Tyrosine phosphorylation-dependent activation of phosphatidylinositol 3-kinase occurs upstream of Ca\(^{2+}\)-signalling induced by Fc\(_{\gamma}\) receptor cross-linking in human neutrophils

Paula J. M. VOSSEBELD*, Christa H. E. HOMBURG*, René C. SCHWEIZER\†, Ichaki IBARROLA*, Jan KESSLER*, Leo KOENDERMAN\†, Dirk ROOS* and Arthur J. VERHOEVEN*†

Biochem. J. (1997) 323, 87–94 (Printed in Great Britain)

INTRODUCTION

Human neutrophils possess two types of receptor for IgG (Fc\(_{\gamma}\)R), Fc\(_{\gamma}\)RIIa and Fc\(_{\gamma}\)RIIb. Each of these receptors induces neutrophil activation after cross-linking. One of the earliest signalling events that is observed is an increase in the intracellular Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]\(_{i}\)). We have shown that although separate Fc\(_{\gamma}\)R cross-linking induces release of Ca\(^{2+}\) from intracellular stores, cross-linking of both receptors together in a heterotypic complex induces a synergistic Ca\(^{2+}\) response, mainly due to an effective stimulation of Ca\(^{2+}\) influx from the extracellular medium [1]. As yet, the exact mechanism of neutrophil activation via heterotypic Fc\(_{\gamma}\)R cross-linking remains to be determined.

Fc\(_{\gamma}\)RIIb is linked to the membrane via a glycan–phosphatidylinositol (GPI) anchor. Fc\(_{\gamma}\)RIIa is a transmembrane receptor containing an immune receptor tyrosine-based activation motif (known as the ITAM or Reth motif) [2] (E-X\(_{p}\)-D-X-X-Y-X-L-X\(_{p}\)-Y-X-X-L) in the cytoplasmic tail, which has been shown to be involved in signalling of Fc\(_{\gamma}\)RIIa [3,4]. This signalling motif is found also in subunits of the T- and B-cell antigen receptor complexes [5]. Association of Fc\(_{\gamma}\)RIIa from neutrophils with the src-like kinase Fgr has been described [6]. It is not clear how the GPI-anchored Fc\(_{\gamma}\)RIIa is activated, without a transmembrane and cytoplasmic tail, transduces signals through the membrane. It has been suggested that other GPI-anchored molecules use src-like kinases for signalling [7]. The mechanism of association between these proteins is probably mediated via lipid–lipid interactions involving the lipid anchor of the receptor and the myristoylation and palmitoylation of the src-like kinase [8].

The lipid kinase, PtdIns 3-kinase, which has been found in many activated receptor complexes [9,10], phosphorylates PtdIns, PtdIns4P and PtdIns(4,5)P\(_2\) to form PtdIns3P, PtdIns(3,4)P\(_2\) and PtdIns(3,4,5)P\(_3\) respectively. It has been suggested that these lipids act as second messengers [11], but their functions are not yet clear. PtdIns 3-kinase is a heterodimeric protein containing an 85 kDa regulatory subunit (p85) and a 110 kDa catalytic subunit (p110) [12]. The p85 subunit contains an SH2 domain that can bind to tyrosine-phosphorylated proteins in the membrane, inducing activation of the enzyme [13], e.g. during T-cell receptor activation to the phosphorylated immune receptor tyrosine-based activation motif of CD3\(\zeta\) [14]. Recently, a role for PtdIns 3-kinase in Fc\(_{\gamma}\)R-induced signalling has been suggested. In guinea pig neutrophils, antibody-dependent cellular cytotoxicity is inhibited by wortmannin, an inhibitor that appears to be specific for PtdIns 3-kinase in the nanomolar range [15–18]. Triggering of either Fc\(_{\gamma}\)RI or Fc\(_{\gamma}\)RII in U937 cells induces increased PtdIns 3-kinase activity [19].

The results of our study suggest the involvement of PtdIns 3-kinase in Fc\(_{\gamma}\)R-induced Ca\(^{2+}\) signalling in human neutrophils. To investigate the relevance of tyrosine phosphorylation in this process, we have studied the effect of bringing CD45, a membrane-bound protein tyrosine phosphatase [20], which is highly expressed on neutrophils, in close proximity to the Fc\(_{\gamma}\)R.

