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Estimation of unitary quantum operations
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Department of Mathematics, University of Utrecht, Box 80010, 3508 TA Utrecht, The Netherlands
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The problem of optimally estimating an unknown unitary quantum operation with the aid of entanglement is
addressed. The idea is to prepare an entangled pair, apply the unknown unitary to one of the two parts, and then
measure the joint output state. This measurement could be an entangled one or it could be separable~e.g.,
measurements which can be implemented with local operations and classical communication or LOCC!. A
comparison is made between these possibilities and it is shown that by using nonseparable measurements one
can improve the accuracy of the estimation by a factor of 2(d11)/d whered is the dimension of the Hilbert
space on whichU acts.
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I. INTRODUCTION

Consider a one-qubit unitary gate, the following quest
arises: ‘‘how to characterize it?’’ This question is motivat
by recent experiments in quantum optics@1#. A possible ap-
proach is to prepare many known states and use them
inputs, and then measure the outputs that they produce;
is known asquantum process tomography@2#. It turns out
that one needs as inputs a basis of the Hilbert space
some linear combinations thereof. The disadvantage of
approach is that, in many practical situations, such a se
states is not feasible in the laboratory@1#.

Another strategy is described in Refs.@1,3,4#. It is enough
to use a single bipartite entangled state; one of the state
used as input for the quantum operation and nothing is d
to the other one, then the two qubits are measured, as sh
in Fig. 1.

In Ref. @1# it is pointed out that in this setup there is a o
to one correspondence between the quantum operation
the joint output state. A maximally entangled state is used
input and then the three components of the spin in both
put particles are measured. One can ask whether it is pos
to find a more accurate measurement. Also, is it possibl
find a measurement that performs as well as the one in
@1# which has less outcomes? It will turn out that the answ
is that one can find a more accurate measurement but
measurement is nonseparable. It is also possible to fin
measurement with less outcomes.

In Ref. @3# it is proven that a maximally entangled pu
state is a good input state in the sense that ifuf&PC2

^ C2 is
maximally entangled, then

; r on C2
^ C2, Hr~u!<H uf&^fu~u!,

where Hr(u0) is the quantum Fisher information matr
~QFI! for the joint output state, atu5u0, if the input state is
r. This quantity is defined for example in Ref.@5# and ex-
plained in more detail in the following section. The inver
of this matrix is a lower bound~quantum Crame´r-Rao bound

*Electronic address: ballester@math.uu.nl;
URL: http://www.math.uu.nl/people/balleste/
1050-2947/2004/69~2!/022303~6!/$22.50 69 0223
n

as
his

us
is
of

is
e

wn

nd
s
t-
ble
to
ef.
r
is
a

or QCRB! for the mean-square error of estimators based
arbitrary measurements of the output state. A maximally
tangled state is a good input also in the sense that the QC
can be achieved if and only if the input state is maxima
entangled. The problem here is that, as will be shown la
the measurement that achieves the bound is actually a b
of projectors onto maximally entangled states. This meas
ment can be performed using nonlinear optics but is far fr
being standard.

But perhaps the improvement in the estimation throu
the use of entangled measurements is not very large.
entangled measurements worth the trouble? The main aim
this paper is to show that the answer to this question i
positive one. The value of entangled measurements will
quantified precisely.

Before continuing with this discussion it is necessary
explain what is meant with ‘‘better’’ and ‘‘best’’ and how th
quality of different positive operator valued measures
POVMs is actually going to be quantified.

II. QFI, FISHER INFORMATION, AND QCRB

A. Quantum Fisher information

Suppose that the quantum state density matrixs on Cd is
parametrized byuPQ,Rp wherep is the number of param
eters~less than or equal tod221 for mixed states, 2d22 for
pure states!. In our cases would be the joint output state
Define the symmetric logarithmic derivativesl1 , . . . ,lp as
the self-adjoint operators that satisfy

s ,i~u!5]u i
s~u!5

1

2
@s~u!l i~u!1l i~u!s~u!#.

For pure states,s5uc&^cu, they simply arel i52s ,i . The
QFI is defined as thep3p matrix with elements

FIG. 1. The use of a single entangled input state suffices.
©2004 The American Physical Society03-1
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Hi j ~u!5Re tr@s~u!l i~u!l j~u!#,

which for pure states reduces to

Hi j ~u!5Rê l i~u!u l j~u!&,

whereu l i(u)&5l i(u)uc(u)&.

