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Estimation of unitary quantum operations
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The problem of optimally estimating an unknown unitary quantum operation with the aid of entanglement is
addressed. The idea is to prepare an entangled pair, apply the unknown unitary to one of the two parts, and then
measure the joint output state. This measurement could be an entangled one or it could be s@pgrable
measurements which can be implemented with local operations and classical communication 9r AOCC
comparison is made between these possibilities and it is shown that by using nonseparable measurements one
can improve the accuracy of the estimation by a factor af2{)/d whered is the dimension of the Hilbert
space on whiclJ acts.
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[. INTRODUCTION or QCRB) for the mean-square error of estimators based on
arbitrary measurements of the output state. A maximally en-
Consider a one-qubit unitary gate, the following questiontangled state is a good input also in the sense that the QCRB
arises: “how to characterize it?” This question is motivatedcan be achieved if and only if the input state is maximally
by recent experiments in quantum optidg. A possible ap- entangled. The problem here is that, as will be shown later,
proach is to prepare many known states and use them #ise measurement that achieves the bound is actually a basis
inputs, and then measure the outputs that they produce; this projectors onto maximally entangled states. This measure-
is known asquantum process tomograpig]. It turns out ment can be performed using nonlinear optics but is far from
that one needs as inputs a basis of the Hilbert space plu¥ing standard.
some linear combinations thereof. The disadvantage of this But perhaps the improvement in the estimation through
approach is that, in many practical situations, such a set dhe use of entangled measurements is not very large. Are
states is not feasible in the laboratddy. entangled measurements worth the trouble? The main aim of
Another strategy is described in Reff§,3,4]. It is enough  this paper is to show that the answer to this question is a
to use a single bipartite entangled state; one of the states [sitive one. The value of entangled measurements will be
used as input for the quantum operation and nothing is donguantified precisely.
to the other one, then the two qubits are measured, as shown Before continuing with this discussion it is necessary to
in Fig. 1. explain what is meant with “better” and “best” and how the
In Ref.[1] it is pointed out that in this setup there is a onequality of different positive operator valued measures or
to one correspondence between the quantum operation aDVMs is actually going to be gquantified.
the joint output state. A maximally entangled state is used as
input and then the three components of the spin in both out- I. QFI, FISHER INFORMATION, AND QCRB
put particles are measured. One can ask whether it is possible
to find a more accurate measurement. Also, is it possible to
find a measurement that performs as well as the one in Ref. Suppose that the quantum state density matron C¢ is
[1] which has less outcomes? It will turn out that the answeparametrized by € ® C R wherep is the number of param-
is that one can find a more accurate measurement but thigers(less than or equal td>— 1 for mixed states, @— 2 for
measurement is nonseparable. It is also possible to find pure states In our cases would be the joint output state.
measurement with less outcomes. Define the symmetric logarithmic derivativas, ... \, as
In Ref.[3] it is proven that a maximally entangled pure the self-adjoint operators that satisfy
state is a good input state in the sense thhpfe (2@ (2 is
maximally entangled, then

A. Quantum Fisher information

1
0i(0)=3dg0(0)=5[o(OIN(O)+Ni(0)a(0)].
V p on C2@C% H,(6)<H g6,
For pure statesg=|¢)(y|, they simply are\;=20 ;. The
where H,(6,) is the quantum Fisher information matrix QFI is defined as thexp matrix with elements
(QFI) for the joint output state, ad= 6,, if the input state is

p. This quantity is defined for example in R¢&] and ex- Q. Operation Measurement
plained in more detail in the following section. The inverse en~r| Uy o] Igla‘cSSical
of this matrix is a lower boun¢quantum CrameRao bound Entaneled Entaneled ata
In%gél %teate O?lt%)lllﬂ eSta.te M —
»

*Electronic address: ballester@math.uu.nl;
URL: http://www.math.uu.nl/people/balleste/ FIG. 1. The use of a single entangled input state suffices.
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Hij(6)=Retfa(0)N\(O)N;(0)], In analogy with Ref[7], measurements will be compared
using the quantity
which for pure states reduces to

-1
Hij(0)=Re(li()[1;(0)), trH(6) 11 (M, 6),

where|l;(8))=N\;(0)|¢(6)). which is always less than or equal o the number _of pa-
rameters. For example, for the measurement used in Ref.
B. (Classica) Fisher information trH '=1.

