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SEPARATION OF VARIABLES AND THE COMPUTATION

OF FOURIER TRANSFORMS ON FINITE GROUPS, I

DAVID K. MASLEN AND DANIEL N. ROCKMORE

1. Introduction

Recently, increased attention has been paid to the problem of finding efficient
algorithms for the computation of Fourier transforms on nonabelian groups. The
abelian case has a long history (cf. [22, 23, 38]), and ever since the publication of
the Cooley-Tukey fast Fourier transform (FFT) [24] these algorithms have been at
the heart of digital signal processing (see for example [3, 31, 63, 62, 66] and the
many references contained therein). The nonabelian cases have also been motivated
by applications. They have been found useful in new approaches to data analysis
[11, 26, 27], VLSI design [12, 13], the design of filters [43, 65] and efficient group
convolution algorithms [20, 56]. In the continuous setting, there are applications to
computer vision, geophysics and climate modeling (see, e.g., [30, 37]).

Apart from applications, these algorithms contribute to the understanding of the
representation theoretic content of the fast Fourier transform. Although an abelian
group has a unique Fourier transform, a nonabelian group has an infinite number
of Fourier transforms, each of which corresponds to different choices of bases for
the irreducible representations of the group. The complexity of a finite group G
is defined as the least upper bound, over all choices of bases, of the complexities
of the algorithms computing Fourier transforms on G. A direct approach to the
computation shows that the complexity is bounded above by |G|2. We conjecture
that all finite groups have complexity O(|G| logc |G|) for some universal constant
c. This has already been proved for many different classes of nonabelian groups
[7, 18, 57, 55].

The first results of this type obtained for nonabelian groups are due to Willsky.
In [65] Willsky studies a particular class of finite state Markov processes evolving
on metacyclic groups. In so doing he gives an O(|G| log |G|) FFT for G a metacyclic
group, designed to give an efficient nonlinear filtering algorithm for the situation in
which noisy observations are taken. At the close he remarks ([65], p. 205) “there are
quite likely to be far larger classes of groups for which fast transforms exist”. Since
then, the general problem of constructing efficient Fourier transform algorithms has
been treated by Beth [12, 13], Diaconis and Rockmore [29], and Clausen [18, 19],

Received by the editors March 8, 1996 and, in revised form, May 23, 1996.
1991 Mathematics Subject Classification. Primary 20C15; Secondary 65T10.
A preliminary version of some of this work appears as an extended abstract in the Proceedings

of the 1995 ACM-SIAM Symposium on Discrete Algorithms, pp. 253–262.
Maslen was partially supported as a Shapiro Visitor while at Dartmouth. Rockmore was

partially supported by ARPA as administered by the AFOSR under contract DOD F4960-93-1-
0567 as well as NSF DMS Award 9404275 and an NSF Presidential Faculty Fellowship.

c©1997 American Mathematical Society

169



170 DAVID K. MASLEN AND DANIEL N. ROCKMORE

with others treating certain particular cases. For an overview of some of the recent
work in this area, we refer the reader to [49]; see also [54] for a discussion of
applications.

We continue the general investigation of efficient Fourier transform algorithms.
We present a divide and conquer strategy for computing nonabelian Fourier trans-
forms, which encompasses many known FFTs, and provides new fast algorithms in
other cases. It has two main components. First, we use a set of factorizations of
elements of G to write the matrix sum of products that defines the Fourier trans-
form in terms of a sequence of sums of products which are easier to compute. We
call this technique separation of variables and the corresponding algorithm is the
separation of variables algorithm.

The second part of our strategy uses a subgroup chain for the group and the
notion of a subgroup-adapted set of representations. When computing with a
subgroup-adapted set of representations the matrix multiplications that occur in the
separation of variables algorithm have a highly structured and sparse form and may
therefore be computed efficiently. We provide a thorough analysis of the structure
of these matrices and the operation count of the corresponding matrix multiplica-
tions. The main tool used here is a form of Schur’s Lemma which determines the
structure of the representation matrix of a group element which commutes with
a subgroup. The bulk of the new computational savings of this paper come from
this use of commutativity. We believe this is a new contribution to the subject,
although some aspects of it do appear in the work of Clausen on the symmetric
group [18, 19] and that of Rockmore on wreath products [55]. The general idea of
factoring representation matrices in terms of sparse matrices was first formulated
by Clausen [19].

Our techniques are quite general. We obtain upper bounds for the complexity of
the Fourier transform of any group or homogeneous space in terms of representation
theoretic data. These bounds are expressed in terms of multiplicities of restrictions
of irreducible representations from one subgroup to another. We thereby obtain
a general procedure for bounding the complexity of the Fourier transform on a
group or homogeneous space, which enables us to find explicit bounds even when
the representation matrices are extremely complicated. In this way we derive both
previously known and new results as part of a general theory, instead of using ad
hoc techniques.

This paper does not use the full strength of the separation of variables approach,
but despite this we recover the fastest known algorithms for many abelian groups,
the symmetric groups, and their wreath products. Furthermore, we obtain new
fast algorithms for matrix groups over finite fields. A more detailed analysis of the
computation improves the results; that is the content of part II of this work [50]. By
dividing the work in this way we hope to present general results of interest without
obscuring them with the technical machinery needed for more refined results.

We start the paper in Section 2 with the definitions of Fourier transform, com-
plexity, and adapted representation. In Section 3, we explain the previously known
technique of reducing to subgroups. Section 4 forms the theoretical core of the pa-
per; it contains the definition of the separation of variables algorithm, the analysis of
matrix products, and the general complexity results that we use in our examples.
Following this, Section 5 develops results on the complexities of specific groups.
We start it by deriving the Cooley-Tukey algorithm in the context of finite abelian
groups, the results of Clausen and Baum [18] on the symmetric group, results on
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classical Weyl groups, and the results of Rockmore [55] on wreath products. We
then give algorithms for the general linear and unitary groups over a finite field,
and finish our examples with some results on classical Chevalley groups over finite
fields. In Section 6, we apply the separation of variables algorithm to homogeneous
spaces. We analyze the matrix products that occur in this new setting, and give
results for homogeneous spaces of the symmetric group, classical Weyl groups, and
the general linear and unitary groups. Finally, we summarize the consequences of
this work and indicate the contents of part II of this paper [50].

Our bounds depend on some explicit knowledge of the restrictions to a subgroup
and often involve the number of conjugacy classes in a group (i.e., the number of
irreducible representations). For some of our results we need asymptotics for these
quantities. To avoid interrupting the flow of the paper we have postponed this
discussion to an appendix at the end.

Acknowledgements

Special thanks to Tom Hagedorn for explaining his interesting recent work on
multiplicities for restricted representations, and to Prof. Dennis Stanton for ex-
plaining how to work with the power series in the appendix. Thanks also to Prof.
Michael Clausen for some very helpful conversations.

2. Background

2.1. Nonabelian Fourier transforms. The familiar discrete Fourier transform
(DFT) of a finite data sequence and its efficient computation via the Cooley-Tukey
fast Fourier transform [24] has a natural formulation in terms of the representation
theory of cyclic groups. Phrased in this context, the algorithm generalizes to an
algorithm for computing Fourier transforms on arbitrary finite groups. What fol-
lows is a brief review of the basic concepts and definitions needed to formulate the
problem on arbitrary groups. For a complete introduction to the representation
theory of finite groups Serre’s book [58] is a good reference.

Recall that a (complex) matrix representation of a finite group G is a map ρ
from G into the group of d × d invertible matrices with complex entries, GLd(C),
such that

ρ(st) = ρ(s)ρ(t)

for every s, t ∈ G. In this case d is called the degree or dimension of the repre-
sentation ρ, and is denoted dρ and V = Cd is called the representation space of
ρ.

Two representations ρ1 and ρ2 are said to be equivalent if they differ only by
a change of basis, i.e., if there exists an invertible matrix A such that ρ1(s) =
A−1ρ2(s)A for all s ∈ G. Notice that 1-dimensional matrix representations are
uniquely determined by their equivalence class, whereas multidimensional irre-
ducible representations have an infinite number of equivalent realizations.

A subspace W ⊂ V = Cd is said to be G-invariant if for all s ∈ G, ρ(s)W ⊂W .
The representation ρ is said to be irreducible if V has no G-invariant subspaces
other than the trivial subspaces {0} and V , and is called reducible otherwise. Up
to equivalence there are only a finite number of irreducible representations of any
finite group — in fact there are as many as there are conjugacy classes in the group.
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Irreducible representations are the fundamental building blocks of all representa-
tions of a finite group. That is, any representation is equivalent to a direct sum
of irreducible representations, where the direct sum of two representations is the
matrix direct sum of the representations.

There are several equivalent definitions of the Fourier transform for a finite group
[12, 20, 29]. The following is the most convenient for this paper.

Definition 2.1 (Fourier Transform). Let G be a finite group and f be a complex-
valued function on G.

(i) Let ρ be a matrix representation of G. Then the Fourier transform of f

at ρ, denoted f̂(ρ), is the matrix sum,

f̂(ρ) =
∑
s∈G

f(s)ρ(s).(1)

(ii) Let R be a set of matrix representations of G. Then the Fourier transform
of f on R is the set of Fourier transforms of f at the representations in R.

Fast Fourier transforms or FFTs are algorithms for computing Fourier trans-
forms efficiently. The Fourier transform at a set R of representations can always be
related to the Fourier transform at the single representation ∆ =

⊕
ρ∈R ρ. Thus,

by taking direct sums, results about single representations may be transferred to
results about sets of representations.

The most important case of a Fourier transform occurs when the set R is a com-
plete set of inequivalent irreducible representations of G. In this situation we shall
simply refer to such a calculation as the computation of a Fourier transform.
A Fourier transform determines f through the Fourier inversion formula.

Theorem 2.1 (Fourier inversion formula; see, e.g., [27], p. 13). Let G be a finite
group, f a complex-valued function on G, and R a complete set of irreducible matrix
representations of G. Then,

f(s) =
1

|G|
∑
ρ∈R

dρtrace

(
f̂(ρ)ρ(s−1)

)
(2)

where dρ = dim(ρ).

Example: The “usual” discrete Fourier transform. The irreducible matrix
representations of the cyclic group Z/nZ = {0, 1, . . . , n−1}, are all one-dimensional.
For each integer j with 0 ≤ j ≤ n − 1, define the representation ζj , by ζj(k) =

exp(2πijk
n ) for k ∈ Z/nZ. The set of such representations is a complete set of

inequivalent irreducible representations for Z/nZ and the corresponding Fourier
transform is usually known as the discrete Fourier transform. This computation is
central to the subject of digital signal processing (cf. [53]).

The arithmetic complexity for computing a Fourier transform conceivably de-
pends on the choice of basis for the irreducible representations. The notion of the
complexity of a finite group provides a classification of finite groups according to
the complexity of the most efficient algorithm to compute some such transform on
the group.

Definition 2.2 (Complexity). Let G be a finite group, and R any set of matrix
representations of G. Let TG(R) denote the minimum number of operations needed
to compute the Fourier transform of f on R via a straight-line program for an
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arbitrary complex-valued function f defined on G. TG(R) is called the complexity
of the Fourier transform for the set R. Define the complexity of the group
G to be

C(G) = min
R
{TG(R)}

where R varies over all complete sets of inequivalent irreducible matrix representa-
tions of G.

The computational model used here is a common one in which an operation is
defined as a single complex multiplication followed by a complex addition.

Elementary representation theory shows that the sum of the squares of the de-
grees of a complete set of irreducible representations of G is equal to |G| (see, e.g.,
[58], p. 18). Consequently direct computation of any Fourier transform gives the
upper and lower bounds

|G| − 1 ≤ C(G) ≤ |G|2.
As mentioned in Section 1, the techniques introduced in this paper show how struc-
tural properties of the group and a judicious choice of the set of representations R
provide significantly better upper bounds for group complexity. When bounding
TG(R) it is often easier to work with a related quantity, the reduced complexity,
denoted by tG(R) and defined by

tG(R) = TG(R)/ |G| .(3)

This definition simplifies the statements and proofs of many following results.

Remark. Another common interpretation of the Fourier transform is as a change
of basis for the group algebra C[G], from the basis of point masses on G to a
basis of matrix coefficients coming from a complete set of inequivalent irreducible
representations. When this point of view is adopted, the complexity of the Fourier
transform can be measured as the c-linear complexity of the associated change
of basis matrix (cf. [8]). The c-linear complexity of a group G is defined to be
the minimum c-linear complexity of any such matrix for G. Assuming a choice of
unitary representations (which is always possible) the results stated here can all be
interpreted as statements about the 2-linear complexity of finite groups.

2.2. Adapted sets of representations. As remarked earlier, there are an infinite
number of matrix representations equivalent to any given nontrivial multidimen-
sional matrix representation, all related by a change of basis. Even among equiva-
lent representations the complexity of the associated Fourier transform might vary.
For this reason and others, subgroup-adapted sets of representations have been
found to be useful for efficiently computing Fourier transforms. Use of these repre-
sentations permits the computation of a Fourier transform on a finite group G, to be
built up from the computation of several Fourier transforms on a chosen subgroup
H.

To briefly explain the idea, let H be a subgroup of a group G. An H-adapted
set of representations of G has the property that when considered as represen-
tations of H via restriction, they may be constructed as matrix direct products of
representations from a fixed set of inequivalent irreducible matrix representations
of H. As shown in [29] and [18] (and explained in the next section), a Fourier
transform on G can always be written as a sum over a set of matrix multiplications
against Fourier transforms at the restrictions of the representations to the subgroup
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H. Requiring that the restrictions are H-adapted allows us to reduce the compu-
tation of Fourier transforms at the restricted representations to Fourier transforms
at a set of irreducible representations.

Definition 2.3 (Subgroup-adapted representations). Let G be a finite group and
R be a set of matrix representations of G and let H be a subgroup of G. If ρ is a
representation of G, let ρ↓H denote the representation of H obtained by restricting
ρ to H. We say thatR is H-adapted if there is a setRH of inequivalent irreducible
matrix representations of H such that the set of restricted representations

R↓H = {ρ↓H | ρ ∈ R}

is a matrix direct sum of representations in RH .

Notice that if R is H-adapted, then the set RH is uniquely determined by R.
When H = G, the property of being G-adapted allows us to reduce the computa-
tion of the Fourier transform of f on R to a Fourier transform on G at a set of
inequivalent irreducible representations.

Lemma 2.2. If R is a G-adapted set of matrix representations of G then TG(R) =
TG(RG).

Remark. The FFT algorithms presented in the following sections all assume the use
of adapted sets of representations. The requirement of adaptability does not limit
us, as any set of representations is equivalent to an adapted set of representations.
An equivalent concept is that of an adapted basis, also known as a Gel’fand-Tsetlin
basis. A basis for a representation space is adapted to a subgroup if the matrix
representation obtained by expressing the representation in coordinates for this
basis is also adapted. Adaptedness for a set of bases is defined similarly. Adapted
bases always exist and, in fact, can always be constructed.

