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In this paper we study the length scale that must be used in evaluating the mixing entropy in a microemulsion.
The central idea involves the choice of a length scale in configuration space that is consistent with the physical
definition of entropy in phase space. We show that this scale may be sensitive to the model employed in the
description of a microemulsion, but that in most cases it is of the order of the cube root of the average molecular
volume in the system. We also show that other much larger length scales used by workers in the field can be par-
tially reconciled with the fundamental scale through a consideration of the constraints to which the microemul-
sion is subject. We have attempted to perform the analysis in as rigorous a manner as possible. Many interesting
features appear and the importance of using the correct length scale as well as methods (some of which are exten-
sions of current theory) for incorporating it into theories of microemulsions are discussed.

1. General Introduction
Physical Entropy

The purpose of this paper is to explore the general pro-
blem of configurational entropy, focusing on microemul-
sions as a relevant and important example. In the present
section we define configurational entropy as a part of the
total entropy of the system that (for whatever reason, but
usually as a result of working within a model) must be eval-
uated in configuration space alone. To evaluate this entropy
it is necessary to introduce a length scale that distinguishes
between different physical states in configuration space.
This length scale must be chosen in a manner consistent
with the fundamental physical definition of entropy in
phase space.

The evaluation of “configurational entropy” presents a
special problem in statistical mechanics since it must always
be defined . .. usually within the context of a model. The
problem is often exacerbated because the model requires the
evaluation to be performed in configuration space whereas
the fundamental physical definition of entropy makes use
of the full phase space of the system. Moreover, the models
are usually not only mesoscopic, but involve considerable
renormalization in the process of which the order of averag-
ing may be inverted.

The so-called mixing entropy in microemulsions forms an
example of configurational entropy and the models
employed in the prediction of the thermodynamic proper-
ties of microemulsions are more often than not mesoscopic.

In statistical mechanics, in the microcanonical ensemble,
the rotal entropy (physical entropy) of a system is defined
in terms of the number of quantum states of the system con-
sistent with its macroscopic state (of fixed energy). In the
phase space representation (in the classical or semiclassical
limit) this number of states is associated with a particular
volume of phase space. Since, in the semiclassical limit, the
dynamical state of the system is described by a set of con-
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tinuous coordinates of position and momentum, it is
necessary to introduce a “length” scale capable of resolving
distinct physical states. For the total entropy, using the
phase space representation, there is a natural length (of ac-
tion) scale that serves this purpose. This is of course
Planck’s constant that measures the extent (in one degree of
freedom) of a particular state.

As indicated above, the phenomenological models within
which configuational entropy (forming only a part of the
total entropy) is defined require it to be evaluated within
configuration space alone and not within the full phase
space of the system! As a result one cannot appeal directly
to Planck’s constant as a length scale, and some less direct
means must be employed to insure physical consistency.

Often this length scale is ignored, on the basis that one is
concerned only with entropy difference between two ther-
modynamic states, a difference that involves the logarithm
of the ratio of numbers of configurations. Then the length
scale may cancel out of the ratio if it is independent of state,
and one is content to work with a ratio of continuous in-
tegrals, e.g. configuration integrals of the type that appear
in semiclassical partition functions, and which are assumed
to be proportional to the numbers of configurations. Un-
fortunately, the length scale may not be independent of the
stae of the system. Furthermore, the counting of “patterns”
alone may, depending on the scale used to resolve them,
provide only an information theoretic entropy.

An obvious method to avoid this dilemma (at least in
principle) involves the choice of a length scale for the
resolution of patterns, such that when the configurational
entropy based on it is added to the remaining entropy, the
sum yields the true fotal physical entropy. This leaves the
possibility that the length scales for different models of the
same system will be different. The length scale is therefore
not absolute.

A concrete example of these ideas involves a droplet type
microemulsion, and is due to Overbeek and coworkers [1].
Fig. 1.1 is helpful in describing it. On the left we show a
droplet type microemulsion in which the drops are water,
and the continuous phase is oil. However the drops are all
hanging from syringes so they are fixed in space. The drops
are assumed large enough to have the intensive properties of
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Fig. 1.1
Droplets hanging on ‘tips of microsyringes’ (a) and droplets that are
free to move through the whole system (b)

bulk water and the same is true for the continuous phase.
The surfactant monolayer that covers the drops is con-
sidered to be an incompressible, elastic surface, having the
same chemical potential as it has in a reservoir of pure bulk
surfactant. Then the Gibbs free energy of the system on the
left is prescribed by

G' =Ny +Nyur + Njug+aA 1.1
where u,, u, and u, are the chemical potentials of pure bulk
oil, water, and surfactant respectively and Ny, N, and N
are the corresponding total numbers of oil, water, and sur-
factant molecules in the microemulsion phase. g A4 is the in-
terfacial free energy with o the interfacial tension and A the
area of the total oil-water interface. All interactions be-
tween oil, water, and surfactant are accounted for by the in-
terfacial free energy.

If the drops are released from the syringes that im-
mobilize them, so that the picture on the right of Fig. 1.1
applies, they can adopt a continuum of configurations with
which mixing entropy will be associated. The full free
energy of the unconstrained microemulsion can then be ex-
pressed as
G:NIﬂI+N2/‘2+N§.us+OA_TSmix . (1.2)
We neglect, for simplicity, the pressure differences associat-
ed with the movements of the drops, since this only leads to
slightly different values of the chemical potentials. What is
important is that S, is defined and makes its appearance
because of the nature of the model.

It should be noted that, if the drops in Fig. 1.1 are of dif-
ferent sizes (polydisperse), only those of one size could (ac-
cording to the Gibbs-Thomson relation [2]) be in equilibri-
um with the sourrounding phase. However entropy of mix-
ing when it is large enough, offers the possibility of stabiliz-
ing the fotal system by reducing the system free energy. This
collective phenomenon can be employed as one means of
defining the mesoscopic regime for drops or other small
systems.

In the simple case in which there were ny drops all of the
same size one might first think of evaluating S by
calculating a configuration integral Zp corresponding to

the continuum of drop configurations, but as indicated
earlier, it is then necessary to convert Zp to a pure number
I' through division by the volume /3" where [ is some
length scale. Then
[ =2Zp/ng! > . (1.3)
Division by ny! removes configurations obtained by merely
permuting identical drops. The “entropy of mixing” is then

-

Spix=kInI". (1.4)
Even if / can be determined, the problem is not completely
solved. In G’, corresponding to the left of Fig. 1.1, all of the
degrees of freedrom of the N+ N, + N, molecules in the
system have already been utilized, at least in part. In pro-
ceeding to the system on the right, the same degrees of
freedom must be further utilized and care must be taken to
insure that, in the evaluation of Zp, they are not used
redundantly.

At this point, it is convenient to mention some features
of Spix that we shall address in further detail later. The
first concerns the issue of polydispersity and its effect on
the mixing entropy. In the example to which Egs. (1.3) and
1.4) refer, the drops were monodisperse. However if they
were polydisperse the different sized drops could be per-
muted among the syringes to yield distinct configurations
and therefore some mixing entropy. This would be achieved
without allowing the drops to occupy a continuum of posi-
tions. Allowing the continuum would lead to an even larger
mixing entropy. Later, in Sect. 4, we shall demonstrate the
interesting result that the entropy associated with the per-
mutation of drops among syringes determines the poly-
dispersity, i.e. the shape of the size distribution while that
associated with the continuum of positions determines the
height of the distribution, i.e. the drop population.

Another feature that we mention, at this time, is the fact
that the mixing free energy — 7'S,;, may not always be
easily separated from the surface free energy. The possibili-
ty of such nonseparability may be clarified by the following
consideration. The mixing entropy can be regarded as
originating in the multitude of configurations available to
the extended (total) interface in the system. However, this
interface can “wander” on a truly microscopic (molecular)
level. Such microscopic wanderings are included in the in-
terface entropy that forms a part of the interface free
energy or surface tension. The mixing entropy is associated
with the more coarse grained mesoscopic wanderings of the
interface. In many systems the separation of these two
scales of surface deformation is relatively easy, but in
others it may not be.

What strategies are available for the determination of a
length scale consistent with the phase space definition of e1i-
tropy? The most direct and reliable approach would involve
a method that refers the problem back to phase space where
the definition of entropy is unambiguous. Although this
method cannot always be applied with precision, it offers a
starting point where things are well defined. In order to ex-
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plore this approach, assume that we are somehow in posses-
sion of the exact partition function, or what is the same
thing, in possession of the exact free energy of the system.
Denote this free energy by Geyae. Then substituting Geyae
for G in Eq. (1.2), and solving for S, we find

1
Smix(/)=}IN“U]+N2H2+N5H5+G'A—Gexacd (1.5)

in which we have indicated that S,;, depends on the length
scale /. In order to make further progress we need a more
detailed expression for S,;,. If, for example, we are dealing
with drops, as in Fig. 1.1, we would represent the con-
tinuum of configurations by the configuration integral Z,
the number of configurations 7I'(/) would be given by
Eq. (1.3), and S_;, by Eq. (1.4).

