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Three theorems are proven which reconsider the completeness of Hoare’s logic for the
partial correctness of while-programs equipped with a first-order assertion language. The
results are about the expressiveness of the assertion language and the role of specifications in
completeness concerns for the logic: (1) expressiveness is not a necessary condition on a
structure for its Hoare logic to be complete, (2) complete number theory is the only extension
of Peano Arithmetic which yields a logically complete Hoare logic and (3) a computable
structure with enumeration is expressive if and only if its Hoare logic is complete.

INTRODUCTION

By the term Hoare’s logic we mean the formal system for the manipulation of
statements about the partial correctness of while-programs which was first described
in Hoare [14]. In the present paper we shall consider this logic when it is equipped
with a first-order assertion language L, a first-order data type specification 7, and is
set to analyse computation on natural number arithmetic(s) by members of the set
WP of while-programs. Principally, we shall be interested in the completeness of the
logic: the extent to which the true partial correctness formulae can be formally
demonstrated in the system. We shall prove three theorems that comment on the
relationship between the expressiveness of the assertion language L, the semantics of
the axiomatic specification T, and the completeness of the logic.

Background

The starting point for any mathematical study of Hoare’s ideas is the seminal
paper Cook |[11], where the various syntactic and semantic components associated
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with the system were carefully examined, and the soundness of the logic properly
proved. Of particular interest to us is the role of the data type specification in Hoare’s
logic. This is a set T of assertions used in connection with the Rule of Consequence,
and it is intended to formalize what information about data types is available to
correctness proofs for the programs the datatypes support (cf. Hoare [1.4, Sect. 2]).
For example, proofs for arithmetical programs are based, in practice, on some simple
algebraic properties of addition and multiplication (and so on) and on the induction
principle. Thus, in pratice, it is sufficient to take T to be Peano Arithmetic PA. From
[11, Sect. 5], we know that if T is valid for a structure A, then Hoare’s logic HL(T)
is sound for WP over A. Up to the choice of program semantics for while-programs,
Cook’s analysis of Hoare’s ideas is general and definitive. (For information on the
issues involved in the choice of semantics consult Greif and Meyer [13].)

In [11], Cook also considered the completeness of Hoare’s logic, but with
apparently less satisfying theoretical results: under the hypothesis that T is a complete
specification for structure A and L is expressive for WP over A, then HL(T) is
complete for WP over A. In particular, if the standard arithmetic N of the natural
numbers is fully specified by its first-order theory Th(¥), so called complete number
theory, then its Hoare logic HL(N) = HL(Th(N)) is complete for WP over N since L
is expressive for WP over N.

Much theoretical effort has been expended in coming to terms with this assumption
of expressiveness and with the paucity of expressible structures; and, by extension, in
valuating the kind of completeness Cook was able to provide. The writing on this
theme is quite extensive, but one can usefully consult the invaluable survey article
Apt [1] to obtain a clear picture of current opinion. In summary, the basic material
relevant to while-programs is contained in Wand [24] and our own [4] (on incom-
pleteness); and in Lipton [16] and Olderog [19] (on expressiveness). We address the
subject of completeness at the conclusion of our technical work (Section 6).

New Results

Although expressiveness is not an unnatural condition from the point of view of
computing on a structure, is it actually necessary for the completeness of the
structure’s Hoare’s logic?

THEOREM 1. Expressiveness is not a necessary condition on a structure for the
completeness of its Hoare logic. For any model A of complete number theory Hoare’s
logic is complete, but if A is not the standard model of arithmetic, then L is not
expressive for WP over A.

Theorem 1 illuminates a certain change of status for Hoare’s logic in the passage
from the Soundness Theorem to the Completeness Theorem in [11]; it changes from
a system of reasoning based purely upon a data type specification 7 into a system of
reasoning about a fixed data type A4 which is appropriately specified by 7. The
alteration is effected by the kind of completeness sought for Hoare’s logic: the set of
valid asserted programs is defined by a single structure and not by the class MOD(T)
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of all models of a specification T which is what one expects to see in a frue converse
to the Soundness Theorem. Mathematically, a Hoare logic HL(T) reasons about
program behaviour over MOD(T).

