INVERTIBLE TERMS IN THE LAMBDA CALCULUS

Jan BERGSTRA
Mathematical Institute, University of Leiden, Leiden, The Netherlands

Jan Willem KLOP
Mathematical Institure, University of Utrecht, Utrecht, The Netherlands

Communicated by C. Böhm
Received June 1977
Revised May 1973

1. Introduction

It is well-known that the set of λ-terms modulo $\beta \eta$-convertibility is a semi-group with I as identity element and cornposition \circ, defined by $M \circ N=B M N$, where $B \equiv \lambda x y z . x(y z)$. In [6, pp. 167, 168] the question is raised under what conditions an element in this semi-group has an inverse.

Dezani-Ciancaglini gave in [8] a characterization of (w.r.t. $\lambda \boldsymbol{\beta} \boldsymbol{\eta}$-calculus) invertible terms having a normal form as the 'finite hereditary permutators', and she conjectures that these are all the $\beta \eta$-invertible terms, i.e. a term without normal form cannot have an inverse.

In this paper we confirm her conjecture. Two proofs are given for this fact, of which the first is more direct. The second proof uses the in itself interesting fact that certain ' λ-trees' can be represented as Böhm-trees of λI-terms (in fact we prove something more), plus Hyland's characterization of the equality in the Graph model P ω (see [9, 1]).

The result on representation of λ-trees is further used to characterize the λ-terms invertible in D_{∞}, Scott's well-known lattice model (see [12]).

Since for this last result a slightly more general form of the main lemma in [8] is needed, we have included a new proof of that lemma.

2. Preliminaries

In this section we collect the ingredients necessary for the sequel, without the proofs which can be found in the literature. The basic definitions and facts about the λ-calculus are supposed to be known.

Notation 1. (i) λ is the set of λ-terms, Λ^{0} the set of closed λ-terms. Similarly Λ_{I} and Λ_{I}^{0} for λI-terms. $\rightarrow_{\beta(\eta)}$ is one step $\beta(\eta)$-reduction, $\rightarrow_{\beta(\eta)}$ its transitive reflexive closure; $={ }_{\beta(\eta)}$ is the equality generated by $\rightarrow_{\beta(\eta)}$.

Abbreviations: $M \vec{N}$ for $M N_{1} \cdots N_{k} ; \lambda \vec{x} . M$ for $\lambda x_{1} \cdots x_{k} . M$.
(ii) $\ulcorner\neg: \Lambda \rightarrow \mathbb{N}$ is some recursive coding of λ-terms.
(iii) For $n \in \mathbb{N}$, we define $n \in \Lambda_{I}^{0}$ by $n=\lambda x y$. $x^{n+1} y$, where $x^{1} y=x y$ and $x^{n+1} y=$ $x\left(x^{n} y\right)$.
Remark. $n I I \rightarrow_{\beta} I$ for all n.
(iv) A finite sequence of natural numbers (n_{1}, \ldots, n_{k}) will be coded as a natural number, notation: $\left\langle n_{1}, \ldots, n_{k}\right\rangle$. Let Seq be the set of these codes, called 'sequence numbers'. Elements of Seq are denoted by $\sigma, \tau, \rho, \ldots$. Concatenation of sequence numbers is denoted by $*$, the (code of) the empty sequence by $\left\rangle\right.$. If $\sigma=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, $\operatorname{lth}(\sigma)=k . \leqslant$ is the usual p.o. on Seq: $\sigma \leqslant \tau \Leftrightarrow \exists \rho \sigma * \rho=\tau$.

Lemma 1. Let $M \in \Lambda$. Then
M has a β-normal form $\Leftrightarrow M$ has a $\beta \eta$-normal form.

Proof. See [7, p. 124] or [3, Section 6.14].

Lemma 2. Let $M \in \Lambda_{I}$. Then M has a normal form iff all its subterms have a normal form.

Proof. See [5, p. 27 Theorem 7 XXXII].
Theorem 1 (Second fixed point theorem).

$$
\forall F \in \Lambda \exists M \in \Lambda M \rightarrow_{\beta} F\ulcorner M\urcorner .
$$

Proof. See [1, Theorem 2.20].
Theorem 2 (Kleene). There exists an enumerator for closed λ-terms. This is also true for the restriction to λI-calculus; more precisely:

$$
\exists E \in \Lambda_{I}^{0} \forall M \in \Lambda_{I}^{0} E\ulcorner M\urcorner \rightarrow_{\beta} M .
$$

Proof. [5, Section 16] or [2].
Lemma 3. $\forall M, N \in \Lambda_{I}^{0} \exists F \in \Lambda_{I}^{0} F 0 \rightarrow{ }_{\beta} M$ and $F 1 \rightarrow{ }_{\beta} N$.
Proof. See [5, 14 I, p. 46].

Theorem 3. (Representability of recursive functions in λI-calculus). Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be recursive. Then $\exists F \in \Lambda_{I}^{0} \forall n \in \mathbb{N} F n \rightarrow{ }_{\beta} f(n)$.

Proof. See [5, Ch. III, p. 39].

2.1. Böhin trees

In the sequel the concept of 'Böhm tree' introduced in [1] will prove to be useful. A Böhm tree can be considered as a kind of 'infinite normal form'. See also [10].

Definition 1. (i) A tree T is a subset of Seq such that $\sigma *\langle n\rangle \in T \Rightarrow \sigma \in T$. (The branches may be infinite.)
(ii) If $\sigma \in T$, then $T_{\sigma}=\{\tau \in T \mid \tau \geqslant \sigma\}$.
(iii) Let T be a tree. The function $l: T \rightarrow \mathbb{N}$ is defined by: $l(\sigma)=$ number of direct successors of σ in T.
(iv) The level of $\sigma \in T$ is $\operatorname{th}(\sigma)$.

Definition 2. (i) An Ω-free λ-tree \mathscr{T} is a tree T, notation $T=\operatorname{Seq}(\mathscr{T})$, together with functions abs: $T \rightarrow \bigcup_{n \geqslant 0}(\mathrm{Var})^{n}$ (the set of strings of variables, including the empty string) and occ: $\boldsymbol{T} \rightarrow$ Var. Instead of abs (σ) we write $\lambda \vec{x}_{\sigma}$. Instead of occ (σ) we write y_{σ}.
(ii) Further we will allow an extra symbol, Ω, as a label of nodes of \mathscr{T}-but only to terminal nodes. Moreover, if σ has label Ω, then there is no abstraction at σ, i.e. $\operatorname{abs}(\sigma)=\emptyset$.
Example.

(iii) \mathscr{T}_{σ} is $(\operatorname{Seq}(\mathscr{T}))_{\sigma}$ plus corresponding labels.
(iv) $\mathscr{T}_{1}={ }_{n} \mathscr{T}_{2} \Leftrightarrow$ the levels $0, \ldots, n$ of $\mathscr{T}_{1}, \mathscr{T}_{2}$ are identical.
(v) Notation. \vec{u}_{σ} is the list of variables abstracted before σ, i.e. if $\sigma=$ $\left\langle n_{0}, \ldots, n_{k}\right\rangle$, then

$$
\vec{w}_{\sigma}=\vec{x}_{()} \vec{x}_{\left(n_{0}\right)} \vec{x}_{\left(n_{0}, n_{1}\right)} \cdots \vec{x}_{\left(n_{0}, \ldots, n_{k-1}\right)} .
$$

y_{σ} is bound iff $y_{\sigma} \in \vec{w}_{\sigma} \cup \vec{x}_{\sigma} . \mathrm{FV}\left(\mathscr{T}_{\sigma}\right)$ is the set of free variables in \mathscr{T}_{σ}.
To each $M \in \Lambda$ a λ-tree $\operatorname{BT}(M)$ (Böhm tree of M) is associated as follows:
(i) If M is unsolvable (equivalently: has no head normal form (hnf)), then $\mathrm{BT}(M)=\Omega$,
(ii) Otherwise, $M={ }_{\beta} \lambda x_{1} \cdots x_{n}, y N_{1} \cdots N_{m}$ for some $n, m \geqslant 0$ and some N_{i}. Then

i.e. level 0 of $\mathrm{BT}(M)$ is known. By iteration we find all levels.

