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EQUIPARTITION OF INTERVAL PARTITIONS
AND AN APPLICATION TO NUMBER THEORY

KARMA DAJANI AND ADAM FIELDSTEEL

(Communicated by Michael Handel)

Abstract. We give wider application and simpler proofs of results describ-
ing the rate at which the digits of one number-theoretic expansion determine
those of another. The proofs are based on general measure-theoretic covering
arguments and not on the dynamics of specific maps.

1. Introduction

Let x ∈ [0, 1), and suppose we are given the first n digits of some number-
theoretic expansion of x (what such an expansion is will be defined in a moment).
Then these n digits determine m(n, x) digits of some other expansion of x. In this
paper we address the question: what can one say about the limit

lim
n→∞

m(n, x)
n

for almost all x ∈ [0, 1)?
In 1964, G. Lochs [L] was the first to address this question when comparing the

decimal and the continued fraction expansions. Let x = .d1d2 · · · be the decimal
expansion of x (which is generated by iterating the map Sx = 10x (mod 1)), and
let

x =
1

a1 +
1

a2 +
1

a3 +
1
.. .

= [0; a1, a2, · · · ](1.1)

be its regular continued fraction (RCF) expansion (generated by the map Tx =
1
x − b

1
xc). Let y = .d1d2 · · · dn be the rational number determined by the first n

decimal digits of x, and let z = y + 10−n. Then, [y, z] is the decimal cylinder of
order n containing x, which we also denote by Bn(x). Now let y = [0; b1, b2, · · · , bl]
and z = [0; c1, c2, · · · , ck] be the RCF expansion of y and z. Let

m (n, x) = max {i ≤ max (l, k) : for all j ≤ i, bj = cj} .
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In other words, m(n, x) is the largest integer such that Bn(x) ⊂ Cm(n,x)(x), where
Cj(x) denotes the continued fraction cylinder of order j containing x. Lochs [L]
proved the following theorem:

Theorem 1. Let λ denote Lebesgue measure on [0, 1). Then for a.e. x ∈ [0, 1)

lim
n→∞

m(n, x)
n

=
6 log 2 log 10

π2
.

Lochs’ proof was based on the intricate arithmetic properties of the RCF map,
and on a result by Lévy [B] which states that

lim
n→∞

logQn
n

=
π2

12 log 2
a.e.(λ),

where Pn
Qn

= [0; a1, a2, · · · , an].
In 1999, Bosma, Dajani and Kraaikamp [BDK] generalized Theorem 1 to a wider

class of transformations on [0, 1) by noticing that Lochs’s theorem is concerned with
the way the decimal cylinders fit in the CF cylinders, and that the limit is in fact
the ratio of the entropies of the maps under consideration. Their proof was based on
the Shannon-McMillan-Breiman Theorem [B], and the dynamics of the underlying
transformations as reflected in the way the partitions are refined under iterations
of the corresponding maps.

For completeness, we state here the Shannon-McMillan-Breiman Theorem in the
form in which we will use it.

Theorem 2 (Shannon-McMillan-Breiman). Let T be an ergodic measure preserv-
ing transformation on a probability space (X,B, µ), and let P be a finite or countable
generating partition for T for which Hµ (P ) <∞. Then for µ-a.e. x,

lim
n→∞

− logµ (Pn (x))
n

= hµ (T ) .

Here Hµ (P ) denotes the entropy of the partition P, hµ (T ) denotes the entropy of
T and Pn (x) denotes the element of the partition

∨n−1
i=0 T

−iP containing x.

A surjective map T : [0, 1) → [0, 1) is called a number-theoretic fibered map
(NTFM) if it satisfies the following conditions:

(a) there exists a finite or countable partition of intervals P = {Pi : i ∈ D} such
that T restricted to each atom of P (cylinder set of order 0) is monotone,
continuous and injective,

(b) T is ergodic with respect to Lebesgue measure λ, and there exists a T -invariant
probability measure µ equivalent to λ with bounded density. (Both dµ

dλ and
dλ
dµ are bounded.)

Iterations of T generate expansions of points x ∈ [0, 1) with digits in D. We
refer to the resulting expansion as the T -expansion of x.