One needs to use a quantity like this because of the extra
complexity that quantum theory adds to the problem;
namely, in the most general case there is no POVM that
achieves equality in Eq1). Typically, for any POVMM

n which cannot be improved, one can find another POMM
(M, )= >, tr[avi(a)Mf]tr[U»i(a)Mf]' such that neither I((M{,0)<I(M,,6) nor 1(My,6)
: =1 t p(O)M] =1(M,,6) are satisfied. The bour(d) is sharp, i.e.H(6) is
A the smallest matrix larger thai(M,#) for every M. The
For an estimatop and a measuremeMt, locally unbiased at difficulties can be overcome by using a single number

Take a POVM with elementd1,, ... ,M,. The Fisher
information matrix (FI) for this measurement is thexp
matrix with elements

6,,* the (classical Crame-Rao bound is satisfied stead of a matrixto quantify the performance of a POVM.
. This defines an achievable bound and any two POVMs can
V(M,6,0)=1(M, 8,1, be compared according to this quantity. Of course, no single

number can be aabsolutequantification of the performance

i.e., the Fl is the smallest variance that a locally unbiasedf a POVM. In applications one must decide what one wants
estimator based on this measurement can have. This also estimate and accordingly assign weights to the mean-
means that if one of the eigenvalueslois zero, then the square error of the parameters to be estimated. This comes
variance of the function of the parameters corresponding tadown to using a quantity such a$tf6)1(M, §). One needs
that eigenvalue is infinity and therefore cannot be estimatedo maximize this quantity for a genefab(6)=0 tailored to

If one hasN copies of the quantum state and performs theone’s specific needs. In this paper the general problem is not
same measurement on each of the copies then the FI &f thesolved. Only the cas&(6)=H(6) ! is considered. There
copies, IV, satisfiesIN(M,8)=NI(M,6) wherel(M,6) is are several good reasons for this choice.

the FI of one system. It follows that (1) SinceH(#) is the smallest upper bound for all the
. (M, 6), it defines a natural scale in which to compare them.
VN(M, 6y,0)=1N(M, 65) " 1=1(M, 6,) " */N. (2) trH(6) "*1(M, 6) is parametrization invariant.

(3) H(#) is closely related to the fidelity between true and
It is a well known fact in mathematical statistics that the estimated output states: the metric generatedtb§) is lo-
maximum likelihood estimator in the limit of largdl is as-  cally identical (up to a factor of 4 to the Bures distance,
ymptotically unbiased and saturates the classical Crdtae daured p,0)2=2[1— JF(p,0)], where F is the fidelity,
bound. Moreover no other reasonable estimatabiased or  \hjch for pure states can be defined &g )(y],| $)( #|)
not) can do better. =|y| )2

(4) Finally, the use of this quantity allows one to obtain

C. QCRB simple and striking results.

The QCRB states that for any measurement

[(M,0)<H(0). (1) Ill. THE CASE d=2

A. Entangled measurements
In other wordsH () —1(M, 6) is a positive semidefinite ma-
trix.
This bound is not achievable in general. A theorem due t
Matsumoto [6] states that for pure states, the bound is

In Ref.[3] it was shown that in this case the best input is
sny maximally entangled state. Here the singlet staje
=[]10)—|0D]/V2 will be used. The output is then

achievable at= 6, if and only if |¥(a,6,4))=[U(a,6,¢)@1]|r) whereU(a,6,¢)=cosa |
+isina ng, o is a 2<2 unitary matrix,n,, is the unit vec-
Im(1;(6o)[1;(60))=0. (2)  tor (sinfcos¢,sinésing,cosd) parametrized by its polar

) N ) coordinates, ane;=(al,02,a3) are the Pauli matrices.
Furthermore, if conditior(2) holds, there is a measurement |t js quite straightforward to calculate that the QFI is
with p+2 elements that achieves the bound.