Corresponding to the subtrees $(\mathrm{BT}(\boldsymbol{M}))_{\sigma}$ as defined above, we define terms M_{σ} for $r \in \operatorname{Seq}(\mathbf{B T}(M)):$
(i) $M_{(} \equiv M$,
(ii) Let M_{σ} be defined and let σ have a successor in $\operatorname{Seq}(\mathrm{BT}(M))$. Then M_{σ} has a hnf; say $M_{\sigma}={ }_{\beta} \lambda x_{1} \cdots x_{n} \cdot y N_{1} \cdots N_{m}$. Define $M_{\sigma *(i)} \equiv N_{i}, 1 \leqslant i \leqslant m$.

Remark. $\boldsymbol{M}_{\boldsymbol{\sigma}}$ is defined only modulo $={ }_{\beta}$.
To minimize the troubles with α-conversion (renaming of bound variables), we fix the following convention. All the λ-trees \mathscr{T} in the sequel will be in the following ' α-normal form':
Let $\operatorname{Var}=\left\{v_{n, m} \mid n, m \in \mathbb{N}\right\}$ and let \vec{x}_{c} be an abstraction vector in \mathscr{T} of length k. Then $\vec{x}_{r} \equiv v_{r, 1} v_{\sigma .2} \cdots v_{\sigma, k}$.

Remark. This means that in taking a subtree \mathscr{T}_{σ} of \mathscr{T} we have to shift the indices of the abstracted and the bound variables: $v_{\sigma * \rho, i} \mapsto v_{\rho, i}$.

Proposition 1. $(\mathrm{BT}(\mathbf{M}))_{\sigma}=\mathrm{BT}\left(M_{\sigma}\right)$.
Proof. The proof is left to the reader.
We will give an example as illustration of some concepts above. This example also illustrates a point in the sequel, $n l$, that tise assignment $\sigma \mapsto \mathrm{FV}(\mathrm{BT}(\boldsymbol{M}))_{\sigma}$ need not be recursive.

Exaraple 1. Let $R(m, k)$ be a recursive binary predicate, and let F be a λI-term representing R, i.e. $F m k=0$ if $R(m, k)$ and $=1$ else. Define a λI-term N such that

$$
N m k \rightarrow \begin{cases}\lambda a b . b\left(N m k^{k}+1 a\right), & \text { if } R(m, k) \\ I, & \text { else }\end{cases}
$$

Further, define $M \in \Lambda_{I}$ such that

$$
M n \rightarrow \lambda z x \cdot z(N n 0 x)(M n+1 z x)
$$

Now

where

$$
\begin{aligned}
& (\mathrm{BT}(\mathrm{MO}))_{\underbrace{(1,1, \ldots, 1,0)}_{m \text { times }}}=B T(\mathrm{Nm0x})=
\end{aligned}
$$

So
$\operatorname{FV}(\mathrm{BT}(M 0))_{\underbrace{}_{m \text { times }}}= \begin{cases}\{x\}, & \text { if } \exists k\urcorner R(m, k), \\ \emptyset & \text { else. }\end{cases}$
Since $\exists k\urcorner R(m, k)$ is not necessarily recursive, the assignment $\sigma \mapsto \bar{F}(\mathrm{BT}(M 0))_{\sigma}$ is therefore not necessarily recursive.

Theorem 4 (Hylanci). Let $\mathrm{P} \omega$ be the graph model (see [11]). Let $M, N \in \Lambda^{0}$. Then

$$
\mathrm{P} \omega \vDash M=N \Leftrightarrow \mathrm{BT}(M)=\mathrm{BT}(N) .
$$

Proof. See [9, 2].

3. Proof of the main lemma

Lemma 4. $M={ }_{D_{\infty}} I$ iff $\mathrm{BT}(M)$ has the form

i.e. except for the head variable z, all abstracted variables occur exactly oste, one level lower, in the same order. Here $n \geqslant 0$ and the abstraction vectors $\lambda \vec{y}_{1}, \ldots, \lambda \vec{y}_{n}$, etc. may be empty.

Proof. See [1] or [9].
Remark. Note that such a BT may be infinite; an example is Wadsworth's term $J \rightarrow \lambda z x . z(J x)$ (see [13]) which has the $B T$:

J is in some sense an 'infinite η-expansion of I ', namely compare the following sequence of $\boldsymbol{\eta}$-expansions:

$$
\lambda z \cdot z \underset{\eta}{\leftarrow} \lambda z x \cdot z x \underset{\eta}{\leftarrow} \lambda z x \cdot z(\lambda y, x y) \underset{\eta}{\leftarrow} \lambda z x \cdot z(\lambda y \cdot x(\lambda a \cdot y a)) \underset{\eta}{\leftarrow} \cdots
$$

In a similar way every term M such that $M={ }_{D_{\infty}} I$ can be viewed as a possibly infinite η-expansion of I.

Lemma 5. If $A_{i}(1 \leqslant i \leqslant n)$ are terms such that $\mathrm{BT}\left(\boldsymbol{A}_{i}\right)$ is closed and $M \equiv$ $\lambda z x_{1} \cdots x_{n} . z\left(A_{1} x_{1}\right) \cdots\left(A_{n} x_{n}\right)=D_{D_{\infty}} I$, then $A_{i}={ }_{D_{\infty}} I(1 \leqslant i \leqslant n)$.

Proof. By Lemma 4 BT (M) has the form described above:

Since $\operatorname{BT}\left(A_{1}\right)$ is closed, it is evident that

and this is again the BT of a possibly infinite η-expansion of I, i.e. $A_{1}=D_{\infty} I$.

Notation 2. (i) $M \sim_{\beta \eta} N:=M \circ N==_{\eta \eta} I$ and $N \circ M={ }_{\beta \eta} I$. Analogous $M \sim_{D_{\infty}} N$. (M, N are each others inverse in $\lambda \beta \eta$-caiculus resp. in D_{∞}.)
(ii) Let z be the set of terms M having a head normal form (hnf) with free head variable z, i.e. $M={ }_{\beta} \lambda \vec{x} . z \vec{N}$ for some $\vec{x}(z \notin \vec{x})$ and some \vec{N}.
(iii) Let $\lambda z . z$ be the set $\{\lambda z, M \mid M \in z\}$. So $P \in \lambda z . z$ iff $\exists \vec{x}, \vec{N} P={ }_{\beta} \lambda z \vec{x} . z \vec{N}$.
(iv) Let M be such that $z \notin \mathrm{FV}(M)$. The symbol ' will be reserved to denote special substitution instances of M, namely those where elements of z are substituted for some of the free variables of M. Notation: $M^{\prime}, M^{\prime \prime}, M^{\prime \prime \prime}$.

Definition 3. $M \sim_{D_{\infty}}^{\prime} N\left(M, N\right.$ are 'almost' each others inverse in $\left.D_{\infty}\right)$ iff
(i) $M, N \in \lambda z \cdot z$ and
(ii) $M^{\prime} \circ N^{\prime}={ }_{D_{\infty}} I$ for some M^{\prime}, N^{\prime} and
(iii) $N^{\prime \prime} \circ M^{\prime \prime}={ }_{D_{\infty}} I$ for some $M^{\prime \prime}, N^{\prime \prime}$.

