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1. Introduction

It is well-known that the set of A -terms modulo B7n-convertibility is a semi-group
with I as identity element and coraposition o, defined by M o N = BMN, where
B=Axyz.x(yz).In[6, pp. 167, 168] the question is raised under what conditions an
element in this semi-group has an inverse.

Dezani-Ciancaglini gave in [8] a characterization of (w.r.t. ABn-calculus) inverti-
ble terms having a normal form as the ‘finite hereditary permutators’, and she
conjectures that these are all the Bn-invertible terms, i.e. a term without normal
form cannot have an inverse.

In this paper we confirm her conjecture. Two proofs are given for this fact. of which
the first is more direct. The second proof uses the in itself interesting fact that certain
‘A -trees’ can be represented as BOohm-trees of AJ-terms (in fact we prove something
more), plus Hyland’s characterization of the equality in the Graph model Pw (see
[9, 1)).

The result on representation of A -trees is further used to characterize the A -terms
invertible in Dy, Scott’s well-known lattice model (see [12]).

Since for this last result a slightly more general form of the main lemma in [8] is
needed, we have included a new proof of that lemma.

2. Preliminaries

In this section we collect the ingredients necessary for the sequel, without the
proofs which can be found in the literature. The basic definitions and facts about the
A -calculus are supposed to be known.
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Notation 1. (i) A is the set of A -terms, A° the set of closed A -terms. Similarly A; and
A for AI-terms. —g(n) i One step B(n)-reduction, -4, its transitive reflexive
closure; =g, is the equality generated by —g,,).

Abbreviations: MN for MN, - - - Ni; AZ. M for Ax; -+ - xi. M.

(ii) © 7: A—>Nis some recursive coding of A -terms.

(iii) For neN, we define ne A} by n =Axy.x""’
x(x"y).
Remark. nll - I for all n.

(iv) A finite sequence of natural numbers (n;, ...

’
allad ¢
number, notation: (n,, ..., nx). Let Seq be the set of thyse codes, called ‘sequence

y, where x'y = xy and x"*'y =

ni) will be coded as a natural
numbers’. Elemenis of Seq are denoted by o, 7, p, . . . . Concatenation of sequence
numbers is denoted by *, the (code of) the empty sequence by ( ).If o ={(ny,..., n),
Ith()=k. < is the usual p.o.onSeq: c <7 S Jpo *p=1.
Lemmal. Let M e A. Then

M has a B-normal form < M has a Bn-normal form.

Proof. See [7, p. 124] or [3, Section 6.14].

Lemma 2. Let M € A;. Then M has a normal form iff all its subterms have a normal
form.

Proof. See [5, p. 27 Theorem 7 XXXII].

Theorem 1 (Second fixed point theorem).

VFeA3MeA M -z FrM,

Proof. See |1, Theorem 2.20].

Theorem 2 {Kleene). There exists an enumerator for closed A-terms. This is also true
for the restriction to Al-calculus ; more precisely:

IEcAYVMec A} ETMY »,; M.
Proof. [5, Section 16] or [2].
Lemma 3. VM, Ne A7 3Fc A FO»z M and F1 -4 N.
Proof. See [S, 14 1, p. 46].

Theorem 3. (Representability of recursive functions in AI-calculus). Let f:N—N
be recursive. Then 3F e A9 VneN Fn »gf(n).
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Proof. See [5, Ch. III, p. 39].

2.1. Bohn'trees

In the sequel the concept of ‘Bohm tree’ introduced in [1] will prove to be useful. A
Béhm tree can be considered as a kind of ‘infinite normal form’. See also [10].

Definition 1. (i) A tree T is a subset of Seq suck that o *(n)e T=>0 € T. (The
branches may be infinite.)

(ii) foeT, then T,={reT|r >0}

(iif) Let T be a tree. The function /: T — N is defined by: /(o) = number of direct
successors of o in T.

(iv) The level of o € T is th(o).

