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Motion of a massive microsphere bound
to a spherical vesicle
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Abstract. – We study the motion of a small solid particle (a few micrometers in size) attached
to the membrane of a spherical giant lipid vesicle. By means of optical manipulation, the particle
is first brought near the top of the vesicle, and released. We determine the friction experienced
by the particle moving along the vesicle surface under the action of gravity. From experiments
with latex and glass beads, we check that SOPC membranes are fluid at room temperature
(static shear modulus µ = 0) and estimate the shear viscosity of SOPC bilayers: ηm ≈ 3 · 10−6

surface poise.

In this letter, we study the motion of a small solid particle which is attached to an interface
of spherical shape. The particle is spherical too, and a few micrometers in size. The interface
may be a surfactant monolayer around a droplet of oil in water, or a vesicle membrane. In the
latter case, the membrane is made of two molecular layers and forms a closed spherical shell in
water. Experiments to be described in the following are dedicated to so-called “giant vesicles”,
which are made of phospholipids (the primary constituent of cell membranes), whose sizes are
several 10 micrometers in diameter, and whose membranes are in the “fluid” (Lα) state.

Such experiments are a direct method to investigate the film viscosity, or—more generally—
viscoelasticity. The basic principle has some in common with that used recently by Petkov et
al. [1], who studied the motion of particles at the water/air interface under the influence of
capillary forces. However, Petkov et al.’s technique demands a macroscopic film (Langmuir
trough), while ours is applicable to systems of much smaller sizes, namely emulsion droplets
or vesicles. In the case of lipid membranes, this distinction is crucial, since such membranes
can be produced only up to microscopic scales.

Most of literature data on membrane shear viscosity (ηm) are based on fluorescence tech-
niques, which were used to measure diffusivities (Dmol) of molecular probes embedded in
membranes [2]. Relating Dmol to ηm needs modeling the probe as a macroscopic disk inside a
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continuous film [3], with a well-defined geometry. As well known, this procedure is questionable
since the probe is of molecular size. In 1982, Waugh [4] proposed a macroscopic method for
membrane rheology based on the growth rate of a filament that connects a giant vesicle to
an attachment point. Waugh’s analysis led to a quantitative determination of ηm (≤ 5 · 10−6

surface poise for egg phosphatidylcholine), but was based on crucial assumptions about the
filament structure and size that cannot be checked independently. Recently, Smeulders et al. [5]
studied the behavior under shear of colloidal suspensions of small lipid vesicles in the Lα phase.
They argued that the suspension shear viscosity ηsusp(ω) at high frequencies (ω ≈ 105 Hz)
is influenced by the membrane shear modulus µ and by ηm. Data inversion through a —not
surprisingly—very complex theory led to µ ≈ 3 dyn cm−1 and ηm ≈ 6 ·10−7 sp for egg lecithin
membranes at 10 ◦C.

The method presented in this letter is of the macroscopic type too, and offers the advantage
of directness, since the experiment amounts to moving a micron-sized mechanical probe across
the film. Data inversion has its own difficulties, as we will explain, but does not need special
physical assumptions about unknown aspects of the system.

The vesicles in our experiments are made of SOPC (Lα-stearoyl-oleoyl-phosphatidylcholine)
at room temperature and grown as clusters using the electroformation method [6]. First, we
select a vesicle in the outer region of the cluster. There, one easily finds giant vesicles (50 mm
is a typical diameter) which appear as spherical, unilamellar, and bear no internal structure
(as far as we can decide from phase contrast views). These vesicles are weakly connected to
their neighbours, apparently through “hard sphere” contacts. These connections are useful in
our experiments because they prevent the vesicle under study from drifting or rotating as a
whole in water.

A very diluted suspension of latex (or glass) particles is injected at some distance (≈ 15 mm)
of the vesicles. There, a single particle is picked up by means of a long-working-distance optical
trap [7] and then brought in contact with a selected vesicle. Experiments show that the spheres
stick on the vesicle surface [8], usually with a finite contact angle α. SOPC membranes are
known to be fluid at room temperature, which is directly observable by the fact that such a
particle can be moved to any point on the vesicle surface. Conversely, its position perpendicular
to the vesicle membrane cannot be varied, in other words α stays constant. In the rheology
experiment, the particle is brought near the top of the vesicle surface, and then is released by
switching off the laser beams. Then it starts gliding down along the vesicle contour under the
action of gravity (fig. 1). The particle path is viewed and video recorded from above. Basically,
the recorded trace (see fig. 2a) is the projection of the particle trajectory in a horizontal plane
(x, y), near the vesicle equatorial plane. A particle tracking software yields the position of the
particle center every 0.2 seconds with a resolution of ± 0.5 mm.

