we have

I mn8

N
512

1

8B0
2 ~ uenu21uemu21uexy,nu21uexy,mu2!

1
1

4B0
2 ~en8em8 1en9em9 1exy,n8 exy,m8 1exy,n9 exy,m9 !.

~30!

In these formulas the first subindex ofexy,n identifies the
variational parameter in question and the second one i
cates the lattice site. For identical nearest-neighbor w
functions the overlap integralI mn should be exactlyN, which
is indeed the case in both Eqs.~29! and ~30!.

Some terms in Eqs.~29! and ~30! are purely on site, bu
terms of the typeenem are not. This complication is rem
edied by going to Fourier space. We define the Fourier tra
form in such a way that the functionf n in coordinate space is
expressed in terms of its transformf k as

f n5
1

ANs
(

k52(2p/l)[12(1/Ns)]

(2p/l)[12(1/Ns)]

exp@ ikzn# f k . ~31!
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Here Ns is the number of lattice sites which we, for not
tional convenience, assume to be an odd number. Moreo
k is the wave number and the lattice spacing isd5l/2.

First we transform the diagonal terms in the Lagrangi
For example,

(
n

f n
25(

n

1

Ns
(
k,k8

f kf k8exp@ izn~k1k8!#

5(
k

f kf 2k

5(
k

u f ku2, ~32!

where the sum over the lattice sitesn gave the Kronecker
deltadk8,2k which removed one of the momentum sums. T
last step is a result of the fact thatf n was a real function, so
f k* 5 f 2k . Nearest-neighbor terms are somewhat more co
plicated. As an example,

(
^n,m&

f nf m5
1

2Ns
(

n
(
k,k8

f kf k8$exp@ i ~kzn1k8zn11!#

1exp@ i ~kzn1k8zn21!#%. ~33!

We can perform the sum overn and get

(
^n,m&

f nf m5(
k,k8

cos~k8l/2! f kf k8dk8,2k5(
k

cos~kl/2!u f ku2.

~34!

In Fourier space the Josephson couplingHJ generally thus
introduces factors of cos(kl/2)21 into the Lagrangian.

Now that we know how to transform to Fourier space, w
can proceed to derive equations of motion for each value
the wave vectork. Since two different values of the wav
vectors do not couple, this is not technically any more co
plicated than our previous treatment of an individual~quasi!-
condensate. The equations for each wave vector can
solved separately. We demonstrate this again for the simp
case, namely, the breathing mode. Let the Fourier transf
of en be ek . In Fourier space the Lagrangian for the brea
ing mode is

L52
1

2B0
2 H(k

ek8* ėk91H 1

B0
2JFcosS kl

2 D21G J uek8u
2

1FB022JS cosS kl

2 D21D G uek9u
2J . ~35!

Keeping in mind thate2k5ek* , we get equations of motion
for ek8 andek9 . For example, by considering the variation
the Lagrangian with respect toe2k9 we get

ėk822H B022JFcosS kl

2 D21G J ek950, ~36!
0-5
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and by considering variations with respect toe2k8 we get the
differential equation forek9 ,

ėk912H 1

B0
2JFcosS kl

2 D21G J ek850. ~37!

The dispersion relation for the monopole mode can now
simply read out from this pair of equations. The quadrup
modes can be dealt with in the same way although the e
tions are somewhat longer.

For convenience we assume that the contribution fr
terms proportional toJ2 are very small. With this simplifica-
tion we get the dispersion relations for the monopole a
quadrupole modes,

v0~k!52H 12JS B01
2

B0
D FcosS kl

2 D21G J 1/2

, ~38!

v62~k!5A2H 11B0
22JS 3B01

1

B0
D FcosS kl

2 D21G J 1/2

.

~39!

We emphasize that our results where terms under the sq
root proportional toJ2 are ignored should be used with som
caution. The terms proportional toJ2 are not always negli-
gible compared to the other contributions. In particular, if t
trap depth or the on-site number of particles is small, ther
a range of experimentally relevant parameter values wh
terms proportional toJ2 can be relatively large and should b
included. They will not change the qualitative behavior
the dispersion relations, but can affect quantitative resu
While we choose to work in the regime where terms prop
tional toJ2 are small, it is not difficult to include these mis
ing terms. For example, Eqs.~36! and ~37! show that the
exact frequency for the monopole mode obeys

v0
2~k!54H B022JFcosS kl

2 D21G J H 1

B0
2JFcosS kl

2 D21G J .

~40!