Eq. (1.3) can be substituted into Eq. (1.4), and the result
into Eq. (1.5), to yield an equation whose solution gives the
value of /. Lest it be overlooked, it should be mentioned
that, in the method just described, referral back to phase
space is implicit in the use of the exact system partition
function or, equivalently, the use of the exact free energy.
Of course there are very few examples in which these quan-
tities are known exactly, but it turns out that there are sig-
nificant situations in which they can be estimated with good
precision, and we return to this subject later.

An alternative strategy has been used [3], namely a meth-
od in which the referral to phase space is not direct, and in-
deed has not been regarded as a major step. Nevertheless
some success has been achieved. Employing the phenome-
nological model that forms the basis of Eq. (1.2) the prob-
lem of the mixing entropy can be viewed as the enumeration
of all the distinct configurations of the extended interface
within the system. The interface can then be represented as
a continuous phenomenological “renormalized” object
describable by a continuum of normal modes that become
the central statistical features of the system. The random
configurations of the interface can then be represented by
a superposition of “random waves” whose amplitudes can
be determined, in a mean field sense, by a variation princi-
ple on the free energy. There must be a small wavelength
cutoff since the system actually consists of discrete
molecules, and this cutoff can be interpreted as the length
scale. In the most recent work along these lines [3], the
cutoff is determined by the theory itself. Although good
qualitative and even semiquantitative descriptions of micro-
emulsion behavior can often be obtained within this
framework, it remains difficult to refer back to the fun-
damental phase space definition of physical entropy.

Sensitivity of Length Scale to Model

It may be demonstrated, by carrying through the referral
to phase space, that the length scale for configurational or
mixing entropy can depend very sensitively on the model
under consideration. This demonstration can be performed
using systems for which the reference to phase space can be

accomplished exactly. Three such systems involve drops
that are modeled as c/osed thermodynamic systems, unable
to exchange molecules with a surrounding medium. Since
the drops in microemulsions or related systems are not c/os-
ed these models do not have great practical value, but they
are useful in demonstrating the sensitivity of the length
scale, and we now offer a brief discussion of the models and
their associated scales.

First, we consider a model in which the material of the
drop is confined to an impermeable spherical container of
volume v whose center always coincides with the center of
mass of that material, but where that center of mass is free
to move through the total volume V of the system. The posi-
tion of the model drop is determined by the position of the
center of the container. This representation is not identical
with a stationary drop (call it a reference drop) whose center
of mass fluctuates about its geometric center. Indeed, the
model for the reference drop consists of a spherical volume
of the same radius, filled with the same material, but where
the center of mass is not constrained to remain at the center
of the sphere. In this feature the reference drop is similar to
a real (macroscopic) drop. One proceeds to relate the parti-
tion function g, of the microemulsion drop to the partition
function A, of the reference drop, where » indicates the
number of molecules in the drop. The relation between g,
and 4, is easily established [4].

We express 4, in center of mass coordinates, as

Ap= ynyzydR{(y"_’nyz/n!) 5 .. j'
v Ll'(R)

cexp(=p % (ry...r,_)dry ... dr, 4}, (1.6)
where R is the coordinate of the center of mass and the
primed quantities are the coordinates of molecules in the
center of mass system while v is the volume of the sphere.
pB=1/kT, % (r}...r,_,) is the intermolecular potential,
while y is the reciprocal of the cube of the deBroglie
wavelength, and we do not concern ourselves with the inter-
nal degress of freedom of the molecules. Finally v'(R) in-
dicates that the limits of integration (over v) in the center
of mass system depend on R. The quantity n*?n3? = p3in
Eq. (1.6) represents the Jacobian of the transformation
from laboratory to center of mass coordinates, and the fac-
tor in curly brackets is the internal partition function of the
drop under the constraint that the center of mass is held at
R. We denote this partition function by z(R) and write

Ay=yn*? [Z(R)dR . (1.7)
v

Clearly, the definition of g, allows us to write

qn=yn>* [ z(0)dR , (1.8)

v
where the integration now proceeds over the whole volume
V.

Since the center of mass of the model drop is always
located at the center of the sphere, z, for this case, has a
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constant value, independent of the position of the center of
mass in the laboratory frame. It is convenient to set this
constant equal to z(0) which corresponds to the case where
the drop is at the origin. Since z(0) is constant, the integral
in Eq. (1.8) becomes z(0) ¥ and

qn=rn"?z(0)V (1.9)

comparison of Egs. (1.7) and (1.9) yields the relation

20 } =2, VPQO) , (1.10)

n= AV
/ {fz(R)dR

v

where P(0) represents the factor in curly brackets whose
structure shows that P(0) must be the probability density
that the fluctuating center of mass in the reference drop will
be found at the origin.

If the system consisted of only a single drop confined to
the volume V, then since V' P(0) is dimensionless (the same
is of course true of both g, and 4,), the length scale in the
partition function g, is clearly.

I=[P©O)] 3. (1.11)
Indeed, even if the system consisted of a collection of in-
teracting drops, the scale for the system partition function
can be shown [4] to be given by Eq. (1.11). Now the length
scale in the partition function serves the purpose of conver-
ting the configuration integral to a pure number so that the
partition function can be dimensionless. But the length scale
for the configuration integral is the same as that for the
translational or mixing entropy so that Eq.(1.11) also
serves as the entropic length scale. [This can be demonstrat-
ed more directly by calculating G+, using g, and setting

_ I .
A, =€xp <k_ [nuy+oa,—pv] | where a, is the surface
T

area of the drop, and then following the prescription em-
bodied in Eq. (1.5)]. / in Eq. (1.10), defined by Eq. (1.11),
is a measure of the distance over which the center of mass
of the drop fluctuates. If the fluctuation is gaussian, P(0)
can be shown to be the variance of the position of the center
of mass. The length scale provided by Eq. (1.11) is of the
order of Angstroms for drops having diameters of the
order of 10 nm.

Next we consider a slightly different c/osed model. The
location of the model drop will still be determined by the
position of the center of the impermeable spherical con-
tainer, but that center will no longer be required to coincide
with the center of the center of mass of the material within
it. The partition function of the model drop in some fixed
position is just 4, i.e. that of the reference drop of the pre-
vious example since at a fixed position the model is identical
with the reference drop. However we are interested in the
partition function g} of the model drop able to move
throughout the volume V. Thus we have to augment 4, as
the drop is moved throughout V. We start by moving its

center through the distance dx. Then a picture of the drop
in its original position, with its image in the displaced posi-
tion superposed, would show two intersecting spheres with
their centers separated by dx. The augmented partition
function would not simply be the sum of two A, because
the region determined by the overlap of the two spheres
could be the seat of redundant counting of molecular con-
figurations. This situation is rooted in the fact that in the
initial undisplaced sphere there are “fluctuated” configura-
tions that are confined entirely to the region of overlap
defined above, while in the case of the displaced sphere the
same is true. These confined configurations are physically
identical and must not be counted twice. A few simple sta-
tistical mechanical steps [5] suffices to eliminate this redun-
dancy as well as the similar additional redundancy that
occurs as the drop is displaced further. After it has been
moved (integrated) through the entire volume V the model
partition function is found to be

14
qx =k—7:1n ;

(1.12)

where p is the pressure to which the drop is subjected. Com-
parison with Eq. (1.10) now shows that the entropic length
scale for this model is

AT 1/3
,:<_> |
p

For p of the order of an atmosphere this scale is of the order
of 100 nm, dramatically different from that of the previous
model, even through the two models are themselves rather
similar. It is worth remarking that the large length scale
prescribed by Eq. (1.13) is a result of the considerable
overlap configurational redundancy that must be compen-
sated in the evaluation of the mixing entropy. Eq. (1.3)
shows that a large length scale leads to a smaller /" and
therefore to a smaller entropy, thereby canceling the large
spurious entropy associated with the redundant configura-
tions.

Still another model is one in which the drop within the
impermeable container is absolutely rigid and absolutely in-
compressible while its position is determined by the center
of the container which, in this instance, will also be the
center of mass. In this case the entropic length scale proves
to be the thermal deBroglie wavelength of the center of
mass. The requirement of absolute rigidity and incompress-
ibility is necessary in order to eliminate internal degrees of
freedom whose excitation would otherwise occur in order to
satisfy the equipartition principle [6]. In any event the
length scale is once again different from the derived for the
previous two models.

These three examples indicate the possible sensitivity of
the entropic length scale to the model.

Finally, we note that, in each of the above models, the
length scale depends on the thermodynamic state of the sys-
tem, e.g. on drop size, drop number (composition), pres-

(1.13)
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sure, etc. Theories (usually based on a considerable degree
of renormalization) can be found in the literature in which
the length scale is assumed to be independent of thermo-
dynamic state. In such cases the free energy of formation
of, say a microemulsion, from component phases can be
evaluated in a manner such that the scale cancels out of the
problem, since the separated component phases simply rep-
resent another thermodynamic state of the system, and only
the ratio of the mixing entropies in the microemulsion and
the separated states is involved. However, the above discus-
sion indicates the danger inherent in this approach.