The central experimental information is the friction ζ experienced by the particle along the
vesicle contour. Usually, the particle path shows Brownian excursions, superposed to what
is perceived as a mean sedimentation path (see fig. 2). In the case of a “large and heavy”
particle, Brownian noise is very small. If we neglect this “entropic” contribution, the particle
path is the solution of the simple mechanical equation of motion

m̃g · sin θ = ζ · R̃θ̇ . (1)

Here m̃g is the particle weight corrected for buoyancy, θ is the polar angle defined in fig. 1,
and R̃ is the distance between the particle and vesicle centers. In eq. (1), the effect of particle
inertia is neglected because of the very small velocities and sizes involved in our experimental
situation. Equation (1) is easily integrated in spherical coordinates and gives

f [θ(t)] = f [θ0]−
m̃g

R̃ · ζ
· t . (2)
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Fig. 1. – Schematic representation of the sedimentation path of a solid particle bound to the surface
of a spherical vesicle.

Here f(θ) = a tanh[cos(θ)] and θ0 is the particle position at time t = 0. Equation (2) can
be thought of as the “zero temperature” limit of the motion. Note that the experimental
path shown in fig. 2b nicely follows eq. (2), except for θ close to π (see inset of fig. 2b). In
fact, the “zero temperature” solution (eq. (2)) fails near the poles of the vesicle. This is not
surprising, because in these regions gravity is essentially perpendicular to the membrane, and
consequently the external force acting on the particle is very small. Then the motion is mainly
Brownian.

The importance of sedimentation relatively to diffusion is measured by the Peclet number,
which we define here as Pe = m̃g · R̃/kT (k is the Boltzmann constant and T is the absolute
temperature) [9]. To estimate the applicability of eq. (2) quantitatively, we performed numeri-
cal Monte-Carlo simulations of particle motion for different values of Pe. We computed f [θ(t)]
and ensemble averages 〈f [θ(t)]〉 from many (1000) trajectories. Brownian motion shows up as
a noise in f [θ(t)], which increases when Pe decreases. We find that 〈f [θ(t)]〉 follows eq. (2)
only in a limited domain around θ = π/2, say [π/2−θm ;π/2+θm], and plateaus to a constant
value for θ > θm (This asymptotic limit is just the equilibrium 〈f(θ)〉, which is finite). This
explains the behavior shown in fig. 2 b. The width of the above domain, 2θm, depends very
much on Pe. For “large or heavy” particles, the domain is very large (e.g., θm ≈ 1.4 rd for
Pe ≈ 100). It becomes smaller if Pe is decreased and finally disappears when Pe ≈ 10. When
Pe < 10 (“small or light” particles), eq. (2) is not at all applicable, whatever θ.

In the following, we will discuss experimental results obtained with “heavy” spheres. The
slope of f [θ(t)] gives m̃g/R̃·ζ. The apparent weight m̃g is measured before bringing the particle
in contact to the vesicle from its sedimentation velocity (νs) in bulk water: m̃g = ζ0 ·νs, where
ζ0 = 6π · η · a is the Stokes friction coefficient (η is the water viscosity and a is the particle
radius). R̃ is found as the maximum distance between the vesicle and particle centers in the
recorded path. Following this procedure, we measure ζ̄ = ζ/ζ0, with a reproducibility which
is on the order of ±2% for the case shown in fig. 2. In general, the error on ζ̄ depends on Pe,
since Brownian excursions lead to fluctuations in the measured quantities.

We carried out several experiments with latex spheres whose radii were in the range 2÷10 mm
and some with glass spheres (0.5 ≤ a ≤ 2 mm). Vesicle radii were between 10 mm and 50 mm.
The contact angle (α) takes on a particular value in each experiment, which depends on the
initial tension of the vesicle and on the nature of the particle surface [8]. In the different
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Fig. 2. – a) Example of an experimental record, with a glass sphere (a = 1.21 mm). b) The same
trajectory, in the a tanh(cos θ) vs. t representation. The inset shows the long-time part of the record.

experiments that we performed, various contact angles were realized between 0◦ and 180◦.
All experiments gave well-identified sedimentation paths, with friction coefficients (ζ̄) rang-

ing from 1.2 up to about 3. This, together with the fact that each particle could be moved
everywhere on the vesicle surface by means of optical manipulation, proves that the membrane
is really in the fluid state, i.e. µ = 0, since no static shear elasticity is detected. In principle,
the parameter ζ̄ contains the information on the membrane shear viscosity ηm. However,
inverting data rigorously needs an exact theory that depicts the movement of the particle
bound to a finite size vesicle. This theory is not available yet. For a preliminary estimate, we
propose to adapt the theory worked out by Danov et al. [10] (hereafter referred to as DADL)
for a spherical particle across a film at the water/air interface, supposed flat and infinite, as
depicted in fig. 3. The latter condition will limit our data to small particles for which a� R.

Here we will use data obtained with latex particles large enough to be sedimenting
(i.e. “large or heavy” in the sense defined above), that would definitely intercept the vesicle
contour (i.e. α far from 0◦ and 180◦) and which we will suppose to be small enough to feel the
membrane as flat. An experimental example meeting all these conditions is:

a = 2 mm; R = 29 mm; α = 137◦; Pe = 122; ζ̄ = 1.35 .