Almost all known expansions on [0, 1) are generated by a NTFM. Among them
are the n-adic expansions (Tx = nx (mod 1), where n is a positive integer), β-
expansions (Tx = βx (mod 1), where β > 1 is a real number), continued fraction
expansions (Tx = 1

x − b
1
xc), Lüroth series (Tx = b 1

xc
(
b 1
xc+ 1

)
x − b 1

xc), and all
f -expansions [R].

In [BDK], the authors call a NTFM T r-regular if, loosely speaking (i) the lengths
of two adjacent T cylinders of order n (contained in the same T cylinder of order
n− 1) differ by at most a constant factor L, and (ii) for any interval I of [0, 1), if
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Dm is the smallest T cylinder of order m containing I, then for a.e. x ∈ I, Dm has
a refinement of order m+ r contained in I with the property that it or an adjacent
cylinder contains x. They show that the continued fraction map is 3-regular, and
exhibit many examples with this property. They prove

Theorem 3 ([BDK]). Let S and T be NTFM’s on [0, 1), and suppose T is r-
regular. Then for λ-a.e. x,

lim
n→∞

m(n, x)
n

=
h(S)
h(T )

,

where h(S) and h(T ) denote the entropies of the maps S and T respectively, and
m(n, x) is the order of the smallest T cylinder containing the S cylinder of x of
order n.

Although n-adic expansions are not r-regular they were able to extend their
result to the case when Sx = mx (mod 1) and Tx = nx (mod 1) indicating that
r-regularity may not be needed. In this paper we show that Lochs’ theorem is true
for any two sequences of interval partitions on [0, 1) satisfying the conclusion of
the Shannon-McMillan-Breiman theorem. As a corollary we prove a conjecture in
[BDK] that Loch’s theorem is true for all pairs of number-theoretic fibered maps
for which the generating partition has finite entropy.

We end this section with a few definitions that will be used in the arguments to
follow.

Definition 1. By an interval partition, we mean a finite or countable partition of
[0, 1) into subintervals. If P is an interval partition and x ∈ [0, 1), we let P (x)
denote the interval of P containing x.

Let P = {Pn}∞n=1 be a sequence of interval partitions. Let λ denote a Borel
probability measure on [0, 1).

Definition 2. Let c ≥ 0. We say that P has entropy c a.e. with respect to λ if

− logλ (Pn (x))
n

→ c a.e.(λ).

We say that P has entropy c in measure with respect to λ if

− logλ (Pn (x))
n

→ c in measure (λ).

Note that we do not assume that each Pn is refined by Pn+1.
Suppose that P = {Pn}∞n=1 and Q = {Qn}∞n=1 are sequences of interval parti-

tions. For each n ∈ N and x ∈ [0, 1), define

mP,Q (n, x) = sup {m | Pn (x) ⊂ Qm (x)} .

2. Almost everywhere convergence

Theorem 4. Let P = {Pn}∞n=1 and Q = {Qn}∞n=1 be sequences of interval par-
titions, and let λ be a Borel probability measure on [0, 1). Suppose that for some
constants c > 0 and d > 0, P has entropy c a.e with respect to λ and Q has entropy
d a.e. with respect to λ. Then

mP,Q (n, x)
n

→ c

d
a.e. (λ) .
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Proof. First we show that

lim sup
n→∞

mP,Q (n, x)
n

≤ c

d
a.e.

Fix ε > 0. Let x ∈ [0, 1) be a point at which the convergence conditions of the
hypotheses are met. Fix η > 0 so that c+η

c− cd η
< 1 + ε. Choose N so that for all

n ≥ N
λ (Pn (x)) > 2−n(c+η)

and

λ (Qn (x)) < 2−n(d−η).

Fix n so that min
{
n, cdn

}
≥ N, and let m′ denote any integer greater than

(1 + ε) cdn. By the choice of η,

λ (Pn (x)) > λ (Qm′ (x))

so that Pn (x) is not contained in Qm′ (x) . Therefore

mP,Q (n, x) ≤ (1 + ε)
c

d
n

and so

lim sup
n→∞

mP,Q (n, x)
n

≤ (1 + ε)
c

d
a.e.

Since ε > 0 was arbitrary, we have the desired result.
Now we show that

lim inf
n→∞

mP,Q (n, x)
n

≥ c

d
a.e.