In Fig. 1 we show the dispersion relation for the monop
mode as a function ofk andU.

In the limit of long wavelengths, it is permissible to e
pand the cosine factors. The excitation has then the s
dispersion as that of a free-particleD1\2k2/2m* with some
effective massm* and a gapD. For the monopole mode we
therefore, predict an effective mass

m0* 5
4B0

J~B0
212!

S \

v rl
2D , ~41!

and for the quadrupole mode we get

m62* 5
4B0A2

J~3B0
211!

S \

v rl
2D . ~42!

It is quite interesting to observe that the effective masse
different modes are different. In particular, the effective m
of the quadrupole mode is bigger than the effective mas
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the monopole mode. This can be understood by conside
the overlap integral between neighboring sites. For
monopole mode the coupling between the nearest neigh
is, to a large extent, determined by the integral

E d2r uF0~x,y!u2~x21y2!2,

whereF0(x,y) is the equilibrium wave function. In contras
for the quadrupole mode the coupling is determined by
integral

E d2r uF0~x,y!u2~x22y2!2.

It is clear that the latter integral is smaller than the first o
As the effective mass is inversily proportional to the stren
of the nearest-neighbor coupling, the quadrupole mode th
fore has a bigger effective mass.

The fact that the dispersion relation is similar to the fre
particle dispersion relation is reflected in the dynamics
sinusoidal modulation moves with velocityv.\^k&/m* in
the z direction. In a finite system a pure sinusoidal modu
tion is not possible and the excitation corresponds to a w
packet centered around̂k& and with some nonzero width
Dk. If the system is large enough, i.e., much bigger th
2p/Dk, the width of the packet can be small and one sho
be able to observe such propagation before the excitation
the outer edge of the condensate.

More generally, we can expand the dispersion relat
around any value of the wave vector. In terms of a funct
C(J,B0) that depends on the mode in question, the excitat
energy up to lowest order inJ looks like

v~k!5v~0!1C~J,B0!FcosS kl

2 D21G . ~43!

Expanding this expression aroundk0, we get

FIG. 1. Monopole-mode frequency as a function ofk and U,
whenJ50.05. The surface in this figure was calculated using E
~38!.
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v~k!'v~k0!2C~J,B0!Fl2 sinS k0l

2 D ~k2k0!

1
l2

8
cosS k0l

2 D ~k2k0!2G . ~44!

When k050 we get the results for the effective masses
presented earlier, but some special cases are also of inte
In particular, whenkl/25p, we obtain the same expansio
as with k50, but the constant in front of (k2k0)2 has a
negative sign. In this regime the effective mass is theref
negative. In the regime of a negative effective mass one
counters modulational instabilities as discussed in Refs.@11–
13#.

IV. EXCITATIONS OF THE VORTEX STATE

In this section we consider a system of weakly coup
two-dimensional ~quasi!condensates, which has a vorte
piercing through the center of each~quasi!condensate. Fo
such a system our earlier ansatz in Eq.~13! is inadequate.
For an individual condensate it is known that the presenc
a vortex should not change the dispersion of the monop
mode, but it will lift the degeneracy of the quadrupo
modes. Physically, this is due to the fact that the quadrup
excitation, depending on the sign of the quantum numbem,
travels either in the same direction of the superfluid flow
opposite to it. As the monopole mode is easier to tackle t
the quadrupole modes, we start with that in Sec. IV A.
Sec. IV B we solve for the quadrupole modes of an in
vidual two-dimensional~quasi!condensate and in Sec. IV C
we include also for the quadrupole mode the optical latt
into our discussion.

A. Monopole mode in the presence of a vortex

The vortex state has a superfluid flow around the vor
core. This flow diverges in the core, and for this reason
density of the condensate must vanish in the vortex core.
simplest ansatz having these two desired properties is~in
polar coordinates!

Fn~r ,f!}r exp@ if#expF2
B0r 2

2 GexpF2
en~ t !r 2

2 G .
~45!

The ansatz is almost the same as in the preceding sectio
the monopole mode of the state without a vortex. The o
differences are the first two factors that give the vortex
properties we were after. The size of the vortex core reg
in Eq. ~45! is about 1/AB0 and it does not diminish as th
number of particles is increased. This is in principle inc
rect, since the length scale for the vortex core size is se
the coherence length, and the coherence length in the ce
of the condensate gets smaller as the number of particle
increased. We expect that this unphysical behavior clos
the vortex core is not relevant to the physics of the collect
modes at hand. In the end of the calculations we can re
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duce the known results for the individual two-dimension
droplet to a good accuracy, and thus our expectations
indeed well justified.