Definition 2. (i) An 2-free A-tree J is a tree T, notation T = Seq(7), together with
functions abs: T — =0 (Var)" {the set of strings of variables, including the empty
string) and occ: T — Var. Instead of abs(o) we write AX,. Instead of occ{o) we write
Yo

(ii) Further we will allow an extra symbol, (2, as a label of nodes of 7—but only to
terminal nodes. Moreover, if o has label (2, then there is no abstraction at o, i.e.
abs(o) =0.

Example. .
T =AX(ye Y0

AX (0 Y<0) Yy

9]

(iii) T, is (Seq(9)). plus corresponding labels.

(iv) T1=,F,thelevels 0,...,n of 7,, T, are identical.

(v) Notation. W, is the list of variables abstracted before o, i.e. if o=
(n(), cees nk), then

Wo = X0 X inp X nonyy = * * Xinopeie—p)-
Yo is bound iff y, € W, U X,. FV(J,) is the set of free variables in .
To each M € A a A-tree BT(M) (B6hm tree of M) is associated as follows:
(i) If M is unsolvable (equivalently: has no head normal form (hnf)), then
BT(M) =1,
(i) Otherwise, M =gAx;- - x,. YNy -+ N, for some n, m =0 and some N.

Then
BT(M)=AX1 ¢t x"o y

BT(Ny) - - - BT(Npn)

i.e. level 0 of BT(M) is known. By iteration we find all levels.
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Corresponding to the subtrees (BT(M)),, as defined above, we define terms M, for
- € Seq(BT(M)):

(' M ,=M,

(ii) Let M, be defined and let o have a successor in Seq(BT(M)). Then M, has a
hnf; say M, =gAx; - * X, yN1 -+ - Np.. Define M, .,=N;, 1<ism.

Remark. M, is defined only modulo =g

To minimize the troubles with a -conversion (renaming of bound variables), we fix
she following convention. All the A-trees J in the seguel will be in the following
‘a -normal form’:

Let Var = {v,... | n, m e N} and iet ¥, be an abstraction vector in  of length k. Then
"E:r ZEVaalUs2 * ° Vo

Remark. This means that in taking a subtree 7, of 7 we have to shift the indices of
the abstracted and the bound variables: vy ., > v,

Proposition 1. (BT(M)), = BT(M,,).
Proof. The proof is left to the reader.

We will give an example as illustration of some concepts above. This example also

illustrates a point in the sequel, n/, that tie assignment o — FV(BT(M)),, need not
be recursive.

Example 1. Let R(m, k) be a recursive binary predicate, and let F be a AI-term
representing R, i.e. Fmk =0 if R(, k) and =1 else. Define a Al-term N such that
Aab.b(Nmk+1a), if Rim,k),
I, else.
Further, define M < A, such that

Mn > Azx.z(NrOx)(Mn +1 zx).

Nmk —-»

Now

BT(MO} =Azx.z =Azx.2Z

BT(N0Ox) BT(M1zx; BT(N0Ox) z/
BT(N10x)

BT(N20x)
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where
(BT(MO0))1.1,..1.00= BT (NmOx) =
m times
= Abo.bo it 3k -~ R(mk) or = Abo.bo ¢ else.
Abl . b1 Ab\ . bl
Abz. b2 Aby . b>
Abi . by Aby . b l
X
So

if 3k "R(m, k),

FV(BT(M0))a.1. .1.0:= {;x}’ clse

m times

Since 3k R (m, k) is not necessarily recursive, the assignment o — FV(BT(M0)),, is
therefore not necessarily recursive.

Theorem 4 (Hylana). Let Pw be the graph model (see [11]). Let M, N € A°. Then
PoEM=N & BT(M)=BT(N).

Proof. See [9, 2].

3. Proof of the main lemma

Lemma 4. M =p_1 ift BT(M) has the form

Azx1~--x,,.z/\

V1« X1 e AVe X
A.-..ylk!
A"‘ . e 3
YIII\ . A"'-Ynl,\ '\A s Vak,,
N R LA
’ N ’ \ [} \ : \\

i.e. except for the head variable z, all abstracted variables occur exactly one, one level
lower, in the same order. Here n =0 and the abstraction vectors AV1, ... AY,, elc. may
be empty.
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Proof. S2¢ (1] or [9].