As we have indicated, models based on closed systems are
not suitable representations of microemulsions. In the next
section, therefore, we derive an entropic length scale for an
open representation of a microemulsion. Since, in this case,
the exact system partition function cannot be obtained our
result is only an estimate, but one that we think is quite
good under a wide range of circumstances that satisfy cer-
tain preconditions that we enumerate. We also show how
length scales, much larger than the one that we estimate,
and which are sometimes used, can be reconciled with the
more fundamental scale provided by that estimate. In a
sense our method of estimation is a fluid model extension
of methods based on lattice models [7], and, like those
methods, is applicable to bicontinuous as well as globular
microemulsions.

In later sections we examine very specific cases involving
open systems in which model partition functions can be
derived exactly and show that the associated length scales
agree with our estimate.

2. Estimate of the Length Scale

The focus thus far has been largely on globular or drop-
like microemulsions, but of course the problem extends to
other systems, e.g. vesicles or bicontinuous microemul-
sions.

As promised, in the present section we develope an esti-
mate for the entropic length scale that is generally ap-
plicable, e.g. to bicontinuous as well as globular systems.
As a first step, we return to Eq. (1.2) and remark that o 4
in that equation, which accounts for the interfacial free
energy, includes the effect of bending energy. However, this
does not imply that bending energy effects are merely in-
cluded in a multiplicative factor ¢ that is itself independent
of A. Indeed, it is assumed that the interfacial free energy
o A is partly determined by Helfrich’s curvature free energy

(8]

K
aA:a'A+5 E(cl+cz—200)2+l<gclcz dA4 , 2.1

A

where the first term on the right is a curvature independent
part of the interfacial free energy, and the second is
Helfrich’s curvature free energy. K is the bending elastic
modulus, ¢; and ¢, are the principal curvatures, ¢ is the
preferred curvature, and K, is the modulus for Gaussian
curvature.

Next we focus attention on Fig. 2.1. Although, as already
indicated, our argument is general enough to include bicon-
tinuous systems, the figure corresponds to a globular phase.
It represents a “snapshot” of the microemulsion that illus-
trates one of the possible configurations of droplike (phase
2) and continuous (phase 1) domains. The figure shows
globules of phase 2 whose molecules are represented by fill-
ed circles, surrounded by phase 1 (empty circles). The inter-
face between the two domains is delineated by dashed lines.
Without loss of generality, since we are only interested in an
“estimate” we will assume the molecules of species 1 and 2
to be of the same size and the phases to have the same den-
sity.

We can refine this picture of the interface by referring to
Fig. 2.2, which is a highly magnified view of a small piece
of interface. Here, we have sketched “boundaries” about
the molecules such that a closepacked array of irregular
cells is produced, each cell containing one, and only one
molecule. This array of imaginary cells is drawn purely for
visualization, and is not physical ... we are dealing with a
fluid. Indeed, there is no unique way to construct the array!
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Fig. 2.1

A microscopic view of a region within a microemulsion. Two globules
of species 2, whose molecules are represented by filled circles, lie in the
domain of species 1, whose molecules are represented by open circles.
The oil-water interface is represented by shaded lines

Fig. 2.2

A highly magnified microscopic view of a small piece of the oil-water
interface in Fig. 3.1. The array of irregular cells, each containing a
single molecule, is an abstraction useful for defining the interface be-
tween domains of species | and 2. The array is not unique
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The interface itself, shown as the dark line in Fig. 2.2,
might be defined as the set of cell faces that separate im-
aginary cells of one phase from cells of the other. Because
the construction of the array is itself nonunique, this inter-
face will also not be unique. On the other hand, it is clear
that in the thermodynamic limit the possible variations of
the area of this interface, allowed by the nonuniqueness,
well be small. Thus, we can talk meaningfully, in this pic-
ture, about a constant interface area 4, defined by adjacent
phase 1 — phase 2 imaginary cell faces. The actual interface
between phases in a physical system is of course not a
mathematical surface but a transition zone that may be
several molecular diameters in thickness, and which, in the
case of the microemulsion, will be the locus of surfactant
molecules. Therefore it may include more than one cell on
either side of the mathematical interface shown in Fig. 2.2.
This will have little effect on the general argument
presented below, and any energetic and entropic contribu-
tions due to this finite thickness will, by definition, appear
in the 04 term on the right side of Eq. (1.2).

Now, suppose we fix the area A and the average bending
energy of the interface between the oil and water domains
shown in Fig. 2.1, and allow the molecules of types 1 and
2 to move freely within their respective domains. It is clear
from Fig. 2.1 that, except at the interface, type | molecules
are surrounded by type 1 und type 2 molecules by type 2.
Thus, if we ignore the interaction between molecules at the
interface, the type 1 molecules are completely decoupled
from the type 2 molecules. (Actually, using the familiar idea
of a dividing surface, the interactions across the interface,
relative to those between like molecules, can be treated as
an “excess” quantity to be included in the interfacial free
energy.) The partition function Q* for this decoupled two-
component, system is then given by the product,

O*=0, (N, Vi, T)O>(N5, V5, T) , 2.2)

of the partition function Q, for the type 2 molecules in
their multiply connected domain, with the partition func-
tion Q, for the type 1 molecules in their domain, where V,
and V, are the corresponding total volumes of phases 2 and
1. It is important to understand that the configuration in-
tegrals corresponding to Q; and Q, “count” configurations
of the molecules within their respective domains, but do not
“count” the possible configurations of those domains, since
the domain boundaries are fixed. It is also important to em-
phasize that in spite of the above appeal to imaginary cells
as an expository tool, the problem of the absence of com-
munal entropy [9] does not arise, since the molecules are not
confined to individual cells, but are free to move through
their respective domains, simply or multiply connected.

It should also be remarked that the approximation im-
plicit in the “decoupling” of system 1 from system 2 in
Eq. (2.3) must involve serious error when the globules are
very small, since then they are all “surface” and the condi-
tion that the molecules of each type are surrounded by like
molecules fails. It should further be noted that the require-

ment that the domains be of sufficient size is the essence of
the mesoscopic model.

Some additional qualifying comments are in order. The
globules shown in Fig. 2.1 are determined from a “snap-
shot” in which the individual molecules are in fixed posi-
tions within their respective cells. But in the evaluation of
Q) (N, V,T) and Q, (N,, V>, T) they are moved as the in-
tegration proceeds. Once the network of cells is constructed
and the interface defined, this movement could be a transla-
tion of all of the molecules within a given globule through
the same vector displacement without (if the displacement
were small enough) moving any molecule out of its original
cell. In this sense the globule would be translated rigidly,
and it would appear as though the displacement was there-
fore contributing to the mixing entropy. Indeed the original
snapshot might have been taken with the molecules in the
displacement positions and a set of cells constructed around
molecules in these positions. Thus V, is not precisely
defined.

However, we note that if the displacement is as large as
the typical or average cell dimension the resulting array of
cells might just as easily have been constructed as a ’per-
mutation’ of the two species of molecules among the
original set of cells. This is a process that we treat separately
below and it does lead to mixing entropy. Displacements
smaller than the cell dimension are still possible and are not
accounted for by such permutations. However they produce
entropy associated with a set of configurations that are
mutually shifted by less than a cell dimension and therefore
by less than the nominal thickness of the interface. These
configurations are therefore comparable to others that are
responsible for surface entropy and these effects can easily
be included in the surface free energy. Thus within the
model as it is defined, they do not contribute to the mixing
entropy, but rather to the g4 term in G. In this respect we
are reminded that the consistent length scale will depend
upon the model, and that the model in question is that to
which Eq. (1.2) applies.

As it stands, Q* of Eq. (2.2) is also the partition function
for one particular configuration of a microemulsion with
given interfacial area and given average bending energy
(again, ignoring interfacial effects). Q* will have the same
value for all possible configurations of the domains provid-
ed Ny, N,, Vi, V, are fixed. We can however classify con-
figurations such that in a given class each and every such
configuration has the same constant value of the interfacial
area A and average bending energy. Since both A and the
average bending energy are constant in a given class, the
energetic correction due to those molecules at the interface
will be constant in all allowable configurations of that class,
and all such allowed configurations will have the same
energy.

The total partition function Q of the microemulsion mus!t
include all possible configurations #of the two types of do-
main, constrained by a constant interfacial area A and a
constant average bending energy. Thus, not only @, but #
is affected by bending effects. Although for simplicity of
notation we will write 7 as a function of N, N,, and A4,
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when additional constraints such as those due to bending
are involved, 7 must also be a function of the ther-
modynamic variable (variables) corresponding to the new
constraint (constraints).

The number of possible configurations #of the two types
of domain is just the number of permutations of the two
species of molecule, among the frozen arrangement of the
molecules within the snapshot (Fig.2.2) subject to the
above constraints, that lead to new patterns, or, in other
words, new interfacial boundaries as represented by the
heavy lines of Fig. (2.2). It is to be emphasized that we are
permuting molecules and not imaginary cells, so that we are
indeed generating and counting quantum states to complete
the specification of the true physical partition function.

The molecules are permuted among the chosen fixed ar-
ray of single occupancy cells, and the nonuniqueness of the
chosen array will clearly have little effect on the ‘bulk’ free
energy of the system since all molecules are free to move
through their respective bulk domains. The primary effect
of the nonuniqueness will appear at the interface where it
simply contributes to the interfacial entropy whose evalua-
tion is not at issue here.