Proposition 2. $M \sim_{D_{\infty}} N \Rightarrow M \sim_{D_{\infty}}^{\prime} N$.

Procf. We only need to prove Definition 3(i). Suppose $M \sim_{D_{\infty}} N$, then $M \circ N=D_{D_{\infty}} I$. Now M has a hnf, for otherwise $\mathrm{BT}(M \circ N)=\mathrm{BT}(\lambda z . M(N z))=$ $\lambda z . \Omega$, which is in contradiction with Lemma 5 . Also N has a hnf, for otherwise $\mathrm{BT}(M \circ N)=\mathrm{BT}(\lambda z \cdot M \rho)$ and now $z \notin \mathrm{FV}(M \Omega)$, which is in contradiction with Lemma 5.

Hence, $M={ }_{\beta} \lambda z \vec{x} . p M_{1} \cdots M_{m}$ and $N=_{\beta} \lambda z \vec{y} . q N_{1} \cdots N_{n}$ for some \vec{x}, \vec{y} and $m \geqslant 0, n \geqslant 0$. Further $z \equiv p \equiv q$, since $M(N z)$ has z as head variable. Hence $M, N \in$ $\lambda z . z$.

Lemma 6. (i) Let $M \sim_{D_{\infty}}^{\prime} N$. Then the first two levels of $\mathrm{BT}(M)$ and $\mathrm{BT}(N)$ have the form (for some $n \geqslant 0, m \geqslant 0$, say $n \geqslant m$, and some permutations π, σ of $\{1, \cdots, m\}$):

where the abstraction vectors $\lambda \vec{u}_{i}$ and $\lambda \vec{v}_{i}$ may be empty.
(ii) Moreover, π and σ are each others inverse.

Proof. $M \sim_{D_{\infty}}^{\prime} N$, hence $M, N \in \lambda z . z$. So

where $\Delta_{i}=\mathrm{BT}\left(P_{i}\right)$ and

where $\Delta_{j}=\operatorname{BT}\left(Q_{i}\right)$.
We will prove:
(a) $l=n, k=m$,
(b) each of the subtrees Δ_{i} has $x_{\pi i}$ as top variable, and each of the Δ_{j} has $y_{\sigma j}$ as top variable,
(c) π is a permutation of $\{1, \ldots, n\}, \sigma$ a permutation of $\{1, \ldots, m\}$,
(d) $\pi \circ \sigma=\sigma \circ \pi=i d$. (Remark: π, σ do not in general have the same domain, since $m \neq n$, but it is obvious how to define $\pi \circ \sigma$ and $\sigma \circ \pi$ by a trivial extension of the permutation with least domain.)
By $M \sim_{D_{\infty}}^{\prime} N$ we have $M^{\prime \prime} \circ N^{\prime \prime}={ }_{D_{\infty}} I$ and $N^{\prime} \circ M^{\prime}={ }_{D_{\infty}} I$ for some $M^{\prime \prime}, N^{\prime \prime}$ and M^{\prime}, N^{\prime}. Now suppose for some $i_{0}, \triangle_{i_{0}}$ has top Ω or $v \notin\left\{v_{1}, \ldots, x_{n}\right\}$. First we remark that

where $\triangle_{i}^{\prime}=\mathrm{BT}\left(F_{i}^{\prime}\right)$ and $\Delta_{i}^{\prime}=\mathrm{BT}\left(Q_{i}^{\prime}\right)$. Now also $\triangle_{i_{0}}^{\prime}=\Omega$ or has a top variable $w \notin\left\{x_{1}, \ldots, x_{n}\right\}$. For either there was no substitution for v, in which case $v \equiv w$, or some $P \in \mathbf{w}$ was substituted for v and hence w is top variable of $\triangle_{i_{0}}$. Evidently $w \notin\left\{x_{1}, \ldots, x_{n}\right\}$ since in substitutions free variables may not become bound.

Now consider $N^{\prime}=M^{\prime}$, a possibly infinite η-expansio, 1 of I as in Lemma 4. An easy computation of levels 0 and 1 of $\mathrm{BT}\left(N^{\prime} \circ M^{\prime}\right)$ shows that the Ω or w in question again appears at level 1 , contradiction with Lenma 4.

Hence every Λ_{1}, has a top variable $\in\left\{x_{1}, \ldots, x_{n}\right\}$. By $\leq y m m e t r y$ also every Δ, has a $\boldsymbol{t o p} \in\left\{y_{1}, \ldots, y_{m}\right\}$.

Now suppose that some x_{r} occurs twice or does not occur at level 1 of $\mathrm{BT}(M)$. Then again a simpie computation of the first two levels of $\mathrm{BT}\left(\boldsymbol{N}^{\prime} \circ M^{\prime}\right)$ gives a contradiction with Lemma 4.

So we have proved that

and

for some $\pi, \sigma, n \geqslant 0, m \geqslant 0$.
To simplify the computation in the final argument of the proof, we will suppose $n=m$. This is not an essential restriction. From $\mathrm{BT}(M)$ and $\mathrm{BT}(N)$ we see that

$$
M={ }_{\beta} \lambda z x_{1} \cdots x_{n} \cdot z\left(\lambda \vec{u}_{1} \cdot x_{\pi 1} \vec{X}_{1}\right) \cdots\left(\lambda \vec{u}_{n} \cdot x_{\pi n} \vec{X}_{n}\right)
$$

and

$$
\begin{equation*}
N={ }_{\beta} \lambda z y_{1} \cdots y_{n} \cdot z\left(\lambda \vec{v}_{1} \cdot y_{\sigma 1} \vec{Y}_{1}\right) \cdots\left(\lambda \vec{v}_{n} \cdot y_{\sigma n} \vec{Y}_{n}\right) \tag{1}
\end{equation*}
$$

for some maybe empty \vec{X}_{i}, \vec{Y}_{i}. For M^{\prime}, N^{\prime} we have expressions similar to those for M, N with X_{i}, Y_{j} replaced by $X_{i}^{\prime}, Y_{j}^{\prime}$. Hence

$$
\begin{aligned}
M^{\prime} \circ N^{\prime} & ={ }_{\beta} \lambda z \cdot M^{\prime}\left(N^{\prime} z\right) \\
& ={ }_{\beta} \lambda z x_{1} \cdots x_{n} \cdot N^{\prime} z\left(\lambda \vec{u}_{1}, x_{\pi 1} \vec{X}_{1}^{\prime}\right) \cdots\left(\lambda \vec{u}_{n}, x_{\pi n} \vec{X}_{n}^{\prime}\right) \\
& ={ }_{\beta} \lambda z x_{1} \cdots x_{n} \cdot z\left(\lambda \ddot{v}_{1} \cdot\left[\lambda \vec{u}_{\sigma 1} \cdot x_{\pi(\sigma)} \vec{X}_{\sigma 1}^{\prime}\right] \vec{Y}_{1 .}^{\prime}\right) \cdots(\cdots) \\
& ={ }_{\beta} \lambda z x_{1} \cdots x_{n} \cdot z\left(\lambda \vec{w}_{1} \cdot x_{\pi(\sigma 1)} \vec{Z}_{1}\right) \cdots\left(\lambda \vec{w}_{n}, x_{\pi(\sigma n}, \vec{Z}_{n}\right)
\end{aligned}
$$

Since $M^{\prime} \circ N^{*}={ }_{D_{\infty}} I$, we must have by Lemma 4: $\pi(c j)=j$. By symmetry also $\sigma(\pi i)=i$.