Remark. Note that such 2 BT may be infinite; an example is Wadsworth’s term
J -» Azx. z(Jx) (see [13]) which has the BT:

:\zx.z,

Ay.x ¢

Aa.y ¢

Ab.a

een P

J is in some sense an ‘infinite n-expansion of I', namely compare the following
sequence of n-expansions:

AZ2.2 e A2x.2x « AzZx.Z(Ay.xy) « Azx.z(Ay.x(Aa.ya)) «---.
n n n n

In a similar way every term M such that M =p_ I can be viewed as a possibly infinite
rj-expansion of L

Lemma S. If A(lsi<n) are terms such that BT(A;) is closed and M=
AZxy e e Xp02(A1x1) - - (Apx,) =p L then A, =p_I (1<i<n).

Proof. By Lemma 4 BT(M) has the form described above:

AZxy- - x,.2

where .-

and this is again the BT of a possibly infinite n-expansion of I, i.e. A; =p_ L
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Notation 2. (i) M ~g, N =M ooN ==5,I and N o M =g, I. Analogous M ~p_ N.
(M, N are each others inverse in ABn-caiculus resp. in Dy.)

tii) Let z be the set of terms M having a head normal form (hnf) with free head
variable z, i.e. M =gAX. zN for some ¥ (z¢ %) and some N.

(iii) Let Az.zbe theset {Az. M|M <z}. So PeAz.ziff 3%, NP =4Az%. zN.

(iv) Let M be such that z¢ FV{M). The symbol ' will be reserved to denote
special substitution instances of M, namely those where elements of z are substituted
for some of the free variables of M. Notation: M', M", M".

Definition 3. M ~p_ N (M, N are ‘almost’ each others inverse in Do) iff
(i) M\NeAz.zand
(i) M'eN' =p_I for some M', N’ and
tiii) N"oM" =p_ I for some M", N".

Proposition2. M ~p_N=>M ~p_N.

Proof. We only need to prove Definition 3(i). Suppose M ~p_N, then
MoN =p I Now M has a hnf, for otherwise BT(M ¢ N)=BT(Az. M(Nz))=
Az . {2, which is in contradiction with Lemma 5. Also N has a hnf, for otherwise
BT(M > N)=BT(A z. M/} and now € FV(M{2), which is in contradiction with
Lemma 5.

Hence, M =gAzxX.pM; - - M,, and N =gAzy.qN; - - N, for some ¥, y and
m =0, n =0. Further z =p =gq, since M(Nz) has z as head variable. Hence M, M €
Az.z.

Lemma 6. (i) Let M ~p_ N. Then the first two levels of BT(M) and BT(N) have the
form (for some n =0, m =0, say n = m, and some permutations m, o of {1, - -, m}):

BT(M)=Azx;1'* " Xne2

Al‘im-w\-l 'xmﬁ AI:“n 'ﬁ
. A )
’II \‘ "‘ ‘\
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where the abstraction vectors Aii; and Av; may be empty.
{(ii) Moreover, m and o are each others inverse.

Proof. M ~p_ N, hence M,NeAz.z. So

BT(M)=Azx1" " Xpe2

where A, = BT(P;) and

BT(N)=2Azy, " vn.2

where A; = BT(Q)).

We will prove:

(@) l=n, k=m,

(b) each of the subtrees /\; has x.; as top variable, and each of the A, has y,; as top
variable,

(c) = is a permutation of {1, ..., n}, o a permutation of {1, ..., m},

(d) woo=0°m=id. (Remark: =, o do not in general have the same domain,
since m # n, but it is obvious how to define 7 o o and o ° 7 by a trivial extension of
the permutation with least domain.}

ByM ~p_ N wehave M"oeN"=p_Iand N'eM' =p_1I forsome M", N" and M,
N'. Now suppose for some ip, /\;, has top £2 or v€ {vy, ..., x,}. First we remark that

BT(N)=Azy: " Yme2

and BT(M')=Azx; - x,.2

where A;=BT(F;) and A;=BT(Q;j). Now also A ={2 or has a top variable
wé{xy,..., x,}. For either there was no substitution for v, in which case v=w, or
some Pew was substituted for v and hence w is top variable of A;. Evidently
wé{x,, ..., x,} since in substitutions free variables may not become bound.

