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Abstract: The efficiency of Markov-Chain Monte Carlo simulations can be enhanced by

exploiting information about trial moves that would normally be rejected. The original presentation

of this approach was limited to a specific MC sampling scheme. Here we present a general

derivation of a method to improve the sampling efficiency of Monte Carlo simulations by collecting

information about the microstates that can be linked directly to the sampled point via an

independent Markov transition matrix. As an illustration, we show that our approach greatly

enhances the efficiency of a scheme to compute the density of states of a square-well fluid.

Markov-Chain Monte Carlo (MCMC) methods have been
used extensively for numerical evaluation of thermodynamic
properties of molecular systems.1-10 The core of any MCMC
program is an algorithm that generates a Markov chain of
configurations. By a judicious choice of the transition
probability from one point in the chain to the next, the overall
probability of visiting each microstate can be made propor-
tional to its statistical weightF (e.g. the Boltzmann weight,
in the case of thermal systems).

MCMC algorithms traditionally construct a Markov-Chain
using two steps:2 a. Starting from the current (old) state (o)
a trial move is attempted to a new state (n) according to a
trial probability R (for example, displacement, rotation or
regrowth of a particle4). b. The trial state is then accepted
or rejected according to an acceptance rule that ensures
detailed balance (or, at least, the less strict balance3) between
sampled microstates.

Here, and in what follows, we use the term “balance” to
describe algorithms that leave the equilibrium distribution
invariant. That is when we apply one Monte Carlo step to
an equilibrium distribution of initial states, the average flux

into any given statei is exactly balanced by the total flux
out of that state. As a consequence, the probability density
is not changed by such the Monte Carlo algorithm. The
stronger “detailed balance” condition states that, for any pair
of statesi andj in an equilibrium ensemble, the average flux
from i to j is equal and opposite to the flux fromj to i.
Clearly, the latter condition can only be satisfied if the
algorithm satisfies microscopic reversibility: i.e., ifj can be
reached fromi, then there is a finite probability to carry out
the reverse move fromj to i.

In eq 1πij is the ij th element of the Markovian transition
matrix. For i * j, πij is given by the product of two terms:
the probability of attempting a trial move from statei to state
j and the probability of acceptingj as the new state. The
transition matrix is a stochastic matrix therefore its elements
must obey eq 2.

In a Monte Carlo simulation, thermodynamic properties
are evaluated as the expectation values of the corresponding
instantaneous properties. When a trial move is not accepted,
the instantaneous property of the old state has to be recounted
in the calculated average, and no information about the
rejected state is included in the computation of averages.
Let us now consider MC algorithms that satisfy detailed
balance. The condition of detailed balance is satisfied
whenever eq 3 holds for any pair of old states (o) and new
states (n).

Equations 1-3 do not uniquely definePacc(on): there is
therefore a relative freedom in the choice of the functional

* Corresponding author phone:+31-20-6081234; fax:+31-20-
6684106; e-mail: frenkel@amolf.nl.

Foπon ) FoRonPacc(on) ) FnRnoPacc(no) ) Fnπno (3)

πij ) RijPacc(ij ) ∀ i * j, πii ) 1 - ∑
j

πij (1)

∑
j

πij ) 1, ∀i (2)

389J. Chem. Theory Comput.2005,1, 389-393

10.1021/ct049900m CCC: $30.25 © 2005 American Chemical Society
Published on Web 03/03/2005



form. The most popular choice is the Metropolis rule.5 An
alternative (and usually less efficient) choice is the “sym-
metric” rule proposed by Barker.6

In special cases it is possible to choose the trial probability
Rij in such a way that all trial moves are accepted.7-10

Usually, however,Pacc(on) e 1, and there is a probability 1
- Pacc(on) that the trial move will be rejected. In that case
the new state is rejected, and all information about it is
discarded. Recently, one of us11 showed that information
about the rejected states can be included in the calculation
of equilibrium properties. However, the method discussed
in ref 11 was restricted to one specific Monte Carlo scheme.6

Below we present a more general derivation that allows the
evaluation of equilibrium properties by combining impor-
tance sampling and local sampling of microstates using any
combination of valid MCMC schemes. To make this explicit,
we consider two sets of transition probabilities (that may or
may not be the same): the first describes a conventional
sampling of microstates while the second describes the local
sampling of a group of microstates that are connected to the
individual microstates of the first Markov chain. We use the
term“MarkoVian web” to denote the set of microstates thus
connected.