B. „Classical… Fisher information

Take a POVM with elementsM1 , . . . ,Mn . The Fisher
information matrix ~FI! for this measurement is thep3p
matrix with elements

I i j ~M ,u!5 (
j51

n
tr@s ,i~u!M j#tr@s , j~u!M j#

tr@r~u!M j#
.

For an estimatorû and a measurementM, locally unbiased at
u0,1 the ~classical! Cramér-Rao bound is satisfied

V~M ,u0 ,û !>I ~M ,u0!21,

i.e., the FI is the smallest variance that a locally unbia
estimator based on this measurement can have. This
means that if one of the eigenvalues ofI is zero, then the
variance of the function of the parameters corresponding
that eigenvalue is infinity and therefore cannot be estima

If one hasN copies of the quantum state and performs
same measurement on each of the copies then the FI of tN
copies, I N, satisfiesI N(M ,u)5NI(M ,u) where I (M ,u) is
the FI of one system. It follows that

VN~M ,u0 ,û !>I N~M ,u0!215I ~M ,u0!21/N.

It is a well known fact in mathematical statistics that t
maximum likelihood estimator in the limit of largeN is as-
ymptotically unbiased and saturates the classical Crame´r-Rao
bound. Moreover no other reasonable estimator~unbiased or
not! can do better.

C. QCRB

The QCRB states that for any measurementM,

I ~M ,u!<H~u!. ~1!

In other words,H(u)2I (M ,u) is a positive semidefinite ma
trix.

This bound is not achievable in general. A theorem due
Matsumoto @6# states that for pure states, the bound
achievable atu5u0 if and only if

Im^ l i~u0!u l j~u0!&50. ~2!

Furthermore, if condition~2! holds, there is a measureme
with p12 elements that achieves the bound.

1This means that the expectation of the estimator satis

EM ,u0
( û i)5u0i and]u j

EM ,u( û i)uu5u0
5d i j .
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In analogy with Ref.@7#, measurements will be compare
using the quantity

trH~u!21I ~M ,u!,

which is always less than or equal top, the number of pa-
rameters. For example, for the measurement used in Ref.@1#,
trH21I 51.

One needs to use a quantity like this because of the e
complexity that quantum theory adds to the proble
namely, in the most general case there is no POVM t
achieves equality in Eq.~1!. Typically, for any POVMM1
which cannot be improved, one can find another POVMM2
such that neither I (M1 ,u)<I (M2 ,u) nor I (M1 ,u)
>I (M2 ,u) are satisfied. The bound~1! is sharp, i.e.,H(u) is
the smallest matrix larger thanI (M ,u) for every M. The
difficulties can be overcome by using a single number~in-
stead of a matrix! to quantify the performance of a POVM
This defines an achievable bound and any two POVMs
be compared according to this quantity. Of course, no sin
number can be anabsolutequantification of the performanc
of a POVM. In applications one must decide what one wa
to estimate and accordingly assign weights to the me
square error of the parameters to be estimated. This co
down to using a quantity such as trG(u)I (M ,u). One needs
to maximize this quantity for a general2 G(u)>0 tailored to
one’s specific needs. In this paper the general problem is
solved. Only the caseG(u)5H(u)21 is considered. There
are several good reasons for this choice.

~1! Since H(u) is the smallest upper bound for all th
I (M ,u), it defines a natural scale in which to compare the

~2! trH(u)21I (M ,u) is parametrization invariant.
~3! H(u) is closely related to the fidelity between true a

estimated output states: the metric generated byH(u) is lo-
cally identical ~up to a factor of 4! to the Bures distance
dBures(r,s)252@12AF(r,s)#, where F is the fidelity,
which for pure states can be defined asF(uc&^cu,uf&^fu)
5ucuf&u2.

~4! Finally, the use of this quantity allows one to obta
simple and striking results.

III. THE CASE dÄ2

A. Entangled measurements

In Ref. @3# it was shown that in this case the best input
any maximally entangled state. Here the singlet stateut&
5@ u10&2u01&]/A2 will be used. The output is then
uc(a,u,f)&5@U(a,u,f) ^ 1#ut& whereU(a,u,f)5cosa 1
1 isina nWuf•sW is a 232 unitary matrix,nW uf is the unit vec-
tor (sinu cosf,sinu sinf,cosu) parametrized by its pola
coordinates, andsW 5(s1 ,s2 ,s3) are the Pauli matrices.