Now consider N’ = M', a possibly infinite n-expansion of / asin Lemma 4. An easy
computation of levels 0 and 1 of BT(N' o M’) shows thai the 2 or w in question again
appears at level 1, contradiction with Le:nma 4.

Hence every /., has a top variable €{x., ..., x,}. By symmetry also every A, has a
top €1¥1,.+ .5 V)
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Now suppose that some x, occurs twice or does not occur at level 1 of BT(M). Then
again a simpie computation of the first two levels of BT(N' © M") gives a contradiction
with Lemma 4.

So we have proved that

BT(M)=Azx1 - Xpe2

and

for some m, o, n=0, m =0.
To simplify the computation in the final argument of the proof, we will suppose
n = m. This is not an essential restriction. From BT(M) and BT(N) we see that

M =gAzxy+ Xpo 2 e X1 K1)+ (Al o Xen )
and (1)
N =gAzy1 Yue 281 e Y1 Y1) * + - (A« Yo Vo)

for some maybe empty X, }7, For M', N' we have expressions similar to those for M,
N with X;, Y] replaced by X/, Y'}. Hence

M'oN =gAz.M'(N'z)
=gAZX1 X e N'2(All e X1 X 1) -+ (Al o XnX 3)
=gAZX1 "+ Xpo ZAD) < [Algr e Xmony X1 JY0) oo (- )
=gAZX1 " Xpe ZAW] « Xe1Z1) = * * AWip « Xeriom 1 Zn)-
Since M'eN'=p_1I, we must have by Lemma 4: n(cj)=j. By symmetry also

o(mi)=I.

Main lemma (M. Dezani-Ciancaglini). Suppose M ~p_ N. Then for some n, m =0,
say n = m, there are permutations , o and M;(1<i<n), Ni(1<j<m) such that
(i) M =gAzxy - xne 2(Mixn1) * - - (MpXan),

N =B AZYI * VYme Z(NIYUI) e (Nmyg'm),

moo=0°7w=id,
(ii) Ni ~p . Myi(l<ism),M; ~p_I(m<i<n).
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Proof. (i) Follows from Lemma 6 by taking in (1) M;=Azii;.zX| and N;=
Azé;. 2 Y} Further

M'oN'=Az.M'(N'z)
=Azx1°* Xn o N'2(M"X 1) - - - (MpXn)
=I\ZX1 e xn.Z[(N'x OM:,rl )xl]' .t [(N:n OM:’rm)xm]
cr [M'anmn] ttt [Mrlllxn]
(here we used that N'zezand M'ix,,; € Xmi)
= Da_-,I-
By Lemima 5 we are through if we can prove that the BT(N; e M%) (1<i<m) and
the BT(M% (m <i<n) are closed.
Consider BT(A;), where A;=N; > M. Inspection of BT(M'o N') shows that

BT(A.x;) contains as only free variable x; and x; occurs only at the top. From this it
follows directly that FV(BT(A))) < {x.}.

Claim. FV(BT(A)))=0.

Then, applying Lemma S we have A; =p_ I. By symmetry also M,,; e N"” =p,_ I for
some M,; and N”. Hence N; ~p_ M,

Proof of the claim. Suppose FV(BT(A,)) = {x;}. Then x; cannot occur below the 1op
of BT(A;) because otherwise it would occur at the same place below the top in
BT(A.x;), contradiction. So

BT(A)=Av;---y,. x,»A

4

for some p=0. If p =0, then 3T(A.x;) contains x; twice, contradiction. So p=1.
Further, y;#x; because ., is a free variable in BT(4;). But in A;=
N oM, =zAz.N|(M,;z} the z is head-variable (i.e. occurs at the top of BT(A;))
because N =Az5;.zY"! and M,; = Azii,;. zX,.. Contradiction.