Let us say that a Hoare logic HL(T) is logically complete if any asserted program
which is valid on all models of the specification T is provable in HL(T). From
Theorem 1 it follows that this kind of completeness is possible for complete number
theory; next we prove a disappointing fact:

THEOREM 2. Complete number theory is the only extension T of Peano
Arithmetic PA for which HL(T) is logically complete.

There are two objectives for data abstractions which can influence an application
of Hoare’s logic:

Basic DicHOTOMY. Given that some specification T is a necessary constituent of
the proof system, one may think of the specification as

(I) an instrument to analyse computation on a particular structure A having
the properties of T; or

(I1) as an abstract characterization of a (possibly ill-defined) class of
legitimate implementations having the properties of T.

Theorem 1 sugests that Cook’s analysis of completeness for alternative (I) is not
exhaustive. The structures in the theorem, however, hardly qualify as interesting data-
type semantics; they are not computable, for instance: see Tennenbaum [22].

In {14], Hoare intended his calculus HL(7T) to be a system of reasoning about
programs operating on any legal implementation of the specification T. If we interpret
a legal implementation of T as simply a computable model of T, then we have a
mathematically intermediate notion of completeness based on the class CMOD(T) of
all computable model of T.

A Hoare logic HL(T) is computably complete if any asserted program which is
valid over CMOD(T) is provable in HL(T).

In the case of arithmetic computable completeness is Cook’s completeness for
CMOD(PA)= {N} and here expressiveness and completeness occur together.
Actually this is a general phenomenon and, we have further reassurance of the
usefulness of Cook’s study of completeness for alternative (I):

THEOREM 3. Let A be an infinite computable structure with a computable
enumeration, consisting of a distinguished constant first and a unary injective
operator next: A —» A such that A = {next" (first): n € w}. Then L is expressive for
WP over A if, and only if, HL(A) is complete for A. Any infinite computable structure
may be augmented by a computable enumeration.

We have greatly prolonged this introduction to accommodate observations on the
semantic and syntactic roles of specifications; henceforth we deal with mathematical
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issues only. The first two sections concern the construction and basic properties of
Hoare’s logic while the next three sections discuss completeness and prove the
theorems announced. Obviously, we are assuming the reader is familiar with Hoare
[14] and Cook [11], but little other knowledge is actually necessary. This paper is a
close companion of [4] about natural structures which possess no complete Hoare-
like logics for their while-programs; and both papers are sequels to [3] written with
Tiuryn. Subsequent work relevant to completeness [6~8] and this are discussed in a
final section of concluding remarks.

1. PRELIMINARIES ON ASSERTIONS AND PROGRAMS

In this and the next section we map out the technical prerequisites for the paper. In
addition to the important sources Hoare [14], Cook [11], the reader would do well to
consult the survey article Apt [1].

The first-order language L = L(X) of some signature & is based upon a set of
variables x,, x,,... and its constant, function and relational symbols are those of X
together with the Boolean constants true, false and the equality relation. We assume
L possesses the usual logical connectives and quantifiers; and the set of all algebraic
terms of L we denote T(ZX).

Using the syntax of L, the set WP = WP(X) of all while-programs over X is
defined in the customary way.

For any structure 4 of signature X, the semantics of the first-order language L over
Z as determined by A has its standard definition in model theory and this we assume
to be understood. The validity of ¢ € L over structure 4 we write 4 = ¢.

If T is a set of assertions of L, then the set of all formal theorems of T is denoted
Thm(T); we write T - ¢ for ¢ € Thm(T). Such a set T of formulae is usually called a
theory, but in the present context we prefer the more suggestive term specification.
Two specifications T, T’ are logically equivalent if Thm(T) = Thm(T’). A
specification T is complete if given any assertion ¢ € L, either T+ ¢ or T+ —g¢. The
set Th(A4) of all assertions true of a structure A4 is called the first-order theory of 4;
evidently Th(4) is a complete specification. The class of all models T is denoted
Mod(T); we write Mod(T) = ¢ to mean that for every 4 € Mod(T), 4 = ¢. Godel’s
completeness theorem says this about specifications:

TH¢ if and only if Mod(T) = ¢.