The next step in the construction of the full partition
function of the microemulsion is the gathering together of
all equivalent Q* in one class corresponding to a fixed inter-
facial area and average bending energy to obtain the con-
tribution

Q**(NI!NZSAi V’ T) =

"?(N],NZ?A)QI(NI)VlvT)QZ(NZ! V29 T) ’ (23)
where V=V,+V,, and where it is understood that
ANi,Ny, A) is the number of permutations allowed under
the constraints discussed above.

The full partition function Q of the microemulsion con-
sists of a weighted sum of Q**(N,,N,,A4,V,T) and,
within the bounds of the model, the weight factor is simply
exp(—oA/kT). Thus we find

Q=Y P(N,NyA)Q Ny, V1, T)Os(Ny, Vy, T) e~ 747K
oA

(2.4)
For the Gibbs free energy of the system we then have

G=—kTInQ+pV , 2.5)

where p is the external pressure, and by substitution of
Eq. (3.4) into Eq. (3.5) we obtain, using the conventional
maximum term assumption for the logarithm,

G=—-kTln ?+(—kTIn Q,

+pV)+(—kTInQy+pV,)+0A (2.6)

in which g4 corresponds to its value in the maximum term
of Eq. (2.6). The bracketed terms in Eq. (2.6) are clearly

Gy = N,u; and G, = N,u, so that Eq. (3.6) may be written
in the form
G=Nu+Nyur,+0A—kTln 7 . 2.7
This equation is identical with Eq.(1.2) except for the
absence of the term N u,. Since this term scales as 4 under
the assumption that the surfactant constitutes a saturated
monolayer, in the interest of simplicity we have not treated
it explicitly in the present analysis, since it could be con-
sidered part of gA. Thus —kTlIn Z is identified with
— T'Six and
Smix=kln 2 . (2.8)
Now since the cells of Fig. 2.2 are singly occupied, it is

obvious that their number is N = N,;+N,, and that the
average volume per cell is

(Wy=V/N=2"", (2.9)
where we continue to ignore the volume of the extended in-
terface, and where 7 is the density. Thus the permutations
are conducted over an irregular lattice of “average” lattice
parameter

I=(U)'/3=:ﬂ‘]/3 ) (2.10)
This lattice parameter is clearly the length scale that deter-
mines the number of configurational states and therefore
the length scale for the mixing entropy.

It is important to emphasize that, in arriving at this con-
clusion, it has not been necessary to perform the very dif-
ficult explicit evaluation of % (N,,N,,A) and that 7 itself
represents the number of permutations allowed under
specific (e.g. constant 4 and constant average bending
energy) constraints. It should also be noted that the meso-
phase domains are in effect “open” systems, just as they are
in the real microemulsion, and that the analysis applies to
bicontinuous, lamellar, etc. phases as well as globular ones.

It should also be emphasized that the length scale that
forms the subject of this paper is specifically the scale for
the configurational entropy, and is not that which measures
either the curvature of the interface, the “granularity” of
the microemulsion, or the persistence length. However, an
interesting partial reconciliation of the more fundamental
molecular length scale and the larger more phenomenologi-
cal scales is possible. A combinatorial problem in which
configurations must be counted under possibly severe con-
straints (e.g. maintenance of constant oil-water interfacial
area or constant average bending energy) is involved in the
estimate. Constraints reduce the number of allowable con-
figurations and therefore the corresponding entropy. Simi-
larly, the choice of a larger length scale reduces the number
of resolved configurations and the corresponding entropy.
Therefore it may be possible to perform the combinations,
approximately, without bothering about the constraints by
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using a larger length scale, i.e. the larger length scale repre-
sents a kind of renormalized length (usually guessed) that
attempts to match the effects of the constraints. Although
this approximation may be useful, it is easy to show that
such a renormalization can miss many configurations that
would have been admitted under the constraint itself, and
it remains true that the molecular scale is the most fun-
damental [10].

Constraints can, however, compromise the length scale
sepcified by Eq. (2.10). To understand this we return to
Eq. (1.2) from which it is clear that the entire effort of this
paper is really concentrated on the sum gA— TS,
because, as indicated earlier, 0 A and TS,;, cannot be
separated absolutely. We avoided the problems associated
with the nonunique microscopic aspects of the interface
contour by assigning the effects to surface entropy, a quan-
tity that we do not evaluate. This is acceptable as long as the
number of permutations responsible for S, is large in
comparison to the number of microscopically distinct con-
figurations of the interface that give rise to surface entropy.
If the constraints are too severe, they may so reduce the
number of configurations so that this criterion is no longer
met. In that case the estimate prescribed by Eq. (2.10) may
be in error.

There are treatments in the literature in which attempts
are made to evaluate only the whole quantity 04 — TS,
without concern for separation. Although there may be
situations where this approach has merit, .4 and TS,
have such distinct physical bases that it is often best to at-
tempt the separation (e.g. in the case of dispersions of nano-
crystals [11]).

Finally, when the two species constituting the mesophases
have bulk pure phases of very different molar volumes,
some adjustment of the theory is necessary. Part of the pro-
blem can be resolved by considering the length scale to be
related to the average molar volume of the microemulsion,
but when the ratio of molar volumes becomes very large,
the estimate of this section should probably be modified.
However, for most microemulsions this problem will not
arise, since the two species usually have comparable
volumes.

The conclusion remains that, in most cases, the length
scale for the mixing entropy is of the order of the size of the
cube root of the average volume per molecule in the
microemulsion, and this holds true even in the presence of
large persistence lengths or large globules mandated by low
concentrations of surfactant. However as we have already
indicated, this conclusion is qualified by the following con-
ditions:

1. All components of the system must have comparable
molar volumes.

2. The “volume” (transition zone) of the extended interface
must be small compared to the bulk volume.

3. The interface entropy must be easily separable from the
mixing entropy.

4. Constraints must not so reduce the mixing entropy that
it becomes comparable to the interface entropy.

In the remainder of this paper we examine the practical
significance of this result. Along the way we will examine
special models subject to constraint, but for which Gy,
can be derived exactly, in order to see whether Eq. (2.10)
holds even under conditions such that mesodomain sizes
and the equivalent of the persistence length are large.

3. Exact one Dimensional Model

In accordance with the final remark of the previous sec-
tion, we now examine a model that can be subjected to fair-
ly severe constraint, but for which it is possible to derive the
exact partition function and, consequently, Ggg. This
model (a one dimensional system of hard rods) will allow
the application of constraints that, in many ways are
equivalent to the constraints implicit in the so called ran-
dom mixing model (RMM) [7] where the lattice parameter
(the length scale) has been variously chosen either as the sur-
face persistence length [12] or in such a manner that enough
interface to accomodate a close packed film of surfactant
would be available [7]. Both of these choices result in scales
many times larger than that prescribed by Eq. (2.10).

The argument for choosing the persistence length as the
lattice parameter proceeds essentially as follows. A globule
having a linear dimension less than the persistence length
would have a surface whose radius of curvature was smaller
than that length. The surface would then be so “bent” that
it would incur a penalty of excessive positive bending
energy. Thus globules of linear dimension less than the per-
sistence length would on the average not appear. Then, by
choosing the lattice parameter in the RMM equal to the per-
sistence length, we are assured that no globule will be
smaller than this desired lower limit.

However, it does not immediately follow that preventing
the size of a mesoscopic domain from being less than some
minimum size much larger than that of a molecule, requires
the length scale for the entropy to exceed this lower limit.
We demonstrate this using the above mentioned hard rod
system that can be solved exactly, to recover the scale
prescribed by Eq. (2.10), thus supporting the semiquan-
titative argument of section 2. The result of that analysis is
also relevant to the RMM in which the domain size, and
thus the lattice parameter, is determined by composition
[7]. Unfortunately, in one dimension there cannot be a
bicontinuous phase, but, as the previous section indicates,
the issue of phase type has minimal effect on the entropic
length scale as long as the thicknesses of the mesodomains
are large compared to that of the interface. On the other
hand, the effects of constraints on the possibility of
separating surface free energy and mixing free energy can
depend on phase type. Since, in a one dimensional system
this problem never arises, the conclusion of the present sec-
tion provides no advice on this issue.

In the system to be solved exactly, molecules of both
species are hard rods and the respective pure species are one
dimensional fluids of hard rods, each of length & (not to be
confused with the surface tension ¢ used above). The only
difference between the two fluids are the labels on the rods,
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black for species 2 and white for species 1. Both fluids have
the same density
p=N/L (3.1
i.e. Nrods confined to the length (volume) L. Fig. 3.1 pro-
vides a schematic view of these “pure” systems. The well

known formulas for the chemical potentials u and pressures
p of these hard rod systems are [13]

A a
Uy =Hy=kTlIn i —kT - s
l-po l—po
pkT
Pr=py= ) (3.2)
| —po

where A is the thermal deBroglie wavelength of a rod. From
these pure fluids we form the one dimensional microemul-
sion illustrated schematically in Fig. 3.2. This microemul-
sion contains N; molecules of species 1 and N, of species 2
such that
Ni+N,)/L=N/L=p (3.3)
so that the system has the same density p as each of the pure
components. It therefore has the same pressure p as the
pure components. In Fig. 3.2 the globules of species 2 are
represented as sequences of black rods. Notice that the in-
terfaces between the mesophases are unrestrained so that
the globules can ‘breathe’. This motion is the one dimen-
sional equivalent of both density and shape fluctuations in
a three dimensional system. In addition, since there is a dy-
namic equilibrium between globules of all sizes; the glob-
ules are, in effect, “open” systems.