Main lemma (M. Dezani-Ciancaglini). Suppose $M \sim_{D_{\infty}}^{\prime} N$. Then for some $n, m \geqslant 0$, say $n \geqslant m$, there are permutations π, σ and $M_{i}(1 \leqslant i \leqslant n), N_{i}(1 \leqslant j \leqslant m)$ such that
(i) $M={ }_{\beta} \lambda z x_{1} \cdots \lambda_{n} \cdot z\left(M_{1} x_{\pi 1}\right) \cdots\left(M_{n} x_{\pi n}\right)$,

$$
\begin{aligned}
& N={ }_{\beta} \lambda z y_{1} \cdots y_{m} \cdot z\left(N_{1} y_{\sigma 1}\right) \cdots\left(N_{m} y_{\sigma m}\right), \\
& \pi \circ \sigma=\sigma \circ \pi=i d,
\end{aligned}
$$

(ii) $N_{i} \sim_{D_{\infty}}^{\prime} M_{\sigma i}(1 \leqslant i \leqslant m), M_{i} \sim_{D_{\infty}}^{\prime} I(m<i \leqslant n)$.

Proof. (i) Follows from Lemma 6 by taking in (1) $M_{i} \equiv \lambda z \vec{u}_{i} \cdot z \vec{X}_{i}^{\prime}$ and $N_{j} \equiv$ $\lambda z \vec{v}_{i}, z \vec{Y}_{i}^{\prime}$. Further

$$
\begin{aligned}
M^{\prime} \circ N^{\prime} & =\lambda z \cdot M^{\prime}\left(N^{\prime} z\right) \\
& =\lambda z x_{1} \cdots x_{n} \cdot N^{\prime} z\left(M^{\prime \prime} x_{\pi 1}\right) \cdots\left(M_{n}^{\prime \prime} x_{\pi n}\right) \\
& =\lambda z x_{1} \cdots x_{n} \cdot z\left[\left(N_{1}^{\prime} \circ M_{\sigma 1}^{\prime \prime}\right) x_{1}\right] \cdots\left[\left(N_{m}^{\prime} \circ M_{\sigma m}^{\prime \prime}\right) x_{m}\right] \\
& \cdots\left[M_{m+1}^{\prime \prime} x_{m+1}\right] \cdots\left[M_{n}^{\prime \prime} x_{n}\right]
\end{aligned}
$$

(here we used that $N^{\prime} z \in \mathbf{z}$ and $M_{i}^{\prime \prime} x_{\pi i} \in x_{\pi i}$)

$$
=\mathrm{D}_{\infty} I .
$$

By Lenama 5 we are through if we can prove that the $\mathrm{BT}\left(N_{i}^{\prime} \circ M_{r i}^{\prime \prime}\right)(1 \leqslant i \leqslant m)$ and the $\mathrm{BT}\left(M_{i}^{\prime \prime}\right)(m \leqslant i \leqslant n)$ are closed.

Consider $\mathrm{BT}\left(A_{i}\right)$, where $A_{i} \equiv N_{i}^{\prime} \circ M_{\sigma i}^{\prime}$. Inspection of $\mathrm{BT}\left(M^{\prime} \circ N^{\prime}\right)$ shows that $\mathrm{BT}\left(A_{i} x_{i}\right)$ contains as only free variable x_{i} and x_{i} occurs only at the top. From this it follows directly that $\mathrm{FV}\left(\mathrm{BT}\left(A_{i}\right)\right) \subseteq\left\{x_{i}\right\}$.

Claim. $\operatorname{FV}\left(\mathrm{BT}\left(\boldsymbol{A}_{i}\right)\right)=\emptyset$.
Then, applying Lemma 5 we have $A_{i}={ }_{D_{\infty}} I$. By symmetry also $M_{\sigma i} \circ N^{\prime \prime \prime}={ }_{D_{\infty}} I$ for some $M_{\sigma i}$ and $N^{\prime \prime \prime}$. Hence $N_{i} \sim_{D_{\infty}}^{\prime} M_{\sigma i}$.

Proof of the ciaim. Suppose $\operatorname{FV}\left(\mathrm{BT}\left(A_{i}\right)\right)=\left\{x_{i}\right\}$. Then x_{i} cannot occur below the rop of $\operatorname{BT}\left(A_{i}\right)$ because otherwise it would occur at the same place below the top in $\mathrm{BT}\left(\boldsymbol{A}_{i} x_{i}\right)$, contradiction. So

$$
\operatorname{BT}\left(\boldsymbol{A}_{i}\right)=\lambda v_{1} \cdots y_{p} \cdot x_{i} \mu
$$

for some $p \geqslant 0$. If $p=0$, then $3 T\left(A_{i} x_{i}\right)$ contains x_{i} twice, contradiction. So $p \geqslant 1$. Further, $y_{1} \not \equiv x_{i}$ because λ_{i} is a free variable in $\mathrm{BT}\left(A_{i}\right)$. But in $A_{i} \equiv$ $N_{i}^{\prime} \circ M_{\sigma i}^{\prime \prime}={ }_{\beta} \lambda z \cdot N_{i}^{\prime}\left(M_{\sigma i}^{\prime \prime} z\right)$ the z is head-variable (i.e. occurs at the top of $\left.\operatorname{BT}\left(A_{i}\right)\right)$ because $N_{i}^{\prime} \equiv \lambda z \vec{v}_{i}, z \vec{Y}_{i}^{\prime}$ and $M_{\sigma i} \equiv \lambda z \vec{u}_{\sigma i} . z \vec{X}_{\sigma i}$. Contradiction.

A similar but simpler argument shows that $M_{i} \sim_{D_{\infty}}^{\prime} I$ for $m<i \leqslant n$.

4. Characterization of invertible terms in $\boldsymbol{\lambda} \boldsymbol{\beta} \boldsymbol{\eta}$-calculus

Definition 4. (i) HP (hereditary permutators) is the set of λ-terms defined by:

i.e. every abstracted variable occurs only once and except for the head-variable z, every abstracted variable occurs one level lower.
Examples. (1) The possibly infinite η-expansions of I are in HP.
(2) Let M be such that $M \rightarrow_{\beta} \lambda z a b: z(M b) a$, then

and hence $M \in H P$.
(ii) FHP (finite h.p.'s) is the subset of HP of terms having a β-nf, or equivalently, having a finite BT.

Definition 5. $M \in_{n} \mathrm{HP} \Leftrightarrow \exists N \in \mathrm{H}^{P} \mathrm{BT}(M)={ }_{n} \mathrm{BT}(N)$. (M is w.r.t. levels $0, \ldots, n$ in HP.) Note that $M \in_{0} H P$ iff $M \in \lambda z . z$.

Proposition 3. $M \sim_{D_{\infty}}^{\prime} N \Rightarrow M, N \in_{1} \mathrm{HP}$.
Proof. Directly from Lemma 5.
Corollary 1. $M \sim_{D_{\infty}} N \Rightarrow M, N \in \mathrm{HP}$.

Proof. Suppose $M \sim_{D_{\infty}} N$. Then by $2.4 M \sim_{D_{\infty}}^{\prime} N$. Let A_{n} be the sentence $\forall M, N$ $M \sim_{D_{\infty}}^{\prime} N \Rightarrow M, N \varepsilon_{n}$ HP. We will prove $\forall n A_{n}$ by induction on n. A_{1} is Proposition 3. Induction hypothesis: \boldsymbol{A}_{n}. By the main lem.na:

$$
M \sim_{D_{\infty}}^{\prime} N \Rightarrow N_{i} \sim_{D_{\infty}}^{\prime} M_{\sigma i}
$$

where N_{i}, σ are as in the main lemma.
By induction hypothesis $N_{i}, M_{\sigma i} \in_{n}$ HP. Further it is evident that

$$
N_{i}, M_{\sigma i} \in_{n} \mathrm{HP} \Rightarrow N, M \in_{n+1} \mathrm{HP}
$$

Hence, $M \sim_{D_{\infty}}^{\prime} N \Rightarrow N, M \in_{n+1} H$, i.e. A_{n+1}. So $\forall n A_{n}$. Therefore $M \sim_{D_{\infty}}^{\prime} N$ $\Rightarrow \forall n M, N \in_{n} \mathbf{H P} \Rightarrow M, N \in \mathbf{H P}$.

