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OPTIMAL A PRIORI ERROR BOUNDS
FOR THE RAYLEIGH-RITZ METHOD

GERARD L. G. SLEIJPEN, JASPER VAN DEN ESHOF, AND PAUL SMIT

Abstract. We derive error bounds for the Rayleigh-Ritz method for the ap-
proximation to extremal eigenpairs of a symmetric matrix. The bounds are
expressed in terms of the eigenvalues of the matrix and the angle between the
subspace and the eigenvector. We also present a sharp bound.

1. Introduction

The Rayleigh-Ritz method (or subspace projection) is a widely used technique
for computing an approximation to the extreme eigenvalues and corresponding
eigenvectors of a matrix A. It is often an integral part of modern iterative methods
for computing approximations to eigenpairs of large sparse matrices. Examples of
these methods for the symmetric eigenproblem include the Lanczos method [5], the
Davidson method [1], and many others.

In this short paper, we derive error bounds for the Rayleigh-Ritz approximation
to the eigenpair with the smallest eigenvalue of a symmetric matrix A. The bounds
are expressed in terms of the eigenvalues of A and the angle between the subspace
and the eigenvector of interest. We may therefore call these bounds truly a priori.
Obviously, all results can be transformed to statements about the largest eigenvalue
and corresponding eigenvector by replacing A with −A.

So, let A be a symmetric matrix with eigenpairs (λi, xi) and

λ1 < λ2 ≤ · · · ≤ λn−1 < λn .

Let V ∈ Rk×n be an orthogonal matrix whose columns span the k dimensional
subspace V . The Rayleigh-Ritz approach gives k approximate eigenpairs (θi, ui),
the so-called Ritz pairs, by imposing the Ritz-Galerkin condition

Aui − θiui ⊥ V with ui ∈ V\{0},
or equivalently,

V TAV zi − θizi = 0 with ui ≡ V zi 6= 0 .

We number the Ritz values so that

θ1 ≤ θ2 ≤ · · · ≤ θk−1 ≤ θk .
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We are interested in the Ritz pair (θV , uV) for which sin2 ∠(uV , x1) is minimal over
all Ritz vectors. This is the pair with the Ritz vector that makes the smallest
angle with x1 over all Ritz vectors. In the ideal case we would have that uV is a
multiple of xV , where xV is the normalized projection of x1 on V . This would give
sin2∠(uV , x1) = sin2∠(V , x1), which is optimal. Unfortunately, the approximation
uV is not a multiple of xV in general.

The following bound is discussed in Section 2 and is a consequence of well-known
bounds:

sin2 ∠(u1, x1) ≤ sin2∠(V , x1) +
λn − λ2

λ2 − λ1
sin2∠(V , x1) .(1.1)

This upper bound shows that u1, corresponding to the smallest Ritz value, be-
comes closer to x1, when the angle between V and x1 is decreased. This and the
orthogonality of the Ritz vectors guarantee that for small enough angles between V
and x1, θV equals θ1. But although (1.1) is an elegant expression, it is not sharp.
Following suggestions from [8], we show that, using only the angle ∠(V , x1) and
information about the spectrum of A, this bound in case sin2∠(V , x1) < λ2−λ1

λn−λ1
can

be improved to

sin2∠(u1, x1) ≤ sin2 ∠(V , x1) +
κ

2
tan2∠(V , x1),(1.2)

with κ ≡ (λn−λ2)2

(λn−λ1)(λ2−λ1) . Bound (1.2) shows that, besides a theoretical minimum
of sin2∠(V , x1), we cannot lose more than an additional κ

2 tan2∠(V , x1). This is
at most a factor 2λn−λ1

λn−λ2
smaller than the additional term in the bound (1.1). This

factor can be large (if λ2 ≈ λn). However, the bound (1.2) itself is at most a factor
two smaller than the bound in (1.1) (if λ2 ≈ λ1). The upper bound in (1.2) is also
not sharp, and we derive a less elegant but optimal upper bound in Theorem 3.2
of which (1.2) is a simple corollary. We furthermore show that under this same
condition on sin2∠(V , x1), θV equals θ1. This is the subject of Section 3.

The new, sharper bounds can be used to improve a priori convergence bounds
for iterative eigenvalue methods. Often, the analysis of these methods can be split
into the construction of an upper bound on sin2∠(V , x1) and the analysis of the
error contributed by the Rayleigh-Ritz method. For example, Theorem 1 in [6]
gives a bound for the angle between x1 and Krylov subspaces. Combining this
with (1.1) gives precisely the bound for the first eigenvector of Kaniel [3] for the
Lanczos method. In the literature, these bounds are often improved by (implicitly)
constructing better bounds for sin2∠(V , x1). However, in this note we focus on
error bounds for the Rayleigh-Ritz method, and our results are not restricted to a
specific method.