Also, in one dimension, a constraint of constant surfac-
tant content, i.e. constant interfacial area, is translated into
a fixed number, 2B, of globule ends. This automatically re-
quires that there be a fixed number B of globules of species
2 (and...because of the one dimensionality...a fixed
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L

Fig. 3.1
One dimensional system of pure rods of species 1 (top) and 2 (bottom),
i.e. N rods confined to a length L, density p = N/L

‘EI- L | Iemienienl |} | | (=i D{

Fig.3.2
One dimensional microemulsion formed from the pure fluids depicted
in Fig. 4.1

number, B, of species 1 globules). The constraint imposed
by the bending energy (or composition) is now translated,
as discussed earlier, into the imposition of a minimum size
for a species 2 globule. We denote this minimum size by
Nmin = M, and recognize that m may be quite large.

In the hard rod system there is no surface tension, but this
is peripheral to our main argument.

We begin the analysis by evaluating the exact partition
function, Qe and consequently the exact Gibbs free
energy, Geye. To accomplish this we note that if all the
rods in Fig. 3.2 were identical (if all were of the same color),
the partition function would have the well known form

(L-Na)¥

R YL

(3.4)

Coloring the rods has no effect on the mechanics of the
system but does effect the entropy because of the many con-
figurations (sequences) of black and white rods that then
become possible. Subject to a fixed number B of 2-globules
and minimum size m for a species 2 sequence, this number
of configurations is

P (N{,Ny,B,m) =

(B—=1+N,—mB)! (B—1+N,-B)!

(B—1)!(N,-mB)! ] \(B-1)I(N,-B)!/
This expression is easily understood when it is realized that,
for every species 2 globule, m black rods must be reserved,
since m is the lower limit of size for such a globule. Thus,
since there must also be exactly B globules, m B rods of
species 2 are not available for permutation among them, i.e.
only N, —m B rods are available. For the species 1 globules,
only one rod must be reserved per globule so that N,—B
rods of species 1 are available for permutation. With these
quantities we find

(3.5)

Oexact = »‘?(N“NZ,B,m)Q*(N,L) . (3.6)
Then Gy, 1S given by
Gexaer = —kTln Qexact +PL

= —kTIn?—kTIn Q*+plL

= —kTIn?+G*= —kTln P+ Nu , 3.7)

where G* is the Gibbs free energy of a system containing N
rods, all of the same kind, in the length L, while x is the cor-
responding chemical potential. But since N = N+ N, and,
according to Eq. (3.2), ¢ = uy = u, we can write

Nu = Nipy+ Ny (3.8)
so that Eq. (4.7) can be expressed as
GeXaCI=Nlﬂ]+N2/u2_len‘@(N|!N2yB’,u) . (39)
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If we elect to make use of the mesoscopic model upon which
Eq. (1.2) (without the surfactant or surface terms) is based,
comparison of that equation with Eq. (3.9) shows that S,,;,
must be given by

Smix = k In 2 (N, Ny, B,m) (3.10)
if the model is adjusted to give the exact free energy. This
identification forges the connection of S, to phase space,
discussed in section 1. Eq. (3.10) is actually identical to
Eq. (2.8), except that it is an exact relation whereas
Eq. (2.8) is only an estimate.

The next step is to evaluate S,;, (/) within the confines of
the mesoscopic model and to equate the result to Sy,
specified by Eq. (3.10). The resulting equation can than be
solved for the length scale /.

Before we can analyze the model it is necessary to define
the length A, of a globule containing n rods. This is
necessary so that Z in Eq. (1.3) can be evaluated. Since we
are dealing with a “model” there is more than one way to
define A,,. However, to be consistent with the use of the
mesoscopic model in the past, it is appropriate to define A,
so that the density of the mesophase is the same as that of
the corresponding bulk phase. Thus we write

An=n/p . (3.11)

Since the globules “breathe” their actual lengths are not
constant so that 4, is really an average length. Choosing 4,
is equivalent to the selection of a Gibbs dividing surface in
the thermodynamic analysis of a drop. Among the breath-
ing modes of the globule is one that can be interpreted as
a translation, so that a small amount of translational en-
tropy is included in the internal entropy of the globule.
However such translations are limited to distances com-
parable to the thickness of an interfacial zone between the
mesophases. As a result this translational entropy could be
reinterpreted as part of an interfacial free energy. We could
therefore define 4, in another way such that this interfacial
free energy would appear as a separate term. However, this
approach will not cause any significant change in the result
we obtain below.

In evaluating S,;, for the model we need to use
Eqgs. (1.3) and (1.4), modified to account for the fact that
now the droplets or globules are not all of the same size.
This is accomplished by replacing I" in Eq. (1.3) by

(3.12)
where n; represents the number of globules containing i
molecules and Z is given by

Z=(L-(A)B)? , (3.13)

where (1) is the average globule length

(Ay=N,/Bp , (3.14)

where p appears because we are using Eq. (3.11) for 1,
(or 4;). Substitution of Eq. (3.14) into Eq. (3.13), the latter
into Eq. (3.12), and the result into Eq. (1.4) gives

(3.15)

We are now faced with the evaluation of »; to be used in
Eq. (3.15). Since no potential energy is involved in the hard
rod system n; can be computed as a random quantity con-
strained only by the requirements

(3.16)

Y inj=N, .

i=m

3.17)

Furthermore, since S,,;, is based on the logarithm we can
use the most probable distribution of n;. Thus we choose
the distribution that maximizes the quantity
H=N,!/]] n! (3.18)

subject to the conditions, Eqgs. (3.16) and (3.17). This max-
imization is easily performed with the result that

(N,—mB)'~ } .15

2
I’l,-=B i—m+1
(N,—(m—1)B)

Now, as promised above, we equate S,,;, in Eq. (3.15) to
Smix in Eq. (3.10). At the same time we use Eq. (3.5) for
P (Ni,N,,B,m) and Eq. (3.19) for n,. After some careful
algebra we are able to solve for / and find (taking
(B—1)—B),

< B>N|/B
LIN/NY [ 1-—= e
N,

[ = (3.20)

where, significantly, m does not appear. Since N, is usually
much larger than B, the factor preceding e in the numerator
of the right side os Eq. (3.20) is essentially e ~'. Making
this substitution in Eq. (3.20) yields

_L(NI/N)_ <U>N2 ~
N,-B N,-B

i (3.21)

vy,
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where (v) = L/N, and so we recover the result Eq. (2.10).
No cube root appears since we are dealing with a one dimen-
sional system. Thus, the exact treatment of the present sec-
tion recovers the estimate of the previous section. Further-
more, the imposition of a lower limit on the size of a
globule does not result in a length scale larger than one of
the order of the length per molecule. A more detailed exam-
ination of Eq. (3.20) shows that / increases monotonically
from /= (v) for B/N,—0 to I = e(v) for B/N;=1.0.

At least for this system, we must conclude that, even in
the face of a constraint incorporating a length scale much
larger than that prescribed by Eq. (2.10), the fundamental
scale continues to be the one of molecular size appearing in
that equation. Coupled with the analysis of section 2, this
suggests that the fundamental scale is always of that size.
Whether or not the use of a much larger erroneous length
scale results in significant error in any particular theory is
a separate question that we address later.

4. Role of the Length Scale in the Law of Mass Action

It was emphasized, in connection with Fig. I.1, that
because of the Gibbs-Thomson relation, only a drop of one
particular size could remain in equilibrium with the sur-
rounding medium. It is also true that this equilibrium could
be unstable or stable depending upon whether the inter-
facial tension was positive or negative [14]. It was also
noted that, if the drops were numerous enough, the entire
assembly could be brought into collective equilibrium
through the agency of the mixing entropy that acts to reduce
the free energy. This collective phenomenon might be
regarded as one of the hallmarks of the mesoscopic regime.
The collective equilibrium is clearly dynamic in nature and
subject to the familiar law of mass action. This, by itself,
it is not something fundamentally new. What is new is that,
in the present context, we are applying it to “reactants” and
“products” which are ill defined fragments of bulk phases
whose detailed structures are so incompletely specified that
they are usually modeled as parametrized, renormalized,
phenomenological entities.

For the proper application of the law of mass action, it
is necessary to have an expression for the chemical potential
of a drop. Usually we are concerned with a dilute “solu-
tion” of drops and the time honored expression for the
chemical potential of a component of a dilute solution is
u=u’(T,p)+kTln X , 4.1
where X is the mole fraction of the component in question
and #°, dependent only on temperature and pressure, is the
chemical potential in the standard state. For the case of a
drop, the task before us is the specification of u°. In this
endeavor it is instructive to first examine a simpler and less
rigorous example than that of a drop in a microemulsion.
This example is found in the so called classical theory of
homogeneous vapor phase nucleation [15, 16, 17] where the
nucleus for condensation as well as smaller clusters are
modeled as liquid drops in a supersaturated vapor. This

model, to which workers in the field have assigned the name
“capillary approximation”, is identical to the “phenomeno-
logical model” embodied in Eq.(1.1), except for the
absence of the term referring to the surfactant.