2This quantity still has the property that if the inequality
This means that the expectation of the estimator satisfiesrG(6)1(M,,0)>trG(6)1 (M, 6) holds, then 1(M,,6)

EM,HO(bi): foi and 39].]EM,9(¢A9i)| 6=6,=0ij - <1(M2,0).
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1 0 0 surement does have a serious drawback, namely that one can
_ L, only identify one function ofa, B, and ¢. The drawback

H(a,0,4)=4| 0 (sina) 0 can be overcome, for example, by measuring @&g.for k

0 0 (sina sin 0)? =1, 2, and 3 each in one-third of the available copies. In this

i way one is able to identify all three parameters, ttl =1 is
and as expected I{h(a,@,¢)||j(q,6,¢)>=0. One can find  giill satisfied, and finally this new POVM should not be
a simple measurement that achieves the bound; in fact, anygrder to implement than the previous one. Again here ev-
measurement of the type erything depends on what one wants to estimate.
M, =|b)(bl, a=1,...p+1, A measurement with three elements

Bell
m+1 M1:Mk )

My ,=1— M,,
P2 azl “ M,=MBe!l

p+1
b.)=2 0,45/Mg), Mg=1—MBe!l—pmBe! @
p=1

for somek+#1 has also been implemented with linear optics.
3) In fact, it has been show{®] that, with linear optics, this is

the best one can do. This POVM satisfigd Ttl =2. This is

twice the value that can be achieved with any separable mea-
with o a (p+1)X(p+1) real orthogonal matrix satisfying surement. Note that this measurement has the same weakness
0,,p+17 0 achieves the bound. For example, measuring thes the previous one: it cannot identify all three parameters
Bell basis identifies two functions of, 0, and¢). It is easily possible

to overcome this difficulty in a similar way as before.

|mk>:2| (H )1, im0 =),

00)—|11) (00 —(11]

MBeII:
! V2 V2o B. LOCC measurements
How well can one estimatéd using only LOCC measure-
gen_100)+[11) (00 +(11| ments: measurements that can be implemented locally and
2 2 2 with the aid of classical communication between the two
parties? In fact, to begin with, the larger classseparable
- 01)+]10) (01 +(10] measurements \{v_ill be studied': measurements whose ele-
Sell= , ments are positive combinations of products of one-
V2 V2 dimensional projectors. This definition of “separable” is a
slight generalization of that of Ref10], where it was shown
gei 101 —[10) (01 —(10 that there exist separable measurements which are not
4 = 2 2 4 LOCC. Nonseparable measurements are called entangled.

Consider a separable POVM with elements!,
— A B A B : H
achieved (MB¢" g)=H(6) for all 0 and therefore satisfies = >iCi(|¥a)®|¥a)) (Y| ©(¥)). One can refine this
POVM to obtain another POVM with elements that are pro-
trH " 1(9)I(MBe" 9)=3 (5)  portional to one-dimensional projectordl = c(| )
®|y? M@ (y8]). By relabelingé i — ¢ one obtains
everywhere; this is three times the value achieved in Réf. |w§'>)(<%| <‘/’§||) Y o ¢
This measurement, which has been implemented using non- Me=ce(| )@ ) (Wil (yel). (8)
linear optics[8], is not widely available in quantum optics
labs. On the other hand, a POVM with the two componentsThe Fisher information corresponding to this refined POVM
is greater than or equal to the Fisher information of the origi-

_ g Bell
M=M=, nal POVM. Thus, since one wants to maximize the Fl, one

Bell may restrict oneself to measurements of the type described in
M,=1-M; ©®  Eq.(8).