2. Some well-known upper bounds

Suppose that the angle ∠(V , xj) between V and xj is small. Let λj be the
eigenvalue corresponding to xj , where λj is possibly in the interior of the spectrum.
Then we may ask if there is a Ritz value θ close to λj . A simple application of
the Bauer-Fike Theorem (Th. 4.5.1 in [5]) can answer this question affirmatively:
there exists a θ such that

|θ − λj | ≤ ‖(V TAV − λjI)V TxV‖2 = ‖V T (AxV − λjxV)‖2
≤ max

i
|λj − λi| | sin∠(V , xj)|.

(2.1)

See Section 4 in [2] for more discussion and analysis for general matrices.
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Unfortunately, for the Ritz vectors the situation is less attractive. A small resid-
ual, (V TAV − λjI)V TxV , is not sufficient for the existence of an eigenvector of
V TAV that makes a small angle with V TxV if there exist two Ritz values that are
close to λj . Indeed, Theorem 3 in [6] gives, for all Ritz vectors ul

sin2∠(ul, xj) ≤
(

1 +
‖(I − V V T )AV V T ‖22

mini6=l |λj − θi|2

)
sin2∠(V , xj) .(2.2)

Since this bound is sharp (see Remark 3.4 in [4]) and since there is no guarantee
that mini6=j |λj−θi| is not very small, this bound for ∠(u, xj) can become arbitrarily
large. See also the discussion in Section 5 in [2]. So, this suggests that it is not
possible to give meaningful error bounds for eigenvectors with eigenvalues in the
interior of the spectrum using information about ∠(V , xj) and the spectrum of A
only. Clearly, this might well be a problem in practical applications of Rayleigh-
Ritz for interior eigenpairs. On the other hand, the bound (2.2) can be used as
a good a posteriori estimate when more information about the distribution of the
Ritz values is at hand.

For the extremal eigenvalues the situation is different. We know from Cauchy’s
Theorem (Theorem 10.1.1 in [5]) that |λ1 − θ2| ≥ |λ1 − λ2|, and we can construct
an a priori estimate for the first eigenvector. Doing this using (2.2) and Cauchy’s
Theorem gives, unfortunately, a large overestimation, as we will see below.

A better approach for obtaining a true a priori bound is suggested at the end of
Section 11.9 in [5]. The starting point is the well-known bound (see, for example,
Theorem 11.9.2 in [5]):

sin2∠(u1, x1) ≤ θ1 − λ1

λ2 − λ1
.(2.3)

This bound is also sharp, which can be easily seen as follows. Take for V the span
of u1 = x1 cosα + x2 sinα and uj = xj+1 for j = 2, . . . , k. It is evident that these
vectors are also the Ritz vectors. For this space V , (2.3) becomes an equality.

In the remainder of this paper we use the notation ε ≡ sin2∠(V , x1). In The-
orem 2.1, bounds in terms of ε are given for the Ritz value and Ritz vector when
approximating the first eigenpair.

Theorem 2.1.

θ1 − λ1 ≤ (λn − λ1)ε,(2.4)

sin2∠(u1, x1) ≤ λn − λ1

λ2 − λ1
ε =

(
1 +

λn − λ2

λ2 − λ1

)
ε.(2.5)

Furthermore, inequality (2.4) is sharp.

Proof. The minmax property for Ritz values (Theorem 10.2.1 in [5]) gives that
θ1 ≤ xTVAxV , where xV is the normalized projection of x1 on V . This yields

θ1 − λ1 ≤ xTV (A− λ1I)xV ≤ (λn − λ1) sin2∠(xV , x1) = (λn − λ1)ε .

Equality in this expression is attained by considering the space V spanned by the
vectors u1 = x1

√
1− ε + xn

√
ε and uj = xj for j = 2, . . . , k. Note that these ui’s

are also the Ritz vectors, and u1 = xV . We may conclude that (2.4) is sharp.
The second statement is a combination of (2.4) and (2.3).

Although (2.5) is a combination of the sharp bounds (2.4) and (2.3), there is no
guarantee that this bound is sharp itself. Since (2.3) attains equality if u1 has a
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component in the direction of x2, while for (2.4) equality is attained when there is
a component in the direction of xn, it is suggested that (2.5) may not be sharp.
Indeed, in the next section we improve this bound and construct a sharp bound
when ε < λ2−λ1

λn−λ1
. Note that (2.5) is not useful when this condition on ε is not

fulfilled.
Another question that we address is whether θV equals θ1. This is important for

the selection problem, i.e. at some point, it is necessary to select the Ritz vector
that makes the smallest angle with x1.