Using similar techniques as for the condensate withou
vortex, we calculate the monopole mode of a condens
with a vortex as

v0~k!52H 123JS B01
1

B0
D FcosS kl

2 D21G J 1/2

, ~46!

where we have again assumed thatJ2 terms under the squar
root can be ignored. The equilibrium solution is now giv
by

B05A 2

21U
. ~47!

The result is similar to Eq.~38!, but the constant in front of
the cosine term is different indicating a difference in t
effective mass. For the monopole mode in the presence
vortex, we get

m0,v* 5
4B0

3J~B0
211!

S \

v rl
2D . ~48!

We can see that the effective mass of the monopole mod
the vortex state is somewhat smaller than the effective m
in the absence of a vortex. This can be understood by c
paring the relevant overlap integrals for the wave functio
with and without the vortex. Since the~quasi!condensate
wave function with a vortex is more extended than withou
vortex, the strength of the nearest-neighbor coupling is
creased and, therefore, the effective mass is reduced.

B. Quadrupole modes of the single two-dimensional droplet in
the presence of a vortex

As we mentioned before the quadrupole modes are m
complicated. For the quadrupole modes, we use the ans

Fn~r ,f!}r exp@ if#expF2
B0r 2

2 G
3expF2e

~x22y2!

2
2exyxyG†11a exp@22if#‡

.r exp@ if#expF2
B0r 2

2 GF11cos~2f!S a2
e

2
r 2D

2sin~2f!S ia1
exy

2
r 2D G , ~49!

where a denotes a new variational parameter and the
expression is an expansion of the first line to the first orde
the deviations. This ansatz looks somewhat complicated,
this is needed to build in the relevant physics. This is m
easily seen by considering the noninteracting limit where
wave functions are known analytically.

In the noninteracting limit the vortex states with angula
momentum projections equal to6N are degenerate. Thi
implies that linear superpositions of these states have
same energy. As a result, there exists a quadrupole m
with zero frequency in this limit. To capture this mode, t
0-7
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variational parametera is included in the ansatz. To unde
stand this, assume thata50 and expand the exponent in E
~49!. We get

expF2e
~x22y2!

2
2exyxyG

512
e r 2

2
cos~2f!2

exy r 2

2
sin~2f!1O~e2,exy

2 ,eexy!.

~50!

For clarity, assume also thate is real andexy52 i e. The
disturbance then couples to the wave function

r exp@ if#expF2
B0r 2

2 G r 2 exp@22if#,

which is the wave function of the antivortex state multipli
by r 2. This state has obviously a different energy than
true antivortex wave function. As a result, the ansatz with
a gives a wrong frequency for this mode in the ideal-g
limit. To avoid this problem we need the additional vari
tional parametera to give a nonvanishing amplitude for th
correct antivortex wave function in the ideal gas limit. T
fact that this ansatz really couples to the correct antivor
wave function is most clearly seen by settinge5exy50 in
Eq. ~49!. Otherwise, the ansatz is very similar to the ans
we used for the~quasi!condensate without the vortex. In th
noninteracting limit them512 mode requires coupling to
wave function with angular momentumm53 and with a
small distance behavior that should be proportional tor 3. In
Eq. ~49! this is indeed the case, as can be verified by set
a equal to 0.

Using the above ansatz we can determine the quadru
modes of a single two-dimensional droplet analytically
the full parameter regime from the noninteracting limit to t
Thomas-Fermi regime. The equilibrium solution is the sa

FIG. 2. Splitting of the quadrupole modes for the Bose-Einst
condensate with a vortex as a function of the interaction stren
The solid line is the analytical result based on the ansatz in Eq.~49!
and the open circles are calculated by solving the Bogoliubov
Gennes equations numerically.
01361
e
t

s

x

z

g

le
r

e

as for the monopole mode and is given by Eq.~47!. To sec-
ond order in the deviations, the various contributions to
Lagrangian are

LT522a8ȧ92
3

2B0
2 ~e8ė91exy8 ėxy9 !