A simiiar but simpler argument shows that M, ~p_ I for m <i=<n.

4. Characterization of invertible terms in AB7n-calculus

Definition 4. (i) HP (hereditary permutators) is the set of A-terms defined by:

McHP © BT(M)=Azx; - x,.2

A)-;l o Xp1

’
’
4
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i.e. every abstracted variable occurs only once and except for the head-variable 2z,
every abstracted variable occurs one level lower.
Examples. (1) The possibly infinite n-expansions of I are in HP.

(2) Let M be such that M -»gAzab. z(Mb)a, then

BT(M)=Azab.z

and hence M € HP.
(ii) FHP (finite h.p.’s) is the subset of HP of terms having a 8-nf, or equivalently,
having a finite BT.

Definition §. M €, HP & AN e HP BT(M) =, BT(N). (M is w.r.t. levels 0, ..., n
in HP.) Note that M e, HPiff M e Az. 2.

Proposition 3. M ~p N = M, N €, HP.
Proof. Directly from Lemma 5.
Corollary 1. M ~p_N = M, N ¢ HP.

Proof. Suppose M ~p_N. Thenby 2.4 M ~p_ N. Let A, be the sentence VM, N
M ~p N =M, N <, HP. We will prove Vn A, by induction on n. A, is Proposition
3. Induction hypothesis: A,. By the main lem.na:

M ~p N = N, ~p M,

where N, o are as in the main lemma.
By induction hypothesis N;, M,; €, HP. Further it is evident that

N,M,; €, HP = N,M €,,, HP.
Hence, M~p _N=>N,M¢c,.HP, ie. A,.;. So VnA,. Therefore M~p N
=>VnM,N e, HP= M, N e HP.

Definition 6. Let w +1 =w u{w} be the ordinal number with the usual ordering.
Then | |:HP — w+1 is a map defined as follows:
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(i) If BT(M) is finite, [M|=depth of BT(M), i.e.
|M| = max{lth(c') | o € Seq(BT(M))}.
(it) Otherwise |M|= w.

Corollary 2 (M. Dezani-Ciancaglini). Suppose M has a B-nf. Then:

INM ~p, N & McFHP,

Proof. (=) M ~3, N=>M ~p_N = M e HP and since M has a g-nf, M e FHP.
(<) Induction on |[M|.

Lemma 7. Let M c HP. Then there are w, n =0, M,, ..., M, such that
(i) My,...,M,eHPand M =gAzx, -+ xpo 2(MiX71) * * - (MpXpn) and
(i) M|zm+1e3i(lsi<n) M, =m.

Proof. (i) MeHP=>M =gAzx, - x,.2P;- - - P,, where

BT(R) =A)7,~. Xori

Now P, =g (Az.P[x,; = z])x+ = Mx,; and clearly M; € HP.
(ii) Is obvious from the definitions.

Lemma 8. HP and FHP are closed under composition.

Proof. For FHP we can prove this by induction on |M|; this proof is routine. For HP
we prove by induction on k that

M, NeHP = M-°N ¢, HP.

For k = 1 this is a simple computation. For the induction step we use Lemma 1(i) and
an analogous argument as in the proof of Corollary 1.

Leinma 9. Let M, N c HP. Then

IM|=m = [MoN|, |NoM|=m.

Proof. Inductionon m: m = 0is trivial. Suppose the proposition is proved for m, and
suppose M, N ¢ HP, |]M|=m + 1. By Lemma 7(i)

M=zAzx;- - xpe2(Mix1) -+ (MpXpn)
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and
N =gAzy: -+ Y« 2{N1Yo1) * * * (NkYor)

for some 7,0, M, ..., M, and Ny, ..., N, € HP. By Lemma 7(ii) |M;| = m for some
I1<i=n. -

Suppose again n = k, then
MoN =ghzxy-+ xyaz[ -1+ [(Myo Nohtor] -+ [+ ]

By induction hypothesis |M; ° N,;|=m. Hence by Lemma 7(ii) [M e N|=m +1.
Similarly [N e M|=m +1.

&

Coroilary 3. [IM|=w =>VYNecHP|MoN|=|N-M|=w.