) o ) For the calculations that follow it is more convenient to
for k=1, 2, 3, or 4 has been implemented with linear Opt'csexpress Eq(8) using the Pauli matrices

and is much more standard than measuring the whole basis.
This is a POVM with only two outcomesvhich might be an s - - -
. . . ) . l+ag; o 1+bs o
advantage for its practical implementatioand calculation M,=c; ® ,
shows that it satisfies ~11=1 everywhere, which is as 2 2
good as the measurement in Rldf]. It will be shown in the R R
following section that it is actually as good as any separablevith |a,=|b;/=1 andc;>0. The condition=:M;=1 can
measurementin terms of the value of H~l). This mea- be rewritten as follows:
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Eg c§=4, Eg cgagzo,

E‘S C§6§=0, E§ Cgagkbazo. (9)

Since

110)—|01) (10—(01 1

\/E \/E —Z(Jl@)l—izl Ti® 0

the density matrix of the system can be written as

3
11@11—21 U(a,0,¢)0iU"(a,0,9) @0,

1
p(a,ﬁ,gb): Z

The probabilities are then
3 t
_% _ tr(UO’iU O'J)
Pe=7 11 izl badg——> |
and%tr(UaiUTaj) can be calculated to be

3
cos2x &;—sin 20szl &N+ 2sirfa nin; .

PHYSICAL REVIEW A 69, 022303 (2004

This bound therefore also holds for LOCC measurements.
Since there are LOCC measurements of the t{§)e the
bound is achievable with LOCC measurements.

IV. THE CASE d>2

A. Entangled measurements

Before starting with any calculations it will be shown that
the quantity that is being analyzed

f(8)=suptrH 1(0)1(9,M)
M

does not depend oa.
For anyf, and 6, there exists a unitary matriX such that
VU(6y)=U(6,). It is easy to see that for such a choice

trH = 2(0)1(6;, (VO HM (VD) T)=trH ()1 (69,M).
This implies that

suptrH = 1(61)1(0,,M1)=suptrH 1(60)1(6y,My).
My Mg

Thus f(6,)=1f(6,), but sinced, and #, are arbitrary, the

function f must be constant. Therefore one can choose any
value of the parameter to perform the calculations. One of
the implications this has is that if one proves that the QCRB

Substituting this into the expression for the probabilities onecan (not) be achieved at one value of the parameter, then it

gets
Ce I _ ...
p§=z[1—0052a(a§~b§)+sm2a(b§><a§'n)

—2sirfa(n-a,)(n-by)]. (10)

After some not very interesting manipulations one finds

(p§,¢)2

1 (Pe.o)? +(p§,9)2
4 sirfa sirfé

Pe 4 4sirfa

c g = - - >
= f[lJrCOS 20(ag-by) —sin 2a(bgXag-n)

+2 sirfa(n-a,)(n-b,)]. (11)

Finally, using the conditiong9) one obtains that for sepa-

rable measurements of the ty(®,
tTH™4(0)1(M, )]

1[(Pea)? (Peo)?
— +
¢ Pe 4

(P§,¢)2 _
4sifa 4 sirfa sinfo '

12

Any separable measurement can be refined to a measure
of the type (8). Therefore for all separable measurement

M sepr

trH(6) "M (Mgep, 0)<1.

can(not) be achieved everywhefanywhere.

In Ref.[3] it is mentioned that in dimensiah>2, it is no
longer true that a maximally entangled state maximizes the
QFI; however it is still true that the QCRB is achieved if and
only if the input state is maximally entangled. In order to
prove the first statement it is enough to find a counterexam-
ple. This is not difficult to do, for example, id=3. The
second statement is also not difficult to prove and because of
the last discussion it will be enough to do it forequal to
the identity.

An SU(d) matrix can be written as exri(ff:_llaaTa).

Here 9 R~ and theT’s are in the suf) Lie Algebra.
They are traceless self-adjoint matrices and are chosen so
that they also satisfy

tI’(TaTB)= 5aﬁ
For U close to the identityor 6 close to zerp
d?-1

U~1+i >, 6,T,.
a=1

the input state can be written &Ry |kl). Normalization
implies tRR'=1 whereR is thedx d matrix with elements
Ry . Since RR' has trace 1 and is self-adjoint it can be

mg}q'tten RR'=1/d+3,t,T, where thet’s are real numbers.
Al the identity the output state satisfies

|¢>=§ Rulkl),
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[.0)=12 RuTalk)&[1); (13

the|l ) vectors defined in Sec. Il can be written as

1a)=2([¢h.0) + (ol )| )),

and the condition for achieving the QCRB) becomes

2t(RR[T,,T4)])
|m<|a||,8>:4|m<‘7/f,a|l/’,,8>: i d =
(14
for all « andg. This impliesRR'=1/d.® This means that the
input state is maximally entangléd.
For the calculations the maximally entangled state,
>9_.|kk)/\/d, is usedH can be very easily calculated to be