To outline one such construction, we collect several previously known results.
Babai and Rónyai [6] have shown that a complete set of irreducible representations
of a finite group G can be constructed in polynomial time from the multiplication
table of G. Further techniques from [6] or [4] provide efficient algorithms for decom-
posing representations into their irreducible constituents. By applying these results
to the original set of representations restricted to the subgroup H, a complete set
of irreducible representations for H is then found. A change of basis to insure that
all representations of G are H-adapted is computed by the construction of certain
projection operators. This last step is detailed in the book of Fässler and Stiefel
[32] which also provides a wealth of examples of uses of adapted bases in a variety
of computational problems.

3. Coset decompositions and the Fourier transform

In previous work, adapted representations have already been used to speed the
computation of Fourier transforms by factoring the computation through a sub-
group [18, 29]. The idea is to use the coset decomposition of elements in the group
to relate a Fourier transform on G to Fourier transforms on a subgroup H. This
may be thought of as the simplest example of the separation of variables technique
(cf. Section 4).

To explain, let H be a subgroup of G and let Y ⊂ G be a set of coset rep-
resentatives for G/H. Thus, G can be factored as the disjoint union of subsets
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yH = {yh | h ∈ H} for all y ∈ Y . For any representation ρ of G we can use the

relation ρ(ab) = ρ(a)ρ(b) to produce a factorization of f̂(ρ) by

f̂(ρ) =
∑
s∈G

f(s)ρ(s)

=
∑
y∈Y

ρ(y)
∑
t∈H

fy(t)ρ(t)
(4)

where for each y ∈ Y , fy is the function on H defined by fy(t) = f(yt) for all

t ∈ H. Consequently, with the notation of (4) we can rewrite f̂(ρ) as a sum of
Fourier transforms on H,

f̂(ρ) =
∑
y∈Y

ρ(y)f̂y(ρ↓H).(5)

If we had computed the Fourier transform of fy on R ↓ H for a complete set of

irreducible representations R of G and for all y ∈ Y , then each f̂(ρ) could be built

from the Fourier transforms f̂y(ρ ↓H) using equation (5). The matrices ρ(y) are
analogous to the “twiddle factors” that arise in the Cooley-Tukey algorithm when G
is an abelian group. In that case all irreducible representations are one-dimensional
and the matrices ρ(y) are simply roots of unity.

In general, a restricted representation ρ ↓H may be reducible, even when ρ is
irreducible. If ρ is H-adapted, then ρ↓H is not only equivalent to, but also equal
to, a matrix direct sum of irreducible representations, and all equivalent irreducible

representations that occur in this sum are equal. In this case f̂y(ρ ↓ H) can be
constructed as a block diagonal matrix from the matrices of the appropriate Fourier
transforms of fy at irreducible representations of H.

The discussion above yields directly an algorithm for computing the Fourier
transform of any function f on G using any given H-adapted set R of representa-
tions of G:

1. Choose a set of coset representatives Y for G/H. For each y ∈ Y compute
the Fourier transform of fy on RH .

2. For each ρ ∈ R build the restricted transforms f̂y(ρ↓H). These will be block
diagonal matrices with blocks given by the individual Fourier transforms of
fy at the representations of RH .

3. Compute the products ρ(y)f̂y(ρ↓H) and add them together.

To obtain an upper bound for the complexity of this basic algorithm it is useful
to introduce some notation. Let R be a set of matrix representations of G and let
Y be any subset of G. Then we define

MG(Y,R) =


the minimum number of operations required to compute

the collection of sums,
{∑

y∈Y ρ(y)F (y, ρ)|ρ ∈ R
}
,

where for each ρ ∈ R and y ∈ Y , F (y, ρ) is an arbitrary
dρ × dρ matrix.

(6)

Similarly, define a “reduced” version of (6) by

mG(Y,R) =
MG(Y,R)

|G| .(7)

Theorem 3.1 ([29], Proposition 1; [18]). Let H be a subgroup of G and let R be a
complete H-adapted set of inequivalent irreducible matrix representations of G. Let
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Y ⊂ G be a set of coset representatives for G/H. Then with the notation of (6)
and (7)

TG(R) ≤ |G/H|TH(RH) +MG(Y,R)(8)

or equivalently

tG(R) ≤ tH(RH) +mG(Y,R).(9)

A better bound may be obtained using the block diagonal form of f̂y(ρ↓H). We
take this into account in Sections 4.2 and 4.1.

The inequalities (8) and (9) can be viewed as recurrences which bound the com-
plexity of a group in terms of the complexity of a subgroup. The recurrence may
be iterated through a chain of subgroups for G. For example consider the chain of
subgroups

G = Kn > Kn−1 > · · · > K0.(10)

We say that R, a set of irreducible representations of G, is adapted to the chain
(10) provided R is Ki-adapted for each subgroup Ki in the chain. Using the
notation of Definition 2.3, this implies that each RKi is Kj-adapted for j ≤ i.
Theorem 3.1 now generalizes immediately.

Theorem 3.2. Let G have the chain of subgroups (10) and for i = 1, . . . , n, let Yi
be a set of coset representatives for Ki/Ki−1. If R is a set of matrix representations
of G which is adapted to this chain, then

tG(R) ≤ tK0(RK0) +
n∑
i=1

mKi(Yi,RKi).(11)

Theorems 3.1 and 3.2 suggest that one approach to minimizing an upper bound of
tG, and hence TG, is to try to efficiently evaluate sums of the form

∑
y∈Y ρ(y)F (y),

where the F (y) are dρ × dρ matrices. Towards this end several possibilities are evi-
dent. The subgroup chain can be varied, as can the choice of coset representatives,
so as to obtain matrices ρ(y) with useful computational properties. Another idea is
to attempt to use the properties of the matrix elements of ρ(y) as special functions
on the set Y . In this paper we explore the first approach.

When G = H ×K is a direct product we get a special case of Theorem 3.1. The
irreducible representations of G may all be obtained as tensor products of those of
H and K, and the product basis constructed by the tensoring of a basis for the
irreducible representations of H with those of K yields irreducible representations
which are both H-adapted and K-adapted, up to a relabeling of the matrix rows
and columns (cf. [13], Satz 5.8). If R′ and R′′ are sets of matrix representations
of H and K respectively then let R′ ⊗R′′ be the set of matrix tensor products of
representations in R′ with those in R′′.

Theorem 3.3. (i) If R′ and R′′ are sets of matrix representations of represen-
tations of H and K respectively, then

tH×K(R′ ⊗R′′) ≤ tH(R′) + tK(R′′).

(ii) Let ρ be an irreducible K-adapted matrix representation of H×K. Then there
are irreducible matrix representations, ρH , ρK , of H and K respectively such
that ρ = ρH ⊗ ρK , as matrix representations, and hence ρ is also H-adapted.
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(iii) Let R be a complete set of irreducible representations of H ×K. If R is both
H-adapted and K-adapted then there are sets, RH , RK , of irreducible matrix
representations of H and K respectively, such that R = RH ⊗RK , as sets of
matrix representations.

(iv) Let R be a set of irreducible matrix representations of a finite group G with
center Z. Then R is Z-adapted. Therefore if G = H × K is a product of
groups and H is abelian, then R is H-adapted.

Proof. Part (i) is a result of Atkinson [2] and Karpovsky [42]. Part (ii) and its
corollaries, parts (iii) and (iv), are simple consequences of Schur’s lemma (cf. Lemma
4.2).

Convention. Almost all of the results in remaining sections depend only on the
adaptability of the representations and not the particular choice of adapted repre-
sentation. For this reason explicit reference to a fixed R is often superfluous and
we suppress this in much of the notation, e.g., we will write tK for tK(RK) and
mK(Y ) for mK(Y,RK).

4. The main idea—Separation of variables

In this section we present the main new computational techniques for efficiently
computing nonabelian Fourier transforms. We start by generalizing the approach
of Section 3 to obtain the separation of variables algorithm. This algorithm reduces
the computation of a sum of products to other, potentially smaller, repeated sums
of products. Special cases of the separation of variables algorithm also occur in the
work of Clausen on the symmetric group, (cf. [19], esp. Section 10). We then give a
detailed analysis of the complexity of matrix multiplication when the matrices have
a special structure related to a subgroup-adapted representation. These results on
matrix multiplication produce the bulk of the new computational savings presented
in this paper. The key idea here is that if representations are adapted to a sub-
group, then any element in the centralizer of this subgroup is, by Schur’s Lemma,
guaranteed to have a sparse representation matrix. If coset representatives can be
factored as products of such elements, then multiplication by the representation
matrices of these coset representatives may be performed efficiently. When these
elements are also contained in a proper subgroup of the group for which the repre-
sentation remains adapted, the representation matrices are even sparser. Finally,
we look at the effect of using a subgroup chain in this setting and present some
general results on the complexities of our algorithms.

The separation of variables idea also arises naturally in the compact group setting
[48]. The use of factorizations into generalized Euler angles in conjunction with
adapted representations and Schur’s lemma is a standard technique for obtaining
matrix coefficients of the classical Lie groups [45]. This is the original purpose for
which adapted sets of representations, in the guise of Gel’fand-Tsetlin bases, were
invented [33].

4.1. Sums of products — the separations of variables idea. Let G be a
finite group, Y a subset of G, ρ a matrix representation of G, and for each y ∈ Y ,
let F (y) be a dρ × dρ matrix. In this section we focus on a method for computing
sums of the form ∑

y∈Y
ρ(y)F (y).(12)
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This is a general setting which encompasses the algorithmic issues which we treat
in this paper. For example, if we take Y = G and F (y) = f(y) · Idρ ,1 for some

complex-valued function, f on G, then the sum (12) is f̂(ρ). If we let Y be a

set of coset representatives of a subgroup, H < G, and F (y) = f̂y(ρ ↓H), where
fy(h) = f(y · h) for y ∈ Y and h ∈ H, then we are precisely in the setting of
Theorem 3.1. Thus, the results of this section may be applied both directly to the
computation of Fourier transforms and indirectly in conjunction with the methods
of Section 3.

We shall now define an algorithm for computing (12), which we call the separa-
tion of variables algorithm. Let S be a subset of G which contains the identity
element e, and such that any element of Y may be written as a product of elements
of S. For any word w in the elements of S, let w̄ denote the element of G obtained
by multiplying out the formal product for w. For any set of words W let W̄ denote
the corresponding set of elements of G.

Choose a set of words X in the elements of S, such that |X | = |Y | and X̄ = Y .
Thus, the words in X may be thought of as a choice of factorization of each element
of Y in terms of S. Let γ be the maximum length of any word in X . Let X0 be
the set of words, all of the same length γ, obtained from X by “padding” on the
left with the identity if necessary. For each i with 0 ≤ i ≤ γ, define Xi to be the
set of subwords of X0 obtained by removing the rightmost i symbols from each
word of X0. Note that Xi is a set of words of length γ − i in S. For w in X0 let
F0(w) = F (w̄).

The separation of variables algorithm proceeds in γ steps, computing for each i
from 1 to γ the recursively defined matrix-valued functions Fi on Xi,

Fi(w) =
∑

s∈S,ws∈Xi−1

ρ(s)Fi−1(ws)(13)

for any w in Xi. The algorithm completes by computing Fγ , which is, by the
following lemma, the constant function whose value is the sum (12), with domain
Xγ consisting of only the empty word.

Lemma 4.1. For any set of words X such that |X | = |Y | and X̄ = Y , the separa-
tion of variables algorithm described above computes

∑
y∈Y ρ(y)F (y). I.e., with all

notation as above

Fγ =
∑
y∈Y

ρ(y)F (y).

Proof. We show by induction that for 0 ≤ i ≤ γ,

∑
w∈Xi

ρ(w̄)Fi(w) =
∑
y∈Y

ρ(y)F (y).(14)

1For any positive integer d, Id will denote the d× d identity matrix.
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To start, note that (14) holds for i = 0 by the definition of X0 and F0. Now let
1 ≤ i ≤ γ, and assume the induction hypothesis for i− 1. Then by (13)

∑
w∈Xi

ρ(w̄)Fi(w) =
∑
w∈Xi

ρ(w̄)

 ∑
s∈S;ws∈Xi−1

ρ(s)Fi−1(ws)


=

∑
s∈S;ws∈Xi−1

ρ(w̄s)Fi−1(ws)

=
∑

v∈Xi−1

ρ(v̄)Fi−1(v).

When i = γ the only word in Xγ is the empty word, and Fγ = ρ(e)Fγ . This proves
the lemma.

The expression (13) shows the recursive nature of the separation of variables
approach, as this sum may be rewritten in the same form as the original problem
(12): By writing

Fi(sγ · · · si) =
∑

s∈Xi−1(sγ ···si)
ρ(s)Fi−1(sγ . . . si · s)(15)

where Xi−1(sγ · · · si) = {s ∈ S : sγ · · · sis ∈ Xi−1}, we reduce the original problem
to γ subproblems of the same form. Hence we may apply the separation of variables
algorithm to any of these subproblems, provided we first choose a finer factorization
of the elements Xi−1(sγ · · · si). The separation of variables algorithm is the “di-
vide” portion of a divide and conquer strategy for computing Fourier transforms; it
reduces the computation of sums of products to the computation of other sums of
products. Its construction only relies on having chosen factorizations for elements
of the set Y . On the other hand, the “conquer” part of our strategy, which we treat
in Section 4.2, uses subgroup chains and adapted bases.

It is easy to see how the separation of variables algorithm leads to the results
of Section 3. The first observation is that the separation of variables algorithm
may be applied simultaneously to a whole set R of representations, simply by
considering the direct sum ∆ =

⊕
ρ∈R ρ. Fix a subgroup H < G and a set Z of

coset representatives for G/H. To apply Lemma 4.1 let Y = G, and for any y ∈ Y ,
let F (y) = f(y) · Id∆ . Let X be the set of all words z · h of length two with z ∈ Z
and h ∈ H. Then for z ∈ Z we have X0(z) = H, X1 = Z, and

F1(z) =
∑
h∈H

∆(h)f(z · h) = f̂z(∆↓H).(16)

When i = 2 we obtain⊕
ρ∈R

f̂(ρ) = f̂(∆) = F2 =
∑
z∈Z

ρ(z)F1(z)(17)

and the separation of variables algorithm for computing f̂(∆) is exactly the algo-
rithm considered in Section 3.

Separation of variables may be applied to the computation of both of the sums
(16) and (17) by using factorizations of elements of H and of elements of Z respec-
tively. The resulting composite algorithm is precisely the separation of variables
algorithm for the set of words obtained by taking pairwise products of the padded
words (i.e., the elements of X0) used in both the algorithms for computing (16) and
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(17). This is a general property of the separation of variables technique; using it
recursively is equivalent to using a single algorithm for a different set of words.

The applications of Section 5 will always proceed by using coset representatives to
obtain a coarse factorization of group elements and then refining this factorization
by factoring the coset representatives themselves.

Example. It is instructive to see how the separation of variables algorithm works
on a simple example. Let G be the symmetric group S3, and suppose that Y =
G = S3. Let S = {e, t2, t3}, where t2 = (1 2), t3 = (2 3) are transpositions, and let
X be the set of words

X = X0 = {eee, et3e, t2t3e, eet2, et3t2, t2t3t2}.