Proof. M|=w > Vm<ow|M|=zm=>Vm|M-N|,IN-M|=m
=>|MN|,|N-M|=w.

Theorem 5. M is invertible in the ABn-calculus <& M € FHP.

Proof. (<) Follows from Corollary 2.

(=) Suppose INM ~z,N. Then M ~p_N. By the main lemma M € HP.
Suppose MgFHP, so |[M|=w. Then |[Mo°N|=w. However, M~z N
=>M N =g,I = M o N has a Bn-normal form, hence, by Lemma 1, M o N has a
B-normal form. So BT(M < N) is finite, i.e. |[M o N| < w, contradiction.

5. Representation of A -trees and characterization of the invertible terms in A87-
calculus (second proof)

In this section we will restrict our attention to {2-free and closed A -trees. However,
this restriction is not essential.

Given a term M, we can ‘develop’ M to its Bohm tree BT(M). Evidently this is a
recursive A -tree, i.e. the underlying set of sequence numbers o is recursive and the
assignment of the labels to the nodes o is recursive. Vice versa, given a recursive
A-tree 7, it is not hard to find a representing term M for 7, i.e. a term M such that
BT(M)=97.

For the main purpose of this section we want to find a Al-terr» M representing
some given recursive A -tree 7. Of course this is not always possible for such a 7, as
we will see now.

Definition 7. Let 7 be a A-tree. I is a Al-like tree ift
VoeSeq(T)Vve X, (ve T, = T, isinfinite).

(X, is the string of variables abstracted at o, see Definition 2.)
’
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Proposition 4. If M is a Al-term, then BT(M) is AI-like.

Proof. Note that for all o € Seq(BT(M)):
veFV(M,)&v#y, => o has asuccessor, (2)
i.e.
Aio * (i)e Seq(BT(M)).
This follows from the fact that M and hence M, is a Al-term, and that
M«r »AXy. yo'Ma*(l) “r Mo-*(l(a))-
Now suppose o € Seq(BT(M)), v € X, and ve BT(M),. Therefore v# y,. Hence,

Jio = (i) Seq(BT(M))&v € FV(M, .(1,). Moreover v # y, .. Now by (2) o * (i) has
a successor. Iteration gives an infinite branch in (BT(M)),.

Let 7 be the 2-free, recursive, AI-like closed A -tree which we want to represent
as BT(M) for some AI-term M. T is given by a recursive sct of sequence numbers
3u(J) and recursive functions o — X, o — y, and ! (= number of successors of o).

So we have
T, =A%, %

Toeity " Tositian

To represent  we want to find terms M, such that
M, -» Ax,. YoMy 1y * * * My wti(a)y.

The M, will contain in general free variables, viz. some of the w, (i.e. variables
abstracted before o, see Section 2.1). Since there is no enumerator E for open terms
(see how E is used in the construction below), we must provide the necessary free
variables on our own. S¢ we put M, = Aoz, where Ao is closed and Z, = W,:

Az, » Ay ¥y (AT *{1DZ5. 1)+ (AT * (@)D Z5 citiop)- (3)

In this way the necessary free variables are passed down. Note that the order of the
variables in Z, is irrelevant. Note also that taking 7, = FV(J,) does not work, since

even if 7 is representable, the assignment o -» FV(J,) need not be recursive; see
Example 1.

Since we work in Al-calculus, it follows from (3) that
icr Ufc!':{y«r}uga'*(l)u' : 'Uiu*(l(orh (4)
and this requirement will prove to be sufficient.
Theorem 6. Let T be an {2-free, closed A-tree. Then there is a Al-term M such that

BT(M) =3 & T is recursive, AI-like and there is a recursive free variable assignment
o — Z, (0 €Seq(7)) such that Z, < W, and (4) is satisfied.
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Proof. (=) If M is a AI-term, BT(M) is recursive, and by Proposition 4 AI-like. A
recursive free variable assignment is given by Z, =FV(M,) and since M, is a
AI-term, it evidently satisfies (4).