Abbreviations used: bsAb, bismpecific antibody; Fc\(_{\gamma}\)R, the receptors for IgG; GAM, goat anti-mouse; PtdIns 3-kinase, 1-phosphatidylinositol 3-kinase; [Ca\(^{2+}\)]\(_{i}\), cytosolic free Ca\(^{2+}\) concentration; fMLP, formyl-methionine-leucine-phenylalanine; GPI, glycan–phosphatidylinositol; mAb, monoclonal antibody.

† To whom correspondence should be addressed.
MATERIALS AND METHODS

Materials

Wortmannin, formyl-methionine-leucine-phenylalanine (FMLP) and streptavidin were from Sigma Chemical Co. (St. Louis, MO, U.S.A.), ionomycin from Calbiochem (La Jolla, CA, U.S.A.) and indo-1/AM from Molecular Probes (Eugene, OR, U.S.A.). LY 294002 was from Biomol (Plymouth Meeting, PA, U.S.A.). Wortmannin was dissolved in DMSO at a concentration of 100 μM. LY 294002 was dissolved in DMSO at a concentration of 80 mM. F(ab\textprime)₂ fragments of polyclonal goat anti-mouse (GAM) IgG, Fcγ fragment specific [GAM-Fc-F(ab\textprime)₂] and F(ab\textprime)₂ fragments of polyclonal GAM IgG [GAM F(ab\textprime)₂] were purchased from Jackson Immunoresearch Laboratories, Inc. (West Grove, PA, U.S.A.). The incubation medium contained 132 mM NaCl/6 mM KCl/1 mM CaCl₂/1 mM MgSO₄/1.2 mM potassium phosphate/20 mM Heps/5.5 mM glucose/0.5% (w/v) human serum albumin, pH 7.4.

Isolation of neutrophils

Neutrophils from blood obtained from healthy individuals were isolated by Percoll density gradient centrifugation and isotonic lysis of contaminating erythrocytes as described previously [1].

Antibodies

The anti-FcγRIII monoclonal antibodies (mAbs) were 3G8 (mlgG1) [21] and CLBFcgran1 (mlgG2a) [22]. CLBFcgran1 was used in all experiments except for the control responses for the bispecific antibody (bsAb). The anti-(human FcγRII) mAb IV.3 (mlgG2b) [23] was used. As CD45 antibody, mAb 3D3 (mlgG1) was used [R. A. W. van Lier, Central Laboratory of the Netherlands’ Red Cross Blood Transfusion Service (CLB), Amsterdam, The Netherlands]. W6/32 mAb, directed against HLA class I, was used as a control antibody. The mAbs were purified from hybridoma culture supernatant by precipitation with 50%, saturated ammonium sulphate and subsequent Protein A affinity chromatography. Fab fragments were prepared by digestion with 4%, (w/v) papain in PBS containing 5 mM EDTA and 10 mM cysteine, for 90 min at 37 °C. The reaction was terminated by adding 20 mM iodoacetamide. F(ab\textprime)₂ fragments were prepared by digestion with 2%, (w/v) papain, pH 3.7, for 16 h at 37 °C. Fc parts were removed by Protein A affinity chromatography. Antibodies were biotinylated with N-hydroxysuccinimide-LC-biotin (250 μg/ml) (Pierce, Rockfort, IL, U.S.A.) for 4 h at room temperature. Free biotin was removed by dialysis against PBS.

Cell activation

Heterotypic FcyR cross-linking was performed by preincubation of the cells with biotinylated Fab fragments of anti-FcγRII and anti-FcγRIII mAbs (5 μg/ml each) for 5 min at 37 °C. Cells were washed and resuspended in incubation medium, prewarmed to 37 °C. The cells were incubated for 5 min at 37 °C in the absence or presence of wortmannin or LY 294002. Cross-linking of biotinylated antibodies was performed by adding streptavidin (1.5 μg/ml or 10 μg/ml, as specified in the Figure legends), with stirring. Co-cross-linking of FcyRs with CD45 was performed by preincubation of the cells with biotinylated F(ab\textprime)₂ fragments of CD45 (5 μg/ml) for 5 min at 37 °C. Subsequently, biotinylated Fab fragments of anti-FcγRII (5 μg/ml) or anti-FcγRIII mAb (5 μg/ml) or both together were added. After 5 min at 37 °C, cells were washed and resuspended in incubation medium that had been prewarmed to 37 °C. Cross-linking was performed with streptavidin (10 μg/ml) with stirring. Alternatively, neutrophils were preincubated for 5 min at 37 °C with a bsAb (see below) directed against FcyRIII and CD45 (20 μg/ml) or with anti-FcγRIII Fab fragments (10 μg/ml). Cross-linking was performed with GAM F(ab\textprime)₂ fragments (50 μg/ml).