It is quite straightforward to calculate that the QFI is

s

2This quantity still has the property that if the inequali
trG(u)I (M1 ,u).trG(u)I (M2 ,u) holds, then I (M1 ,u)
²I (M2 ,u).
3-2
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H~a,u,f!54S 1 0 0

0 ~sina!2 0

0 0 ~sina sinu!2
D

and as expected Im̂l i(a,u,f)u l j (a,u,f)&50. One can find
a simple measurement that achieves the bound; in fact,
measurement of the type

Ma5uba&^bau, a51, . . . ,p11,

M p12512 (
a51

m11

Ma ,

uba&5 (
b51

p11

oabumb&,

umk&5(
l

~H21/2!klu l l&, ump11&5uf&, ~3!

with o a (p11)3(p11) real orthogonal matrix satisfying
oa,p11Þ0 achieves the bound. For example, measuring
Bell basis

M1
Bell5

u00&2u11&

A2

^00u2^11u

A2
,

M2
Bell5

u00&1u11&

A2

^00u1^11u

A2
,

M3
Bell5

u01&1u10&

A2

^01u1^10u

A2
,

M4
Bell5

u01&2u10&

A2

^01u2^10u

A2
~4!

achievesI (MBell,u)5H(u) for all u and therefore satisfies

trH21~u!I ~MBell,u!53 ~5!

everywhere; this is three times the value achieved in Ref.@1#.
This measurement, which has been implemented using
linear optics@8#, is not widely available in quantum optic
labs. On the other hand, a POVM with the two compone

M15Mk
Bell ,

M2512Mk
Bell ~6!

for k51, 2, 3, or 4 has been implemented with linear opt
and is much more standard than measuring the whole b
This is a POVM with only two outcomes~which might be an
advantage for its practical implementation! and calculation
shows that it satisfies trH21I 51 everywhere, which is as
good as the measurement in Ref.@1#. It will be shown in the
following section that it is actually as good as any separa
measurement~in terms of the value of trH21I ). This mea-
02230
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surement does have a serious drawback, namely that one
only identify one function ofa, b, and f. The drawback
can be overcome, for example, by measuring Eq.~6! for k
51, 2, and 3 each in one-third of the available copies. In t
way one is able to identify all three parameters, trH21I 51 is
still satisfied, and finally this new POVM should not b
harder to implement than the previous one. Again here
erything depends on what one wants to estimate.

A measurement with three elements

M15Mk
Bell ,

M25Ml
Bell ,

M3512Mk
Bell2Ml

Bell ~7!

for somekÞ l has also been implemented with linear optic
In fact, it has been shown@9# that, with linear optics, this is
the best one can do. This POVM satisfies trH21I 52. This is
twice the value that can be achieved with any separable m
surement. Note that this measurement has the same wea
as the previous one: it cannot identify all three parameter~it
identifies two functions ofa, u, andf). It is easily possible
to overcome this difficulty in a similar way as before.

B. LOCC measurements

How well can one estimateU using only LOCC measure
ments: measurements that can be implemented locally
with the aid of classical communication between the t
parties? In fact, to begin with, the larger class ofseparable
measurements will be studied: measurements whose
ments are positive combinations of products of on
dimensional projectors. This definition of ‘‘separable’’ is
slight generalization of that of Ref.@10#, where it was shown
that there exist separable measurements which are
LOCC. Nonseparable measurements are called entangle

Consider a separable POVM with elementsM j

5( icj i(ucj i
A & ^ ucj i

B &)(^cj i
A u ^ ^cj i

B u). One can refine this
POVM to obtain another POVM with elements that are p
portional to one-dimensional projectorsM j i5cj i(ucj i

A &
^ ucj i

B &)(^cj i
A u ^ ^cj i

B u). By relabelingj i→j one obtains

M j5cj~ ucj
A& ^ ucj

B&)~^cj
Au ^ ^cj

Bu!. ~8!

The Fisher information corresponding to this refined POV
is greater than or equal to the Fisher information of the or
nal POVM. Thus, since one wants to maximize the FI, o
may restrict oneself to measurements of the type describe
Eq. ~8!.

For the calculations that follow it is more convenient
express Eq.~8! using the Pauli matrices

M j5cj

11aW j•sW

2
^

11bW j•sW

2
,

with uaW ju5ubW ju51 andcj.0. The condition(jM j51 can
be rewritten as follows:
3-3
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(
j

cj54, (
j

cjaW j50,

(
j

cjbW j50, (
j

cjajkbj l50. ~9!