Then X1 = {ee, et3, t2t3}, X2 = {e, t2}, and X3 = {φ}, where φ denotes the empty
word. The quantities Fi(w) computed at each stage of the algorithm are

F1(ee) = ρ(e)F0(eee) + ρ(t2)F0(eet2),

F1(et3) = ρ(e)F0(et3e) + ρ(t2)F0(et3t2),

F1(t2t3) = ρ(e)F0(t2t3e) + ρ(t2)F0(t2t3t2),

F2(e) = ρ(e)F1(ee) + ρ(t3)F1(et3),

F2(t2) = ρ(t3)F1(t2t3),

F3(φ) = ρ(e)F2(e) + ρ(t2)F2(t2).

4.2. Products of pairs of matrices. The results introduced in Sections 3 and
4.1 have focused on rewriting the Fourier transform as a recursively structured
summation of matrix products. This is the “divide” component of our divide and
conquer strategy. In this section we consider conditions that will ensure that a
matrix product involving ρ(a) for a representation ρ and element a of G may be
computed efficiently. This is the “conquer” portion of our divide and conquer
strategy.

The main tool we use is a form of Schur’s Lemma. This simple result pins down
the structure of intertwining matrices for a given matrix representation.

Lemma 4.2 (Schur’s Lemma; see, e.g., [58], p. 13). Let K be a subgroup of G and
ρ a K-adapted representation of G such that ρ = η1 ⊕ · · · ⊕ η1 ⊕ · · · ⊕ ηr ⊕ · · · ⊕ ηr
where η1, . . . , ηr are inequivalent irreducible matrix representations of K, and ηi
occurs with multiplicity mi. Then the centralizer of the collection of matrices ρ(K)
is (

Matm1(C)⊗ Idη1

)
⊕ · · · ⊕

(
Matmr(C)⊗ Idηr

)
(18)

where Ik denotes the k× k identity matrix, ⊗ the usual tensor product of matrices,
Matn(C) is the algebra of n× n complex matrices, and dηi is the dimension of ηi.

If a ∈ G is in the centralizer of a subgroup K, then its representation matrix,
ρ(a), is in the centralizer of ρ(K). If ρ is a K-adapted representation, then ρ(a) has
the form (18) after some fixed permutation of rows and columns. We interpret this
as saying that the matrix ρ(a) is sparse and as such can be multiplied efficiently
against an arbitrary dρ × dρ matrix.



COMPUTATION OF FOURIER TRANSFORMS ON FINITE GROUPS, I 181

Corollary 4.3. Let all notation be as in Lemma 4.2, and let a be a group element
lying in the centralizer of K. Then for an arbitrary dρ × dρ matrix F , the product
ρ(a)F can be computed in at most dρ

(∑
i dηim

2
i

)
operations.

Proof. The bound comes from considering the number of nonzero entries of the
matrix ρ(a). There are at most

∑
i dηim

2
i nonzero entries and each nonzero entry

occurs at most dρ times in the expressions making up the entries of the matrix
product ρ(a)F .

When a is in a proper subgroup of G that contains K, Corollary 4.3 can be
improved. To explain, let H ≥ K and let ρ and η be representations of H and K
respectively. Define

M(ρ, η) = the multiplicity of η in ρ↓K.(19)

Also define

M(H,K) = max
ρ,η
M(ρ, η)(20)

as ρ and η run over complete sets of irreducible representations of H and K respec-
tively.

Corollary 4.4. Let H ≥ K be subgroups of G, R a complete set of irreducible
representations of G adapted to the chain G ≥ H ≥ K, and suppose that for each ρ
in R, F (ρ) is a dρ× dρ matrix. Let a be in the centralizer of K in H. Then the set
of matrix products {ρ(a) · F (ρ)|ρ ∈ R} may be computed in at most |G| ·M(H,K)
operations.

Proof. For any ρ in R, M(H,K) is an upper bound for the number of nonzero
entries in any column of ρ(a). Hence the number of operations needed to compute
any entry of the matrix ρ(a) · F (ρ) is bounded by M(H,K). There are d2

ρ such

entries so the computation of this matrix product takes M(H,K)d2
ρ operations.

Summing over all representations and using the relation
∑
ρ∈R d

2
ρ = |G| gives the

result.

For most purposes the upper bounds of Corollaries 4.3 and 4.4 are all we require
to get good bounds for group complexity. However, in some situations a more
detailed analysis of the matrix multiplications is necessary. We shall now consider
the multiplication of two matrices which are block diagonal according to some
subgroup restrictions and also have the block scalar form (18), though possibly for
different subgroups.

To state these results, let G ≥ H ≥ K, and let ρ be a representation of G
adapted to this chain. We introduce the notation

EndK(ρ↓H) = spanC (ρ(H)) ∩Centralizer (ρ(K)) ,

so EndK(ρ ↓H) is the algebra of matrices with block diagonal form according to
ρ↓H that also have the form (18) up to a fixed permutation of rows and columns.
In particular, if a ∈ H is in the centralizer of K, then ρ(a) is in EndK(ρ↓H).

Suppose F1 ∈ EndK1(ρ ↓ H1) and F2 ∈ EndK2(ρ ↓ H2), where the subgroup
chains H1 ≥ K1 and H2 ≥ K2 both occur as subchains of some fixed subgroup
chain of G for which ρ is adapted. We wish to examine the complexity of the
matrix multiplication F1 · F2. There are a number of special cases to consider
corresponding to the different possible orderings of the subgroups H1, K1, H2,
K2, in the subgroup chain. By exchanging F1 and F2 the number of cases under
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consideration is reduced from six to three. We shall consider one of these cases in
detail and then indicate the adaptations needed to treat the other two.

Theorem 4.5. Let H1 ≥ H2 ≥ K1 ≥ K2 be a chain of subgroups of G, and
let ρ be a representation of G adapted to this chain. Suppose that for i = 1, 2,
Fi ∈ EndKi(ρ↓Hi). Then the matrix multiplication F1 · F2 can be computed in no
more than

∑
ρH1 ,ρH2 ,ρK1 ,ρK2

M(ρH1 , ρK1)M(ρH2 , ρK2)M(ρH1 , ρH2)M(ρH2 , ρK1)M(ρK1 , ρK2)

(21)

scalar operations, where for L ∈ {H1, H2,K1,K2}, the index ρL ranges over all
irreducible representations of the subgroup L (up to equivalence) having nonzero
multiplicity in ρ↓L.

Proof. Both matrices F1 and F2 belong to End1(ρ ↓H1) and are therefore block
diagonal with blocks corresponding to the restriction of ρ to H1. By considering
the matrix multiplication one block at a time we may restrict ourselves to the case
where H1 = G and ρ is an irreducible representation of G. From now on we let
G1 = G = H1, G2 = H2, G3 = K1 and G4 = K2.

In this situation it is useful to index the rows or columns of the chain-adapted
representation ρ by a 7-tuple, Λ = (λ2, ρ2, λ3, ρ3, λ4, ρ4, λ5), where for i = 2, 3, or
4, ρi is an irreducible representation of Gi occurring as a matrix direct summand
of ρi−1 ↓Gi, where ρ1 = ρ and λi is a variable indexing the particular occurrences
of ρi as a matrix direct summand of ρi−1. When i = 5, λ5 simply indexes a basis
of ρ4 of dimension M(ρ4, 1), where 1 is the trivial representation of the trivial
group. Said differently, λ2 indexes the blocks of ρ↓G2 which contain copies of ρ2,
λ3 indexes the blocks of ρ2 ↓ G3 which contain copies of ρ3, and λ4 indexes the
blocks of ρ3 ↓G4 which contain copies of ρ4. By Lemma 4.2 the entries of a matrix
F1 ∈ EndG3(ρ↓G) have the form

[F1]Λ,Λ′ = f1(λ2, λ
′
2, ρ2, ρ

′
2, λ3, λ

′
3, ρ3) · δρ3,ρ′3

δλ4,λ′4
δρ4,ρ′4

δλ5,λ′5

for some complex-valued function f1, and the entries of a matrix F2 in EndG4(ρ↓G2)
have the form

[F2]Λ,Λ′ = δλ2,λ′2
δρ2,ρ′2

· f2(ρ2, λ3, λ
′
3, ρ3, ρ

′
3, λ4, λ

′
4, ρ4) · δρ4,ρ′4

δλ5,λ′5

for some complex-valued function f2. Therefore, the expression for the matrix
product entry [F1 · F2]Λ,Λ′ is

δρ4,ρ′4
δλ5,λ′5

·
∑
λ′′3

f1(λ2, λ
′
2, ρ2, ρ

′
2, λ3, λ

′′
3 , ρ3) · f2(ρ′2, λ

′′
3 , λ
′
3, ρ3, ρ

′
3, λ4, λ

′
4).(22)

The variables appearing in the expression (22) range over values according to Dia-
gram 1.
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Diagram 1

In Diagram 1 a directed edge β
λ←−α indicates that β is an irreducible representa-

tion which occurs as a matrix direct summand of the restriction of α, and that λ
is a variable indexing the copy of β in this restriction. The number of operations
required to compute the matrix product F1 · F2 is then bounded by the number of
distinct ways of assigning values to λ2, λ

′
2, ρ2, ρ

′
2, λ3, λ

′
3, λ
′′
3 , ρ3, ρ

′
3, λ4, λ

′
4, ρ4 consis-

tent with the conditions represented by Diagram 1.
To count this number, fix the three representations ρ′2, ρ3, and ρ4, and count

the number of ways, if any, that the remaining variables may be assigned values in
a manner consistent with the diagram. These variables may be collected into five
sets corresponding to the five edges in Diagram 2; each set consists of the variables
that label the path in Diagram 1 corresponding to the edge in Diagram 2.
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Diagram 2

These sets of variables are {λ2, ρ2, λ3}, {λ′2}, {λ′′3}, {λ4}, and {λ′3, ρ′3, λ′4}. For a
given choice of ρ′2, ρ3, and ρ4, the choices of values for variables in different sets
are completely independent. For example, the choice of λ′2 is independent of the
choice of λ′′3 . Now consider the set of variables, {λ2, ρ2, λ3} which corresponds to
the edge from ρ3 to ρ in Diagram 2. Each different way of choosing values of these
three variables, consistent with Diagram 1, corresponds to a choice of a copy of ρ3

appearing as a matrix direct summand of the restriction of ρ to G3, and hence there
areM(ρ, ρ3) possible choices. Similarly, the number of ways of choosing values for
variables in the set corresponding to any directed edge from a vertex β to a vertex
α in Diagram 2 isM(α, β). Therefore the total number of ways of assigning values
to all variables in Diagram 1 is ∑

ρ′2,ρ3,ρ4

∏
α←β
M(α, β)(23)
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where the product in (23) is over all directed edges in Diagram 2, and α, β denote
the finishing and starting points of the edges, respectively. This is precisely∑

ρ′2,ρ3,ρ4

M(ρ, ρ3)M(ρ′2, ρ4)M(ρ, ρ′2)M(ρ′2, ρ3)M(ρ3, ρ4).

Substituting ρH1 = ρ, ρH2 = ρ′2, ρK1 = ρ3 and ρK2 = ρ4 proves the theorem.

The two other cases we need to consider are

H2 ≥ H1 ≥ K1 ≥ K2

and

H1 ≥ K1 ≥ H2 ≥ K2.

Extending the proof of Theorem 4.5 to these two other cases is routine; the impor-
tant difference is that other diagrams must be considered. As before, we let {Gi}
be the chain of subgroups listed in decreasing order, and let ρi index irreducible
representations of Gi. In the case H2 ≥ H1 ≥ K1 ≥ K2, Diagram 2 must be
replaced by Diagram 3,
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Diagram 3

but the procedure for obtaining the complexity bound from the diagram is the
same: Take the product ofM(α, β) over all the directed edges in the diagram, and
then sum over all choices of representations labeling the vertices consistent with the
restriction relations represented by the diagram and with ρ1 occurring in ρ↓G1. In
the case H1 ≥ K1 ≥ H2 ≥ K2, Diagram 2 should be replaced by Diagram 4.
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Diagram 4

The dashed edge in Diagram 4 indicates that the factorM(ρ2, ρ3) should be omitted
from the product in the expression for the complexity. However, the presence of
this edge indicates that ρ3 still must occur in the restriction of ρ2 to H2(= G3).

Theorem 4.6. Let H1 ≥ K1 and H2 ≥ K2 be subgroups of G occurring in some
chain of subgroups to which the representation ρ is adapted. Suppose that for i =
1, 2, Fi is a matrix in EndKi(ρ↓Hi).

(i) When H2 ≥ H1 ≥ K1 ≥ K2, the matrix multiplication F1 ·F2 can be computed
in no more than∑

ρH1 ,ρH2 ,
ρK1 ,ρK2

M(ρH2 , ρK2)M(ρH2 , ρH1)M(ρH1 , ρK1)2M(ρK1 , ρK2)(24)

scalar operations.
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(ii) When H1 ≥ K1 ≥ H2 ≥ K2, the matrix multiplication F1 ·F2 can be computed
in no more than ∑

ρH1 ,ρK1 ,ρH2 ,ρK2

M(ρH1 , ρK1)2M(ρH2 , ρK2)2(25)

scalar operations.

For L ∈ {H1, H2,K1,K2}, the index ρL in the above sums ranges over the ir-
reducible representations of the subgroup L, up to equivalence. In (24) we also
require that ρH2 has nonzero multiplicity in ρ↓H2. In (25) we require that ρH1 has
nonzero multiplicity in ρ↓H1, and that ρH2 has nonzero multiplicity in ρK1 ↓H2.

The diagrammatic techniques introduced in the proof of Theorem 4.5 may be for-
malized and used to prove complexity results that are even better than those given
in this paper. This approach to Fourier transforms on finite groups is explained in
the sequel [50]. In particular, the appropriate setting for discussing multiplication
of block scalar matrices is a tower of multi-matrix algebras (cf. [34]).

Theorems 4.5 and 4.6 give exact operation counts for the appropriate matrix
multiplications. It is useful to provide some notation for these counts.

Definition 4.1. Let H1 ≥ K1 and H2 ≥ K2 be a chain of subgroups of G and let
ρ be a representation of G. Define C(ρ;H1,K1;H2,K2) to be

1. the sum (21) when H1 ≥ H2 ≥ K1 ≥ K2,
2. the sum (24) when H2 ≥ H1 ≥ K1 ≥ K2, and
3. the sum (25) when H1 ≥ K1 ≥ H2 ≥ K2.

We extend this definition to include the three other possible arrangements of H1,
H2, K1, K2 in the subgroup chain, by the symmetry condition

C(ρ;H1,K1;H2,K2) = C(ρ;H2,K2;H1,K1).

It is clear that C(ρ;H1,K1;H2,K2) is an upper bound for the complexity of the
matrix multiplication of a matrix in EndK1(ρ↓H1) with a matrix in EndK2(ρ↓H2),
whatever the positions of H1,K1, H2,K2 in the subgroup chain. The next theorem
gives another useful bound.