Fix ε ∈ (0, 1) . Choose η > 0 so that ζ =: εc− η
(
1 + (1− ε) cd

)
> 0. For each n ∈ N

let m̄ (n) =
⌊
(1− ε) cdn

⌋
. For brevity, for each n ∈ N we call an element of Pn

(respectively Qn) (n, η)-good if

λ (Pn (x)) < 2−n(c−η)

(respectively

λ (Qn (x)) > 2−n(d+η)).

For each n ∈ N, let

Dn (η) =
{
x | Pn (x) is (n, η)-good and Qm̄(n) (x) is (m̄(n) , η)-good

and Pn (x) " Qm̄(n) (x)

}
.

If x ∈ Dn (η) , then Pn (x) contains an endpoint of the (m̄ (n) , η)-good interval
Qm̄(n) (x) . By the definition of Dn (η) and m̄ (n) ,

λ (Pn (x))
λ
(
Qm̄(n) (x)

) ≤ 2−nζ .

Since no more than one atom of Pn can contain a particular endpoint of an atom
of Qm̄(n), we see that λ (Dn (η)) ≤ 2 · 2−nζ and so

∞∑
n=1

λ (Dn (η)) <∞,
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which implies that

λ {x | x ∈ Dn (η) i.o.} = 0.

Since m̄ (n) goes to infinity as n does, we have shown that for almost every x ∈ [0, 1),
there exists N ∈ N, so that for all n ≥ N, Pn (x) is (n, η)-good and Qm̄(n) (x) is
(m̄ (n) , η)-good and x /∈ Dn (η) . In other words, for almost every x ∈ [0, 1), there
exists N ∈ N, so that for all n ≥ N, Pn (x) is (n, η)-good and Qm̄(n) (x) is (m̄ (n) , η)-
good and Pn (x) ⊂ Qm̄(n) (x) . Thus, for almost every x ∈ [0, 1), there exists N ∈ N,
so that for all n ≥ N, mP,Q (n, x) ≥ m̄ (n) , so that

mP,Q (n, x)
n

≥
⌊
(1− ε) cdn

⌋
n

.

This proves that

lim inf
n→∞

mP,Q (n, x)
n

≥ (1− ε) c
d

a.e.

Since ε > 0 was arbitrary, we have established the theorem.

3. Application

Let S and T be number-theoretic fibered maps on [0, 1) with invariant probability
measures µ1 and µ2, respectively, each boundedly equivalent to Lebesgue measure
and with generating partitions (cylinders of order 0) P and Q respectively. Denote
by Pn and Qn the interval partitions of [0, 1) into cylinder sets of order n, and, as
above, denote by Pn(x) the element of Pn containing x (similarly for Qn(x)), and
set

m (n, x) = sup {m | Pn (x) ⊂ Qm (x)} .

Suppose that Hµ1 (P ) and Hµ2 (Q) are finite and hµ1 (S) and hµ2 (T ) are positive.

Theorem 5. Let S and T be as above and let λ denote Lebesgue measure on [0, 1).
Then

lim
n→∞

m(n, x)
n

=
h(S)
h(T )

a.e. (λ) .

Proof. Since (S, µ1) and (T, µ2) are ergodic, by the Shannon-McMillan-Breiman
theorem,

− logµ1 (Pn (x))
n

→ hµ1(S) a.e. (µ1)

and

− logµ2 (Qn (x))
n

→ hµ2(T ) a.e. (µ2) ,

where h (S) > 0 and h (T ) > 0. Since µ1 and µ2 are equivalent to λ and have
bounded densities with respect to λ, it follows that in the above limits one can
replace µ1 and µ2 by λ. By Theorem 4, the result follows.
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4. Convergence in measure

In general, a sequence of interval partitions P = {Pn}∞n=1 may have entropy in
measure with respect to a measure λ, but no entropy a.e. (λ) . However, given a
pair of such sequences of partitions, and with one additional hypothesis, we obtain
a convergence in measure result analogous to the previous theorem.

Theorem 6. Let P = {Pn}∞n=1 and Q = {Qn}∞n=1 be sequences of interval par-
titions, and let λ be a Borel probability measure on [0, 1). Suppose that for some
constants c > 0 and d > 0, P has entropy c in measure and Q has entropy d in
measure. Suppose in addition that for each n, Qn is refined by Qn+1. Then

mP,Q (n, x)
n

→ c

d
in measure.