For a proper discussion of these concepts the reader should consult Chang and
Keisler [9].

For the semantics of WP as determined by a structure 4, we leave the reader free
to choose any sensible account of while-program computations which applies to an
arbitrary structure: Cook [11]; the graph-theoretic semantics in Greibach [12]; the
denotational semantics described in De Bakker [2]. What constraints must be placed
on this choice are the necessities of formulating and proving certain lemmas, such as
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Lemma 1.1, and of verifying the soundness of Hoare’s logic (Theorem 2.2). These
conditions will be evident from the text and, for such a simple programming language
as WP, can hardly be problematical. For definiteness, we have in mind a naive
operational semantics based upon appropriate A-register machines which yield
straightforward definitions of a stare in a WP computation and of the length of a WP
computation {23]. Thus, if S € WP involves n program variables and computes on
structure A, then we use elements of A" to represent states in the computations of S.
For a € A", the length of the computation S(a) is denoted |S(a)|. The proof of the
following fact is a routine matter:

1.1 LEMMA. Let S € WP involve variables x = (x,,..., x,). Then for each | € w
one can effectively find a formula COMPg ((x, y) of L, wherein y = (y\,.... y,,) are new
variables, such that for any A and any a,b€ A", A= COMPg [(a, b) if and only if
the computation S(a) terminates in [ or less steps leaving the variables with values
b=1(byyb,)

From the syntax L and WP, we make a new kind of syntactic object called the
asserted program; this is a triple of the form {p} S{q}, where p,g € L and § € WP
and the variables of p, ¢, and § are the same. To the asserted programs we assign
partial correctness semantics: the asserted program {p} Siq} is valid on a structure A
(in symbols: 4 = {p} S{q}) if for each initial state a € 4, 4 = p(a) implies either
S(a) terminates and A= ¢g(S(a)) or S(a) diverges. And the asserted program
{p} S{q} is valid for a specification T if it is valid on every model of T; in symbols.

T+ {p} Sig} or Mod(T) = {p} S{q}.
The partial correctness theory of a structure A is the set

PC(A4)= {{p} Siqh: A= {p} S{qi};
and the partial correctness theory of a specification T is the set

PC(T) = {{p} S{g}: Mod(T) = { p} Sigi}.

Clearly,

PC(T)= () PC(4).

AeMod(T)

Finally, we define strongest postcondtions. Let ¢ € L and S € WP, both having n
variables. The strongest postcondition of S and ¢ on a structure 4 is the set

sp,(¢, S)={bE A": 3a € A" [S(a) terminates in final state b and 4 = ¢(a)|}

1.2 LEMMA. A= {p} Sig} < spy(p, S)c (b€ A" A=q(b)!.
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2. HoAarg’s Logic

Hoare’s logic for while-programs over X, with assertion language L and
specification or oracle T L, has the following axioms and proof rules for
manipulating asserted programs: let S, §,,S, € WP; p, ¢, py, q,, FEL; bEL, a
quantifier-free formula.

1. Assignment axiom scheme. For t€ T(X) and x a variable of L, the asserted
program

{plt/x]} x ==1t{p}
is an axiom, where p[¢/x] stands for the result of substituting ¢ for free occurrences of
X in p.
2. Composition rule.
{phSidrh {rt S2igl/{p} 8,5 S,ig})-
3. Conditional rule.
{pAb}S g}, {p AN—b} S,{q}/{p} if b then' S, else S, fi{q}].
4. Iteration rule.
{pAb}S{p}/{p} while b do § od {p A —b}.
5. Consequence rule.
p-pisipi} Staih a0 - 9/{p} Sigl
And, in connection with 5:

6. Oracle axiom. Each member of Thm(T) is an axiom.

The set of asserted programs derivable from these axioms by the proof rules we
denote HL(T); we write HL(T) — { p} S{g} in place of {p} S{q} € HL(T).

2.1 Basic UNIQUENESS LEMMA. For any consistent specifications T and T' which
are logically equivalent we have that HL(T) = HL(T’) and PC(T) = PC(T’).