H (15

ap= g Oap

Since the QCRB can be achieved

suptrH " 1()1(M, 8)=d?>—
M

B. LOCC measurements

It will be shown here that for all separable measurements

M ep the following holds:

d(d—1)

trH 5

“HON(Mgep, 0)< (16)

This shows that if one allows nonseparable measurement
the estimation can be improved by a factor ofd2(1)/d
with respect to separable measurements. This is always mo
than twice.

In order to prove Eq(16) a particular representation for
the T's will be chosen, namely,

T |k><||+ ﬁl)sllﬂkli k=1, s={0.1),
d
=k§=‘,lcmk|k><k|, m=1,...d-1, (17)

where the coefficients,,, obey

3Since RRT—1/d) e su(n) and suf) is a perfect Lie algebré.e.,
can be spanned by commutatorgq. (14) may be rewritten as
Yy esup T (RR'=1/d)Y]=0, this impliesRR'—~1/d=0 because
the trace form is nondegenerate.

“The condition for a bipartite state to be maximally entangled is

PHYSICAL REVIEW AB9, 022303 (2004

d
2 ka: 01
k=1
d
21 CmkCnk= Omn (18
From these two one can derive the relation
d—1 1
Z CmikCmI= Oki— a (19

Measurements of the form

Me=Ce de)(del =Celag)(ad @|bg)(by

are considered. The quantity of interest is

dtl
ZI’

d
-3 o

trH ™=

(el th )l )+ {Del )W o ))?
d
= 24 > Ce

|<<l>§|<//>|2
4
d?-1

(Vo ° 2 <¢§|wa>)
+ a; (Dl 0. )W ol be)

(Bdv)

(20

|

The second term in the previous equation is easy to calculate,

d d?-1
s, 72 %2 (dvvaldd
re d2 tr.Tz d2_
2 (Yraltha)= E < =5

(21)

but for the first term a little more work will be needed. One
needs to calculate

d
\/— 2 a§|Ta|k><b§|k>

<¢§| w,a> -

For a={kls},

ist1

(el ¥ is)= \/T—d[<ag|k><b§||>+(— D¥Xag)(belk)1,

S (b= Gladid@dbdh. @2

that the partial trace should be proportional to the identity. In ourSince the last expression is symmetric with respect to ex-

case t] ) (| =RR".

changingk with |, =< 1=33.=3(Z—Z¢=)) and
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1 d
3 3 (advi=3 3 (@dlXod? (4402

In the caser=m,
d-1

d-1 1 d
mE:l<¢§|¢,m>2:_a E: El

CmiCmi{@e K)(belk)(agl)

x(o=5 3 |- 3 adogho

X (agl ) (bell)= 3 (belu)?

=

d
5 2 (adXbdky?

Putting things together,

d2-1

and

d (] )
Ezg CfRE(<¢ |l/l> E <¢§|¢a>

d

1-d 1—
=T§§: Cg(!ﬂlcbg)lz:T- (24)

1-d
2 (Sedwa)==g—(¢d¥)’ (23
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Finally, substituting the previous equation and E2Ql) in
(20) one obtains the desired result, namely, for any separable
measurement! of the type(8)

d(d—1)

trH = 1(6)I(M,0)= 5

(25

Of course this implies Eq(16). The argument for LOCC
measurements is the same as for the two-dimensional case
and one obtains the same bound for them.

V. CONCLUSIONS AND OPEN PROBLEMS

In this paper it has been shown that by using nonseparable
measurements there is a significant improvement in the ac-
curacy of the estimation of unitary operations. It is also
proven that ind dimensions the QCRB can be achieved if
and only if the input state is maximally entangled. An open
problem is the estimation of more general quantum opera-
tions, described by thKraus decompositiofi2].
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