Proof. Fix ε ∈ (0, 1) . Choose η > 0 so that η < ε and ζ =: (c− η)−(1− ε)
(
c+ c

dη
)

> 0. Choose N so large that for all n ≥ N,

λ

{
x |
∣∣∣∣− logλ (Pn (x))

n
− c
∣∣∣∣ < η

}
> 1− η

and

λ

{
x |
∣∣∣∣− logλ (Qn (x))

n
− d
∣∣∣∣ < η

}
> 1− η.

We refer to a partition element Pn (x) as (n, η)-good if it satisfies∣∣∣∣− logλ (Pn (x))
n

− c
∣∣∣∣ < η

and make a similar definition forQn (x). Choose n > N so thatm (n) =:
⌊
(1− ε) cdn

⌋
> N and 2−nζ < ε. Each (n, η)-good Pn (x) and (m (n) , η)-good Qm (y) satisfy

λ (Pn (x)) < 2−n(c−η)

and

λ (Qm (y)) > 2−m(n)(d+η)

so that

λ (Pn (x))
λ (Qm (y))

<
2−n(c−η)

2−m(n)(d+η)
≤ 2−nζ < ε.

Consider the set Bn =
{
x ∈ [0, 1) | Pn (x) " Qm(n) (x)

}
.We have

Bn ⊂ {x | Pn (x) is not (n, η)-good}
∪
{
x | Pn (x) is disjoint from all (m(n) , η)-good Qm(n) (y)

}
∪
{
x | Pn (x) is (n, η)-good, Pn (x) meets some (m (n) , η)-good

Qm(n) (y) , but Pn (x) is not contained in Qm(n) (x)

}
.

Each of the first two of these sets has measure less than η. If x is in the third
set, then Pn (x) contains an endpoint of some (m (n) , η)-good Qm(n) (y) . No other
element of the partition Pn could contain that endpoint. Thus there can be at most
two such Pn elements for each (m, η)-good Qm element. Because of the ratio of the
lengths of (n, η)-good Pn and (m, η)-good Qm elements, we see that the measure
of the third set cannot exceed 2ε. Thus λ (Bn) < 2ε+ 2η < 4ε.
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If x ∈ [0, 1] \Bn, then mP,Q (n, x) ≥ m (n) , so

mP,Q (n, x)
n

≥
⌊
(1− ε) cdn

⌋
n

.

Since ε was arbitrary, we have shown that for all δ > 0 there is an N so that for
all n > N,

λ

{
x | mP,Q (n, x)

n
> (1− δ) c

d

}
≥ 1− δ.

On the other hand, given ε > 0, suppose η > 0 is chosen so that (1 + ε)
(
c− c

dη
)
−

(c+ η) > 0 and N is chosen as before. Let n ≥ N and let m′ denote any integer
greater than (1 + ε) cdn. Then each (n, η)-good element of Pn has measure greater
than the measure of each (m′, η)-good element of Qm′ . Therefore

Cn =: {x | Pn (x) ⊂ Qm′ (x)}
⊂ {x | Pn (x) is not (n, η)-good}
∪ {x | Qm′ (x) is not (m′, η)-good}

so that λ {x | Pn (x) ⊂ Qm′ (x)} ≤ 2η. But for all m > m′, Qm′ is refined by Qm, so
that Qm (x) ⊂ Qm′ (x) . Thus if x ∈ [0, 1)\Cn and m > m′, then Pn (x) * Qm (x).
In other words, for each x ∈ [0, 1]\Cn, mP,Q (n, x) < m′ so that

mP,Q (n, x)
n

≤
(1 + ε) cdn

n
.

Since ε was arbitrary, we have shown that for all δ > 0 there is an N so that for
all n > N,

λ

{
x | mP,Q (n, x)

n
< (1 + δ)

c

d

}
≥ 1− δ,

which completes the proof.

Remark 1. The above results (and hence the application) can be extended to se-
quences of interval partitions P = {Pn}∞n=1 and Q = {Qn}∞n=1 of entropy c and
d, where exactly one of the numbers c and d is zero. If c = 0 and d 6= 0, we can
conclude that

lim
n→∞

mP,Q (n, x)
n

= 0.

In the reverse case we conclude

lim
n→∞

mP,Q (n, x)
n

=∞.

The proofs are easy adaptations of the ones given.
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