We assume that the Markov chain that connects the states
of the Markovian web satisfies detailed balance. Then eq 3
applies for any given pair of connected microstates{o,n}.
From eqs 2 and 3 the balance condition may be derived:2

Let us now consider the sampling of an equilibrium property
A of the system:

We now substituteFn from eq 4. By changing the order of
summation (integration in the continuum case) over all
microstates we get

where the last step required the use of eq 2. Equation 6 is
exact and is in principle sufficient to describe how the
expectation value of a property can be evaluated by com-
bining importance sampling and integration over the local
states of a Markovian web; i.e. for every state{m} sampled
via importance sampling an integration is performed over
all {n} states for whichπmn

web * 0. Equation 6 is quite
general, and it may be implemented in many ways. In the
present paper, we focus on an application to Monte Carlo

sampling of the equilibrium properties of a simple off-lattice
system. The transition matrix of the Markov chain that is
used to generate the Markovian web can be separated in two
terms as in the case of MCMC discussed above (eq 1). The
sum in eq 6 may be broken into two terms using eq (1):

Substituting (7) into (6) and using the fact that∑n*mRmn

) 1, a new expression for the average properties is derived:

The summation in eq 8 may be performed in many ways.
One possible approach is to express the sum as a weighted
average over the trial probabilityRij.

Equation 9 implies that the sum required for eq 6 can be
computed as a weighted average, where the weight is the
trial probabilityRij. In practice, this means that we perform
not only an importance sampling of the statesn with
corresponding weightsFm but also we generate a finite subset
of the trial statesn, with weightsRmn.

We stress that eq 6 is general, whereas eq 9 represents
one of the many possible implementations of the general
case.

An important aspect of the proposed method is that the
transition matrix of the Markovian web is completely
independent from the Markovian matrix that is used to
generate the importance sampling (the importance sampling
could even have been generated by a completely different
method, e.g. constant-temperature Molecular Dynamics). In
other words: the two transition matrices may differ in their
trial probability or in their acceptance probability (e.g. use
of Metropolis or the symmetric rule) or in both.

It is advantageous to consider situations where the number
of trial states is very large. Such a situation arises for instance
when the system under consideration can be decomposed
into noninteracting subsystems. An example is a system
consisting of particles with intermolecular interactions that
can be truncated beyond a finite cutoff distancerc. If we
divide the system into cells with diameterd g rc, then
nonadjacent cells will not interact. This means that the
probability of acceptance of a trial move in one such cell
does not depend on the possible outcome of a trial move
inside all other nonadjacent cells. This makes it possible to
construct “parallel” trial moves that attempt to move particles
in a set ofN noninteracting cells. In normal MCMC, the
result of such a parallel move is that the system ends up in
one specific final state (out of the 2N possible states). With
the present algorithm we can do much better. By generating
M trial states in each of the subsystems we can evaluate the
term ∑Anπmn

web by summing all (M + 1)N possible combina-
tions of trial states for the subsystems. The number of trial
microstates can be very large. Hence, special care should
be taken to compute averages over trial states efficiently.
Since the subsystems are independent, one can calculate the
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probability of finding the total system in a specific macrostate
(e.g. the collection of microstates with the same potential
energy) as the convolution of the probabilities of the
subsystems. It should be noted that the use of the convolution
or even the independence between the subsystems is not a
necessary requirement, but it is expected to be crucial in the
case of a large number of possible trial states.