Theorem 4.7. Let H1 ≥ K1 and H2 ≥ K2 be subgroups of G occurring as sub-
chains of some chain of subgroups to which the representation ρ is adapted. Let
G1 ≥ G2 ≥ G3 ≥ G4 be the rearrangement of the Hi and Ki into a single chain.
Then

C(ρ;H1,K1;H2,K2) ≤M(G2, G3).
∑

ρG1 ,ρG4

M(ρG1 , ρG4)2

where ρG1 ranges over inequivalent irreducible representations of G1 having nonzero
multiplicity in ρ, and ρG4 ranges over inequivalent irreducible representations of G4

having nonzero multiplicity in ρG1 .

Proof. For simplicity we only consider the case when H1 ≥ H2 ≥ K1 ≥ K2; all the
other cases use a similar line of proof. First note that if ρ is a representation of G,
ρK is a representation of a subgroup of G, and H is a subgroup of G containing K,
then

M(ρ, ρK) =
∑
ρH

M(ρ, ρH)M(ρH , ρK).
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By Theorem 4.6 we may bound C(ρ;H1,K1;H2,K2) as follows:

C(ρ;H1,K1;H2,K2)

=
∑

ρH1 ,ρH2 ,ρK1 ,ρK2

M(ρH1 , ρK1)M(ρH2 , ρK2)×

×M(ρH1 , ρH2)M(ρH2 , ρK1)M(ρK1 , ρK2)

≤ M(H2,K1)
∑

ρH1 ,ρK2

∑
ρH2

M(ρH1 , ρH2)M(ρH2 , ρK2)

×
×

∑
ρK1

M(ρH1 , ρK1)M(ρK1 , ρK2)


= M(H2,K1)

∑
ρH1 ,ρK2

M(ρH1 , ρK2)2

4.3. Complexity of the algorithm. We now combine the ideas of Sections 4.1
and 4.2 to obtain some general upper bounds for the complexity of a Fourier trans-
form. Assume all notation is as in Section 4.1, so that for a fixed subset Y ⊂ G, X
is a set of words from a subset S ⊂ G, whose products equal Y , X0 is obtained by
padding the words of X with copies of the identity element on the left until they
all have the same length γ, and Xk is obtained from X0 by deleting k symbols from
the right of each word. Furthermore, let Xi denote the set of words obtained from
words of X0 by deleting the γ − i leftmost symbols.

Let Kn ≥ · · · ≥ K0 = 1 be a chain of subgroups of G, and assume that ρ is
adapted to this chain. Given any g ∈ G, define the indices c+(g) and c−(g) by

Kc+(g) = the smallest subgroup in the chain containing g, and
Kc−(g) = the largest subgroup of Kc+(g) in the chain and centralizing g.

(26)

So ρ(g) ∈ EndK
c+(g)

(ρ↓Kc−(g)). Let b+0 and b−0 be such that

F (y) ∈ EndK
b
+
0

(ρ↓Kb−0
)

for each y ∈ Y . Then for any i between 0 and γ we let

b+i = max{b+0 , c+(g) : g ∈ Xi},
b−i = min{b−0 , c−(g) : g ∈ Xi}.

By Definition 4.1 the number of scalar operations needed to perform the ma-
trix product ρ(s) · Fi−1(w) appearing in the expression (13) is no greater than
C(ρ;Kc+(s),Kc−(s);Kb+i−1

,Kb−i−1
).

Theorem 4.8. Let ρ be a matrix representation of G which is adapted to a chain
of subgroups, Kn ≥ · · · ≥ K0. Let Y ⊂ G and for each y ∈ Y let F (y) be in
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EndK
b
+
0

(ρ↓Kb−0
). Then the sum (12) may be calculated in no more than

γ−1∑
k=0

∑
ws∈Xk
s6=e

C(ρ;Kc+(s),Kc−(s);Kb+k
,Kb−k

)(27)

scalar operations.

Proof. By the definition of C (Definition 4.1) and Theorem 4.5, the sum (27) is an
upper bound for the number of scalar operations needed for all the matrix multipli-
cations occurring in the separation of variables algorithm. We now have to include
the matrix additions as well. The proof of Theorem 4.5 shows that for each nonzero
entry of the matrix products, the number of scalar multiplications used in the com-
putation of that entry is one more than the number of scalar additions. When we
include the scalar additions used to compute the matrix additions occurring in our
algorithm we see that the total number of additions used is still no greater than
the total number of multiplications. Hence the complexity of the algorithm is the
same as the total number of multiplications and is bounded by the sum (27).

We now give several simpler bounds that are direct corollaries of Theorem 4.8
and the results of Section 4.2. For this, it is useful to introduce the multiplicity
function M, defined on G. For a fixed chain of subgroups G ≥ Kn ≥ · · · ≥ K0

define

M(g) =

{
M(Kc+(g),Kc−(g)) if g 6= 1,

0 if g = 1.
(28)

For any subset S ⊂ G define

M(S) = max
s∈S
M(s).(29)

Corollary 4.9. Let R be a complete set of inequivalent irreducible matrix repre-
sentations for G, adapted to the subgroup chain Kn ≥ · · · ≥ K0. Let Y be any
subset of G, and let X be a set of factorizations of elements of Y in terms of el-
ements from a subset S ⊂ G. Let γ be the maximum length of any word in X.
Then

mG(R, Y ) ≤
γ−1∑
k=0

∑
ws∈X̃k

M(s)(30)

≤ M(S)

[
γ−1∑
k=0

∣∣∣X̃k

∣∣∣](31)

where X̃k is obtained from X0 by deleting k elements from the right of each word
and then deleting all words with an identity element at the far right.

Proof. This is an immediate consequence of Theorem 4.8, Theorem 4.7 and the
definition ofM.

Remarks. 1. Applications. Corollary 4.9 is the primary result for the applications of
Section 5. It has the virtue of simplicity, but when R is H-adapted, it does not use
the block diagonal form of the Fourier transforms of the restricted representations
on H. To take this into account, Theorem 4.8 must be used directly.
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2. General results. Corollary 4.9 might be useful in the search for general results
on the complexity of Fourier transforms on any finite group, possibly improving
on the general bounds of Clausen [18], or those of Diaconis and Rockmore [29].
As a first step in this direction, let lH,S(y) be the minimum non-negative inte-
ger, l, such that y is in the same coset of G/H as some product of l elements of
S. If Y is a set of coset representatives for G/H, then the generating function
PG/H,S(t) =

∑
y∈Y t

lH,(y) is independent of the choice of coset representatives and

is sometimes called the Poincaré polynomial of G/H with respect to S. Note
that in this case P ′G/H,S(1) =

∑
y∈Y lH,S(y) is the sum of the lengths of minimal

coset representatives for G/H.

Corollary 4.10. Let R be a complete set of inequivalent irreducible matrix rep-
resentations for G, adapted to the subgroup chain Kn ≥ · · · ≥ K0. Let H be a
subgroup of G, and Y a set of minimal coset representatives for G/H, relative to
the subset, S of G. Then

mG(R, Y ) ≤ M(S) · P ′G/H,S(1)

≤ M(S) · γ · |G/H|
where γ is the maximum length of any element of Y in S.

Notice that this is a general upper bound, depending only on a set of generators
for a finite group, and a subgroup chain.

3. Adapted diameters. In order to use Corollary 4.10 in conjunction with Theo-
rem 3.2, we must assume that given a chain of subgroups

G = Km ≥ · · · ≥ K0,(32)

then for each i, a set of coset representatives for Ki/Ki−1 can be expressed in
terms of S ∩Ki. In this case we say that S is a generating set for the chain of
subgroups (32). When the subgroup chain contains both the whole group, G, and
the trivial subgroup, 1, a generating set for the chain is called a strong generating
set for G with respect to the chain of subgroups (32). Strong generating sets arise
naturally in the context of many algorithmic issues in computational group theory
[59]. In particular, fast algorithms for their construction for stabilizer subgroup
chains in permutation groups are a cornerstone for many important techniques [5].

Using the bounds of Corollary 4.10 in Theorem 3.2, we obtain an upper bound
on the complexity of G in terms of the quotient sizes |Ki/Ki−1|, multiplicity data
M(S) and combinatorial data in the form of the maximum lengths needed to con-
struct the coset representatives at each level. This last aspect is nicely encapsulated
in the notion of the adapted diameter of a group with respect to a generating
set for a given chain of subgroups (cf. [51] for details).

4. Choosing the generating set or subgroup chain. The complexity bounds of
Theorem 4.8, Corollary 4.9, and Theorem 3.1 only depend on the choice of subgroup
chain and on the choice of factorization for group elements. Thus, they do not
depend on the choice of a particular adapted basis. We now discuss some ideas
which guide these choices with the aim of minimizing the complexity (27) of the
separation of variables algorithm. These issues are examined a bit more fully in
[49] (esp. Section 3.2).

For a fixed factorization, refining the subgroup chain always decreases the bound
(27). This is because the complexity for the matrix product, C(ρ;H1, L1;H2, L2),
is decreased if we increase L1 or L2 or if we decrease H1 or H2. Refining the
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subgroup chain therefore decreases C(ρ;Kc+(s),Kc−(s);Kb+i−1
,Kb−i−1

). Of course,

this is also changing the original problem, as we must assume our representations
are adapted to the new subgroup chain, so that Theorem 4.9 applies; this is an
additional hypothesis.

It is conceivable that for a given group, a natural chain of subgroups may be
given; in this case we are faced with the problem of finding a factorization of group
elements that makes the separation of variables algorithm efficient. If we plan to
apply separation of variables recursively through the chain,

G = Kn ≥ Kn−1 ≥ · · · ≥ K0 = 1,(33)

then the factorization we use must be a refinement of a factorization using coset
representatives, and the set of generators S, for the factorization is necessarily a
strong generating set (cf. Remark 3).

We now construct a strong generating set with minimal M(S). For any sub-
groups H ≥ L in the subgroup chain, this set will also minimize the quantity

max
s∈S

C(ρ;Kc+(s),Kc−(s);H,L)(34)

over all strong generating sets for the chain (33). We start by defining S(0) =
K0 = 1, which clearly solves this problem for the trivial group. Then we define
S(i) = S ∩Ki inductively by

S(i) = S(i− 1) ∪ (Ki ∩ Centralizer(Kj))

where j is chosen to be maximal with respect to the property that S(i) generates
Ki. By induction, S(i) is a strong generating set for the chain Ki ≥ · · · ≥ K0 and
S = S(n) minimizes both M(S) and (34) amongst strong generating sets. Note
that we do not need to calculate any restriction multiplicities to find this generating
set.

Minimizing M(S) places a restriction on the generators which increases the
lengths of factorizations. In practice it seems that the advantage of smaller mul-
tiplicities outweighs the disadvantage of long factorizations. The possibility of
minimizing M(S) is one of the most important features of our approach to the
computation of Fourier transforms; it gives us a place to start the construction of
an algorithm for a specific group we might be interested in.

The converse problem is to construct a subgroup chain from a generating set so
the complexity of the separation of variables algorithm is small. Suppose now, that
we are given a minimal generating set, S. Then an arbitrary ordering of elements
of S as s1, . . . , sn, defines a subgroup chain via Ki = 〈s1, . . . si〉. It is clear that
c+(si) = i for this subgroup chain. If we draw a graph with vertices corresponding
to elements of S and edges between elements that do not commute then c−(si) can
be read straight from the graph as the largest j such that si is not connected to any
of s1, . . . , sj by an edge. Ordering S corresponds to labeling the vertices of this
graph with numbers from 1 to n. Finding an ordering of S such that the numbers
c+(si) − c−(si) are minimized is related to the problem of drawing the graph in a
form which is “close” to a chain.

5. Applications

The results of Section 4 may be immediately applied to derive useful upper
bounds for the complexities of many families of finite groups. We first show how
our general machinery reobtains the best known FFTs for some abelian groups,
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the symmetric groups and their wreath products. We then move on to derive new
results for some of the families of classical groups over finite fields as well as their
various generalizations.

Our usual approach is via Corollary 4.9. Thus in each situation we require
a chain of subgroups with the accompanying sequence of coset representatives.
For families of groups which nest naturally (e.g., symmetric groups, general linear
groups) the subgroup chains contain the nesting and we get a recursive description
of the algorithm. To take full advantage of Corollary 4.9 the coset representatives
should admit a factorization in terms of a generating set such that the value ofM,
defined by (28), on the generators is small. In what follows, the statement of the
theorems will be given in terms of the complexity, TG, defined in Definition 2.2.
The proofs are most most easily presented using the reduced complexity tG.

5.1. Finite abelian groups. Applications in digital signal processing and data
analysis motivated the need for a fast cyclic discrete Fourier transform (cf. the
example of Section 2.1 and the references [22, 23, 38]) and more generally a fast
Fourier transform on any abelian group [31, 53]. Application of Corollary 4.9 im-
mediately gives us some well-known results bounding the complexity of the Fourier
transform on any finite abelian group.

Theorem 5.1. Let A be a finite abelian group whose order has the prime factor-
ization |A| = pr11 . . . prmm . Then for any complete set of irreducible representations
R of A,

CA ≤ TA(R) ≤ |A|
m∑
i=1

ripi.

Proof. Since A is abelian, all irreducible representations of A are one-dimensional.
Thus, the unique complete set of irreducible representations is adapted with respect
to any chain of subgroups of G. Let S = A be the generating set for A. As all
representations of A are one-dimensional, M(S) = 1 with respect to any chain of
subgroups. Let A = Kn > · · · > K0 = {1} be any chain of subgroups of A. For
a fixed i let Yi be any complete set of coset representatives for Ki/Ki−1 and let
X = Yi be the set of trivial factorizations of elements of Yi (i.e., each element in
Yi is represented by the one element word consisting of itself). Clearly, X1 = {φ}
(where φ denotes the empty word) so that mKi(RKi , Yi) ≤ |Yi|, by Corollary 4.9.
Applying Theorem 3.2 then yields

tA ≤
n∑
i=1

|Ki|
|Ki−1|

.(35)

The right-hand side of (35) is a sum of divisors of |A| whose product is equal to
|A|. Such a sum is minimized precisely when each term |Ki| / |Ki−1| is prime. This
type of chain can always be found in an abelian group and any chain of subgroups
of A may be refined to such a chain. Hence the theorem is proved.

The proof of Theorem 5.1 is essentially the derivation of the well-known Cooley-
Tukey FFT [24]. Note that when |A| = 2n we find that C(A) ≤ 2n · 2n =
2 |A| log2 |A|. For primes greater than 2 other techniques have been discovered for
further optimizing the discrete Fourier transform (see, e.g., [31]). For any abelian
group A, C(A) ≤ 8 |A| log2 |A| (cf. [9]).
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5.2. FFTs for Sn and other Weyl groups. Applications in data analysis as
well as the analysis of certain random walks related to card shuffling (cf. [27]) have
motivated recent work related to FFTs for the symmetric group. For a survey of
some approaches to these algorithms see [21]. In this section we show how the
most efficient known algorithm due to Clausen (cf. [18]) can be rederived by our
general approach and then show how our techniques extend directly to the other
Weyl groups.