Definition 6. Let $\omega+1=\omega \cup\{\omega\}$ be the ordinal number with the usual cedering. Then $|\mid: H P \rightarrow \omega+1$ is a map defined as follows:
(i) If $\mathrm{BT}(M)$ is finite, $|M|=$ depth of $\mathrm{BT}(M)$, i.e.

$$
|M|=\max \{\operatorname{tth}(\sigma) \mid \sigma \in \operatorname{Seq}(\operatorname{BT}(M))\} .
$$

(ii) Otherwise $|M|=\omega$.

Corollary 2 (M. Dezani-Ciancaglini). Suppose M has $a \beta$-nf. Then:

$$
\exists N M \sim_{\beta \eta} N \Leftrightarrow M \in \mathrm{~F} H \mathrm{P} .
$$

Proof. $\Leftrightarrow M \sim_{\beta \eta} N \Rightarrow M \sim_{D_{\infty}} N \Rightarrow M \in \mathrm{HP}$ and since M has a β-nf, $M \in \mathrm{FHP}$. \Leftrightarrow Induction on $|M|$.

Lemma 7. Let $M \in H P$. Then there are $\pi, n \geqslant 0, M_{1}, \ldots, M_{n}$ such that
(i) $M_{1}, \ldots, M_{n} \in \mathrm{HP}$ and $M={ }_{\beta} \lambda z x_{1} \cdots x_{n}, z\left(M_{1} x_{\pi 1}\right) \cdots\left(M_{n} x_{\pi n}\right)$ and
(ii) $|M| \geqslant m+1 \Leftrightarrow \exists i(1 \leqslant i \leqslant n) \mid M_{i} \geqslant m$.

Proof. (i) $M \in \mathrm{HP} \Rightarrow M={ }_{\beta} \lambda z x_{1} \cdots x_{n}, z P_{1} \cdots P_{n}$, where

Now $P_{i}={ }_{\beta}\left(\lambda z . P_{i}\left[x_{\pi i}:=z\right]\right) x_{\pi i} \equiv M_{i} x_{\pi i}$ and clearly $M_{i} \in H P$.
(ii) Is obvious from the definitions.

Lemma 8. HP and FHP are closed under composition.
Proof. For FHP we can prove this by induction on $|M|$; this proof is routine. For HP we prove by induction on k that

$$
M, N \in \mathbf{H P} \Rightarrow M \circ N \in_{k} \mathbf{H P} .
$$

For $k=1$ this is \boldsymbol{a} simple computation. For the induction step we use Lemma 1(i) and an analogous argument as in the proof of Corollary 1.

Lemma 9. Let $M, N \in H P$. Then

$$
|M| \geqslant m \Rightarrow|M \circ N|, \quad|N \circ M| \geqslant m .
$$

Proof. Induction on m : $m=0$ is trivial. Suppose the proposition is proved for m, and suppose $M, N \in H P,|M| \geqslant m+1$. By Lemma 7(i)

$$
M={ }_{\beta} \lambda z x_{1} \cdots x_{n} . z\left(M_{1} x_{\pi 1}\right) \cdots\left(M_{n} x_{\pi n}\right)
$$

and

$$
N={ }_{\beta} \lambda z y_{1} \cdots y_{k} \cdot z\left(N_{1} y_{\sigma 1}\right) \cdots\left(N_{k} y_{\sigma k}\right)
$$

for some $\pi, \sigma, M_{1}, \ldots, M_{n}$ and $N_{1}, \ldots, N_{k} \in$ HP. By Lemma 7(ii) $\left|M_{i}\right| \geqslant m$ for some $1 \leqslant i \leqslant n$.

Suppose again $n=k$, then

$$
M \circ N={ }_{\beta} \lambda z x_{1} \cdots x_{n} \cdot z[\cdots] \cdots\left[\left(M_{i} \circ N_{\sigma i}\right) x_{\pi \sigma i}\right] \cdots[\cdots]
$$

By induction hypothesis $\left|M_{i} \circ N_{\sigma i}\right| \geqslant m$. Hence by Lemma 7 (ii) $|M \circ N| \geqslant m+1$. Similarly $|N \circ M| \geqslant m+1$.

Corollary 3. $|M|=\omega \Rightarrow \forall N \in \mathrm{HP}|M \circ N|=|N \circ M|=\omega$.
Proof. $|M|=\omega \Rightarrow \forall m<\omega|M| \geqslant m \Rightarrow \forall m|M \circ N|,|N \circ M| \geqslant m$ $\Rightarrow|M \circ N|,|N \circ M|=\omega$.

Theorem 5. M is invertible in the $\lambda \beta \eta$-calculus $\Leftrightarrow M \in$ FHP.

Proof. (\Leftarrow) Follows from Corollary 2.
(\Rightarrow) Suppose $\exists N M \sim_{\beta \eta} N$. Then $M \sim_{D_{\infty}} N$. By the main lemma $M \in \mathrm{HP}$. Suppose $\quad M \notin F H P$, so $|M|=\omega$. Then $|M \circ N|=\omega$. However, $\quad M \sim_{\beta \eta} N$ $\Rightarrow M \circ N={ }_{\beta \eta} I \Rightarrow M \circ N$ has a $\beta \eta$-normal form, hence, by Lemma $1, M \circ N$ has a β-normal form. So $\mathrm{BT}(M \circ N)$ is finite, i.e. $|M \circ N|<\omega$, contradiction.

5. Representation of $\boldsymbol{\lambda}$-trees and characterization of the invertible terms in $\boldsymbol{\lambda} \boldsymbol{\beta} \boldsymbol{\eta}$ calculus (second proof)

In this section we will restrict our attention to Ω-free and closed λ-trees. However, this restriction is not essential.

Given a term M, we can 'develop' M to its Böhm tree BT(M). Evidently this is a recursive λ-tree, i.e. the underlying set of sequence numbers σ is recursive and the assignment of the labels to the nodes σ is recursive. Vice versa, given a recursive λ-tree \mathscr{T}, it is not hard to find a representing term M for \mathscr{T}, i.e. a term M such that $\mathrm{BT}(M)=\mathscr{T}$.

For the main purpose of this section we want to find a λI-term M representing some given recursive λ-tree \mathscr{T}. Of course this is not always possible for such a \mathscr{T}, as we will see now.

Definition 7. Let \mathscr{T} be a λ-tree. \mathscr{T} is a λI-like tree iff

$$
\forall \sigma \in \operatorname{Seq}(\mathscr{T}) \forall v \in \vec{x}_{\sigma}\left(v \notin \mathscr{T}_{\sigma} \Rightarrow \mathscr{T}_{\sigma} \text { is infinite }\right) .
$$

(\vec{x}_{σ} is the string of variables abstracted at σ, see Definition 2.)