Since

u10&2u01&

A2

^10u2^01u

A2
5

1

4 S 1^ 12(
i 51

3

s i ^ s i D ,

the density matrix of the system can be written as

r~a,u,f!5
1

4 S 1^ 12(
i 51

3

U~a,u,f!s iU
†~a,u,f! ^ s i D .

The probabilities are then

pj5
cj

4 S 12 (
i , j 51

3

bj iaj j

tr~Us iU
†s j !

2 D ,

and 1
2 tr(Us iU

†s j ) can be calculated to be

cos 2a d i j 2sin 2a(
k51

3

e i jknk12sin2a ninj .

Substituting this into the expression for the probabilities o
gets

pj5
cj

4
@12cos 2a~aW j•bW j!1sin 2a~bW j3aW j•nW !

22sin2a~nW •aW j!~nW •bW j!#. ~10!

After some not very interesting manipulations one finds

1

pj
S ~pj,a!2

4
1

~pj,u!2

4sin2a
1

~pj,f!2

4 sin2a sin2u
D

5
cj

4
@11cos 2a~aW j•bW j!2sin 2a~bW j3aW j•nW !

12 sin2a~nW •aW j!~nW •bW j!#. ~11!

Finally, using the conditions~9! one obtains that for sepa
rable measurements of the type~8!,

tr@H21~u!I ~M ,u!#

5(
j

1

pj
S ~pj,a!2

4
1

~pj,u!2

4 sin2a
1

~pj,f!2

4 sin2a sin2u
D 51.

~12!

Any separable measurement can be refined to a measure
of the type ~8!. Therefore for all separable measureme
M sep,

trH~u!21I ~M sep,u!<1.
02230
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This bound therefore also holds for LOCC measureme
Since there are LOCC measurements of the type~8!, the
bound is achievable with LOCC measurements.

IV. THE CASE dÌ2

A. Entangled measurements

Before starting with any calculations it will be shown th
the quantity that is being analyzed

f ~u!5sup
M

trH21~u!I ~u,M !

does not depend onu.
For anyu1 andu0 there exists a unitary matrixV such that

VU(u0)5U(u1). It is easy to see that for such a choice

trH21~u1!I „u1 ,~V^ 1!M ~V^ 1!†
…5trH21~u0!I ~u0 ,M !.

This implies that

sup
M1

trH21~u1!I ~u1 ,M1!>sup
M0

trH21~u0!I ~u0 ,M0!.

Thus f (u1)> f (u0), but sinceu0 and u1 are arbitrary, the
function f must be constant. Therefore one can choose
value of the parameter to perform the calculations. One
the implications this has is that if one proves that the QC
can ~not! be achieved at one value of the parameter, the
can ~not! be achieved everywhere~anywhere!.

In Ref. @3# it is mentioned that in dimensiond.2, it is no
longer true that a maximally entangled state maximizes
QFI; however it is still true that the QCRB is achieved if an
only if the input state is maximally entangled. In order
prove the first statement it is enough to find a counterexa
ple. This is not difficult to do, for example, ind53. The
second statement is also not difficult to prove and becaus
the last discussion it will be enough to do it forU equal to
the identity.

An SU(d) matrix can be written as exp(i(a51
d221uaTa).

Here uPRd221 and theT’s are in the su(d) Lie Algebra.
They are traceless self-adjoint matrices and are chose
that they also satisfy

tr~TaTb!5dab .

For U close to the identity~or u close to zero!,

U'11 i (
a51

d221

uaTa ,

the input state can be written as(klRklukl&. Normalization
implies trRR†51 whereR is thed3d matrix with elements
Rkl . Since RR† has trace 1 and is self-adjoint it can b
written RR†51/d1(ataTa where thet ’s are real numbers
At the identity the output state satisfies

uc&5(
kl

Rklukl&,
3-4
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uc ,a&5 i(
kl

RklTauk& ^ u l &; ~13!

the u l a& vectors defined in Sec. II can be written as

u l a&52~ uc ,a&1^c ,auc&uc&),

and the condition for achieving the QCRB~2! becomes

Im^ l au l b&54Im^c ,auc ,b&5
2tr~RR†@Ta ,Tb#!

i
50

~14!

for all a andb. This impliesRR†51/d.3 This means that the
input state is maximally entangled.4

For the calculations the maximally entangled sta
(k51

d ukk&/Ad, is used.H can be very easily calculated to b

Hab5
4

d
dab . ~15!