3. Sharp upper bounds

In his PhD thesis [8] and in the technical report [7], Smit addressed the problem of
obtaining optimal bounds for the Rayleigh-Ritz process. He derived such bounds for
the case dim(V) = 2 and generated approximations for the k dimensional case (k >
2) by numerical experiments. On the basis of his numerical results, he conjectured
that when ε < λ2−λ1

λn−λ1
, the optimal bound for the k dimensional case equals the

optimal bound for the 2 dimensional case. In this section we prove that this is
indeed correct.

For convenience we use the following notation. Let δV ≡ min sin2∠(uj, x1),
where the minimum is taken over all Ritz vectors uj with respect to V . Put εV ≡
sin2∠(V , x1). For ε > 0 we define

δk(ε) ≡ max{δV | dim(V) = k, εV ≤ ε}.
The following theorem is an adaptation of Theorem 4.1 in [7]. We give a shorter

proof, and have added the statement that θV = θ1 in case ε < λ2−λ1
λn−λ1

.

Theorem 3.1. If dim(V) = 2 and 0 ≤ ε < λ2−λ1
λn−λ1

, then θV = θ1 < λ2. Further-

more, with κ ≡ (λn−λ2)2

(λn−λ1)(λ2−λ1) ,

δ2(ε) =

{
1
2 (1 + ε)− 1

2

√
(1− ε)2 − κε if ε < λ2−λ1

λn−λ1
,

1
2 (1 + ε) if ε ≥ λ2−λ1

λn−λ1
.

Proof. Let 0 < ε < 1 be given (the proof for ε = 0 and ε = 1 is obvious), and
let V be such that sin2∠(V , x1) = ε. We derive a sharp upper bound for the
approximation to x1 by the Ritz vectors with respect to V . Because this bound
is monotonically increasing, this gives an expression for δk(ε). Notice that the
Rayleigh-Ritz procedure is shift invariant, and we are allowed to work with A−λ1I.

Let (0, x1), (µ1, w1) and (µ2, w2) be the three Ritz pairs of the shifted matrix
A − λ1I with respect to the three dimensional subspace spanned by V and x1,
where we have numbered µ1 and µ2 so that µ1 ≤ µ2. The vectors w1 and w2 are
normalized. It turns out that working with w1 and w2 simplifies the calculations a
bit.

We define for each pair (c, s)T on the unit circle a subspace Vs as the span of

v(1)
s ≡ x1

√
1− ε+ cw1

√
ε+ sw2

√
ε and v(2)

s ≡ −sw1 + cw2 .

For some pair (c0, s0)T we have that V = Vs0 .
With respect to this basis, the projected matrix As ≡ V Ts (A − λ1I)Vs is given

by

As ≡
[
ε(c2µ1 + s2µ2)

√
εsc(µ2 − µ1)√

εsc(µ2 − µ1) c2µ2 + s2µ1

]
.
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Note that if s = 0 or c = 0, then the vector xV is a Ritz vector, and we can exclude
this situation from our analysis.

Let ui ≡ Vszi, with zi = (ti, 1)T a scaled eigenvector of the projected matrix As.
Then

sin2∠(ui, x1) = 1− t2i
1 + t2i

(1− ε) =
1 + εt2i
1 + t2i

=
1
2

(1 + ε)− 1
2

(1− ε) t
2
i − 1
t2i + 1

.(3.1)

We are interested in the smallest possible value of max{|t1|, |t2|}. It suffices to
analyze the eigenvectors of

A′s ≡
1

µ2c2
As =

[
ε(µ+ τ2)

√
ετ(1 − µ)√

ετ(1 − µ) 1 + τ2µ

]
, where µ ≡ µ1/µ2 and τ = s/c.

The ratio of the coordinates of the equation A′s(t, 1)T = θ′(t, 1)T is given by

tε(µ+ τ2) +
√
ετ(1 − µ) = t2

√
ετ(1 − µ) + t(τ2µ+ 1) .

The vector (t, 1)T is an eigenvector of A′s if and only if t satisfies this equation. We
investigate the possible values for t,

1− t2
t

= g(τ) ≡ α

τ
+ βτ, where α ≡ 1− εµ√

ε(1− µ)
, β ≡ µ− ε√

ε(1− µ)
.