(&) Let 9 and Z, be given as stated in the theorem. By Theorem 3 aAl-term T
can be defined such that

0, if ceSeq(7) & o is terminal node of 7,

To = {
1, else.

Let R, be the term (for all = € Seq(9))
AaZoXy o YolEao * {1)Z, (1)) - * - (Eaor* (@)D Z5 w10y

Note that o — R, is recursive, since o —> Z,, is recursive, and that R, is a closed
Al-term by (4).
Let f be the recursive function defined by
"R,7, if o isnotterminal,
fo=|
I, else
and let F be the AI-term representing f.
By Lemma 3 there is a Q € A} such that Q0 - Aab. bla and Q1 - I. Now for
all A:
(i) if To=0, then Q(To)I(E(Fo) A7) » QOI(E(I") AT » QO0I(CA™) ~»
TAII - I, and
(ii) if Tor =1, then Q(To)I(E(Fo) A7) » Q1I(E(Fo) A") » E(Fo) A™).
By the second fixed point theorem (Theorem 1) there isan A€ A9 such that:
A » As.Q(Ts)I(E(Fs)"A™)
and hence

Ao » Q(To)I(E(Fo) AM).
Claim. BT(A{ ))=J.

Proof of the claim. First we show that
(AL D)o =A0Z,. (S)

If o =( ), then indeed (A{ )),=A )Z(,since Z(,< w(,=0 and since (A{ D), =
A ) by definition.
Suppose (5) is proved for o. If o is not terminal, we have

AoZ, » E(Fo)"AZo » ETR,TTA™Z, » R,"A%Zo

»> A, VoA * (1)Z, (1)) - (AT * {(F))Z5 4 1(an)
and hence

(AL Dowiy=((AL ))o)m:(Aafa)<i>=A0*<i>frr*(i>

for 1 <i<I(o), which proves (5) for all o€ Seq(7).
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Now we will prove that

(BT(A< ) ))a’ = Aia . YU
(6)

(BT(AC Doscty " (BT(A D))o sctian

Sit:ce 7 has the same ‘recursive definition’, (6) proves the claim.
Case 1. o is not termiral, i.e. [(g)>0. Then

(BT(A( ), =BT(A( )), =BT(AoZ,)

Ai, Vo Af«r Yo

BT(A o +{1)25.q)) -+ (BT(A{ Doeary* - -

Case 2. oisterminal. So (i) T, = Ay, . Yo (X, = y5) OF (ii) T, =y, (X, = 0), since T is
Al -like.

In case (i) Z, =0, in case (ii) Z, = y, by (4).

(i) BT(A< )), =BT(Ae)=BT(I)=Ay.y,

(ii) BT(A( )), =BT(Acov,) =BT(y,) = yo,
This concludes the proof of (6).

Remark. Using terms E, which enumerate all terms M such that FV(M)c
{ti, ..., v.} we can deal with the case that J contains finitely many free variables.
Also it is not hard to modify the construction above in such a way that a A-tree 5
containing £2’s can be represented if J is recursive. Note however that the reverse is
no longer true: BT(M) is recursively enumerable and no longer recursive if it
contains £2s. See also [2, Theorem 10.1.25).

Now we can give the second proof of

M ~5, N = M, N have a normal form. (7)

Lemma10. LetM ~g, N. Then BT(M) and BT(N) are Q-free, recursive AI-like trees
having free variable assignments Z, satis/ying (4).

Proof. By Definition 4 and Corollary 1 it follows at once that the trees are (2-free,

recursive and A7 -like. Taking 7 , =0 and Z, = y, (¢ #( )) one verifies easily that (4)
holds.

We will prove (7) by contraposition.
(1) Supposc that say M has no normal form.