Preparation of bispecific antibody

The bsAb directed against FcyRIII and CD45 was prepared by chemical cross-linking. 3G8 mAb and 3D3 mAb were digested by pepsin to F(ab\textprime)₂ fragments. 3G8 F(ab\textprime)₂ and 3D3 F(ab\textprime)₂ were reduced with 15 mM 2-mercaptoethanol in PBS/2 mM EDTA for 30 min at 30 °C to obtain Fab/SH fragments. Excess 2-mercaptoethanol was removed by gel filtration in a Sephadex-G25 column equilibrated with PBS/2 mM EDTA, pH 6.7. 3G8 Fab/SH was incubated with a 40 μMolar excess of bis-maleimidohexane (Pierce) for 60 min at 30 °C. Free bis-maleimidohexane was removed by gel filtration in a Sephadex-G25 column equilibrated with PBS/2 mM EDTA, pH 6.7. 3G8 Fab–bis-maleimidohexide and 3D3 Fab/SH were concentrated to approx. 5 mg/ml in C30 Amicon concentration units (Amicon, Beverly, MA, U.S.A.) and were incubated together for 16 h at room temperature. The yield of bsAb using this procedure was about 30%. The bsAb was separated from the remaining Fab fragments by gel filtration by FPLC in a Superose 12 column equilibrated with PBS.

Characterization of the bsAb, FcγRIII × CD45

Binding of the bsAb to various cells was analysed by indirect immunofluorescence and flow cytometry (FACScan, Becton Dickinson, San Jose, CA, U.S.A.). As expected, the bsAb, FcγRIII × CD45, showed a high degree of binding to neutrophils (results not shown). The bsAb also showed binding to the EBV-transformed B-cell line, JY, which expresses CD45 but lacks FcγRIII: a mean fluorescence intensity of 566 ± 59 was obtained, compared with 676 ± 6 with the anti-FcγRIII F(ab\textprime)₂, 517 ± 55 with CD45 F(ab\textprime)₂, and 61 ± 5 with the isotype-matched control (means ± S.E.M. of three experiments). In addition, the bsAb showed binding to CHO^{FcγRIII} cells that were transfected with FcγRIIB [24] but expressed no CD45: a mean fluorescence intensity of 737 ± 71 was obtained compared with 552 ± 69 with anti-FcγRII F(ab\textprime)₂, 98 ± 7 with anti-CD45 F(ab\textprime)₂, and 93 ± 4 with the isotype-matched control (means ± S.E.M. of three experiments). Untransfected CHO⁺ cells did not bind the bsAb. These experiments showed that both antigen recognition sites were present in the bsAb, FcγRIII × CD45.

Measurements of the cytosolic free Ca²⁺ concentration ([Ca²⁺]_i)

Determination of [Ca²⁺]_i, was performed as described previously [1]. In experiments carried out in the presence of EGTA, cells were preincubated with biotinylated antibodies in normal incubation medium, washed and resuspended at a concentration of 2 × 10⁶ cells/ml in medium without Ca²⁺. Just before cross-linking, 1 mM EDTA was added. Assessment of Ca²⁺ influx was carried out using the Mn²⁺ quenching technique, as described previously [1].

Measurement of Ins(1,4,5)<sub>P₃ levels

Ins(1,4,5)<sub>P₃ was assayed using a system from Amersham International. Neutrophils (1 × 10⁶ cells/ml in incubation medium) were preincubated with biotinylated anti-FcγR Fab fragments
Lysates were immunoprecipitated for 1 h at 4 °C with anti-p85 polyclonal rabbit antisera (UBI, Lake Placid, NY, U.S.A.) or normal rabbit serum (1.7 µl per sample). Protein A-Sepharose (Sigma) was added before incubation overnight at 4 °C. The Protein A-Sepharose beads were washed four times with high-strength lysis buffer and twice with 10 mM Tris/HC1, pH 7.4, containing 1 mM NaVO₄. PtdIns 3-kinase activity was measured by adding 100 µCi of sonicated PtdIns (Sigma) and 10 µCi/µl [γ-³²P]ATP in the presence of 200 µM adenosine, 30 mM MgCl₂, and 40 mM ATP in a volume of 60 µl. The reactions were carried out for 20 min at room temperature and were stopped by the addition of 100 µl of 1 M HCl and 200 µl of chloroform/methanol (1:1, v/v). After centrifugation and removal of the upper layer, 80 µl of methanol/HCl was added and the mixture was again centrifuged. The lipids were separated on TLC plates (Merck) using a solvent system of chloroform/methanol/NH₄OH (45:35:10, by vol). The TLC plates were exposed to X-ray film at −80 °C.