There is one difference however. The continuous phase
now consists of supersaturated vapor and possesses a molar
volume on the order of 10* times larger than that of the
disperse (liquid) phase contained in the drops. Thus one of
the criteria for the applicability of Eq. (2.10), namely that
both “phases” have comparable molar volumes is violated,
and it would seem as though that expression cannot now be
used. However, one can advance a plausibility argument
that when the molar volumes are vastly different, Eq. (2.10)
can still be used, provided that (v) is taken to be the molec-
ular volume of the condensed phase. This argument is based
on a lattice gas treatment of the system, vapor plus liquid
drops. At this point it should be reemphasized that
Eq. (2.10), which is to be used in situations where the mo-
lecular volumes of all components are comparable is by
contrast based on more rigorous theory, and not on a
plausibility argument.

In classical nucleation theory one is interested in evaluat-
ing the so called equilibrium size distribution of clusters for
the purpose of applying the principle of detailed balance to
the determination of cluster molecular evaporation coeffi-
cients, and in evaluating the equilibrium distribution, the
law of mass action is used. As indicated above, it is then
necessary to have an expression for the chemical potential
uy of a drop (cluster) consisting of n molecules. There is
considerable controversy among workers in the nucleation
field over the nature of this expression, and the method that
we now use to derive it is not exactly any of those currently
in vogue among these workers. Nevertheless, besides pro-
viding an introduction to the related size distribution in
globular microemulsions, we believe that it is essentially
correct.

We begin by rewriting Eq. (1.2) for the nucleation case.
We find

G= Nvap:uvap + Nliq:u]iq +0A- TSmix

= WNyapllyap + Z Nn (n:uliq + Gan) - TSmix 4.2)
n

in which N,,;, and Ny, are the total numbers of molecules
of vapor and liquid in the system and Uyaps Miq are the cor-
responding chemical potentials of single molecules. N, and
ay are, respectively, the number of drops (clusters) of »n
molecules and the surface area of a drop of # molecules.

The next problem is the specification of S,,;,,. We note
that, since the assembly of drops is dilute, the configuration

integral Z, is simply H (V)N where Vis the total volume
n

of the system. Then for 7" in Eq. (1.3) we can write

B (V/v)n
r-n .

(4.3)
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where, for simplicity, we have written v for (v) = /> and
N,! compensates for the indistinguishability of drops of
the same size. Substitution of this relation into Eq. (1.4),
and the result into Eq. (4.2), gives

G= Nvapt“vap"' E Nn(n/lliq+aan)
n

v/ v)Ne
_krm [T O (4.4)
n Nn!
U, is now computed as follows,
oG N,
Ly = <—> =n,uliq+aa,,+kT1nLU
ONL/ Nyaps N1y Top v
N,p,
= nu,iq+aan+lenM , 4.5)
Nvappliq

where p,, and pj;, are the densities of vapor and liquid,
respectively, and where we have assumed (as is actually the
case) that N, =p.,, V. Since the total number of
molecules in the system (counting drops as molecules) is
almost indistinguishable from Nyap we could  write

X, =N, /N,,, and Eq. (4.5) could be expressed as

vap

Uy = nuliq+oan+krln M} +kTlIn X” (4:6)

Plig

from which it is clear, by comparison with Eq. (4.1) that

Uy = rut“quaa,,nLlenM .

Pliq

4.7

This differs from the standard result in classical nucleation
theory by the logarithmic term involving the ratio of the
densities. That logarithmic term is a direct result of the in-
clusion of the full mixing entropy, a quantity that is partial-
ly omitted from the classical theory.

In order to obtain the cluster size distribution we now
employ the law of mass action in the form
Up = Nlyap (4.8)
and substitute Eq. (4.6) into this relation. The result for the
size distribution N, is

Pii I
N, = <ﬂ> Nvapexp {__‘[”(.uliq_.uvap)'*'aanl} .
Pvap kT 4.9)

Except for the factor involving the ratio of densities, this
expression is the same as the classical result. That factor
which clearly has its origin in the mixing entropy is of the
order of 10* for typical fluids. Although its size is con-
siderable it is worth noting that it has been variously esti-
mated by other means [18] to be as large as 10'®. This fac-

tor has been at the center of the so called “replacement free
energy” controversy that has visited the field of nucleation
for almost thirty years [18, 4]. It can now be seen to repre-
sent the same problem as the mixing entropy problem in mi-
croemulsion theory.

Since the rate of nucleation is essentially proportional to
the factor, it is clear that mixing entropy is of great impor-
tance in this problem. This provides a partial response to
the question concerning the quantitative significance of the
entropic length scale. Here we have an example in which it
is very important. We should however note that its impor-
tance derives from the fact that the mixing entropy, as part
of the free energy of formation of the cluster, appears in an
exponent so that the logarithm in In I"is effectively canceled
and both the size distribution and the associated rate now
depend directly upon the very large number I". We shall see
that the size distribution in a microemulsion similarly
depends on the exponential of the mixing entropy so that,
in this case too, the length scale acquires a similar impor-
tance. It should also be mentioned that in the nucleation
case, the surface tension is so large that the mixing entropy
cannot, by itself, stabilize the dynamic equilibrium. Yet the
mixing entropy still has a pronounced effect on the
equilibrium size distribution, in effect, as mentioned
earlier, determining its height through the factor involving
the density ratio.

We turn now to an example involving a microemulsion
or, more accurately, to a system closely resembling a micro-
emulsion. This system is a dispersion of gold nanocrystals
in toluene, and we choose to focus on it because rather
careful measurements have been made by Leff et al. [11] on
certain features of the particle size distribution in the
dispersion. The system forms a close analog of a micro-
emulsion since the interface between the gold crystals and
the continuous phase of toluene is the locus of a close-
packed layer of surfactant. Furthermore Leff et al. ob-
tained evidence [11] that the dispersion was in dynamic
equilibrium, much like a microemulsion, since they were
able (within limits) to reversibly change the stable crystal
size distribution through a change of system composition.
The procedure of these authors (omitting details) involved
the use of a quaternary ammonium ion to transport Au
Cl, ions into a solution of thiol in toluene. There, AuCl,
ions were reduced by NaBH, so that Au atoms were releas-
ed to form gold nanocrystals capped by a closepacked (self
assembled) monolayer of 1-dodecanethiol that acted as a
surfactant and gave rise to a negative, curvature dependent
(i.e. exhibiting a bending energy) interfacial tension (be-
tween gold and toluene) for which the authors provided a
theoretical estimate. Stabilization of the dispersion was pri-
marily due to the negative surface tension, but in accor-
dance with our earlier discussion both population and
polydispersity were affected by mixing entropy.

The authors used the law of mass action to evaluate the
crystal size distribution in a manner almost identical to that
employed for the determination of the cluster size distribu-
tion in the nucleation example presented above. In the pre-
sent case the law of mass action takes the form
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Un, ¢ = N UA(SOIN) + 1 fai01 (sOID) . (4.10)
In this equation u, , is the chemical potential of a nano-
crystal containing # gold atoms and ¢ thiol molecules while
Uy (soln) is the chemical potential of a gold atom in the
toluene and w0 (soln) is the chemical potential of a thiol
molecule in the same solution. y, , can be evaluated in a
manner similar to that used in the evaluation of u, in the
previous example involving nucleation (again assuming that
the “solution” is dilute with respect to crystals). The result
is

N,
%. 4.11)
v/I

Bt = NUAy+ Llihioi+ 0 A +k Tln
In this equation u,, is the chemical potential of a gold
atom in bulk crystalline gold, ;o is the chemical potential
of a thiol molecule (must be estimated) in a self assembled
monolayer at the gold-toluene interface, ¢ is the surface
tension, a, , is the surface area of a nanocrystal of type n,t,
N, is the number of crystals of type n, ¢, and / is the length
scale.

In complete analogy to the procedure employed in the
derivation of the equilibrium size distribution of the clusters
of nucleation theory, Eq. (4.11) can now be substituted into
Eq. (4.10) and the result can be solved for N, ., the nano-
crystal size distribution. In essence, in deriving the size dis-
tribution, Leff et al. followed the procedure just described.
However, for the argument of the logarithm in Eq. (4.11),
instead of the quantity N,,,,/(V/l3), they used X, , the
mole fraction of nanocrystals (regarded as molecules) of
type n,t. This form seemed perfectly reasonable in view of
the conventional expression, Eq. (4.1), for the chemical
potential of a solute in a dilute solution. Furthermore the
authors did not write the first three terms on the right hand
side of Eq.(4.11) in exactly the form shown, because
various of the quantities had to be estimated by means of
theory. However what they wrote was equivalent to those
first three terms.