Because ε < 1 and µ ≤ 1, we have α > 0. We start by giving a proof for τ > 0.
We first consider the case where β > 0, or, equivalently, ε < µ. Then g(τ) takes

values between 2
√
αβ and∞. Hence, t takes values between 0 and

√
αβ + 1−

√
αβ

and between −∞ and −(
√
αβ + 1 +

√
αβ). Because z1 ⊥ z2, we know that t1 =

−t−1
2 , and it easily follows that there is a ti in each of the two intervals. Define t1 to

be in the negative interval and note that |t1| > |t2|. The value |t1| =
√
αβ + 1+

√
αβ

is the smallest possible value for max{|t1|, |t2|}; this gives

t2 − 1
t2 + 1

=

√
αβ

αβ + 1
=

√
1− (1− µ)2

µ

ε

(1− ε)2
.

Inserting this in (3.1) gives the expression for δk(ε) when ε < µ and τ > 0.
Now we show that in case ε < µ and τ > 0, θV equals θ1. Let (ti, 1)T be an

eigenvector of As; then the second component of the vector As(ti, 1)T gives an
expression for θi:

θi = µ2c
2
(
ti
√
ετ(1 − µ) + 1 + τ2µ

)
.

If we recall the signs of ti, we have that θ1 < θ2, and because |t1| > |t2| we get that
θV = θ1.

If β ≤ 0, or equivalently ε ≥ µ, then g(τ) takes all values. Therefore, t can take
all values between the same bounds. Consequently, there is a τ for which t1 = 1
and t2 = −1 are solutions. This corresponds to the worst possible situation. In this
case we have two Ritz vectors, u1 and u2, that make the same angle with x1, and
sin2∠(ui, x1) = 1

2 (1 + ε).
In case τ < 0 the same reasoning can be used. The proof for the expression of

δk(ε) is concluded by noting that µ = λ2−λ1
λn−λ1

is the smallest possible value for µ,
and this is the worst situation.
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Note that the bound (1 + ε)/2 holds for any orthogonal basis for V . So, in case
ε ≥ λ2−λ1

λn−λ1
, the Ritz vectors are not guaranteed to contain a better approximation

than, for example, simply the columns of the matrix V .
Now we are ready to give a proof for Conjecture 5.1 in [7]. This conjecture states

that, in case ε < λ2−λ1
λn−λ1

, δk(ε) = δ2(ε). So, the expression for δk(ε) is given by the
expression in Theorem 3.1.

Theorem 3.2. If 0 ≤ ε < λ2−λ1
λn−λ1

, then θV = θ1 < λ2. For all k ∈ {2, . . . , n − 1}
and all ε ∈ [0, λ2−λ1

λn−λ1
), we have

δk(ε) ≡ 1
2

(1 + ε)− 1
2

√
(1− ε)2 − κε, with κ ≡ (λn − λ2)2

(λn − λ1)(λ2 − λ1)
.(3.2)

Proof. Assume that εV <
λ2−λ1
λn−λ1

. Then θ1 < λ2 (see (2.4)). Consider the space
V ′ spanned by u1 and xU , where xU is the normalized projection on the space
U ≡ span(u2, . . . , uk). Note that u1 and xU are Ritz vectors with respect to this 2
dimensional space V ′. Lemma 3.1 states that for this 2 dimensional V ′, the angle
between u1 and x1 is less than the angle between xU and x1. Since the angle
between xU and x1 is smaller than the angle between any vector from U and x1,
we may conclude that θV = θ1.

Note that εV = εV′ and δV = δV′ ≤ δ2, which implies that δk ≤ δ2.
We now show that δ2 ≤ δk. Let dim(V) = 2, then select an orthogonal system

v3, . . . , vk that is orthogonal to u1, u2, and Au1 − θ1u1. Then (θ1, u1) is also a
Ritz pair of the space V ′ spanned by u1, u2, v3, . . . , vk. Since θ1 < λ2, Cauchy’s
Theorem (Th. 10.1.1 in [5]) guarantees that the extension does not introduce a Ritz
value in [λ1, λ2). As argued above, θV = θV′ = θ1. Moreover εV′ ≤ εV . Apparently,
δV = δV′ ≤ δk.

We have that δ2 = δk, and Theorem 3.1 now gives the expression for δk.

We recall that the restriction on ε in Theorem 3.2 in this situation does not make
the bounds more restrictive than the bound (2.5) in the previous section.