For the symmetric group we use the natural chain of subgroups

Sn > Sn−1 > · · · > S1 = {1}(36)

where Sk is identified with the subgroup of Sn of elements fixing each of the points
k + 1, . . . , n. This chain has a natural generalization in the other Weyl groups.

Theorem 5.2 (Clausen [18], Theorem 1.4). Let Sn denote the symmetric group on
n elements. If R is any complete set of irreducible representations of Sn adapted
to the chain of subgroups (36), then

C(Sn) ≤ TSn(R) ≤ (n+ 1)n(n− 1)

3
· n!.(37)

Proof. Take as generating set the collection of pairwise-adjacent transpositions,
S = {t2, . . . , tn}, where tj denotes the transposition (j − 1, j). Note that{

tj ∈ Sj and
tj commutes with Sk for k < j − 1.

Thus, in the notation of Section 4.3

Kc+(tj) = Sj and
Kc−(tj) = Sj−2.

Furthermore, it is easily derived from the combinatorics of Young tableaux and the
“Branching Theorem” (cf. [40], p. 34) that the maximum multiplicity occurring
in the restriction of any irreducible representation from Sk to Sk−2 is two, i.e.,
M(Sk, Sk−2) = 2, so that M(tj) = 2. Lastly, note that coset representatives for
Sn/Sn−1 of minimal length in the generating set S are given by the elements

Y = {1, tn, tn−1tn, . . . , t2 · · · tn}
= {1, (n n− 1), (n− 2 n− 1 n), . . . , (1 · · · n)}.

If we let X be the corresponding set of words, then the longest product in X has
length γ = n− 1, and in the notation of Corollary 4.9,

X̃k = {e · e · · · e · tn−k, . . . , e · t3 · · · tn−k, t2 · t3 · · · tn−k}.
Therefore

γ−1∑
k=0

∣∣∣X̃k

∣∣∣ =
n(n− 1)

2
.

Plugging this data into Corollary 4.9 and using Theorem 3.1 gives the recurrence
tSn ≤ tSn−1 + n(n− 1) which is easily iterated to finish the proof.

Remark. The bound of Theorem 5.2 is on the order of n!(log2 n!)3. In this case the
representations given by Young’s orthogonal form or Young’s seminormal form (cf.
[40], p. 114) are adapted for the chain of subgroups (36) for Sn. The resulting algo-
rithm is the fastest algorithm currently known for computing a Fourier transform
on Sn [21].
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The above discussion for Sn generalizes naturally to all Weyl groups. The pair-
wise adjacent transpositions are simple reflections, and the chain of subgroups (36)
is the corresponding chain of parabolic subgroups. From this point of view the coset
representatives we use are quite natural; they are the minimal coset representatives
for the chain of parabolic subgroups, and their factorization comes from the Bruhat
order by taking subwords of the unique minimal coset representative of maximal
length. In this language (the book [39] is a good reference for the basic material)
the generalization of Theorem 5.2 to the Weyl groups Bn and Dn is straightforward.

We shall consider the chains of parabolic subgroups

Bn > Bn−1 > · · · ,
Dn > Dn−1 > · · · ,

(38)

and the generating sets consisting of the simple reflections. The minimal coset rep-
resentatives with respect to (38) are well-known as are explicit expressions for the
corresponding Poincaré polynomial. There are explicit formulae for the multiplic-
ities of the restrictions of the classical Weyl groups to any parabolic subgroup in
terms of the Littlewood-Richardson coefficients .

The results we obtain for the groups Bn and Dn are superseded by the results
on wreath products in the next section (cf. Theorem 5.6), as Bn ∼= (Z/2Z)[Sn] is a
wreath product of Z/2Z by Sn, andDn is a subgroup of index 2 in Bn. However, the
techniques used here illustrate the combinatorial methods used in our construction
of FFTs on Chevalley groups (cf. Section 5.6).

Theorem 5.3. Assume RB and RD are complete sets of irreducible representa-
tions of Bn and Dn respectively, each set adapted to the appropriate chain of sub-
groups (38). Then

C(Bn) ≤ TBn(RB) ≤ (n+ 1)n(4n− 1)

3
· |Bn|(39)

and

C(Dn) ≤ TDn(RD) ≤ 4(n+ 1)n(n− 1)

3
· |Dn| .(40)

Before we prove Theorem 5.3 we state some lemmas which provide the data
needed to apply Corollary 4.9 to this situation.

Lemma 5.4. (i) The maximum multiplicity occurring in a restriction of any
irreducible representation of Sn to Sn−1, Bn to Bn−1, or Dn to Dn−1 is 2,
i.e., M(Sn, Sn−1),M(Bn, Bn−1),M(Dn, Dn−1) ≤ 2.

(ii) The maximum dimension of a representation of D3
∼= S4 is 3.

Proof. (i) It is well-known that the restriction of an irreducible representation of
Sn to Sn−1 is multiplicity-free (see, e.g., [40]) as is that of Bn to Bn−1 (see, e.g.,
[68]). The result for Dn follows easily from that of Bn, and the fact that Dn is of
index 2 in Bn.

(ii) This follows from the hooklength formula (see [40], p. 77).

The minimal coset representatives and the sums of their lengths may be found
using the following lemma.

Lemma 5.5 (cf. [39]). Let W be a Weyl group with S its set of simple reflections.
For any subset J ⊂ S let WJ denote the corresponding parabolic subgroup. Let
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PW/WJ ,S(t) denote the Poincaré polynomial of W/WJ in the variable t. Then the
sum of the lengths of the minimal coset representatives of W/WJ is given by

P ′W/WJ ,S
(1) =

1

2
|W/WJ | [NS −NJ ]

where P ′ denotes the derivative with respect to t and where NS and NJ are the
numbers of reflections in W, WJ and hence the lengths of the longest elements in
W and WJ respectively. In addition the minimal coset representatives for W/WJ

and their minimal factorizations all occur as subwords of a minimal factorization
for wSwJ , where wS is the longest element in W and wJ is the longest word in WJ .

In Table 1 we summarize the data required to bound the complexities for the
Weyl groups.

Table 1. Combinatorial data for the Weyl groups.

W WJ M(S) |W| NS P ′
W/WJ ,S

(1)

Sn Sn−1 2 n! 1
2n(n− 1) 1

2n(n− 1)
Bn Bn−1 2 2nn! n2 n(2n− 1)
Dn Dn−1 3 2n−1n! n(n− 1) 2n(n− 1)

It is now straightforward to use Table 1 to obtain recursive bounds for the reduced
complexities of these chains of groups.

Proof of Theorem 5.3. From the data in Table 1, Corollary 4.10, and Theorem 3.1,
we obtain the recurrences tBn ≤ tBn−1 + 2n(2n− 1) and tDn ≤ tDn−1 + 6n(n− 1).
Iterating the recurrence for tBn gives the result for that series of groups, but for
tDn we need a more careful count.

Let s1, . . . , sn denote the simple reflections for Dn, in the order indicated in
Diagram 5. ThenM(si) = 2 for i ≥ 4,M(s3) = 3 andM(si) = 1 for i = 1 or i = 2.
The maximal minimal coset representative for Dn/Dn−1 is sn · · · s3s2s1s3 · · · sn and
the minimal coset representatives have the following minimal factorizations:

1, sn, sn−1sn, . . . , s3 · · · sn, s2s3 · · · sn, s1s3 · · · sn, s1s2s3 · · · sn,
s3s1s2s3 · · · sn, . . . , sn · · · s3s2s1s3 · · · sn.

(41)

The number of times s3 occurs in these words is exactly equal to the number of
times s1 and s2 occur in total, so the average value of M over all occurrences of
symbols in the set of minimal factorizations is 2. The sum of the lengths of the
minimal coset representatives of Dn/Dn−1 is 2n(n− 1). Therefore if we let X be
equal to the set of words (41), then we have

2n−2∑
k=0

∑
ws∈Xk
s6=e

M(s) = 4n(n− 1).

Applying Corollary 4.9 and Theorem 3.1 gives us tDn ≤ tDn−1 + 4n(n− 1). Solving
this recurrence completes the proof.

We have already given the minimal coset representatives for both Sn/Sn−1 and
Dn/Dn−1. For Bn/Bn−1 they are

1, sn, sn−1sn, . . . , s1 · · · sn, s2s1 · · · sn, . . . , sn · · · s1 · · · sn
where s1, . . . , sn are the simple reflections of Bn labelled according to Diagram 5.
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Diagram 5. Labelling the simple roots.

5.3. Wreath products of the symmetric group. For wreath products of the
form G[Sn], a decomposition similar to that used for Weyl groups is used. Wreath
products are of interest in data analysis as the symmetry groups of nested designs
[52] and in structural chemistry as the automorphism groups of non-rigid molecules
[67]. They are also studied as the automorphism groups of graphs obtained by
“composition” (cf. [36]).

Abstractly, G[Sn] has the structure of a semidirect product Gn o Sn in the
following way. Elements of this group may be described by pairs (f ;π) where
f : {1, . . . , n} −→ G, and Sn acts on Gn by

fπ(j) = f(π−1(j))

for π ∈ Sn and f ∈ Gn. Multiplication is defined by

(f ;π) · (g;σ) = (f · gπ;πσ)

where f · gπ(j) = f(j)gπ(j). In this notation it is clear that both Sn and Gn are
naturally identified with subgroups of G[Sn] and that under such an identification
Gn is a normal subgroup and therefore G[Sn] is a semidirect product of these
subgroups. It is not too difficult to see that such a construction makes sense for
any permutation group H < Sn. A thorough but accessible treatment of wreath
products may be found in [44].

A slight modification of the techniques used in Section 5.2 for the symmetric
group yields comparable results for their wreath products. In this case we will use
the chain of subgroups

G[Sn] > G×G[Sn−1] > G[Sn−1] > · · ·(42)

where G[Sn−1] < G[Sn] denotes the subgroup of elements (f ;σ) for which σ lies in
Sn−1 and f(n) is the identity element of G.

Theorem 5.6 ( [55], Theorem 3). Let G[Sn] denote the wreath product of Sn by
the finite group G and let dG denote the maximum dimension of an irreducible
representation of G. Let R be any complete set of irreducible representations of
G[Sn] adapted to the chain of subgroups (42). Then,

C(G[Sn]) ≤ TG[Sn](R) ≤ |G[Sn]|
[

(n+ 1)n(n− 1)

3
(dG)2 + ntG

]
.

Proof. Note that coset representatives for G[Sn]/(G × G[Sn−1]) can be chosen to
be the same as for Sn/Sn−1, so that these coset representatives can be written as
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words in S, the set of pairwise-adjacent transpositions in Sn. The transposition tj
lies in G[Sj ] and commutes with G[Sj−2]. So if we use the chain of subgroups

G[Sj ] > G×G[Sj−1] > G[Sj−1] > G×G[Sj−2] > G[Sj−2]

and the fact that the restriction of representations from G[Sj ] to G × G[Sj−1] is
multiplicity-free (see, e.g., [44]) we find that M(S) is 2d2

G, for dG the maximum
dimension of an irreducible representation of G. Using the minimal coset repre-
sentatives for Sn/Sn−1 as coset representatives for G[Sn]/(G×G[Sn−1]) as well as
Theorem 3.1, we obtain the relation

tG[Sn] ≤ tG×G[Sn−1] + n(n− 1)(dG)2

≤ tG[Sn−1] + tG + n(n− 1)(dG)2.

Applying this inequality recursively proves the theorem.

Remark. Notice that a subgroup chain for G will give a chain of subgroups of
G[Sn] refining the chain (42). In [55] bases adapted to the subgroup chain (42) are
constructed.

5.4. A new FFT for the general linear group over a finite field. Let GLn(q)
denote the group of invertible n× n matrices with entries in the field of q elements
where q is a prime power. For data analysis, these groups and their generalizations
are of interest as the automorphism groups of the many designs based on finite
geometries and codes (see, e.g., [1]). Throughout this section all matrix groups are
assumed to be over Fq, the finite field of q elements. Thus, GLn ≡ GLn(q), etc.

To apply the results of Section 5 to these groups, we will consider the chain of
subgroups

GLn > Pn > GLn−1 ×GL1 > GLn−1 > · · · > GL1(43)

where Pn is the subgroup of GLn of all block matrices of the form(
A v

0 . . . 0 c

)
(44)

with A ∈ GLn−1, v ∈ Fn−1
q and c ∈ F×q ; and GLk × GL1 is identified with the

subgroup of block diagonal matrices of the form A⊕ b⊕ In−k−1 with A in GLk and
b in GL1 and Ir denoting the r × r identity matrix.

Theorem 5.7. Let R be any complete set of irreducible representations of GLn(q)
adapted to the chain of subgroups (43). Then for any n ≥ 2, q ≥ 2,

C(GLn(q)) ≤ TGLn(q)(R) <
1

2
22nq2n−2 |GLn(q)| .(45)

We postpone the proof of Theorem 5.7 in order to first collect the preliminary
results necessary for applying Corollary 4.9. As before, we seek generators for the
successive sets of coset representatives for which the values ofM are low.

Let Ei,j be the matrix that is zero everywhere except for a 1 in the i,j entry.
For i 6= j and any x in Fq, define Xi,j(x) = I+xEi,j . Let X∗i,i(x) = I+ (x−1)Ei,i.
Also let ti denote the transposition matrix Ei−1,i+Ei,i−1. These elements generate
GLn [41], and they will serve as our generating set.

Factorizations of coset representatives of GLn/Pn in terms of this generating set
are easily derived from the Bruhat decomposition for GLn (see [41, 15]). Those for
Pn/(GLn ×GL1) may be derived using some simple matrix algebra.
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Lemma 5.8. With the above notation,

(i) GLn =
∐n
k=1(Xk,k+1tk+1) · · · (Xn−1,ntn) · Pn.

(ii) Pn = Xn−1,n(Xn−2,n−1tn−1) · · · (X1,2t2) · t3 · · · tn−1 · Xn−1,n(1) ·
(GLn−1 ×GL1).

We now need to calculate the the value of M on the elements of Xi,i−1 and
Xi−1,i, as well as ti. As a first step note that all these elements are in GLi and
commute with GLi−2. Hence we must bound M(GLn, GLn−2).

Lemma 5.9. (i) The maximum multiplicity occurring in the restriction of any
irreducible representation of GLn to GLn−1 is at most 2n−1.

(ii) For any n ≥ 1 and q ≥ 2, the number of conjugacy classes of GLn(q) is less
than qn.

(iii) The maximum multiplicity occurring in the restriction of any irreducible rep-
resentation of GLn to GLn−2, M(GLn, GLn−2), is less than 22n−3qn−1.

Proof. Part (i) follows straight from the paper of Thoma [61]. Part (ii) is proved
in Appendix A at the end of the paper. Part (iii) then follows from (i) and (ii) by
noting that M(GLn, GLn−2) is bounded by the product of the number of repre-
sentations of GLn−1 with M(GLn, GLn−1) and M(GLn−1, GLn−2).