Now the mole fraction, used as the argument of the
logarithm by the authors, becomes identical to the argu-
ment appearing in Eq. (4.11) if the length scale is chosen in
accordance with Eq. (2.10), i.e. if the correct scale, referred
to phase space, is used! This follows from

N, N, N,
mt  Nog _Nog_ oy (4.12)
v/ie Vv N

in which N is the total number of molecules in the solution
and the second step follows from the fact that v is the aver-
age volume per molecule in the system (unlike the nuclea-
tion example . . . in this case the molar volumes of a// com-
ponents are comparable and the estimate Eq. (2.10) is valid
without dependence on a plausibility argument). Thus Leff
et al. used the correct length scale implicitly. If they had
(somehow) employed another scale the “height” of their
derived size distribution would have been different, i.e. they
would have predicted a different crystal population

although the “shape” of their size distribution would have
been the same. Since only the “shape” is involved in the esti-
mate of the mean crystal size, the length scale has no effect
on this mean size. The authors measured the mean (equilib-
rium) size as a function of system composition. Measure-
ments of the ratio of gold to thiol molar ratios versus the
equilibrium mean crystal radius (including the thiol mono-
layer) established by the particular composition ratio
showed a very good agreement with a theory based on
Eqgs. (4.10) and (4.11) [11].

The implication of this analysis is that, for the case where
all molar volumes are comparable, Eq. (4.1) is valid with
u’ given by
Un,t = NUAy+ Hlihio + 0 A (4.13)
only when the length scale is chosen in accordance with
Eq. (2.10).

We close this section with the promised proof (referring
to Fig. 1.1) that polydispersity is controlled by the mixing
entropy associated with the permutation of drops among
the fixed “syringes” while the height of the size distribution
(drop population) is determined by the mixing entropy asso-
ciated with the continuum of positions available to drops
not immobilized on syringes. We work with the simpler case
of the supersaturated vapor involved in the nucleation ex-
ample, but it will be obvious that the proof is more general.
Thus, we consider single component polydisperse drops
such that there are N, of them consisting of » molecules.
We rewrite I, prescribed by Eq. (4.3), in the form

Ny! pNa
r=rr,= = I

[N, ANyt o™

n

where Ny is the total number of drops. It is clear that &y,
the first factor in parentheses, is the part of the mixing en-
tropy obtained by merely permuting the drops among the
syringes while 7, the second factor in parentheses, is the
remaining part of the mixing entropy associated with the
continuum of positions to which the configurational in-
tegral V7Vd corresponds.

The mixing entropy is kIn I+ kIn I so that the free
energy of the system is

4.14)

G = Z nNn”liq+Nvapﬂvap+U E N"a"
n n

—kTInl—kTInl, . (4.15)
In view of Eq. (4.14), this equation is really the same as
Eq. (4.4), but we can now truncate it by retaining only one
of the logarithmic terms. If we retain the term in Iy, only
that portion of the mixing entropy involving the permuta-
tion of drops among the syringes will be involved. Then, us-
ing the truncated expression, we can repeat the steps con-
tained in Eqs. (4.5), (4.8), and (4.9), recalling that

Ng= Y N, , (4.16)
n
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to obtain

N, 1
— =exp § —— [n(Uyqp, —tig) +0a,] ¢ . 4.17)
{ kT ap lig n}

Ny

Since N, /Ny is the fraction of drops of size n, Eq. (4.17)
characterizes the polydispersity. Thus we have shown that
the part of the mixing entropy corresponding to permuta-
tion of the drops among syringes determines the polydisper-
sity. Since retention of borh logarithmic terms in Eq. (4.14)
leads to Eq. (4.9), it is evident that the inclusion of the sec-
ond term merely introduces the factor PrigNvap/ PyapNg in
front of the exponential in Eq. (4.17). Thus, as indicated
earlier, we see that the mixing entropy associated with the
continuum of drop positions controls the height (popula-
tion) of the drops.

5. Effects Associated with the Use of a Length Scale
Larger than the Physically Consistent Scale:
the (asymmetric) Random Mixing Model

In this section we apply the length scale estimate of
Eq. (2.10) to a highly idealized model of a globular micro-
emulsion and compare some of the results with those of the
random mixing model.

As mentioned earlier, in the random mixing model
(RMM) [7] the length scale for the mixing entropy is chosen
to be that of the lattice parameter which, in turn, is deter-
mined by the composition of the system and is usually
orders of magnitude larger than a length of molecular size.
In this section we consider the asymmetric limit of the ran-
dom mixing model, where the concentration of one of the
bulk species is very large, and that of the other very low. In
this limit, the model reduces to a highly dilute droplet type
microemulsion, the free energy of which can be compared
to the results of previous sections.

In the random mixing model [7], the system volume is
divided into cubes of side &. This lattice parameter is deter-
mined by the composition of the system through the rela-
tion
{=60(1-9)/co, , (5.1
where ¢ and (1 —¢) are the volume fractions of species 2
and 1, respectively, ¢, is the surfactant concentration
(molecules/volume) and oy is the interfacial area occupied
by the surfactant. The free energy is expressed [7] in terms
of the phenomenological model and is therefore still given
by Eq. (1.2). It is assumed that the interfacial free energy
oA is completely determined by Helfrich’s curvature free
energy [8] (see Eq. (2.1))

gA = 5 [%{(01 +c2—200)2+Kgc,ch dA4 . (5.2
A

In the model, “bends” are sections of a sphere of diameter
¢ and K, is set equal to zero. In order to make our point as

clear as possible, we set ¢, =0, and choose species 2 to
have the small volume fraction. For a system in which ny
lattice cells are filled with species 2 (the subscript d em-
phasizes that we are dealing with drops) this leads to the
scale invariant result [7]
0A=8nnyK (5.3)
Note that in the model as described in [7], all contributions
to the free energy are defined as densities, i.e. (free
energy)/(nd+n1)£3, with n; the number of lattice sites fill-
ed with species 1, the component that comprises the con-
tinuous phase. Then it is easy to see that Eq. (5.3) cor-
responds to Eq. (2.4) in [7] for ¢y and ¢—0.

An essential ingredient of the model, without which the
most important result (i.e. three phase coexistence between
a bicontinuous and two excess phases) is not observed, is the
size dependence of K. This is due thermal undulations and
it follows from perturbation theory [19, 20] that

kT
K@) =K==

In(/a) , (5.4

/4

where K| is the bare bending elastic modulus (on a molecu-
lar scale @), and « is a constant for which values of 1 [20],
2 [21], and 3 [19] have been variously predicted. Eq. (5.3)
now becomes

oA =8nn, <K0—alen (5/a)> . (5.5)
4n

The entropy of mixing is defined in the model as [7]

Smix = —klnglng+n,In(1—-9¢)] . (5.6)

At very small ¢ we then have

Smix(@—0) = —ngk(Ingp—1) . (5.7)

Combining Egs. (1.2), (5.4), (5.5), and (5.7) yields the free
energy

Grm = Moty + Ny + Nypig+ 8 mng K

+ngkT(Ing—1-2aln(é/a)) . (5.8)
It should be emphasized that the last term in the parentheses
on the right of Eq. (5.8) comes from the interfacial free
energy of the system and not from the entropy of mixing.

We now compare Ggy, Eq. (5.8), with the fundamental
estimate, Eq. (2.10), for the entropic length scale. Assume
a dilute, monodisperse assembly of ny model drops con-
taining n molecules of dispersed phase. The partition func-
tion of the microemulsion may be expressed as

(@)™
nd!

(5.9)

O, = Q.04 = 0O,
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where Q. is the partition function of the continuous phase
and

nq
04 = (qn)

nd!

(5.10)

is the corresponding quantity for the disperse phase. The
“decoupling” implicit in the product 0.0y implies that the
surface free energy is considered to be part of the Helmholtz
free energy f, of the drop (see Eq. (5.12)). The partition
function of a single immobilized drop (as held by a “syr-
inge”) is given by

V
Gn = €D (~/o/KT) (5.11)

with / the length scale, and f;, the free energy of a single im-
mobilized drop. f, is given by

o = napy+ngus—puog+oay (5.12)

where ay is the surface area of the drop and vq its volume.
Also, it is clear that

ngag =A4

Vi+ Vo=V

nguy =V,

ngn =N, , (5.13)

where V is the volume of the continuous phase and V is
the total volume of the system. Q. in Eq. (5.9) is given by
kTIn Q.= Nyu;—pV,, and Q4 is obtained from Eq. (5.10)
and Eq. (5.11) with Eq. (5.12) substituted. Then Q, is ob-
tained from Eq. (5.9), and

G=—kTInQ,+pV (5.14)

Substitution of Q, into this equation gives

G =Ny +uy Ny + ug Ny + 8t ng K,
+kTng(In(p)—1-2aln(¢/a)—In (vd/l3)) , (5.19)

where, in Eq. (5.12), we have used Eq. (5.5) and where the
volume fraction ¢ of the drops is defined via ng/V=e/vy,
where we neglect the small amount of dissolved species 2 in
the continuous phase. Now taking the length scale for the
mixing entropy equal to the cube root of the drop volume,
ie. I°= Uq (orders of magnitude larger than the cube root
of the molecular volume), the last term on the right of
Eq. (5.15) vanishes and we recover exactly Grm of
Eq. (6.8). It is somewhat remarkable that we recover Grm
exactly since Eq. (5.15), is based on O, evaluated in the
continuum while the random mixing model is based on a
lattice. However this exact correspondence would not have
appeared if O, had not been evaluated in a dilute system of

noninteracting drops. We discuss this point somewhat fur-
ther in section 6. In any event the exact correspondence, in
the dilute drop regime, provides a convenient means of
comparing the effects of the RMM length scale with those
of the more fundamental estimate, Eq. (2.10).