Proposition 4. If \mathbf{M} is a λ I-term, then $\mathrm{BT}(M)$ is λI-like.
Proof. Note that for all $\sigma \in \operatorname{Seq}(\operatorname{BT}(M))$:

$$
\begin{equation*}
v \in \mathrm{FV}\left(M_{\sigma}\right) \& v \not \equiv y_{\sigma} \Rightarrow \sigma \text { has a successor, } \tag{2}
\end{equation*}
$$

i.e.

$$
\exists i \sigma *\langle i\rangle \in \mathbf{S e q}(\mathbf{B T}(M)) .
$$

This follows from the fact that M and hence M_{σ} is a λI-term, and that $M_{\sigma} \rightarrow \lambda \dot{x}_{\sigma}, y_{\sigma} M_{\sigma *(1)} \cdots M_{\sigma *(l(\sigma))}$.

Now suppose $\sigma \in \operatorname{Seq}(\mathrm{BT}(M)), v \in \vec{x}_{\sigma}$ and $v \notin \mathrm{BT}(M)_{\sigma}$. Therefore $v \not \equiv y_{\sigma}$. Hence, $\exists i \sigma *\langle i\rangle \in \operatorname{Seq}(\mathrm{BT}(M)) \& v \in \mathrm{FV}\left(M_{\sigma *(1)}\right)$. Moreover $v \neq y_{\sigma *(i)}$. Now by (2) $\sigma *\langle i\rangle$ has a successor. Iteration gives an infinite branch in ($\mathrm{BT}(\boldsymbol{M}))_{\sigma}$.

Let \mathscr{T} be the Ω-free, recursive, λI-like closed λ-tree which we want to represent as $\mathrm{BT}(M)$ for some λI-term $M . \mathscr{T}$ is given by a recursive set of sequence numbers sulf (\mathscr{T}) and recursive functions $\sigma \mapsto \vec{x}_{\sigma}, \sigma \mapsto y_{\sigma}$ and l (= number of successors of σ). So we have

To represent \mathscr{T} we want to find terms $\boldsymbol{M}_{\boldsymbol{\sigma}}$ such that

$$
M_{\sigma} \rightarrow \lambda \vec{x}_{\sigma} \cdot y_{\sigma} M_{\sigma *(1)} \cdots M_{\sigma *(l(\sigma)\rangle} .
$$

The M_{σ} will contain in general free variables, viz. some of the \vec{w}_{σ} (i.e. variables abstracted before σ, see Section 2.1). Since there is no enumerator E for open terms (see how E is used in the construction below), we must provide the necessary free variables on our own. So we put $M_{\sigma}=A \boldsymbol{\sigma} \vec{z}_{\sigma}$, where $A \boldsymbol{\sigma}$ is closed and $\vec{z}_{\sigma} \subseteq \vec{w}_{\sigma}$:

$$
\begin{equation*}
A \sigma \vec{z}_{\sigma} \rightarrow \lambda \vec{x}_{\sigma} \cdot y_{\sigma}\left(A \sigma *\langle 1\rangle \vec{z}_{\sigma *(1)}\right) \cdots\left(A \sigma *\langle l(\sigma)\rangle \vec{z}_{\sigma *\langle(l \sigma)\rangle}\right) . \tag{3}
\end{equation*}
$$

In this way the necessary free variables are passed down. Note that the order of the variables in \vec{z}_{σ} is irrelevant. Note also that taking $\vec{z}_{\sigma}=\mathrm{FV}\left(\mathscr{T}_{\sigma}\right)$ does not work, since even if \mathscr{T} is representable, the assignment $\sigma \mapsto \mathrm{FV}\left(\mathscr{T}_{\sigma}\right)$ need not be recursive; see Example 1.
Since we work in λI-calculus, it follows from (3) that

$$
\begin{equation*}
\vec{z}_{\sigma} \cup \vec{x}_{\sigma}=\left\{y_{\sigma}\right\} \cup \vec{z}_{\sigma *(1)} \cup \cdots \cup \vec{z}_{\sigma *(l(\sigma))} \tag{4}
\end{equation*}
$$

and this requirement will prove to be sufficient.
Theorem 6. Let \mathscr{T} be an Ω-free, closed λ-tree. Then there is a λ-term M such that $\mathrm{BT}(M)=\mathscr{T} \Leftrightarrow \mathscr{T}$ is recursive, λI-like and there is a recursive free variable assignment $\sigma \mapsto \vec{z}_{\sigma}(\sigma \in \operatorname{Seq}(\mathscr{T}))$ such that $\vec{z}_{\sigma} \subseteq \vec{w}_{\sigma}$ and (4) is satisfied.

Proof. (\Rightarrow) If M is a λI-term, $\mathrm{BT}(M)$ is recursive, and by Proposition $4 \lambda I$-like. A recursive free variable assignment is given by $\vec{z}_{\sigma}=\mathrm{FV}\left(\boldsymbol{M}_{\sigma}\right)$ and since M_{σ} is a λI-term, it evidently satisfies (4).
(\Leftarrow) Let \mathscr{T} and \vec{z}_{σ} be given as stated in the theorem. By Theorem 3 a λI-term T can be defined such that

$$
T \boldsymbol{\sigma}= \begin{cases}0, & \text { if } \sigma \in \operatorname{Seq}(\mathscr{T}) \& \sigma \text { is terminal node of } \mathscr{T} \\ 1, & \text { else }\end{cases}
$$

Let $\boldsymbol{R}_{\boldsymbol{\sigma}}$ be the term (for all $\boldsymbol{\sigma} \in \operatorname{Seq}(\mathscr{T})$)

$$
\lambda a \vec{z}_{\sigma} \vec{x}_{\sigma} \cdot y_{\sigma}\left(E a \sigma *\langle 1\rangle \vec{z}_{\sigma *\langle 1)}\right) \cdots\left(E a \sigma *\langle l(\sigma)\rangle \vec{z}_{\sigma *\langle l(\sigma)\rangle}\right) .
$$

Note that $\sigma \mapsto \boldsymbol{R}_{\sigma}$ is recursive, since $\sigma \mapsto \vec{z}_{\sigma}$ is recursive, and that \boldsymbol{R}_{σ} is a closed λI-term by (4).

Let f be the recursive function defined by

$$
f(\sigma)= \begin{cases}\left\ulcorner R_{\sigma}\right\urcorner, & \text { if } \sigma \text { is not terminal, } \\ \ulcorner I\urcorner, & \text { else }\end{cases}
$$

and let F be the λI-term representing f.
By Lemma 3 there is a $Q \in \Lambda_{I}^{0}$ such that $Q \mathbf{0} \rightarrow \lambda a b . b I a$ and $Q \mathbf{1} \rightarrow I$. Now for all A :
(i) if $T \boldsymbol{\sigma}=0$, then $Q(T \boldsymbol{\sigma}) I(E(F \sigma)\ulcorner A\urcorner) \rightarrow Q 0 I(E(\ulcorner I\urcorner)\ulcorner A\urcorner) \rightarrow Q 0 I(\ulcorner A\urcorner) \rightarrow$ $\ulcorner A\urcorner I I \rightarrow I$, and
(ii) if $T \boldsymbol{\sigma}=1$, then $Q(T \sigma) I(E(F \sigma)\ulcorner A\urcorner) \rightarrow Q 1 I(E(F \sigma)\ulcorner A\urcorner) \rightarrow E(F \sigma)\ulcorner A\urcorner)$.