Proof. The equality of Hoare logics over logically equivalent specifications is
obvious. If Thm(T)=Thm(T’), then Mod(T) = Mod(T'), by the soundness of first-
order logic. Therefore PC(T) = PC(T’).

The Corollary to Theorem 1 in Cook [11] is as follows:

2.2 SounNDEDNESS THEOREM. For any specification T, HL(T) < PC(T).
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The Hoare logic HL(T) is said to be logically complete if HL(T) = PC(T). As noted
in the Introduction, Cook choose to consider the completeness of Hoare’s logic
relative to a fixed structure rather than its logical completeness; we state |11,
Theorem 3}:

The assertion language L is expressive for WP over structure A if for every ¢ € L
and every S € WP, the strongest postcondition sp (¢, S) is first-order definable over
A.

2.3 Cook’s COMPLETENESS THEOREM. For any structure A, if T is a complete
specification for A in the sense that Thm(T)=Th(A), and if L is expressive for WP
over A, then HL(T) =PC(4).

Hoare’s logic for while-programs over a structure A is defined to be HL(Th(A))
and is denoted HL(4). From Soundness Theorem 2.2, we know that

HL(4) = HL(Th(4)) = PC(Th(4)) < PC(4)

and Completeness Theorem 2.3 says that if L is expressive for WP over 4. then
HL(4) = PC(4).

Let N=(w;0,x+ 1,x=1 4, X, <) to be standard model of arithmetic: the
Corollary to Theorem 3 in [11] says:

2.4 CoroLLARY. HL(N)=PC(N).

3., COMPUTING ON A STRUCTURE

When using first-order logic to investigate properties of a given structure it must be
kept in mind that the logical methods see the structure as an object unique up to
elementary equivalence and not isomorphism. If 4 and B are structures of common
signature, then A is elementary equivalent to B (in symbols: A =RB) if
Th(4) = Th(B).

3.1 UNIQUENESS LEMMA FOR STRUCTURES. If A = B, then HL(4) = HL(B) and
PC(4) = PC(B).

Proof. The equality of the Hoare logics over elementary equivalent structures
follows from Uniqueness Lemma 2.1, and is obvious anyway. Consider the second
statement about correctness theories.

Suppose A &= {p} S{g}, where p,q &€ L, and § € WP involves n program variables.
Given § and / € w one can effectively find a while-program §, which applied to any
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input state of any Z-structure A computes exactly as S computes for / steps and then
diverges if S has not terminated in that time. Thus, for a € 47,

S/(a)=S(a), if |S(@) </

= undefined, otherwise.

It is easy to prove the following fact from Lemma 1.1:

3.2 LeMMA. For any assertion ¢ of L one can effectively find a first-order
Sormula SP(@, S,) which for every Z-structure A defines the strongest postcondition

sp4(¢: S))-
Now define SP(4,S)="V ., SP(4,S,), an infinitary formula which uniformly
defines the strongest postcondition of ¢ and .S. We calculate as follows:

AE{p}S{g}=>A=SP(p,S)-q, by Lemma 1.2

e A= [\/ SP(p, S,)]Hq

lew

< AF )\ [SP(p,S)-q]

lew

< forevery/€Ew, AFSP(p,S))-q
«>forevery/€Ew, BFSP(p,S)—q since A=B

< BF )\ [SP(p,S)~q]

lew

< BE {p} Siq). Q.ED.

3.3 CoroLLARY. [fHL(A) is complete and A = B, then HL(B) is complete.

Proof. Assume HL(4)=PC(4). By Lemma 3.1, HL(A)=HL(B) and
PC(4)=PC(B) so HL(B) = PC(B). , Q.E.D.

3.4 CoROLLARY. A = B if and only if PC(4) = PC(B).

Here is the first theorem from the Introduction:

3.5 THEOREM. For every model A of complete number theory Th(N), HL(A) is
complete; but if A is nonstandard, then L is not expressive for WP over A.

Proof. Any model 4 of complete number theory is elementary equivalent to the
standard model N; thus, HL(4) is complete by Corollaries 3.3 and 2.4. We show L is
not expressive for 4.