The following corollary is an immediate consequence of Lemma 5.9.

Corollary 5.10. Let g ∈ GLi commute with GLi−2. Then M(g) < 22i−3qi−1.

We are now ready to prove Theorem 5.7.

Proof of Theorem 5.7. Applying Corollaries 4.9 and 5.10 to the factorization of the
first part of Lemma 5.8 yields

tGLn < tPn +
n∑
k=2

22k−3qk−1.

(
k−1∑
l=1

ql

)

≤ tPn +
4

15
22nq2n−2.(46)

Applying Corollary 4.9 to part (ii) of Lemma 5.8 gives

tPn ≤tGLn−1×GL1 + qn−1M(GLn, GLn−2) +
n−1∑
k=2

qkM(GLk, GLk−2) +

+
n∑
k=3

q ·M(GLk, GLk−2).

By Theorem 3.3

tGLn−1×GL1 ≤ tGLn−1 + tGL1 ,

so for n ≥ 2 we obtain

tPn < tGLn−1 + tGL1 +
1

5
22nq2n−2.(47)

Now we use these inequalities recursively. In the case of GL1 we use the naive
bound of q − 1 for tGL1 . An examination of the derivation of inequalities (46) and
(47) shows that we have dropped several negative terms along the way, and that
these terms dominate all the tGL1 terms that appear. Thus we may ignore the
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tGL1 terms that appear during the recursion and at the bottom of the recursion.
Summing all the other terms that appear gives the final result

tGLn <
1

2
22nq2n−2.

Remarks. 1. Further improvements. By improving the bound for tGL2 we can
improve on Theorem 5.7. Application of the results of [46] show that tGL2 ≤
200q log q. In fact, a generalization of our methods, applied to the appropriate
subgroup chain of GL2, shows that tGL2 may be bounded by 5q− 3; for details see
[50].

2. Variations of the algorithm. There is of course nothing canonical about either
the generators chosen here for GLn or the subgroup chain. It seems highly likely
that better choices for either are possible. Always, commutativity will need to be
exploited and here it may be necessary to effectively compute the centralizers of
various subsets of elements. Towards this end, recent advances in computational
group theory for matrix groups [10] may prove useful.

3.Other work. The problem of finding an efficient algorithm for computing a
Fourier transform for GLn(q) was first considered in [47]. There an algorithm is
proposed which uses “models” (direct sums of induced one-dimensional representa-
tions which contain each irreducible of the group exactly once) to compute a Fourier
transform for GLn. In so doing the algorithm proceeds in two parts: (1) Comput-
ing the Fourier transform at reducible representations which are given by monomial
matrices and then (2) applying projection operators to these reducible matrices in
order to obtain a collection of unique irreducible Fourier transforms. Some simple
asymptotics for the bounds they obtain yield an estimate for the complexity of their
algorithm of

O(q
n2−2n

4 |GLn(q)|).

4. Direct approach using Theorem 3.2. It is also necessary to compare our
algorithm with the algorithm which uses the subgroup chain but does not factor the
coset representatives and thus performs direct matrix multiplication of the twiddle
factors. Straightforward analysis then shows that such an algorithm yields an upper
bound which depends on the maximum degree of an irreducible representation of

GLn, which is of the order of q
1
2 (n2−n). This direct algorithm gives an upper bound

of

O(nq
1
2 (n2−3n)|GLn(q)|).

5.5. The unitary group over a finite field. Let Un(q2) denote the group of
unitary n× n matrices with entries in the field of q2 elements, relative to the field
automorphism of order 2, where q is some prime power. We shall often abbreviate
this to Un. To simplify our calculations we shall always assume that q is odd. We
consider the chain of subgroups

Un > Un−1 > · · · > U1(48)

where Uk is identified with the subgroup Diag(Uk, In−k) of Un.



198 DAVID K. MASLEN AND DANIEL N. ROCKMORE

Theorem 5.11. Let R be any complete set of irreducible representations of Un(q2)
adapted to the chain of subgroups (48). Then for any n ≥ 2, q ≥ 2,

C(Un(q2)) ≤ TUn(q2)(R) < 3(1 +
18

7q
)B1(q−1)q3n−3

∣∣Un(q2)
∣∣(49)

where B1(t) =
∏∞
k=1

1+tk

1−tk .

Remark. In Appendix A, we show that, for q ≥ 2,

B1(q−1) < 1 + 2q−1 + 4q−2 + (42.05)q−3

so in particular, B1(q−1) < 8.26, and B1(q−1) tends to 1 as q gets large. We also
give a series of related bounds for B1, and tabulate some values of B1(q−1). Also,

the factor 3(1 + 18
7q ) can be replaced by 3q4

[
(q3 − 1)(q − 1)

]−1
. When q = 2 this is

48
7 , but it tends to 3 for large q.

Before proving Theorem 5.11, we shall first prove the following weaker but sim-
pler result:

Claim. Assume R and B1 are as in Theorem 5.11. Then

tUn(R) <
32

7
B1(q−1)q3n−2.(50)

To prove the Claim we proceed as in the case of GLn and obtain a factorization
of any element of Un as a product of matrices which are either diagonal or have a
single 2× 2 block with ones elsewhere on the diagonal. The multiplicity results we
will need are given in the following lemma.

Lemma 5.12. (i) The maximum multiplicity occurring in the restriction of any
irreducible representation of Un to Un−1 is 1.

(ii) For any n ≥ 1 and q ≥ 2, the number of conjugacy classes of Un(q2) is less
than qnB1(q−1).

(iii) The maximum multiplicity occurring in the restriction of any irreducible rep-
resentation of Un to Un−2 is less than qn−1B1(q−1).

Proof. (i) is a result of Hagedorn [35]. (ii) is proved in Appendix A. (iii) is a direct
consequence of (i) and (ii).

So as to not unduly interrupt the flow of the section the necessary factorization of
coset representatives of Un/Un−1 is obtained in Appendix A, by using some simple
geometry. To state the result succinctly, we let ui(x1, x2) be the block diagonal
matrix with ones on the diagonal except for a 2× 2 block of the form(

−xq2 x1

xq1 x2

)
.

This matrix is in Un(q2) provided that x1+q
1 + x1+q

2 = 1.

Lemma 5.13. Let N be the group homomorphism on F×q2 given by N(α) = α1+q

and let R be a complete set of coset representatives for F×q2/kerN . Then every coset

of Un/Un−1 has at least one coset representative of the form ε · a2 · · · an, where ε
is an element of Fq2 satisfying ε1+q = 1 and for 2 ≤ i ≤ n − 1, the matrix ai has
one of the following forms:

(A) ai = ui(r, x) for some r ∈ R, x ∈ Fq2 such that r1+q + x1+q = 1.
(B) ai = ti+1ui(r, x) for some r ∈ R, x ∈ Fq2 such that r1+q + x1+q = 1.
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(C) ai = titi+1ui(r, rδ), where r is the unique element of R with r1+q = 1
2 , and

δ ∈ Fq2 satisfies δ1+q = 1.

The factor an has the form (A).

We can now prove the claim.

Proof of the Claim. Applying Corollary 4.9 to the factorization of Lemma 5.13
shows that

tUn ≤ tUn−1 + qn−1(qn − (−1)n)

[
1 + gn−1(q2) + 3

n−1∑
k=2

gk−1(q2)

]
< tUn−1 + 4q3n−2B1(q−1)

where gk(q2) denotes the number of conjugacy classes of Un(q2). Using this in-
equality recursively and noting that tU1 ≤ q + 1 gives the result (50).

With these preliminary results in hand we now easily prove Theorem 5.11.

Proof of Theorem 5.11. The improvement on the Claim comes from looking at the
matrix multiplications in the separation of variables algorithm more carefully. Sup-
pose we are computing the Fourier transform at the adapted irreducible represen-
tation, ρ. At some point in the algorithm we will calculate matrix products of the
form ρ(an) · ĥ(ρ ↓ Un−1), where an ∈ Un commutes with Un−2 and ĥ(ρ ↓ Un−1)
is in End1(ρ ↓Un−1). To obtain the complexity result (50) we used the bound of
M(an)d2

ρ for the complexity of such a matrix multiplication—a bound which comes

without assuming any special form of the matrix ĥ(ρ ↓Un−1). However, we could
get a better result by using part of Theorem 4.7 to bound the complexity of that
matrix multiplication:

C(ρ;Un, Un−2;Un−1, 1) ≤ d2
ρ.

Using this new complexity gives us

tUn ≤ tUn−1 + qn−1(qn − (−1)n)

[
1 + 1 + 3

n−1∑
k=2

gk−1(q2)

]

< tUn−1 + 3(1 +
2

q
)q3n−3B1(q−1).

Using this bound recursively proves the theorem.

5.6. Chevalley groups. The techniques used to compute a Fourier transform in
GLn may be extended in a relatively straightforward manner to Chevalley groups
and other finite groups of Lie type. We refer the reader to the book of Carter [16]
for definitions. We limit the current discussion to the classical Chevalley groups
although the techniques generalize in a natural way to other finite groups of Lie
type.

As usual, let An(q), Bn(q), Cn(q), Dn(q) denote the simply connected forms
of the Chevalley groups over a finite field with q elements. Any Chevalley group
G has a subgroup chain analogous to (43), where Pn−1 is replaced by a maximal
parabolic subgroup and GLn−1×GL1 is replaced by the reductive part, and GLn−1

by the semisimple part of the parabolic subgroup. More specifically, we shall label
the simple roots of a rank n group from 1 to n in the order shown in Diagram
5. Then Pk will denote the parabolic subgroup corresponding to the set of simple
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roots labeled from 1 to k with reductive part Lk and semisimple part Gk (not to be
confused with the exceptional group G2 when k = 2). For any Chevalley group G
the chain of subgroups we shall use in the construction of a fast Fourier transform
on G will always be

Gn ≥ Pn−1 ≥ Ln−1 ≥ Gn−1 ≥ · · · ≥ G1.(51)

Theorem 5.14. For any n ≥ 2 there is a positive constant Kn, such that for any
q ≥ 2,

(i) TAn(q) ≤ Knq
2n+1. |An(q)|,

(ii) TBn(q) ≤ Knq
5n−3. |Bn(q)|,

(iii) TCn(q) ≤ Knq
5n−3. |Cn(q)|,

(iv) TDn(q) ≤ Knq
5n−6. |Dn(q)|, for n ≥ 4, and TD3(q) ≤ K3q

10. |D3(q)|, for n = 4

where the complexities are taken with respect to a complete set of representations
adapted to the chain (51).

We shall give the proof of Theorem 5.14 after we have collected some lemmas on
multiplicities and factoring elements in these groups.

We refer the reader to [16] for all the relevant notation. For any root α in the
root system of Gn, we let Xα denote the corresponding root subgroup. We also
let sα denote the corresponding involution in the Weyl group, and let nα be an
element of N mapping onto sα where N comes from the BN -pair for Gn. We shall
denote the simple roots α1, . . . , αn according to Diagram 5. With the exception of
the root α3 of D3, we know that Xαi and nαi lie in Gi and commute with Gi−2.
Consequently, the construction of an FFT using a factorization in terms of the Xαi

or nαi will require that we understand the maximum multiplicity M(Gi, Gi−2).

Lemma 5.15. Let (G,K) be one of the group-subgroup pairs (An(q), An−2(q)),
(Bn(q), Bn−2(q)), (Cn(q), Cn−2(q)) or (Dn(q), Dn−2(q)). Then for fixed n the max-
imum multiplicity M(G,K) is bounded by a function of q of the form O(qσ(G,K)),
where

σ(G,K) =
1

2
[dimG− rankG− dimK − rankK] .

Proof. This is proved in the Appendix A using an argument due to Tom Hagedorn.
See also [35].

The other piece of information we need concerns the factorization of coset rep-
resentatives in terms of the elements Xαi and nαi .

Lemma 5.16. Let G be a simply connected Chevalley group with Weyl group W

and let J be any subset of the set of simple roots of W. Let WJ denote the parabolic
subgroup corresponding to J and WJ the the set of minimal coset representatives for
W/WJ . We let N , NJ denote the number of positive roots of W, WJ respectively.
Also let PJ denote the parabolic subgroup of G corresponding to J , let LJ and UJ
be its reductive and maximal normal unipotent parts, let Z(LJ) be the center of LJ
and GJ be the semisimple part of LJ . Then

(i)

G =

 ∐
w∈W

J

w=sβ1
···sβk

(Xβ1nβ1) . . . (Xβknβk)

 · PJ
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where the w = sβ1 · · · sβk is a reduced expression for w in terms of simple
reflections.

(ii) PJ = UJ · LJ and |UJ | = qN−NJ .
(iii) If G is not of type G2, then there is a sequence, β1, . . . , βm of simple roots

such that UJ ⊆
∏
iXβi over any field of odd characteristic.

(iv) LJ = ZLJ .GJ and |LJ/GJ | = (q − 1)rankG−|J|.

Proof. Parts (i), (ii) and (iv) follow from the first two chapters in Carter’s book
[16]. Part (iii) follows from the Steinberg commutator relations. See, e.g., [15]
Theorem 12.1.1.

Proof of Theorem 5.14. We let Nk denote the number of positive roots of Gk. First
we assume that n ≥ 2 in the cases where Gn is of type A, B, or C, and n ≥ 4 in the
case that G has type D. From Lemma 5.15 it is clear that |Gn/Pn| is a polynomial
of degree Nn −Nn−1 in q and that any coset of Gn/Pn has a coset representative
of length no more than Nn −Nn−1 in the generators (Xαnα). Therefore

tGn ≤ (Nn −Nn−1) |Gn/Pn|M(Gn, Gn−2) + tPn

≤ O(qNn−Nn−1+σ(Gn,Gn−2)) + tPn ,

where the ‘O’ notation indicates a constant independent of q, but which does depend
on n. Now let Un denote the maximal normal unipotent subgroup of Pn and let γn
be such that Un is contained in a product of no more than γn simple root subgroups,
independent of q. This is possible by Lemma 5.16, part (iii). Then

tPn ≤ γn |Un|M(Gn, Gn−2) + tLn

≤ O(qNn−Nn−1+σ(Gn,Gn−2)) + tLn

≤ O(qNn−Nn−1+σ(Gn,Gn−2)) + tGn−1

and therefore tGn ≤ O(qNn−Nn−1+σ(Gn,Gn−2)) + tGn−1 . A quick glance at Table 2
verifies that for all the series of groups, Nn −Nn−1 + σ(Gn, Gn−2) is an increasing
function of n, and hence that

tGn ≤ O(qNn−Nn−1+σ(Gn,Gn−2)) + tG1

for the series of groups of type A, B, C. For these three series, G1 = A1(q)
and hence tG1 is bounded by O(q3) using a naive method of calculating a Fourier
transform. For the groups Dn with n ≥ 4 we have

tDn ≤ O(q5n−6) + tD3

and tD3 may be bounded by O(q10) using similar techniques. Hence we see that
when n ≥ 2, and type A, B, or C, or n ≥ 4 and type D, we have

tGn ≤ O(qNn−Nn−1+σ(Gn,Gn−2)).