By the second fixed point theorem (Theorem 1) there is an $A \in \Lambda_{I}^{0}$ such that:

$$
A \rightarrow \lambda s . Q(T s) I(E(F s)\ulcorner A\urcorner)
$$

and hence

$$
A \sigma \rightarrow Q(T \sigma) I(E(F \sigma)\ulcorner A\urcorner) .
$$

Claim. $\operatorname{BT}(A\rangle)=\mathscr{T}$.
Proof of the claim. First we show that

$$
\begin{equation*}
\left(A\rangle)_{\sigma}=A \boldsymbol{\sigma} \vec{z}_{\sigma} .\right. \tag{5}
\end{equation*}
$$

If $\sigma=\langle \rangle$, then indeed $\left(A\rangle)_{\langle \rangle}=A\langle \rangle \vec{z}_{(\rangle)}\right.$since $\vec{z}_{(\rangle)} \subseteq \vec{w}_{(\rangle}=\emptyset$ and since $\left(A\rangle)_{()}=\right.$ $A 〈>$ by definition.
Suppose (5) is proved for σ. If σ is not terminal, we have

$$
\begin{aligned}
A \sigma \vec{z}_{\sigma} & \rightarrow E(F \sigma)\ulcorner A\urcorner \vec{z} \sigma \rightarrow E\left\ulcorner\boldsymbol{R}_{\sigma}\right\urcorner\ulcorner A\urcorner \vec{z}_{\sigma} \rightarrow R_{\sigma}\ulcorner A\urcorner \vec{z} \sigma \\
& \rightarrow \lambda \vec{x}_{\sigma} \cdot y_{\sigma}\left(A \sigma *\langle 1\rangle \vec{z}_{\sigma *(1)}\right) \cdots\left(A \sigma *\langle l(\sigma)\rangle \vec{z}_{\sigma *(l|\sigma\rangle)}\right)
\end{aligned}
$$

and hence

$$
\left(A\rangle)_{\sigma *\langle i\rangle}=\left((A\langle \rangle)_{\sigma}\right)_{\langle i\rangle}=\left(A \boldsymbol{\sigma} \vec{z}_{\sigma}\right)_{\langle i\rangle}=A \boldsymbol{\sigma} *\langle i\rangle \vec{z}_{\sigma *(i\rangle}\right.
$$

for $1 \leqslant i \leqslant l(\sigma)$, which proves (5) for all $\sigma \in \operatorname{Seq}(\mathscr{T})$.

Now we will prove that

$$
\begin{equation*}
\left(\mathrm{BT}(A\rangle))_{\sigma}=\lambda \bar{x}_{\sigma} \cdot y_{\sigma}\right. \tag{6}
\end{equation*}
$$

Sitice \mathscr{T} has the same 'recursive definition', (6) proves the claim.
Case 1. σ is not terminal, i.e. $l(\sigma)>0$. Then
$\left(\mathrm{BT}(A\rangle))_{\sigma}=\mathrm{BT}(A\langle \rangle)_{\sigma}=\mathrm{BT}\left(\boldsymbol{A} \boldsymbol{\sigma} \vec{z}_{\sigma}\right)\right.$

Case 2. σ is terminal. So (i) $\mathscr{T}_{\sigma}=\lambda y_{\sigma} \cdot y_{\sigma}\left(\vec{x}_{\sigma}=y_{\sigma}\right)$ or (ii) $\mathscr{T}_{\sigma}=y_{\sigma}\left(\vec{x}_{\sigma}=0\right)$, since \mathscr{T} is λI-like.

In case (i) $\vec{z}_{\sigma}=\emptyset$, in case (ii) $\vec{z}_{\sigma}=y_{\sigma}$ by (4).
(i) $\mathrm{BT}\left(\mathrm{A}\rangle)_{\sigma}=\mathrm{BT}(\boldsymbol{A} \boldsymbol{\sigma})=\mathrm{BT}(I)=\lambda y, y\right.$,
(ii) $\mathrm{BT}\left(A\rangle)_{\sigma}=\mathrm{BT}\left(A \sigma y_{\sigma}\right)=\mathrm{BT}\left(I y_{\sigma}\right)=y_{\sigma}\right.$,

This concludes the proof of (6).

Remark. Using terms E_{n} which enumerate all terms M such that $\mathrm{FV}(M) \subseteq$ $\left\{v_{1}, \ldots, v_{n}\right\}$ we can deal with the case that \mathscr{T} contains finitely many free variables. Aiso it is not hard to modify the construction above in such a way that a λ-tree \mathscr{T} containing Ω 's can be represented if \mathscr{T} is recursive. Note however that the reverse is no longer true: $\mathrm{BT}(\boldsymbol{M})$ is recursively enumerable and no longer recursive if it contains Ω 's. See also [2, Theorem 10.1.25].

Now we can give the second proof of

$$
\begin{equation*}
M \sim_{\beta \eta} N \Rightarrow M, N \text { have a normal form. } \tag{7}
\end{equation*}
$$

Lemma 10. Let $M \sim_{\beta \eta} N$. Then $\mathrm{BT}(M)$ and $\mathrm{BT}^{\prime}(N)$ are Ω-free, recursive λI-like trees having free variable assignments \vec{z}_{σ} satisfying (4).

Proof. By Definition 4 and Corollary 1 it follows at once that the trees are Ω-free, recursive and λI-like. Taking $\vec{z}_{()}=0$ and $\vec{z}_{\sigma}=y_{\sigma}(\sigma \neq\langle \rangle)$ one verifies easily that (4) holds.

We will prove (7) by contraposition.
(1) Suppose that say M has no normal form.
(2) $\exists M^{*} \in \Lambda_{I} \exists N^{*} \in \Lambda_{I} \mathrm{BT}\left(M^{*}\right)=\mathrm{BT}(M)$ and $\mathrm{BT}\left(N^{*}\right)=\mathrm{BT}(N)$, by Lemma 10.
(3) $\mathrm{BT}(M)=\mathrm{BT}\left(M^{*}\right)$ is infinite, by (1). ${ }^{1}$
(4) M^{*} has no normal form, by (3).
(5) $M^{*} \circ N^{*} \equiv B M^{*} N^{*}$ is a λI-term.
(6) $M^{*} \circ N^{*}$ has no normal form, by (4), (5) and Lemma 2.
(7) $\mathrm{BT}\left(M^{*} \circ \boldsymbol{N}^{*}\right)$ is infinite, by (6).
(8) $M^{*}={ }_{\mathrm{P} \omega} M$ and $N^{*}=_{\mathrm{P} \omega} N$ by (2) and Theorem 4.
(9) $M^{*} \circ N^{*}={ }_{P \omega} M \circ N$.
(10) $\operatorname{BT}\left(M^{*} \circ N^{*}\right)=\mathrm{BT}(M \circ N)$ by (9) and Theorem 4.
(11) $\mathrm{BT}(M \circ N)$ is infinite, by (7) and (10).
(12) $M \circ N$ has no β-normal form by (11).
(13) $M \circ N$ has no $\beta \eta$-normal form by (12) and Lemma 1.
(14) $M \sim_{\beta \eta} N$, hence $M \circ N=_{\beta_{\eta}} I$, hence $M \circ N$ has a $\beta \eta$-normal form.

Contradiction with (13).

6. Characterization of invertible terms in D_{∞}

We will prove that HP is precisely the set of λ-terms invertible in D_{∞}. To this end we construct a 'formal inverse' M^{*} of an $M \in H P$.