In some cases, the efficiency of the scheme may be
enhanced by iterating the steps that led to the derivation of
eq 6. In that case, we construct a Markov web inside a
Markov web:

In our simulations, we use such a nested Markov web
because we combine a set of parallel single-particle trial
displacements with a set of parallel tempering moves where
we attempt to swap (again in a parallel move) systems with
different temperatures.12

To illustrate the power of the proposed approach, we have
applied the above algorithm to the calculation of the energy
histogram of a square well (SW) system. Although the SW

potential is one of the simplest intermolecular potentials, the
model exhibits glassy behavior for systems with short ranged
interactions at low temperatures. This makes Monte Carlo
sampling extremely difficult. Recently13 we proposed an
algorithm that was designed to overcome these sampling
problems, allowing us to sample configuration space much
more efficiently than using traditional methods. The method
is an extension of the approach used in ref 14 and is based
on the inclusion-exclusion theorem. It explicitly computes
the accessible volumes in which a test particle would
experience the square-well attraction of zero, one, two, etc.
other particles. The technical details of this method are
described in ref 13. What matters for the present discussion
is that this algorithm, rather than considering a single trial
displacement of a particle, computes the Boltzmann weights
of a large number of trial positions. In a conventional
algorithm, all trial states but one would be discarded. Here,
we consider this algorithm precisely because it generates
many trial states for a single particle move. In addition, as
the square-well interactions that we consider are short ranged,
we can performN independent trial moves in parallel.

In Figure 1 we present a comparison between the
traditional averaging, and the proposed methodology for the
calculation of the energy histogram, and its numerical
derivatives with respect to the energy, in a SW fluid with a

Figure 1. Main figure: Comparison of P(U), the probability density of the potential energy, for a system of 2048 SW particles
at F* ) 0.542 as obtained from conventional Monte Carlo sampling of serial moves (SM) using eq 5 and from parallel displacement
moves of 256 particles, using eq 6 (PM). Insets: a) The first derivative of the probability density with respect to the potential
energy. b) The second derivative of the probability density with respect to the potential energy. Same color coding.
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short-ranged attraction with a well width ofλσ ) 1.025σ.
Single-particle trial displacements were performed in a
volume of (0.40σ)3. The system contains 2048 SW particles
at reduced densityF* ) 0.542. The algorithm of ref 13 is
used for the single-particle displacements. In our parallel
calculations reported in Figure 1 we used 256 parallel
displacements. Figure 1 shows that the use of the parallel
algorithm enables us to achieve better statistics compared
to the conventional algorithm, since it enables us to collect
information forVm points for every important sampled point,
where V is the test volume in which we attempt the
displacement andm is the number of parallel moves
attempted. This is evident from the insets of Figure 1 where
the numerical derivatives of the energy histogram are
evaluated. These derivatives are related to thermodynamic
derivatives, and the error in their evaluation is dramatically
reduced by the parallel averaging scheme.

Figure 2 shows the excess density of statesΩex(U) for a
system of 2048 SW particles withλ ) 1.025, at reduced
density F* ) 0.542. The excess density of states was
computed fromP(U), the histogram of the potential energy
of the system, using

For the sake of comparison, the orange curvea shows the
results of a single run atT* ) 1.0, using conventional
averaging (eq 5). In addition, we used the multiple-histogram
method to obtainΩex(U) over a wider energy range (curve