Let S be the following arithmetic program,

x:=y; while x#0do x:=x—-1 od; x:=.
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On the structure 4, S attempts to count down from the value of y to 0: given initial
state (a,b) € A* if S terminates, then its final state is (b,b) and b is a standard
number in A; if b is nonstandard, then § diverges from initial state (a,b) for any
acA.

Consider the set sp ,(true, S). Inspecting its definition we find that for (a.b) € 4 %

(a.b) E spytrue, S)<>a=0> and a is standard.

Thus, X = {a € A: (a, a) € sp (true, S)} is precisely the set of all standard numbers in
A; Because A is nonstandard —X is nonempty. If sp,(true, S) were first-order
definable, then X and —X would be first order from the axioms of Peano Arithmetic,
we could prove the existence of a least element of —X. But 4 has no smallest
nonstandard element because each nonzero element has a predecessor. Q.E.D.

4. COMPUTING WITH A SPECIFICATION

Let us begin by establishing a general connection between the logical completeness
of Hoare’s logic based upon a specification and the completeness of the logic as it is
determined by a particular structure.

4.1 THEOREM. Let T be a consistent specification which is complete. Then for
each A € Mod(T) it is the case that HL(T)=HL(A4) and PC(T)=PC(4). In
Particular, the following three statements are equivalent:

(1) HL(T)=PC(T).
(2) For each A € Mod(T), HL(4) =PC(4).
(3) For some A € Mod(T), HL(4) =PC(4).

Proof. If A € Mod(T), then Thm(T)=Th(4) because T is complete. On
inspecting the appropriate definitions one sees that HL(T) = HL(A4). Consider the
correctness theories. The completeness of T implies PC(T) = PC(Th(4)) and we must
show that PC(Th(4)) = PC(4). Now,

PC(Th(4)) = 0 PC(B).

BeMod(Th(4))

Since all models of Th(4) are elementary equivalent to 4, Uniqueness Lemma 3.1
reduces to intersection to PC(Th(4)) =PC(4).
The equivalences in the theorem are easy corollaries of the first conclusions.
Q.E.D.

From Cook’s Completeness Theorem 2.3 we can deduce
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4.2 THEOREM. Let T be a consistent specification which is complete. Then if
Mod(T) contains an element A for which L is expressive for WP over A, then HL(T)
is logically complete.

Here is the second theorem stated in the Introduction.

4.3 THEOREM. Complete number theory Th(N) is the only extension T of Peano
Arithmetic for which HL(T) is logically complete.

Proof. Hoare’s logic based on complete number theory is logically complete by
Theorem 4.1 and Corollary 2.4. We prove that for any extension T of Peano
Arithmetic, if HL(T) is complete for Mod(T), then T satisfies the following w-Rule:
let ¢ be any formula of L and let n denote the numeral in L corresponding to n € w,

T+ ¢(n) for each n € w/T - Vxp(x)
(see Schoenfield [21]).

With this w-Rule it is a routine matter to show that Thm(T) = Th(¥). First, one
proves that Th(N) < Thm(T) by induction on the complexity of formulae and using
the w-Rule. This done, the equality Th(¥) = Thm(7) follows immediately from the
completeness of Th(N).

Let us prove the w-Rule. Let ¢ be a formula and suppose T+ ¢(n) for all n € w.
Let S denote the following program

y:=0; while x# y doy:=y + 1 od
and consider the asserted program

{=(x)} S{false}

First, we claim that Mod(7T) = {—¢(x)} S{false}. For if M &€ Mod(T), m € M and
ME= —g(m), then m is a nonstandard element of M because we are assuming ¢
provable on all the standard numbers. Thus, the precondition —¢(x) guarantees that
the program diverges and so the asserted program is valid.

Since HL(T) is complete for Mod(7') we know that

HL(T)  {—(x)} S{false}.

We now unpick a formal proof of the asserted program in HL(7) and from its inter-
mediate assertions put together a proof for 7+ Vx - ¢(x). This unpicking procedure
is based on the following lemma which fixes a sensible form for the proofs to be
unpicked:

4.4 LemMa. If HL(T)+ {p} Si{q}, then there is a proof of {p} S{q} in which
applications of the rule of consequence occur at two types of position, namely, (1)
immediately after an assignment axiom or (2) immediately after an application of the
iteration rule.
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Starting from the conclusion of the Hoare logic proof we step backward 3 times
always seeking theorems of T.