Table 2. Combinatorial data for Chevalley groups.

Gn Nn σ(Gn, Gn−2) Nn −Nn−1 + σ(Gn, Gn−2)
An

1
2n(n+ 1) n+ 1 2n+ 1

Bn n2 3n− 2 5n− 3
Cn n2 3n− 2 5n− 3
Dn n2 − n 3n− 4 5n− 6
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6. Homogeneous spaces

For statistical applications, data on homogeneous spaces is often of interest,
rather than data on the full group. In brief, a homogeneous space for a finite group
is simply a set on which the group acts transitively as permutations. In other
words it is a coset space G/K. A common example is the action of the finite affine
group on point-line pairs and more generally, the action of an automorphism group
of a design on its point-block pairs. In this case generalizations of the standard
analysis of variance of data on such sets require the computation of projections of
the data vector onto group-invariant subspaces. The techniques to be developed in
this section provide speed-ups of the most efficient algorithms currently known (cf.
[28] and references therein).

The analyses of Sections 3 and 4 can be applied with virtually no changes to the
computation of transforms on homogeneous spaces. In particular, the sums that
arise in the computation of the Fourier transform of K-invariant functions on a
group, G, can be computed using the separation of variables algorithm. We simply
need to re-investigate the structure of the matrices, which is more special in the
homogeneous space case.

Definition 6.1 (Fourier Transform). Let G be a finite group with subgroup K,
and let f be a complex-valued function on G/K.

(i) Let ρ be a matrix representation of G. Then the Fourier transform of f
at ρ is

f̂(ρ) =
∑
y∈Y

ρ(y)f(yK)PK(52)

where Y is any set of coset representatives for G/K, and PK is the canonical
projection from the representation space, Vρ, onto the subspace of invariant
vectors, V Kρ .

(ii) Let R be a set of matrix representations of G. Then the Fourier transform
of f on R is the set of Fourier transforms of f at the representations in R.

It is immediate from the definition that the Fourier transform of a function on
G/K is the same, up to a fixed scalar multiple, as the Fourier transform of the

associated right K-invariant function on G. It is also immediate that f̂(ρ) is in

HomC(V Kρ ;Vρ), and hence that f̂(ρ) is zero unless Vρ contains a nontrivial K-
invariant vector. Representations containing a nontrivial K-invariant vector are
said to be class 1 relative to K, and in the following discussion we may always
assume that our representations are class 1, if needed.

The analysis of the homogeneous space case mimics most of the previous discus-
sion. By analogy, we set up the following notation.

Definition 6.2 (Complexity). Let G be a finite group with subgroup K, and let
R be any set of matrix representations of G.

(i) Let TG/K(R) denote the minimum number of operations needed to compute
the Fourier transform of f on R via a straight-line program for an arbitrary
complex-valued function f defined on G/K.

(ii) Let tG/K(R) = TG/K(R)/ |G/K|.
TG/K(R) is called the complexity of the Fourier transform on G/K for the set R,
and tG/K is called the reduced complexity.
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The complexity always satisfies the inequalities

|G/K| − 1 ≤ TG/K(R) ≤ |G/K|2 .
A brief glance at equation (52) verifies that it has exactly the form required

in order to apply the separation of variables approach. Indeed, equation (52) is
exactly the same as (12) of Section 4.1, with F (y) = f(yK)PK . Hence, all of
Section 4.1 applies to our situation. In the same way as the separation of variables
approach implied the results of Section 3, we may obtain analogues of the coset
decomposition results for Fourier transforms on homogeneous spaces.

Assume G is a finite group, K is a subgroup of G, Y is a subset of G , and R
is a set of matrix representations of G. Then let MG/K(Y,R) denote the minimum
number of operations required to compute the sums∑

y∈Y
ρ(y)F (y, ρ)

for all ρ in R, where for each y ∈ Y and ρ ∈ R , F (y, ρ) is an arbitrary matrix in
HomC(V Kρ ;Vρ). Let mG/K(Y,R) = MG/K(Y,R)/ |G/K|.

The analogue of Theorem 3.1 in this case is

Theorem 6.1. Let G ≥ H ≥ K be a chain of finite groups, and let R be a complete
chain-adapted set of inequivalent irreducible matrix representations of G. Let Y be
a set of coset representatives for G/H. Then

tG/K(R) ≤ tH/K(RH) +mG/K(Y,R).

Proof. Let Y be a set of coset representatives for G/H and Z be a set of coset
representatives for H/K. Then Y · Z is a set of coset representatives for G/K, so

f̂(ρ) =
∑
y∈Y

ρ(y)

[∑
z∈Z

ρ(z)fy(z.K)PK

]
=

∑
y∈Y

ρ(y)f̂y(ρ↓H)(53)

where for each y ∈ Y , fy is the function of H/K defined by fy(zK) = f(yzK). We

have reduced the computation of f̂(ρ) to a collection of transforms on H/K and
the sum (53). The result follows easily.

As in the group case, this bound may be improved using the block diagonal
structure of f̂y(ρ↓H).

The sum (53) also has the form of (12), which is required for separation of
variables to apply. The only way in which the analysis for homogeneous spaces
differs from that for groups is in the structure of the matrices F (y) that occur.
We now analyze the matrix multiplications that occur when we apply separation
of variables to F (y) = f(yK)PK .

Theorem 6.2. Assume G ≥ H ≥ L is a chain of finite groups, K is a subgroup
of G, and ρ is a matrix representation of G which is adapted relative to all these
groups. Suppose that a is in the centralizer of L in H, and F is a matrix in
HomC(V Kρ , Vρ). Then the matrix multiplication ρ(a) · F can be computed in no
more than

M(ρ, 1K)
∑
α,β

M(ρ, α)M(α, β)2dβ
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scalar operations, where α, β range over irreducible representations of H and L
respectively.

Proof. The condition on a implies that ρ(a) is in EndL(ρ↓H), so that the statement
of the theorem has a form similar to that of Theorem 4.5. The proof follows the
same lines as that of Theorem 4.5, but we need instead consider a diagram like
Diagram 6.

...................................................................................................................................................................................................................................
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α β

Diagram 6

The procedure for obtaining the complexity bound is the same.

Note that M(ρ, 1K) = dimV Kρ .

Lemma 6.3. In the notation of Theorem 6.2,

M(ρ, 1K)
∑
α,β

M(ρ, α)M(α, β)2dβ ≤M(ρ, 1K)dρM(H,L).

Now we can apply the separation of variables technique, as in Section 4.1, to get:

Corollary 6.4. Let R be a complete set of inequivalent irreducible matrix repre-
sentations for G, adapted to the subgroup chain Kn ≥ · · · ≥ K0 and to the chain
G ≥ H ≥ K. Let Y be a complete set of coset representatives for G/H, and X be
a set of factorizations of elements of Y in terms of elements from a subset S ⊂ G.
Let γ be the maximum length of any word in X. Then

mG/K(Y,R) ≤
γ−1∑
k=0

∑
sn···s0∈X̃k

M(s0)(54)

≤ M(S)

[
γ−1∑
k=0

∣∣∣X̃k

∣∣∣](55)

where X̃k is obtained from X0 by deleting k elements from the right of each word
and then deleting all words with an identity element at the far right.

Proof. This comes from summing the bound of Lemma 6.3 over all the matrix
multiplications in the separation of variables algorithm. We are able to cancel the
|G/K|−1 factor in the definition of mG/K using the identity∑

ρ

dρM(ρ, 1K) = |G/K|

where ρ ranges over the (class 1) representations of G.

Comparing Corollary 6.4 with Corollary 4.9, we see that the upper bounds we
have derived for mG/K and mG are the same. It follows that the bounds for mG

in Corollary 4.10 are also bounds for mG/K . In fact, we can tighten the results of
Corollary 6.4 even further: As we are only dealing with class 1 representations of
G, we could replace theM(s0) terms in Corollary 6.4, with maximum multiplicities
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taken only over representations that occur in restrictions of class 1 representations
of G.

6.1. Weyl group homogeneous spaces: Sn/Sn−k, Bn/Bn−k, and Dn/Dn−k.

Theorem 6.5. Let R be any complete set of irreducible representations of Sn,
adapted to the chain of subgroups Sn > Sn−1 > · · · > S1. Then

TSn/Sn−k(R) ≤ k
(
n2 − kn+

k2 − 1

3

)
|Sn/Sn−k| .

Proof. From Corollary 6.4 and the discussion in Section 5.2, we see that tSn/Sn−k ≤
tSn−1/Sn−k + n(n− 1). This is easily iterated to give the desired result.

This result is only useful for k ≥ 3. When k = 2 a naive approach to the computa-
tion requires n(n− 1) |Sn/Sn−2| scalar operations, whereas an algorithm based on
Theorem 6.5 requires 2(n− 1)2 |Sn/Sn−2| operations. When k = 1, the left Sn−1-
invariant matrix coefficients factor, and may be written in a very simple form. This
leads to an efficient algorithm for computing Fourier transforms on Sn/Sn−1.

Theorem 6.6. If RB and RD are complete sets of irreducible representations of
Bn and Dn respectively, each set adapted to the appropriate chain of subgroups,
Bn > Bn−1 · · · > B1 or Dn > Dn−1 · · · > D1, then

TBn/Bn−k(RB) ≤ k

(
4n2 − (4k − 2)n+

(k − 1)(4k + 1)

3

)
|Bn/Bn−k| ,

TDn/Dn−k(RD) ≤ 4k

(
n2 − kn+

1

3
k2 − 1

3

)
|Dn/Dn−k| .

Proof. From the proof of Theorem 5.3 we deduce that tBn/Bn−k ≤ tBn−1/Bn−k +
2n(2n− 1) and tDn/Dn−k ≤ tDn−1/Dn−k + 4n(n− 1).

6.2. Matrix group homogeneous spaces: GLn/GLn−k and Un/Un−k.

Theorem 6.7. Let RG and RU be complete sets of irreducible representations of
GLn(q) and Un(q2), adapted to the chains of subgroups (43) and (48) respectively.
Then

TGLn/GLn−k(RG) ≤ 1
222nq2n−2 |GLn/GLn−k|

and
TUn/Un−k(RU ) ≤ 3(1 + 18

7q )B1(q−1)q3n−3 |Un/Un−k| .

Proof. The bounds on the reduced complexity of the Fourier transforms on GLn
and Un that we obtained in Sections 5.4 and 5.5 are also bounds for the reduced
complexity of transforms on the homogeneous spaces.

7. Further directions and improvements

Theorem 4.8 and Corollary 4.9 are particularly easy to use but are by no means
the best results possible. We now briefly describe some of the improvements we
have obtained, which will appear in the second part of this paper [50].
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7.1. Variations on the main results. In many cases, further savings can be
realized if the Fourier transform is treated as a collection of scalar equations rather
than as a matrix equation. The separation of variables idea still applies to the scalar
setting, but now we obtain a recursive sum of products of numbers, as opposed to
matrices. These products may be computed in any order. Consequently, the scalar
separation of variables algorithm possesses a flexibility which is not present in the
matrix separation of variables algorithm: the ability to choose the order in which the
factors are summed over. Roughly speaking, this flexibility allows us to sum over
factors with a low value ofM first, successively building the complete computation.
In practice the first summations we perform occur the most times in the separation
of variables algorithm (in the matrix case, this amounts to saying that the sets Xk

get smaller as k increases), so by ensuring these sums are done more quickly, we
make the whole algorithm more efficient.

The sums that occur in the scalar separation of variables algorithm are gener-
alizations of the sum (22), and the factors that appear are indexed by collections
of representations which satisfy relations generalizing the relations represented by
Diagram 1. The diagrammatic methods used in the proof of Theorem 4.5 generalize
to this situation, so complexity bounds for the new algorithms may be obtained
explicitly. A useful combinatorial tool here is to treat the indices as injections from
the diagrams describing the relations (e.g., Diagrams 2–4, and 6) into the Bratteli
diagram for the subgroup chain. The explicit expressions for the complexity of the
algorithm has a form similar to, but generalizing, the expressions in Theorems 4.5,
4.6, and 4.8.

We use the techniques just described to refine the results we have already ob-
tained in Section 5. For example, we get a better bound for the complexity of the
Fourier transform on GLn(q) using the same bases as in Section 5.

Theorem 7.1. Let R be any complete set of irreducible representations of GLn(q)
adapted to the chain of subgroups

GLn > GLn−1 ×GL1 > GLn−1 > · · · > GL1 ×GL1 > GL1.

Then for any n ≥ 2, there is a positive constant Kn such that, for q ≥ 2,

TGLn(q)(R) ≤ Knq
n |GLn(q)| .

Similar improvements hold for the unitary groups and other finite groups of Lie
type. We also prove a general theorem, bounding tG in terms of the complexities
of two subgroups and the number of double cosets. This result works particularly
nicely when the subgroups are abelian, and in that case it yields new results for
SL2(q) and for the symmetric groups.

7.2. Homogeneous spaces. The scalar separation of variables algorithm gener-
alizes easily to the context of homogeneous spaces. The idea in the improved
algorithms is to write the associated spherical functions of the homogeneous space
as a sum of products, with a small number of terms in the sum. The separation of
variables algorithm then amounts to calculating the inner product of a function and
an associated spherical function by summing over one factor in the product at a
time. This provides speed-ups of the algorithms in Section 6 (cf. [28] and references
therein). This material will also appear in [50].
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Appendix A. Proofs of the technical lemmas

Now we shall prove the remaining lemmas used in the explicit calculations of
Section 5. These concern estimates for the number of conjugacy classes of the
general linear and unitary groups, the derivation of the factorization for coset rep-
resentatives of Un/Un−1, and bounds for the multiplicities of restrictions between
Chevalley groups.

A.1. Conjugacy classes. In Lemmas 5.9 and 5.12 we stated upper bounds for the
number of conjugacy classes in GLn(q) and Un(q2) respectively. These two results
are simple corollaries of the following discussion.

The generating functions for the number of conjugacy classes of GLn(q), the
number of canonical forms of n×n matrices over Fq, and the number of conjugacy
classes of Un(q2) are closely related. Define

Fα(q, t) =
∞∏
n=1

1 + αtn

1− qtn

and let fn(q;α) be the coefficient of tn in the expansion of Fα(q, t) considered as
a power series in t. Then by results of [60] and [64] fn(q;−1) is the number of
conjugacy classes of GLn(q), fn(q; 0) is the number of canonical forms of n × n
matrices over Fq, and fn(q; 1) is the number of conjugacy classes of Un(q2); the key
to bounding fn(q;α) is to first understand the coefficients of fn(q;−1).

Lemma A.1. (i) For n ≥ 1,

fn(q;−1) = qn −
(
qb

n−1
2 c + · · ·+ qbn3 c

)
+

(
terms of degree ≤

⌊
n− 1

3

⌋
− 1

)
.