c). This curve was obtained by combining the histograms
obtained in 5 simulations at reduced temperaturesT* )
{0.8,0.9,1,1.1,1.2}. The remaining curves were obtained at
T* ) 1.0, using different versions of the Markovian-web
algorithm: Curveb (yellow) was obtained using eq 6. Curves
b (indigo) andd (black) are also based on eq 6, but in this
case the trial moves consisted of 64 (b) and 256 (d) parallel
trial displacements. The curvese andf were obtained using
a “nested” web (eq 10). To obtain these curves, we combined
the parallel displacement moves with parallel tempering trial
moves in which we attempted all possible swaps of the
temperatures of five simulations at reduced temperaturesT*
) {0.8,0.9,1,1.1,1.2}.12 Curvee corresponds to 64 parallel
particle displacement and curvef to 256. In the figure, we
have only included the sampling due to trial moves that
originate from the system atT* ) 1.0. The figure shows
that the present algorithm greatly improves the sampling of
the low- and high-energy wings of the density of states. But,
of course, at some point local sampling- no matter how
good - is inadequate, and the estimated density of states
starts to deviate from the more accurate curve obtained (at
a higher cost) from a multiple-histogram calculation.

In this paper we argued that by using the basic properties
of Markov chains it is possible to construct a sampling
scheme where for each point of the phase space sampled
via a given Markov-Chain or other equivalent means of
importance sampling (e.g. Molecular Dynamics for the case
of molecular systems), a subsampling is performed of the

Figure 2. The logarithm of the excess density of states Ωex(U*) for 2048 SW particles at F* ) 0.542 as obtained from a single
run at T* ) 1: (a) (orange) averaging using eq 5, (b) (indigo) from parallel integration over 64 particle displacements using eq
6; (c) (blue) from multiple histogram reweighting of 5 systems with neighboring temperatures (see text); (d) from parallel integration
over 256 particle displacements using eq 6. Curves (e) (brown) and (f) (red) were obtained by combining the parallel particle
trial displacements with a set of parallel tempering moves between all 5 systems using eq 10: (e) and (f) correspond to 64 and
256 parallel particle displacements, respectively. The potential energy is expressed in units of the depth of the square well.

ln[Ωex(U)] ) ln[P(U)e+âU] + C (11)
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points connected to the sampled point via an independent
Markov web. By Markov web we mean the set of all
points in the configuration space that are linked to the
instantaneous configuration of the system via an independent
Markovian transition matrix. By making use of the condi-
tion of detailed balance (or balance) of the transition matrix,
we can sample these points according to their Boltzmann
weight, even though the generation of the trial states is
correlated to the old state. Using this approach, the sampling
efficiency of the Monte Carlo simulation can be greatly
enhanced.

If the intermolecular interactions are short ranged, it is
straightforward to generate 2n trial states by constructing
parallel trial moves ofn noninteracting particles. However,
the potential advantage of the method is not limited to
systems with short-ranged interactions. What is essential is
the existence of a large number of potential final states. For
instance, Liu and Luijten10 have developed a rejection-free
cluster algorithm that works for systems with long-ranged
interactions. In the conventional version of this algorithm,
only one particular cluster state would be sampled. We expect
that the present algorithm should make it possible to sample
all possible cluster states. However, we have not yet
attempted to do so.

We stress that the present algorithm improves the local
sampling of configuration space, but not the rate at which
the systems moves through configuration space. In case that
diffusion in configuration space is slow (e.g. in glassy
systems), the present algorithm must be combined with
existing schemes, such as parallel tempering, that help the
system escape from local minima in configuration space.
Interestingly, the parallel-tempering algorithm itself can also
be viewed as a scheme that generates many trial states yet
accepts only one.

The present algorithm differs fundamentally from existing
schemes that use information about virtual moves to construct
information about the density of macrostates. Starting with
the Widom particle-insertion scheme to compute chemical
potentials (see e.g. ref 2), many schemes have been devel-
oped that employ virtual moves to construct a density of
macrostates(see e.g. refs 15-17). However, in the present
scheme, we use virtual moves to collect information about
the properties of individualmicrostates. In the example that
we showed, we used the present scheme to compute a density
of macrostates, and, for this specific application, existing
schemes might also be used. However, the difference is that
the present method allows us to compute many distributions
of macrostates at the same time, because the sampling
considers microstates. Furthermore the proposed scheme can
be used to evaluate directly the ensemble average of any
desired property, whereas most of the older methods are
restricted to thermodynamic properties related to the density
of macrostates.
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