Definition 8. (i) A permutation tree $\langle\Sigma, \Pi\rangle$ is a tree $\Sigma \subseteq$ Seq together with a map Π from Σ to the set of finite permutations, such that for $\sigma \in \Sigma$, dom $\Pi(\sigma)=$ $\{i \mid \sigma *\langle i\rangle \in \Sigma\}$. Notation: $\Pi(\sigma)=\pi_{\sigma}$.
(ii) If $M \in \mathrm{HP}$ we can identify $\mathrm{BT}(M)$ with a permutation tree $\left\langle\Sigma_{M}, \Pi\right\rangle$, where $\Sigma_{M}=\operatorname{Seq}(\operatorname{BT}(M))$ and Π is defined as follows: if

then $\pi_{\sigma}=\pi$. This identification will be denoted by \cong.
Definition 9. Let $M \in \mathrm{HP}, \mathrm{BT}(M) \cong\left\langle\Sigma_{M}, \Pi\right\rangle$.
(i) A map ${ }^{*}: \Sigma_{M} \rightarrow$ Seq is defined by induction on the length of $\sigma \in \Sigma_{M}$:

$$
\left\rangle^{*}=\langle \rangle, \quad(\sigma *\langle i\rangle)^{*}=\sigma^{*} *\left\langle\pi_{\sigma} i\right\rangle .\right.
$$

(ii) To each $\sigma^{*} \in \Sigma_{M}^{*}$, the range of ${ }^{*}$, a permutation $\pi_{\sigma^{*}}$ is associated:

$$
\pi_{\sigma^{*}}=\left(\pi_{\sigma}\right)^{-1} .
$$

In this way we have constructed a permutation tree $\left\langle\Sigma_{M}^{*}, \Pi^{*}\right\rangle$.
Now let $M^{*} \in$ HP be a term such that $\operatorname{BT}\left(M^{*}\right) \cong\left\langle\Sigma_{M}^{*}, \Pi^{*}\right\rangle$; by Theorem 6 such an M^{*} exists.
${ }^{1}$ The numbers in parentheses refer to this proof.

Then M^{*} is called a formal inverse of M (w.r.t. D_{∞}). Notation: $M^{*} \sim_{D_{\infty}}^{f} M$. Note that $\sim_{D_{\infty}}$ is a symmetric relation, and that if $M \sim_{D_{\infty}}^{f} N, M$ and N have the same arity. Here M is said to have ality n iff $M={ }_{\beta} \lambda x_{1} \cdots x_{n} \cdot y \vec{N}$ for some y, \vec{N}.

Lemma 11. Let $M \in \mathrm{HP}$ have arity n. Then

$$
M \sim_{D_{\infty}}^{\mathrm{f}} M^{*} \Rightarrow\left(M^{*}\right)_{i} \sim_{D_{\infty}}^{\mathrm{f}}(M)_{\pi_{\curlywedge}^{-1} i} \quad(i=1, \ldots, n)
$$

Proof. For all $i \in\{1, \ldots, n\}$ the map* induces in an obvious way (by leaving out the first coordinate of all $\left.\sigma \in \Sigma_{M}\right)$ a map ${ }^{*_{i}}$ which formally inverts $(M)_{\pi_{i}^{-1}}$ to $\left(M^{*}\right)_{i}$.

Notation. (i) $[I]_{D_{\infty}}=\left\{M \mid M={ }_{D_{\infty}} I\right\}$.
(ii) $M \in_{n}[I]_{D_{\infty}} \Leftrightarrow \exists N \in[I]_{D_{\infty}} \mathrm{BT}(M)=_{n} \mathrm{BT}(N)$. (M is up to the first $n+1$ levels of its Böhm tree equal to I in D_{∞}.)

Lemma 12. $\boldsymbol{M} \sim_{\boldsymbol{D}_{\infty}}^{\mathbf{f}} \boldsymbol{M}^{*} \Rightarrow \boldsymbol{M} \circ \boldsymbol{M}^{*} \in_{1}[I]_{D_{\infty}}$.

Proof. Simple.

Theorem 7. $M \in H P \Leftrightarrow \exists M^{*} \in \operatorname{HP} M \sim_{D_{\infty}} M^{*}$.
Proof. (\Leftarrow) Is Corollary 1.
\Leftrightarrow Construct a formal inverse M^{*}. Then by an analogous proof as that of Corollary 3.4 we have, using Lemma 11 and 12

$$
M \sim_{D_{\infty}}^{f} M^{*} \Rightarrow \forall n M \circ M^{*} \epsilon_{n}[I]_{D_{\infty}}, \quad \text { i.e. } M \circ M^{*}==_{D_{\infty}} I .
$$

By symmetry of $\sim_{D_{\infty}}^{\mathrm{f}}$ also $M^{*}{ }^{\circ} M={ }_{D_{\infty}} I$, and hence $M \sim_{D_{\infty}} M^{*}$.

7. Concluding remarks

The above results characterize the groups of invertible elements in resp. $\mathcal{M}\left(\Lambda_{\beta \eta}^{0}\right)$, the closed term model corresponding to $\lambda \beta \eta$-calculus and in D_{∞}^{0}, the interior of D_{∞} (arter dividing out $=_{\beta \eta}$ resp. $=_{D_{\infty}}$).

For $\mathscr{U}\left(\Lambda_{\beta}^{0}\right)$ the group is $\{I\}$; see [4] for a characterization of normal forms possessing a left or right inverse in $\mathcal{M}\left(\Lambda_{\beta}^{0}\right)$.
 that are non-recursive. Question: what does the group of all invertible elements of D_{∞} look like?

Another question is whether the following equivalence holds in $M\left(\Lambda_{\beta \eta}^{0}\right)$ or D_{∞}^{0} :
M is invertible $\Leftrightarrow M$ is bijective,
where 'bijective' is meant in the obvious sense analogous to set-theoretic functions.

It is not hard to prove that this equivalence is indeed valid for $\mathcal{M}\left(\Lambda_{\beta}^{0}\right)$.
In [2] the group in question is determined for some other $\boldsymbol{\lambda}$-calculus models, such as $\mathrm{P} \omega$ and $\mathscr{M}(\mathscr{H})$. Also [2] gives information on the group-theoretic structure of the groups we considered.

Acknowledgment

We like to thank Henk Barendregt for helpful discussions and detecting some errors in an earlier version.

References

[1] H.P. Barendregt, The type free lambda calculus, in: J. Barwise, Ed., Handbook of Mathematical Logic (North-Holland, Amsterdam, 1977) 1091-1132.
[2] H.P. Barendregt, The Lambda Calculus, its Syntax and Semantics (North-Holland, Amsterdam, 1980) to appear.
[3] H.P. Barendregt, J.A. Bergstra, J.W. Klop and H. Volken, Some notes on lambda reduction, in: Degrees, reductions and representability in the lambda calculus, preprint, Utrecht (1976) Ch. II.
[4] C. Böhm and M. Dezani-Ciancaglini, Combinatorial problems, combinator equations and normel forms, Lecture Notes in Computer Science 14 (Springer, Berlin, 1974) 185-199.
[5] A. Church, The Ca!'culi of Lambda-Conversion (Princeton University Press, Princeton, NJ, 1941).
[6] H.B. Curry and R. Feys, Combinatory Logic, Vol. I (North-Holland, Amsterdam, 1958).
[7] H.B. Curry, J.R. Hindley and J.P. Seldin, Combinatory Logic, Vol. II (Norti-Holland, Amsterdam, 1972).
[8] M. Dezani-Ciancaglini, Characterization of normal forms possessing inverse in the $\lambda-\beta-\eta-$ calculus, Theoret. Comput. Sci. 2 (1976) 323-337.
[9] J.M.E. Hyland, A syntactic characterization of the equality in some models for the lambda calculus. J. London Maih. Soc. 12 (2) (1976) 361-370.
[10] R. Nakajima, Infinite normal forms for the λ-calculus, Lecture Notes in Computer Science 37 (Springer, Berlin, 1975) 62-82.
[11] D. Scott, Data types as lattices, Siam J. Comput. 5 (3) (1976) 522-587.
[12] D. Scott, Continuous lattices, Lecture Notes in Mathematics 274 (Springer, Berlin, 1972) 97-136.
[13] C. Wadsworth, Semantics and pragmatics of the lambda-calculus, D. Phil. thesis, Oxford Univ., Oxford (1971).