Step 1. By the Composition Rule, there must be a formula é = d(x, y) containing
free variables x, p, but also other unnamed variables, such that

(a) HL(T) = {—o(x)}y = 0{(x, y)},
(b) HL(T)+ {d(x,y)} while x =y doy :=y + | od false.

Now, because y is not free in ¢(x), statement (a) implies that
(c) T "p(x)Ay=0-dx,0).
(As a matter of fact this point requires a formal argument of a kind that will be
proved in Step II1.)
Step II. Consider Ib. By the while-Rule and the Rule of Consequence. an inter-
mediate assertion @ = @(x, y) must exist to satisfy
(a) THo— O,
(b) HL(M = {@Ax#yly:=y+ 1{0},
(c) T+ @A x=y- false.
And this latter statement we rewrite
(d) TH—O@->x=#)
Step III.  Consider IIb. This statement is derived via the Rule of Consequence
from an appeal to an assignment axiom: there exists y = y(x, y) such that

(@) THOAx#y-y|y/y+1]
(b) HL(T)& {yly/y+ 1}ty =y 4+ 1{rh
(c) THy-0.

Now we can show that T+ Vx - ¢(x). This involves a little logical calculation with
the 6 formal theorems of T which we organize around

4.5 LEMMA, TH —¢(x)-Vy  O(x, y) A x £ .

Given this lemma, the remainder of the proof is simply a formal deduction:
T+ —g(x)— [Vy - O(x, y)] this is Lemma 4.4;
TH[Vy 0@, y)Vx#£y|-Vy -x#£y
T [Vy-x+#y]— false
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By transitivity of implication,
T+ —¢(x) - false
T+ é(x).
Reinstating the universal quantifier we have T Vx - ¢(x).

Proof of Lemma 4.5. We use the axiom scheme of induction belonging to Peano
Arithmetic and which is available for T. It is enough to derive a basis theorem and an
induction step theorem

Basis: T+ —¢(x)— [O(x,0) A x 0]
T+ —g(x) - d(x, 0) from I(c);
THd(x,0)- 0O(x,0) from II(a);
T—¢(x)— O(x,0) by transitivity.
TH—¢gx)>x#0 since T+ ¢(0).

Whence the basis theorem is obtained by conjoining these last two statements.

Induction step:
TH[OM ) Ax#p] =[O y+ 1)Ax#y+1]
TH[OX, ) Ax#y]-px,y+1) thisis 1I(a);

THyxy+1D-0Wxy+1) from Ill(c);
TH[Oxy)Ax#£y]-0Ox,y+1) by transitivity.
THOx,y+1)ox#y+1 from 1I(d).

Whence the induction theorem is obtained from these last two statements. Q.E.D.

5. EXPRESSIBILITY AND COMPLETENESS FOR COMPUTABLE STRUCTURES

If Hoare’s intentions for the semantics of a specification are not quite faithfully
represented by the mathematics of Sections 3 and 4, then at least it adequately
supports the suggestion, made in the Introduction, of defining a third kind of
completeness from the class of computable models of a specification. Let CPC(T) be
the set of all asserted programs valid on all computable models of 7. Then
Theorem 4.1 allows us to reduce completeness considerations of HL(T) with respect
to CPC(T) to the case of an individual structure: if T is complete and possesses a
computable model, then for any 4 € Mod(7T), PC(4) = CPC(T) = PC(T). So it is, we
are led to take an interest in Hoare’s logic over particular computable structures.
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By an enumeration for a structure 4 we mean a distinguished element first of A4
and an injective operator mext: A - 4 such that A4 = {next"(first): n € w}. By a
Structure with enumeration we mean a structure with such an enumeration named in
its signature. In this last section we shall prove

5.1. THEOREM. Each infinite computable structure possesses a computable
enumeration. If A is a computable structure with enumeration, then L is expressive
Jor WP A if and only if HL(A) = PC(4).