1
1

B0
@a8~ ė91 ėxy8 !1a9~ ėxy9 2 ė8!#,

LV5
3

4B0
3 ~ ueu21uexyu2!2

1

2B0
@a8~e82exy9 !1a9~e91exy8 !#,

LK5
1

4B0
~ ueu21uexyu214e rexy9 24e9exy8 !

1
1

2
@a8~e82exy9 !1a9~e91exy8 !#,

LNL5UB0H uau21
3

8B0
2 ~e822e921exy8

22exy9
2!

2
1

4B0
@a8~5e81exy9 !1a9~5exy8 2e9!#J , ~51!

whereLT is due to the part of the Lagrangian containing t
time derivatives,LV is due to the potential energy,LK is due
to the kinetic energy, andLNL is the contribution due to the
interactions between atoms.

With this result we can solve for the eigenmodes of t
system. The problem is essentially that of solving the eig
values of a 333 matrix. This matrix has three~generally!
nondegenerate eigenvalues and two of these correspon
the quadrupole modes. The third mode is of no interest to
here. In this modes the deviation from the equilibrium is
superposition of various trap states, among which them55
component has an incorrect short distance behavior
causes the energy of this mode to strongly increase w
increasing atom number. The frequencies of the quadrup
modes can be calculated analytically, but the results are
long to be given here. However, they do not cause any c
putational problems. In Fig. 2 we show the frequencies of
quadrupole modes based on our ansatz and compare
against the values computed numerically with t
Bogoliubov–de Gennes equations@32#. The agreement is
very good over the whole range of interaction strengths.

In the limit of a nearly ideal gas, the quadrupole freque
cies arev225U and v252. For large atom numbers th
quadrupole-mode frequencies are given by

v625A26
1

A2U
, ~52!

and the splitting between the modes isv22v225A2/U.
Zambelli and Stringari@33# used sum rules to show that th
splitting between the quadrupole modes in the limit of lar
atom numbers should be

n
h.

e
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v22v225
2^Lz&

^r 2&
. ~53!

HereLz is thez component of the angular-momentum ope
tor. With our ansatz we havêLz&51 and^r 2&52/B0, and
the splitting of the quadrupole modes is indeed the sam
the result based on the sum-rule approach.

C. Influence of the lattice on the quadrupole modes of the
vortex state

Including the lattice structure makes the already com
cated equations even more complicated@34#. In Fourier
space the nearest-neighbor interaction introduces a new
to the Hamiltonian,

HJ52J(
k

FcosS kl

2 D21G H 2uaku21
3

2B0
2 ~ ueku21uexy,ku2!

1
2

B0
@ak8~exy,k9 2ek8!2ak9~ek91exy,k8 !#J , ~54!

whereak8 is the Fourier transform of the real part ofan , ek8
is the Fourier transform of the real part ofe, andexy,k8 is the
Fourier-transform of the real part ofexy . Similar notation
applies to the imaginary parts and, for example,ueku2

5ek8e2k8 1ek9e2k9 . In Figs. 3 and 4 we show in detail th
resulting dispersion relations for the quadrupole modes
function of k and interaction strengthU.

Even though the general formulas are too complictated
be given here, the ideal-gas limit and the Thomas-Fermi li
give us simple formulas. In the limit of weak interactions w
have v225U22J@cos(kl/2)21# and v25222J@cos(kl/
2)21#, and in the limit of strong interactions or large pa
ticle numbers we have

v62,v5A2H 12
3J

4
AU

2 FcosS kl

2 D21G J . ~55!

FIG. 3. Dispersion of the quadrupole mode withm522 for the
Bose-Einstein condensate with a vortex whenJ50.05. The figure is
based on the wave-function ansatz in Eq.~49!.
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In the limit of large particle numbers the effective mass
the quadrupole modes thus becomes

m62,v* 5
16

3JAU
S \

v rl
2D . ~56!

This result indicates that we expect the quadrupole mode
have about three times larger effective mass than the bre
ing mode. Again, this can be understood by overlap ar
ments.