Since the QCRB can be achieved

sup
M

trH21~u!I ~M ,u!5d221.

B. LOCC measurements

It will be shown here that for all separable measureme
M sep the following holds:

trH21~u!I ~M sep,u!<
d~d21!

2
. ~16!

This shows that if one allows nonseparable measureme
the estimation can be improved by a factor of 2(d11)/d
with respect to separable measurements. This is always m
than twice.

In order to prove Eq.~16! a particular representation fo
the T’s will be chosen, namely,

Tkls5 i s
uk&^ l u1~21!su l &^ku

A2
, k. l , s5$0,1%,

Tm5 (
k51

d

cmkuk&^ku, m51, . . . ,d21, ~17!

where the coefficientscmk obey

3Since (RR†21/d)Psu(n) and su(n) is a perfect Lie algebra~i.e.,
can be spanned by commutators!, Eq. ~14! may be rewritten as
;YPsu(n) tr@(RR†21/d)Y#50, this impliesRR†21/d50 because
the trace form is nondegenerate.

4The condition for a bipartite state to be maximally entangled
that the partial trace should be proportional to the identity. In
case tr2uc&^cu5RR†.
02230
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(
k51

d

cmk50,

(
k51

d

cmkcnk5dmn . ~18!

From these two one can derive the relation

(
m51

d21

cmkcml5dkl2
1

d
. ~19!

Measurements of the form

M j5cjufj&^fju5cjuaj&^aju ^ ubj&^bju

are considered. The quantity of interest is

trH21I 5
d

4
trI

5
d

4 (
ja

cj

~^fjuc ,a&^cufj&1^fjuc&^c ,aufj&!2

u^fjuc&u2

5
d

2 (
j

cjFReS ^cufj&

^fjuc& (
a51

d221

^fjuc ,a&2D
1 (

a51

d221

^fjuc ,a&^c ,aufj&G . ~20!

The second term in the previous equation is easy to calcu

d

2 (
j

cj (
a51

d221

^fjuc ,a&^c ,aufj&

5
d

2 (
a51

d221

^c ,auc ,a&5
d

2 (
a51

d221 trTa
2

d
5

d221

2
,

~21!

but for the first term a little more work will be needed. On
needs to calculate

^fjuc ,a&5
i

Ad
(
k51

d

^ajuTauk&^bjuk&.

For a5$kls%,

^fjuc ,kls&5
i s11

A2d
@^ajuk&^bju l &1~21!s^aju l &^bjuk&#,

(
s50

1

^fjuc ,kls&
252

2

d
^ajuk&^bju l &^aju l &^bjuk&. ~22!

Since the last expression is symmetric with respect to
changingk with l, (k. l5

1
2 (kÞ l5

1
2 ((kl2(k5 l) and

s
r

3-5
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(
k. l

(
s50

1

^fjuc ,kls&
25

1

d (
k51

d

^ajuk&2^bjuk&22^fjuc&2.

In the casea5m,

(
m51

d21

^fjuc ,m&252
1

d (
k,l 51

d

(
m51

d21

cmkcml^ajuk&^bjuk&^aju l &

3^bju l &5
1

d (
kl

S 1

d
2dklD ^ajuk&^bjuk&

3^aju l &^bju l &5
1

d
^fjuc&2

2
1

d (
k51

d

^ajuk&2^bjuk&2.

Putting things together,

(
a51

d221

^fjuc ,a&25
12d

d
^fjuc&2 ~23!

and

d

2 (
j

cjReS ^cufj&

^fjuc& (
a51

d221

^fjuc ,a&2D
5

12d

2 (
j

cj^cufj&u25
12d

2
. ~24!
.

-

m

02230
Finally, substituting the previous equation and Eq.~21! in
~20! one obtains the desired result, namely, for any separ
measurementM of the type~8!

trH21~u!I ~M ,u!5
d~d21!

2
. ~25!

Of course this implies Eq.~16!. The argument for LOCC
measurements is the same as for the two-dimensional
and one obtains the same bound for them.

V. CONCLUSIONS AND OPEN PROBLEMS

In this paper it has been shown that by using nonsepar
measurements there is a significant improvement in the
curacy of the estimation of unitary operations. It is al
proven that ind dimensions the QCRB can be achieved
and only if the input state is maximally entangled. An op
problem is the estimation of more general quantum ope
tions, described by theKraus decomposition@2#.
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