Finite structures are computable, of course, and as L is always expressive for them
their Hoare logics are always complete. Presburger Arithmetic is the simplest
computable structure with enumeration; L is not expressive for it and its Hoare logic
is incomplete. For the standard model of arithmetic N, the ring of integers, and the
field of rational numbers, L is expressive and Hoare’s logic is complete. But for the
fields of real algebraic numbers and algebraic numbers, L is again not expressive and
Hoare’s logic is incomplete, [4].

Of course, before proving Theorem 5.1 we are obliged to say something about
computable structures. Our definition is the standard formal definition of the concept
of a computable structure and it derives from Rabin [20] and Mal’cev {17].

A structure 4 is computable if there exists a recursive subset 2 of the set of natural
numbers @ and a surjection a: 2 — 4 such that (1) the relation = defined on £ by
n=,m< an=am in 4 is recursive; and (2) for each k-ary operation ¢ and each k-
ary relation R of A there exist recursive functions ¢ and R which commute the
following diagrams:

AF —25 4 LT
a‘[ Ia ak‘[ %
2 2 0 o

wherein a*(x, ..., x;) = (ax,...,ax,) and R is identified with its characteristic
function.

Let A be a computable structure with coding a. A set S A" is said to be
(a-)computable or (a-)semicomputable accordingly as

a™'S = {(x, . x,) € 2™ (0X, ..., 0X,) E S}

is recursive or r.e.

5.2 LEMMA. Every infinite computable structure A is isomorphic to a recursive
number algebra R whose domain is the set of natural numbers w and in which the r.e.
subsets of w correspond with the semicomputable subsets of A. The zero and
successor on w induce a computable enumeration of A; moreover, if A is a
computable structure with enumeration, then the isomorphism and algebra R can be
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chosen so as to allow zero and successor on w to correspond to the given enumeration
of A.

The lemma is not difficult to formally prove; the reader may care to consult
Mal’cev [17]

Proof of Theorem 5.1. One implication is Cook’s Completeness Theorem 2.3. Let
A be a computable structure with enumeration and assume HL(4) is complete; we
show that for ¢ € L and S € WP, the strongest postcondition sp,(¢, S) is first-order
definable over 4. Let ¢ and S involve n variables and define

GRAPH (S) = {a,b) € A" X A": S(a) terminates in final state b}.
Then
beEsp,g, S)<«>JacA” [(a,b) € GRAPH ,(S) & 4 = ¢(a)]

and so it is sufficient to prove that GRAPH,(S) is first-order definable. The
following lemma we leave as an exercise:

5.3 LEMMA. For any computable structure A and any S € WP, the set
GRAPH (S) is semicomputable.

Whence the theorem follows from this proposition.

5.4 PROPOSITION. Let A be an algebraic with enumeration having signature X.
Assume A is computable and that HL(A) is complete for WP over A. If X C A" is
semiconputable, then X is first-order definable over X.

Proof. By the normalising Lemma 5.2 we can assume A4 to be isomorphic to a
recursive number algebra R with domain w and whose enumeration is given by first
element O and next operator, succ(x) = x + 1. Moreover, the semicomputability of X
can be identified with the recursive enmerability of a~'X where a: R — A4 is the
isomorphism. Thus, technically, the matter reduces to proving that any recursively
enumerable set Y c w” is first-order over the signature X' in any numerical structure
R which is a recursive expansion of Presburger Arithmetic P = (w; 0, succ) and for
which HL(R) is complete for WP over R.

By Matijacevi¢’s diophantine theorem [18], it is clear that it is sufficient to prove
that ordinary addition and multiplication on « is first-order over X. Using the
completeness of HL(R) for WP over R we shall show that

plus = {(x,y,2) Ew’: x + y =z}
is first-order over Z; we carry out the argument in detail and leave the case of
mult = {(x,),2) Ew’: x Xy =2z}

as an exercise.
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Consider the following composite program S = §,; S, € WP having variables x, y,
z,.z,, u and defined by these programs

S, =z,=x; u=0;
while 1 # y do u := succ(u); z, :=succ(z,) od;
u:=0; z,:=0

S,=z,=x; u:=0
while u # y do u := succ(u); z, :=succ(z,) od;

Both programs add the values of x and y; but program S, tidies up the values of its
auxiliary variables so that from state (q, b, ¢, d, e) it computes and terminates in state
(a,b,a+5,0,0).