V. SUMMARY AND CONCLUSIONS

We have calculated the band structure of the most imp
tant transverse collective excitations of a stack of tw
dimensional Bose-Einstein condensates in a one-dimensi
optical lattice with and without a vortex. Our variational a
proach enables us to cross over smoothly from the ideal
into the Thomas-Fermi regime and to treat the interlayer c
pling without other approximations that those involved in t
variational ansatz. We have also calculated the sh
wavelength part of the excitation spectra, which means
in our approach neighboring sites can be completely ou
phase with each other. Using our general results for the
citation frequencies, we derived predictions for the effect
mass of the monopole and quadrupole modes. We not
that the effective mass is sensitive to the mode in questio
well as to the presence of a vortex. In this paper we h
only focused on the linear response of the system. For la
modulations, nonlinear effects can become important@11–
13#. In particular, assumptions about a nearly homogene
condensate can break down as the system becomes dyn
cally unstable towards large density modulations.

Experimentally, the kind of excitations we have discuss
in this paper can be created by modulating the radial trapp
frequencyv r as a function ofz. One possible way to excite
the monopole modes is to have two counterpropagating l

FIG. 4. Dispersion of the quadrupole mode withm52 for the
Bose-Einstein condensate with a vortex whenJ50.05. The figure is
based on the wave-function ansatz in Eq.~49!. Note that for clarity,
the viewing angle is different from the previous figures.
0-9
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beams with a Gaussian intensity profile. Due to the opt
dipole force, the intensity profile of each one of the bea
would provide the trapping in the radial direction, while th
interference between the beams would provide the neces
modulation. To excite equal superposition ofm562 quad-
rupole modes, sheets of laser light can be considered.

In the limit of large interactions the constant in front
thek-dependent part of the dispersion relations always sc
with JAU. This number is a good measure of how strong
effects due to the lattice are. If this number is small,
lattice effects are hard to distinguish experimentally from
dominant single-site result. In Fig. 5, we plotJAU as a func-
tion of the on-site atom number for a few different latti
depths. As can be seen, the effects of the lattice for
modes we are considering can be very pronounced
should be easily observable.

In the system we have discussed in this paper, each~qua-
si!condensate becomes very quickly two dimensional as
depth of the lattice is increased. In particular, the cohere
length in the center of the two-dimensional~quasi!conden-
sate quickly becomes larger than the thickness of the t
dimensional droplet. In low dimensions phase fluctuatio
are expected to be more pronounced@35–37#. In our treat-
ment we ignore such fluctuations. In a two-dimensional s
tem there is a true condensate at zero temperature, and

FIG. 5. The quantityJAU as a function of the number of87Rb
atoms in the each lattice site for different lattice depths. The s
line is for the depthV058Er , the dashed line is forV059Er , and
the dot dashed line is forV0510Er . The wavelength of the lase
light was taken to bel5800 nm, and the radial trapping frequenc
wasv r /2p5100 Hz.
ys
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the phase fluctuations are not expected to play a major r
At nonzero temperatures phase fluctuations become m
important, but are expected to be more pronounced betw
sites that are well separated. In our parameter regime
tunneling term coupling neighboring sites will establi
phase coherence between neighbors. As a result, the tw
mensional ~quasi!condensates are not strictly two
dimensional since they ‘‘see’’ the third direction through t
tunneling term. As the distance between the sites increa
the phases become less correlated, but as we are only i
ested in the nearest-neighbor couplings, such effects are
important. Consequently, we expect our model to be ap
cable also at small but nonzero temperatures. Phase fluc
tions may cause a slight reduction in the strength of
Josephson coupling, but would leave our results otherw
unchanged.

In this paper we have chosen to fix the number of ato
in every two-dimensional~quasi!condensate. In our varia
tional approach it is not difficult to include atom number
well as global phase fluctuations by replacing in our var
tional ansatzAN by ANn(t)einn(t), where Nn denotes the
number of atoms andnn the global phase of the~quasi!con-
densate in every site. In the simplest case where we neg
the couplings with the transverse modes, we find that at l
wavelengths there exists a phonon mode with the sound
locity

cs5A UJ

A112U
S \v r

m Dl/ l r , ~57!

which agrees exactly with the results obtained previou
@8,16,38#.

In a recent experiment the Kelvin modes of a Bos
Einstein condensate with a vortex were observed@10#. In the
model that we have presented in this paper the vortex
always in the center of each pancake. In the future we pla
relax this condition and consider also the dynamics of
vortex. In this manner it is possible to study the Kelv
modes in an optical lattice, and in particular their coupling
the transverse excitations, which were our main focus he
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