If instead of the large RMM length scale the more fun-
damental estimate, is substituted into Eq. (5.15), we find

G =Ny +p Ny + N+ 8mng K

+kTng(In(p)—1-2aln(¢/a)—1In (vq/a’)) (5.16)
Using ln(vd/a%) =In (53/a3), we get
G =Ny +uy N+ ugNg+ 8ng K,
+kTng(n(p)—1—Qa+3)In(¢/a)) . (5.17)

Comparing Eq. (5.17) with Eq. (5.8), it follows that, al-
though the phenomenological model does not explicitly take
into account configurations at scales smaller than the lattice
parameter ¢, the functional form of its free energy is still the
same as the one following from the more fundamental
analysis, the only difference being a larger “effective” «.
The reason is that any length scale / not proportional to the
droplet size (or lattice parameter, in the case considered
here), appears in the free energy as a term logarithmic in the
drop size. The length scale dependence of the bending
elastic modulus also appears as a term, logarithmic in the
drop size, in the free energy. It is worth noting that an inter-
facial free energy, more realistic than Eq. (5.3), i.e. one
which K, #0 and ¢y # 0, also leads to a different “effec-
tive” & [22]. Nevertheless, the analysis presented here shows
a significant additional contribution to the coefficient of the
term in the free energy, logarithmic in drop size, that has its
origin in an effect, completely different from that due to the
thermal undulations of the oil-water interface that have
been considered until now. Thus, if one attempted to mea-
sure the coefficient of the logarithm due to the renormaliza-
tion of the bending moduli, the influence of the mixing en-
tropy (i.e. the number 3 in the last term in the parentheses
on the right of Eq. (5.17)) is essential and should be taken
into account. It should also be mentioned that in recent
work [23], curvature elastic quantities of the surfactant
loaded oil water interface of a droplet type microemulsion
were obtained, using an expression for the entropy of mix-
ing equivalent to Eq.(5.7). This expression involves a
length scale equal to the drop size. The error caused by the
use of this too large length scale is then reflected in incorrect
values of the bending elastic quantities.

The analysis of this section provides an answer to the
question as to why the “conventional” Random Mixing
Model produces results in good qualitative agreement with
experiments, in spite of the fact an information theoretic
rather than a physical entropy is used. The RMM of [7] was
the first phenomenological model capable of predicting a 3
phase equilibrium (a microemulsion coexisting with almost
pure oil and water) as well as the phase transition between
a microemulsion and a lamellar liquid crystal phase found
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in experiments. This success was due to the use of the ben-
ding elastic modulus, renormalized according to Eq. (5.4),
which led to an additional contribution to the system’s free
energy, logarithmic in the size of the oil/water domains (the
lattice parameter). The analysis of this section shows that
the inclusion of a physically consistent entropy also results
in a contribution to the free energy logarithmic in drop size.
Because of the simplicity of the model, the phase diagram
is, at best, predicted only qualitatively, and therefore the in-
fluence of this additional logarithmic contribution may be
fully absorbed into the uncertain coefficient a in Eq. (5.8).
The additional term is however of the same order of magni-
tude as the renormalization coefficients of the bending
elastic moduli and its quantitative influence is a significant
increase in the entropy of the system.

6. Formulation and Significance of Theories Based
on the Physically Consistent Length Scale

Although the analysis of section 2 provides an estimate
for the physically consistent length scale, the question of
how to incorporate it into useful theories still remains.
There is a problem rooted in the fact (as emphasized in sec-
tion 2) that when the fundamental length scale is used it is
necessary to perform a combinatorial analysis under the
strict constraints to which the system is subject. In simple
cases such as those addressed in sections 3 and 4, the con-
straints are implicit in the configuration integral Z, i.e. they
are enforced during the evaluation of the integral. In the ex-
amples of section 4, the assemblies of drops were dilute and
the restraint to spherical form achieved expression only in
the surface free energy. However, if a nondilute system had
been used, additional constraints would have been activated
in the restriction of nonoverlap of the spheres (assuming
noncoalescence) and the integral would have been quite
complex even for a monodisperse system [24]. (This is the
basis for the remark that Eq. (5.15) would not have been
obtained in a nondilute system.)

Nevertheless, in theories of droplike systems the mode of
incorporation of the fundamental scale is clear; the con-
straints are to be satisfied by the configuration integral.

How are they to be incorporated into more complicated
systems? The answer has already been partially supplied by
workers in the field who have either used scales much larger
than the correct one or various renormalization procedures
such as the random wave approach. As indicated in sec-
tion 2 the use of a large length scale can partially account
for constraints without requiring their explicit enforcement.
Renormalization procedures offer the possibility of having
the length scale cancel out of the problem under the implicit
assumption that it is independent of thermodynamic state
(an assumption that is not always warranted). Thus, al-
though these methods have merit, they have still avoided a
direct referral to the phase space definition of physical en-
tropy. What is therefore needed is a scheme for augmenting
them so as to include a proper referral to phase space.
Although this may be difficult, it may not be impossible.

For example it may be feasible to formulate the random
wave approach in a manner that allows it to evaluate con-
figuration integrals that describe the systems to which it is
applied.

How important is it to use the length consistent with the
physical definition of entropy as opposed to those which
may not be consistent? To explore this question we begin
with the theory of deGennes and coworkers [12] that makes
use of the so called random mixing model in which the lat-
tice parameter (the length scale for the mixing entropy) is
chosen as the persistence length. Since one is primarily con-
cerned with changes in entropy, the choice of length scale
would cancel out of the problem if the scale did not itself
change with thermodynamic state, and therefore its precise
specification would not be important. Unfortunately, the
persistence length does depend on the thermodynamic state,
e.g. on composition, so this happy circumstance is not
realized in this model. Furthermore, in dilute microemul-
sions, the random mixing model, by itself, predicts that the
mixing entropy per globule at fixed surfactant fraction,
diverges whereas it should tend to vanish. The situation is
saved by the introduction of bending energy which destab-
ilizes the microemulsion before this entropic catastrophe
can occur. The use of the consistent length scale would also
destabilize a dilute system because of a reduction in en-
tropy, but this effect could go unnoticed in the presence of
a large bending energy [10]. However, one should still be
aware of the qualitative difference in the phenomenon.

In general, when the focus is on the phase diagram of the
microemulsion, predicted results are not too sensitive to an
uncritical choice of length scale, because the emphasis is
then on the free energy in which the scale makes its ap-
pearance in one of the logarithmic terms, insensitive to that
scale. There may be exceptional situations, however, in
which the scale exerts considerable influence. Such a situa-
tion may occur in the case in which a globular microemul-
sion is in equilibrium with a separate bulk phase of the
dispersed species. Then there is no limit to the supply of that
species, and the constraint of a fixed supply of surfactant
that requires a fixed interfacial area, is no longer deter-
minative of the mean size of the drops and, concomitantly,
of both the number and the distribution of drops. In this
case the mixing entropy could be sensitive to the choice of
length scale, because the correction will also occur in ny in
Eq. (5.17) and will then involve more than the simple addi-
tion of a logarithmic term [25].

However, situations in which the length scale has a large
effect are those in which the measured variable depends
directly on the argument of the logarithmic term in which
the length scale appears. Such situations appear in section 4
and arise because “equilibrium distributions” of clusters are
involved, and the relevant equilibrium constants contain the
mixing entropy as part of the standard free energy in an ex-
ponent. Thus the argument of the logarithm becomes in-
volved, and an improper evaluation of the mixing entropy
gave rise to predictions that can be seriously in error. For
example, in the case of nucleation, rates that differ by as
much as a factor of 10'® have been predicted [18].
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The work of Leff et al. [11] presents the possibility of stu-
dying another interesting phenomenon that might be refer-
red to as modified Ostwald ripening. In the case of ordinary
Ostwald ripening, small crystals are cannibalized by large
crystals so that a precipitate coarsens indefinitely. In two
famous papers, Lifshitz and Slyozov [26] and Wagner [27]
showed that, barring intercrystal interaction, the mean size
of the crystals increased as the 1/3 power of time. Now Leff
et al. have supplied us with a realizable case in which the
crystals do not grow indefinitely, but achieve a stationary
size distribution governed by a dynamic equilibrium in
which mixing entropy plays a role. This means that the
relaxation time to equilibrium depends on mixing entropy.
Initial formulations of this rate process, that include mixing
entropy, in an extension of the Lifshitz-Slyozov theory, in-
dicate that it is once more the exponential of the entropy
that enters the theory, so that the use of the correct length
scale becomes important [28].

These last examples show that there are already phenom-
ena in which the length scale for mixing entropy must be
dealt with critically. Additional important examples will un-
doubtedly surface in the future.

In closing this section, it is important to emphasize that
there may be situations in which the stability of a micro-
emulsion may not depend primarily on mixing entropy, but
rather on bending energy. Borcovec, in the paper referred
to above, provides an example of such a situation. Never-
theless mixing entropy still plays a role, and in general we
cannot dispense with it.
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