Clearly, R = {true} S{z, = z,} and by the completeness of HL(R) we know that

HL(R) - {true} iz, =z,}.

By the Composition Rule, there must exist a first-order intermediate assertion & such
that

HL(R) - {true} S {5} and HL(R)+ (61 S,{z, = z,}
and so, by the Soundness Theorem,
R = ltrue} S,{0} and Ri= 10} 8,4z, =z,}.
Given the form of the final states of S, we know that
REda, b,a+b,0,0) for all a, b € w

and, therefore, that
(a,b,c)€ plus = R = d(a, b, c. 0, 0).

Contrapositively assume (a, b, ¢) & plus. Then a + b # ¢ implies that for any initial
state (a, b, ¢, d, e) the program §, will terminate but R ¥ z, = z,. The validity of the
asserted program {d} S,{z, = z,} immediately implies

(a,b,c) & plus= R =—d(a, b, ¢, 0,0)

and that plus is first order. Q.E.D.

6. CoNCLUDING REMARKS: WHAT Is A COMPLETENESS THEOREM?

The Basic Dichotomy stated in the Introduction emphasises two attitudes toward
completeness theorems for Hoare’s system. The first is associated with alternative (1),

571/25/3-2
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which focuses on a particular structure 4, and has prevailed since Cook [11]:
attitude (I) sees a completeness theorem as a statement that there are enough axioms
and rules in a logical system to accomplish a certain set of proofs. In particular, the
role of expressiveness in Cook’s completeness theorem is justified by the following
informal, yet plausible, interpretation of theorem: provided that there are no inade-
quacies in the assertion language to express the effects of WP computations on A,
then the axioms and rules of inference of Hoare's logic are sufficient to prove all
partial correctness assertions true of A.

With precisely this kind of interpretation in mind, many proof systems have been
developed for more complex programming languages for which completeness
theorems have been proved after the fashion of Cook wviz. using a completeness
defined by the true partial correctness assertions on an expressive structure (see the
survey Apt [1]). It is known, however, that for very rich programming languages
expressiveness is not sufficient for completeness and there exist expressive structures
for which no completeness theorem can be proved (Clarke [10]).

Thus Theorem 1 is to be interpreted as the assertion language may be inadequate
to deal with WP’s computational properties on A yet Hoare’s logic may still prove all
there is to prove for A.

Coupled with the fact that there are many natural structures that are not expressive
[4], especially among the two or more sorted structures [7], the results established do
not complement attitude (I) and Cook-style completeness theorems. There remains
the following, however:

Open Problem

Does there exist a computable structure A which is not expressive but for which
HL(4)=PC(4)?

Alternative (II) of the Basic Dichotomy is part of the idea of using Hoare logic to
axiomatically specify a program language: an idea discussed in Hoare [14] and later
re-examined in Hoare and Wirth [25]. In analogy to the G6del completeness theorem
one might have expected that every specification T gave the rise to a logically
complete Hoare logic HL(T). Theorem 2 rules this out even for the important special
specification, Peano Arithmetic. In connection with Theorem 2 it can be mentioned
that, as a proof system, HL(PA) behaves well and can be used to study the limits of
formal verification in practice [5] and to obtain results such as the fact that incom-
plete specifications can have logically complete Hoare logics [6]. For completeness,
however, alternative (II) receives little consolation from the idea of computable
completeness and Theorem 3.

Alternative (II) finds natural a second attittude to completeness: attitude (II) sees a
completeness theorem as a statement that the logical system characterizes the
semantics in question. In particular, if a logical system is incomplete with respect to a
semantics, then the system is not talking about that semantics. With this inter-
pretation in mind, there is but one conclusion for the absence of general completeness
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theorems for Hoare’s logic: according to Hoare’s logic the semantics of WP is not the
conventional combinatorial semantics we adopted in Section 1. This idea is studied in
depth in our paper on axiomatic semantics |8].

17,
18.
19.
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