(ii) For n ≥ 1 and q ≥ 2, we have fn(q;−1) < qn.

Proof. Let p(n, k) denote the number of partitions of n into exactly k parts, let
p(n) denote the total number of partitions of n, and let r(n, k) be the coefficient
of qk in fn(q;−1). Then p(n, k) is the coefficient of qk in fn(q; 0), so using Euler’s
pentagonal number theorem, it is easy to see that

r(n, k) =
∑
l∈Z

p(n− 3l(l+ 1)/2, k).

Hence r(n, k) satisfies the recurrence relation, r(n, k) = r(n + 1, k + 1) −
r(n−k, k+1), which follows from the same recurrence relation for p(n, k). Suppose
now that n

2 ≤ k < n. Then p(n, k) = p(n− k), and so

r(n, k) = p(n− k)− p(n− k − 1)− p(n− k − 2) + p(n− k − 5) + · · · = 0.

Trivially, r(n, n) = 1, and for k > n, we have r(n, k) = 0. Thus we know r(n, k) for
all k ≥ n

2 , and it is easy to see that this data, together with the recurrence relation

for r, determines r(n, k) for all n and k. If n
3 ≤ k <

n
2 , then n−k

2 ≤ k < (n− k), so
using the recurrence relation gives

r(n, k) = r(n+ 1, k + 1)− r(n − k, k + 1) = r(n + 1, k + 1) = · · ·
= r(2(n− k) + 1, (n− k) + 1) = r(2(n− k), n− k)− r(n− k, n− k)

= 0− 1 = −1.
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The same idea can be used to find r(n, k) for any n and k. For example, if n
4 ≤

k < n
3 , then r(n, k) =

⌈
n−3k−4

2

⌉
. This proves part (i) of the theorem. For part (ii),

we start by noting that r(n, k) ≤ p(n, k), so that when q ≥ 2 and n ≥ 1,

fn(q;−1) < qn − qb
n−1

2 c + qb
n−1

3 c−1p(b(n− 1)/3c − 1).

For n ≥ 55 the result now follows by using the simple upper bound p(n) ≤
eπ(2/3)

1
2 (
√
n−1) to show that p(n) ≤ 2bn2 c. For n < 55 the result follows by in-

spection.

To extend Lemma A.1 to fn(q;α) for α ≥ 1, we need to consider the function

Bα(t) =
∞∑
n=1

1 + αtn

1− tn = Fα(1, t) =
∞∑
n=0

fn(1;α)tn.

Theorem A.2. For n ≥ 1, q ≥ 2, α ≥ −1,

fn(q;α) < Bα(q−1)qn.

Proof. First note that Fα(q, t) = Bα(t)F−1(q, t). Multiplying this out and equating
coefficients of tn gives

fn(q;α) =
n∑

m=0

fm(1;α)fn−m(q;−1).

But fm(1, α) is a polynomial in α + 1 with nonnegative integral coefficients, so if
α ≥ −1 then fm(1, α) ≥ 0 and f0(1, α) = 1. Hence

fn(q;α) <
n∑

m=0

fm(1;α)qn−m ≤ qn
∞∑
m=0

fm(1;α)q−m = qnBα(q−1).

Remark. As a consequence of the proof of Theorem A.2, we see that for n
2 ≤ k, the

coefficient of qk in fn(q, α) is the same as the coefficient of qk in qnBα(q−1). I.e., it
is fn−k(1;α). From this, it is easy to show that, for fixed q, the constant Bα(q−1)
appearing in Theorem A.2 is the best possible. In fact, a slight extension of the
asymptotics due to Stong [60] shows that for fixed q and fixed α ≥ −1,

fn(q;α) = Bα(q−1)qn +
1

2

[
Bα(q−

1
2 )

1− q 1
2

+ (−1)n
Bα(−q− 1

2 )

1 + q
1
2

]
q
n
2 +O(q

n
3 )

as n tends to infinity.

Corollary A.3. For n ≥ 1, q ≥ 2, α ≥ −1, l ≥ 0,

fn(q;α) <

[
l−1∑
m=0

fn(1;α)qn−m

]
+Kα,lq

n−l

where Kα,l = 2l
(
Bα(2−1)−

∑l−1
m=0 fm(1;α)2−m

)
.

Proof. The expression

ql

(
Bα(q−1)−

l−1∑
m=0

fm(1;α)q−m

)
=
∞∑
m=l

fm(1;α)ql−m
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is a decreasing function of q. Thus its maximum value in the permitted range of q
occurs when q = 2, and is precisely Kα,l. Rearranging, we obtain

Bα(q−1) ≤
[
l−1∑
m=0

fn(1, α)q−m

]
+ q−lKα,l.

The result now follows from Theorem A.2

For the purposes of this paper, we are only interested in the cases α = −1 or
α = 1. Some simple bounds give an approximate value of B1(2−1) = 8.25599. The
following tables display various values of B1(q−1) and K1,l. We also give the first
few terms of the power series for Bα(t) and B1(t).

l 0 1 2 3 4
fl(1; 1) 1 2 4 8 14
fl(1;α) 1 α+ 1 2(α+ 1) (α+ 1)(α+ 3) (α+ 1)(2α+ 5)
K1,l 8.256 14.51 25.02 42.05 68.10

q 2 3 5 7 11 17 23 53 1009
B1(q−1) 8.256 2.794 1.658 1.398 1.222 1.133 1.095 1.039 1.002

A.2. Coset representatives for Un/Un−1. We now give a proof of Lemma 5.13.
We assume we are working in odd characteristic.

Proof of Lemma 5.13. The group Un(q2) acts transitively on the unitary unit
(n − 1)-sphere, consisting of all column vectors (x1, . . . , xn)T with entries in Fq2

such that
∑n
k=1 x

1+q
k = 1. The stabilizer of the point (0, . . . , 0, 1)T is Un−1. To

obtain a factorization of coset representatives according to Lemma 5.13, it suffices
to show how to use the inverses of elements of the forms (A), (B), or (C), referred
to there, to rotate an arbitrary vector in the unitary sphere onto (0, . . . , 0, 1)T .

As in the statement of Lemma 5.13, we let N denote the group homomorphism
N(α) = α1+q. Note that N is an epimorphism onto the group of nonzero elements
of the subfield of q elements. We let R be a complete set of coset representatives
of F×q2/ kerN .

Now consider an arbitrary element, x = (x1, . . . xn)T of the unitary unit sphere.
If the vector (x1, x2) has nonzero unitary norm, then choose an element s ∈ R

such that N(s) = x1+q
1 + x1+q

2 . Hence (x1/s, x2/s) is a unit vector and so by the
transitivity of U2 on the unitary 2-sphere, it is clear that we can choose y ∈ Fq2

and r ∈ R such that u2(r, y)−1 maps (x1, x2) onto a multiple of (0, 1).

In the case where x1+q
1 + x1+q

2 = 0 it is possible that either x1+q
1 + x1+q

3 or

x1+q
2 +x1+q

3 is nonzero. In the first case multiplying x by t3 brings the vector into a
form where the vector of the first two components has a nonzero norm, and in the
second case multiplication by t3 · t2 achieves this. If none of these three cases holds,
then the vector (x1, x2, x3) must be zero (this requires that the characteristic is not
2). Therefore it is always possible to map x onto a vector with zero first component,
using the inverse of a matrix of form (A), (B) or (C), provided n is greater than 2.

Now we may apply the same method to map x onto a vector with the first two
entries zero, the first three zero, and so on. Finally we obtain a vector with only
the last two entries nonzero. Clearly we can use the inverse of an element of form
(A) to map this vector onto a vector with only the last entry nonzero. As the
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vector so obtained is a unit vector, it must have the form (0, . . . 0, ε) for some ε
with ε1+q = 1.

A.3. Multiplicities of restrictions in Chevalley groups. Now we shall prove
Lemma 5.15 on the multiplicities of restrictions in Chevalley groups. The proof we
use was suggested by Tom Hagedorn and follows the line of argument of his thesis
[35]. We shall limit ourselves to a brief sketch of this argument. As usual we shall
always assume the characteristic is odd.

Proof of Lemma 5.15. Recall that for Chevalley groups G ≥ H ≥ K, we have
σ(G,K) = σ(G,H)+σ(H,K)+rankH where σ is as in Lemma 5.15. On the other
hand,

M(G,K) ≤M(G,H)M(H,K)
∣∣∣Ĥ∣∣∣

where Ĥ denotes the set of equivalence classes of irreducible representations of H.
Thus, we reduce the problem to bounding M(G,H) for pairs (G,H) of the form
(An(q), An−1(q)), (Bn(q), Bn−1(q)), (Cn(q), Cn−1(q)) and (Dn(q), Dn−1(q)).

The problem of bounding multiplicities can also be reduced, as follows, to bound-
ing the pairing of a Deligne-Lusztig character of G, restricted to H, with a Deligne-
Lusztig character of H: Let us say that a linear combination is bounded if the
number of terms may be bounded independently of q and the coefficients may also
be bounded independently of q. Then for any irreducible character χ of G (or of
H) there is a bounded linear combination of Deligne-Lusztig characters which is
the character of a representation containing χ.

We shall now let G and H denote connected reductive algebraic groups of clas-
sical type over an algebraically closed field of odd characteristic, and we let F be
a Frobenius map. Suppose T and T ′ are F -stable maximal tori of G and H re-
spectively, and θ and θ′ are irreducible characters of TF and (T ′)F respectively. As
usual, RT,θ denotes the Deligne-Lusztig character associated to T and θ (cf. [25]
for the complete definitions). Then the pairing of RT,θ ↓HF with RT ′,θ′ has the
form

〈
RT,θ ↓HF , RT ′,θ′

〉
=
∑
s

∑
u

∑
w,w′

a(s, w,w′, u)
Q
C0
G(s)

Tw
(u)Q

C0
H(s)

T ′
w′

(u)∣∣∣CC0
H(s)F (u)

∣∣∣ ,(56)

where s varies over HF conjugacy classes of elements in (T ′)F , u varies over unipo-
tent conjugacy classes of the connected centralizer C0

H(s)F ; Tw, T ′w′ are F -stable
maximal tori in C0

G(s), C0
H(s) respectively, and the Q’s are Green polynomials. For

a given s, u, Tw, T ′w′ , the term

Q
C0
G(s)

Tw
(u)Q

C0
H(s)

T ′
w′

(u)∣∣∣CC0
H(s)F (u)

∣∣∣(57)

is a function of q that can be bounded by O(qσ(G,H)−α(s,u)) where

α(s, u) =
1

2

[
dimG− dimH −

(
dimCC0

G(s)(u)− dimCC0
H(s)(u)

)]
and for any given s the inner summations in (56) are a bounded linear combination
of terms of the form (57); a(s, w,w′, u) may also be bounded independently of s.
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Note that there are only finitely many (a number bounded independently of q)
different forms that the term (57) can have given G and H.

Therefore, to obtain a bound for the pairing (56) it suffices to bound α(s, u) and
then determine the number of elements s this bound applies to.

To bound dimCC0
G(s)(u)−dimCC0

H(s)(u) we can reduce to the case where G and

H come from one of the series of classical groups: SL(n), SO(2n+ 1), Sp(2n), or
SO(2n). In this case the connected centralizer C0

H(s) is determined up to isomor-
phism by the characteristic polynomial of s considered as an element of H; up to
isogeny it is simply a product of groups corresponding to different eigenvalues of s.
The characteristic polynomial of s considered as an element of G may be obtained
from its characteristic polynomial as an element of H by multiplying by either 1
or 2 factors of (t − 1); 1 factor in the case of restricting from An to An−1 and 2
in the cases of restricting from Bn to Bn−1, Cn to Cn−1 and Dn to Dn−1. Hence
the centralizer, C0

G(s), only differs from C0
H(s) in the factor that corresponds to

the eigenvalue 1 of s. Having obtained the form of the centralizers, the formulas in
[16], p. 398 (see also the article of Springer and Steinberg in [14]) may be used to
compute the dimensions of centralizers of unipotent elements, and hence to bound
dimCC0

G(s)(u)− dimCC0
H(s)(u) in terms of the multiplicity m of 1 as an eigenvalue

of s. We call this bound βm.
Hence we can bound α(s, u) from below by a function αm of m and the number

of s in (T ′)F with a given m can be bounded by O(qγm) for some easily determined
function γm. To prove the theorem we need only verify that αm − γm ≥ 0 for all
possible values of m. This is verified by the summary in Table 3.

Table 3. Verification of Lemma 5.15.

(G,H) βm αm γm αm − γm Maximum m
(An, An−1) 2m+ 1 n−m max{n−m, 0} 1 or 0 n
(Bn, Bn−1) 2m+ 1 2n−m n− 1− m−1

2 n− m
2 −

1
2 2n− 1

(Cn, Cn−1) 2m+ 3 2n−m− 2 n− 1− m
2 n− m

2 − 1 2n− 2
(Dn, Dn−1) 2m+ 1 2n−m− 2 n− 1− m

2 n− m
2 − 1 2n− 2

For the proof to make sense for the pair (D2, D1) we have to replace D1 by a
one-dimensional torus.
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1984. MR 86g:65002

[14] A. Borel, R. Carter, C. Curtis, N. Iwahori, T. Springer and R. Steinberg, Seminar on algebraic
groups and related finite groups, Lecture Notes in Math., vol. 131, Springer-Verlag, New York,
1970. MR 41:3486

[15] R. Carter, Simple groups of Lie type, Wiley-Interscience, New York, 1989. MR 90g:20001

[16] , Finite groups of Lie type: conjugacy classes and characters, Wiley-Interscience, New
York, 1985. MR 87d:20060

[17] M. Clausen, Fast Fourier transforms for metabelian groups, SIAM J. Comput. 18 (1989),
584–593. MR 90e:94002

[18] , Fast generalized Fourier transforms, Theoret. Comput. Sci. 67 (1989), 55–63. MR
91f:68081
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Abstract. This paper introduces new techniques for the efficient computation
of a Fourier transform on a finite group. We present a divide and conquer
approach to the computation. The divide aspect uses factorizations of group
elements to reduce the matrix sum of products for the Fourier transform to
simpler sums of products. This is the separation of variables algorithm. The
conquer aspect is the final computation of matrix products which we perform
efficiently using a special form of the matrices. This form arises from the
use of subgroup-adapted representations and their structure when evaluated
at elements which lie in the centralizers of subgroups in a subgroup chain.
We present a detailed analysis of the matrix multiplications arising in the
calculation and obtain easy-to-use upper bounds for the complexity of our
algorithm in terms of representation theoretic data for the group of interest.

Our algorithm encompasses many of the known examples of fast Fourier

transforms. We recover the best known fast transforms for some abelian
groups, the symmetric groups and their wreath products, and the classical
Weyl groups. Beyond this, we obtain greatly improved upper bounds for
the general linear and unitary groups over a finite field, and for the classi-
cal Chevalley groups over a finite field. We also apply these techniques to
obtain analogous results for homogeneous spaces.

This is part I of a two part paper. Part II will present a refinement of these
techniques which yields further savings.
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