We mention a few consequences of Theorem 3.2. Corollaries 3.1 and 3.2 gener-
alize Corollaries 4.3 and 4.4, respectively, in [7]. The first corollary describes the
behavior of the upper bound (3.2) for small ε.

Corollary 3.1. For all k ∈ {2, . . . , n− 1}, we have

δk(ε) = ε

(
1 +

1
4

(λn − λ2)2

(λn − λ1)(λ2 − λ1)

)
+O(ε2) for ε→ 0 .(3.3)

Proof. Indeed, √
(1 − ε)2 − κε = 1− ε− 1

2
κε+O(ε2) for ε→ 0.

Inserting this in (3.2) and using the definition of κ gives the required expression.

Inequality (2.5) is of a linear form. Using Theorem 3.2, we can improve this by
at most a factor two. Corollary 3.2 gives a linear bound that equals (3.2) in ε = 0
and ε = λ2−λ1

λn−λ1
. Note that δk(ε) is a convex function in this interval and, hence,

this is the best linear bound possible.

Corollary 3.2. For all k ∈ {2, . . . , n− 1} and all ε ∈ [0, λ2−λ1
λn−λ1

), we have

δk(ε) ≤ ε
(

1 +
1
2
λn − λ2

λ2 − λ1

)
.(3.4)
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Figure 1. Illustration of different bounds for λ1 = 0, λ2 = 1 with
λn = 1.2 (left picture) and λn = 5 (right picture). The numbers in
the legend of the figures correspond to the number of the equation
that contains the bound that is illustrated here. The bounds are
along the vertical axis, and ε is along the horizontal axis.

The next corollary gives an upper bound for δk(ε) that better approximates the
optimal bound (3.2) for small ε and κ ≈ 1.

Corollary 3.3. For all k ∈ {2, . . . , n− 1} and all ε ∈ [0, λ2−λ1
λn−λ1

), we have

δk(ε) ≤ ε+
κ

2
ε

1− ε ,(3.5)

with κ ≡ (λn−λ2)2

(λn−λ1)(λ2−λ1) .

Proof. We rewrite the expression for δk(ε) in (3.2) for ε < λ2−λ1
λn−λ1

:

δk(ε) = ε +
1
2

(1− ε)(1 −
√

1− α) = ε+
1
2

(1− ε) α

1 +
√

1− α
with α =

κε

(1− ε)2
.

Multiplying the nominator and denominator in the second term by 1− ε and using
κε < (1− ε)2 gives the first inequality.

To give some feeling for the quality of the different bounds, we have illustrated
in Figure 1 the known bound (2.5) and the new bounds (3.2), (3.4), and (3.5) for
a matrix with λ1 = 0, λ2 = 1 and two values for λn, λn = 1.2 and λn = 5. The
left picture shows that for well conditioned eigenvectors ((λn − λ1)/(λ2− λ1) ≈ 1),
our bounds do not improve much on the straightforward bound from the previous
section. In the right picture, the ratio between spread and gap is a little larger and
the improvement is more apparent. Note that the first two terms of the expansion
of δk(ε) in (3.3) provide a lower bound on δk(ε). This shows that the bound in (2.5)
can be improved at best by a factor 4.

With respect to the problem of selection, choosing the smallest Ritz pair seems
safe and guarantees correct selection asymptotically.

4. Future research: Harmonic Ritz vectors

Krylov subspaces tend to contain good approximations to the extremal eigenpairs
first. In this situation the Ritz vector can be deflated and our results can be applied
to get statements for the next “extremal” eigenpair, and so on. However, if deflation
is not possible, or not efficient, then other tools are required for eigenvalues that
are more in the interior of the spectrum.
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The goal of this study was to clear the way for studying the more complicated
harmonic Ritz vectors. The harmonic Ritz pairs are the Ritz pairs with respect to
the search space V and test space (A − τI)V . The idea behind this is that, if λ is
the closest eigenvalue to τ and λ is simple, only one harmonic Ritz value can get
arbitrary close to λ. The lack of guaranteed separation of the Ritz values is the
reason why there is a problem with constructing true a priori bounds for Ritz vectors
with eigenvalues in the interior of the spectrum. Although bounds like (2.2) cannot
be used in the context of harmonic Ritz vectors, practical observations indeed
suggest that there always seems to be a good harmonic Ritz vector. Understanding
this by straightforwardly applying well-known techniques, as in Section 2, seems
to give large overestimations. The technique described in Section 3 can also be
applied for harmonic Ritz vectors. However, the computations become much more
involved. Furthermore, extra ideas need to be developed for selecting the proper
harmonic Ritz vectors. This is the subject of another paper.
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