We adapt DADL theory in the following way: The membrane, of thickness h, separates two
regions, water and water (W/W) in our situation, or water and air (W/A) in DADL theory
(see fig. 3). Essentially, we write ζ as the superposition of two terms, ζ = ζ0 + ζex, where ζ0 is
the sphere friction in the limit of a non-viscous film (ζ0

WW = 6π · η · a in the W/W case), and
ζex is the excess friction due to the film. ζex depends on two variables, which we may choose
as the radius of the disk that the particle intercepts in the film, a∗ = a · sinα, and the contact
angle, α. We define the functions ΛWA and ΛWW such that

ζex
WA = 4π · η · a∗ · ΛWA(xWA, α) , (3a)

ζex
WW = 8π · η · a∗ · ΛWW(xWW, α) . (3b)

Here xWW = 2η · a∗/ηm = 2xWA. The function ΛWA can be computed using DADL data
(DADL gives ζ0

WA and ζWA) . The problem is to find ΛWW. In our analysis, we suppose

ΛWA(x, α) = ΛWW(a, α) , (4)

whatever x and α. A simple superposition argument (2 half spheres across a monolayer) shows
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Fig. 3. – Spherical particle across a film at the water/air interface. In our adaptation of DADL
theory [10], the upper phase is made of water too.

that eq. (4) is exact when α = 90◦. We observed that the explicit dependence of ΛWA on α
is weak, and that ΛWA(x, α) ∼= ΛWA(x, 180◦ − α) [11]. This makes the above superposition
argument (2 truncated spheres, one with α, the other one with 180◦−α) acceptable in general
and eq. (4) approximately correct when α 6= 90◦.

Equation (4) allows us to find xWW from the experimental ζ. With the above given example,
we find xWW = 0.56, which gives ηm ≈ 5 ·10−6 sp for the shear viscosity of a SOPC membrane
at room temperature.

A few other examples lead to a bunch of values ranging from about 3 to 8 · 10−6 sp. This
range is compatible with Waugh’s result for egg-lecithin membranes [4], whose viscosity is
probably comparable to that of SOPC at room temperature.

The reason of the dispersion of ηm values is unclear to us. The precision in ηm is limited
by: i) the error on α; ii) the reliability of our approximation (eq. (4)); iii) the error on ζ. In
the above example, we estimate the contribution of i) and ii) together to be at worst ±9%.
The main cause of error is that on ζ, which is about ±6% in the same example, and leads to
±24% in ηm. The total error on ηm is about ±33%, which is large but definitely less than the
dispersion.

Following Waugh’s analysis [4], one might infer that different vesicles correspond to different
values of ηm because their membranes may have different structures, in terms of defects or
number of lamellae. In this view, the lowest value in the measured range should be taken as
the most representative of the shear viscosity of a single defect-free bilayer. However, there is
no indication in the particle paths of inhomogeneities in the membranes. On the other hand,
if we suppose that many of the vesicles could have been multilayered, this would have resulted
in a quantification of ηm values, which is not observed too.

In summary, we have analyzed the motion under the action of gravity of a small spherical
particle bound to a fluid spherical surface. We have defined a criterion to distinguish “sedi-
menting” and “diffusing” particles, and set out an approximate method to find the membrane
viscosity from experimentally measured friction coefficients. The error in ζ can be reduced by
using large (non Brownian) particles, but then the relative importance of the membrane in the
particle friction decreases, and the fact that the particle is not small compared to the vesicle
makes the above approximate treatment (flat infinite membrane) inapplicable. Consequently,
inverting data from large particles demands much accuracy in the interpretation, which means
elaborating an exact theory for the particle movement on a sphere. Conversely, very small
spheres are mostly sensitive to membrane viscosity and feel the interface as flat, which makes
the above treatment acceptable. The friction of diffusing (Pe � 50) spheres can be found
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within a few percent from the analysis of their Brownian excursions [12], but measuring
their contact angles is difficult. Efforts in the above two directions, theory and experimental
procedure, are now in progress.

***

This work is supported by ULTIMATECH program (CNRS), by the “Laboratoire franco-
bulgare” (CNRS/Bulgarian Academy of Sciences/University of Sofia) and by European Union,
through Tempus JEP3949 and a fellowship to one of us (CD).

REFERENCES

[1] Petkov J., Danov K., Denkov N., Aust R. and Durst F., Langmuir, 12 (1996) 2650.

[2] See, for instance, Tocanne J. F., Dupou-Cezanne L. and Lopez A., Prog. Lipid Res., 33
(1994) 203 and references therein.

[3] Saffman P. G., J. Fluid Mech., 73 (1976) 593; Hughes B. D., Pailthorpe B. A. and White

L. R., J. Fluid Mech., 110 (1981) 349.

[4] Waugh R. E., Biophys. J., 38 (1982) 19; 29.

[5] Smeulders J. B., Blom C. and Mellema J., Phys. Rev A, 42 (1990) 3483.

[6] Angelova M. I. and Dimitrov D. S., Prog. Colloid Polym. Sci., 76 (1988) 59; Angelova
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