(2) IM*ecA; AN*e A; BT(M*)=BT(M) and BT(N*)=BT(N), by Lemma
10.
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(3) BT(M) =BT(M¥) is infinite, by (1).!
(4) M* has no normal form, by (3).
(5) M*o N*=BM*N* is 2 AI-term.
(6) M* o N* has no normal form, by (4), (5) and Lemma 2.
(7) BT(M* o N*) is irfinite, by (6).
(8) M* =p, M and N* =p, N by (2) and Theorem 4.
(9) M*o N* =p, Mo N.
(10) BT(M* o N*)=BT(M - N) by (9) and Theorem 4.
(11) BT(M o N) is infinite, by (7) and (10).
(12) M o N has no 8-normal form by (11).
(13) M o N has no Bn-normal form by (12) and Lemma 1.
(14) M ~g, N, hence M o N =g, I, hence M o N has a Bn-normal form.
Contradiction with (13).

6. Characterization of invertible terms in D

We will prove that HP is precisely the set of A -terms invertible in D.. To this end
we construct a ‘formal inverse’ M* of an M € HP.

Definition 8. (i) A permutation tree (X, II) is a tree X < Seq together with a map I7
from X to the set of finite permutations, such that for o€ X, domIl(o)=
{i|o = (i)e X}. Notation: Il(o) = ..

(ii) If M € HP we can identify BT(M) with a permutation tree (24, IT), where
2m =Seq(BT(M)) and IT is defined as follows: if

BT(M)¢7=;\}’1"')’,..X .

Alzl.Yﬂ‘l ...Aﬁn'),ﬂn

’ [y » \
‘ ) ’ \
’ A} . \

then 7, = 7. This identification will be denoted by =.

Definition 9. Let M € HP, BT(M) = (3, IT).
(i) A map *:3)s — Seq is defined by induction on the length of o € 2;:

(Y=(),  (o*x(iN* =0 *(mi).
(i) To each o* € 3%y, the range of *, a permutation ,~ is asscciated:
Mo = (770')—1-

In this way we have constructed a permutation tree (3 X, IT*).
Now let M* € HP be a term such that BT(M*) =(Z%;, IT*); by Theorem 6 such an
M* exists.

! The numbers in parentheses refer to this proof.
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Then M* is called a formal inverse of M (w.r.t. D). Notation: M* ~5. M. Note
that ~5_ is a symmetric relation, and that if M ~5. N, M and N have the same arity.
Here M is said to have arity n iff M =gAx, - - - x,.yN for some y, N.

Lemma 11. Let M € HP have arity n. Then
M ~p M* = (M*); ~b (M)a i (i=1,...,n)

Proof. Forallie{l,..., n}the map * induces in an obvious way (by leaving out the
first coordinate of all o € 2)s) a map * which formally inverts (M ),,(—;,- to (M™*),.

Notation. (i) [I]p.={M|M =p_1I}.
(i) M €, [Ilp,© 3N c[I]p, BT(M) =, BT(N). (M is up to the first n +1 levels
of its Bohm tree equal to I in Dy.)

Lemmal12. M ~5_M*=>MM* ¢, [I]p,.
Proof. Simple.
Theorem 7. Mc HP & IM*cHP M ~p_M*.

Proof. (&) Is Corollary 1.

(=>) Construct a formal inverse M*. Then by an analogous proof as that of
Corollary 3.4 we have, using Lemma 11 and 12

M~p_ M*=>VYnMoM*c,[Ilp,, ie. MoM*=p_lI.
By symmetry of ~5_ also M*c M =p_ I, and hence M ~p_ M*,

7. Concluding remarks

The above results characterize the groups of invertible elements in resp. /(A %,),
the closed term model corresponding to ABn-calculus and in D%, the interior of Do
(after dividing out =g, resp. =p_).

For .#(A%) the group is {I}; see [4] for a characterization of normal forms
possessing a left or right inverse in (A 3).

In D one can find a larger group than HP/ = p_, by allowing permutation trees

that are non-recursive. Question: what does the group of all invertible elements of
D look like?

Another question is whether the following equivalence holds in .#(A$,) or D%:

M is invertible & M is bijective,

where "bijective’ is meant in the obvious sense analogous to set-theoretic functions.
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It is not hard to prove that this equivalence is indeed valid for (A %).

In [2] the group in question is determined for some other A -calculus models, such
as Pw and /#(3¢). Also [2] gives information on the group-theoretic structure of the
groups we considered.
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