Detection of PtdIns 3-kinase translocation

Fractionation of membranes and cytosol from neutrophils was performed as described previously [25]. Neutrophils (1 × 10⁷ cells/ml in ice-cold medium) were preincubated for 5 min at 37 °C with biotinylated Fab fragments of anti-FcyRII mAb and anti-FcyRIII mAb. The cells were washed and resuspended in incubation medium at 37 °C and were transferred to a stirred cuvette maintained at 37 °C. Cross-linking was performed by the addition of streptavidin. At different time points, stimulation was stopped by the addition of a 5 × excess of ice-cold PBS. The neutrophils were centrifuged and resuspended (8 × 10⁶ cells/ml) in ice-cold sonication buffer [10 mM Hepes, pH 7.2/1 mM EGTA/5% (w/v) sucrose, containing a protease inhibitor cocktail (Complete™, Boehringer, Mannheim, Germany)]. After sonication of the neutrophil suspension (3 × 15 s at 21 kHz frequency and 8 mm peak-to-peak amplitude), 1 ml of postnuclear supernatant was layered on to a discontinuous sucrose gradient, consisting of 1 ml of 52% (w/v) sucrose, 1 ml of 40% (w/v) sucrose and 1 ml of 15% (w/v) sucrose. After centrifugation (100,000 g, for 35 min at 4 °C), 80% of the supernatant (cytosol) and the interface between the 15% and 40% sucrose layers (plasma membranes) were collected. Membrane fractions were treated with ice-cold trichloroacetic acid (10%,w/v) for 15 min. After centrifugation (12,000 g, for 15 min at 4 °C), pellets were taken up in Laemmli sample buffer [125 mM Tris/HCl, pH 6.8 containing 8% (w/v) SDS, 10% (v/v) 2-mercaptoethanol and 10% (v/v) glycerol] and were boiled for 5 min. The presence of PtdIns 3-kinase in the cytosol fraction (derived from 8 × 10⁷ cells) and the plasma membrane fraction (derived from 4 × 10⁷ cells) was determined by SDS/PAGE and immunoblotting with a polyclonal rabbit antibody directed against the 85-kDa subunit of PtdIns 3-kinase (Affinity, Nottingham, U.K.). For detection of the primary antibody, the blots were incubated with horse anti-rabbit immunoglobulin antibodies conjugated to horseradish peroxidase (CLB, Amsterdam, The Netherlands) and were developed using enhanced chemiluminescence (Boehringer). The proteins were visualized by exposure to a KODAK X-OMAT S film for 1 min.

Measurement of PtdIns 3-kinase activity

An equal volume of lysis buffer [6% (v/v) Nonidet P-40, 40 mM Tris/HCl, pH 8.0, 200 mM NaCl, 20 mM NaPO₄, 4 mM EDTA, 100 mM NaF, 2 mM NaVO₄, 2 mM PMSF, 200 µM leupeptin, 8 µg/ml soybean trypsin inhibitor, 20 µg/ml aprogin] was added to the neutrophil membrane and cytosol fractions (25 × 10⁶ cell and 12.5 × 10⁶ cell equivalents per immunoprecipitation respectively). A lysate of rat-1 fibroblasts served as a positive control for the measurement of PtdIns 3-kinase activity. Lysates were immunoprecipitated for 1 h at 4 °C with anti-p85

Western blot analysis for phosphotyrosine

Neutrophils were suspended in incubation medium (as described above) without human serum albumin. The cells (10⁷ cells/ml) were preincubated at 37 °C with biotinylated mAb as indicated in the text, washed and resuspended at 10⁶ cells/ml. At various times after the addition of streptavidin, 50 µl of cell suspension was mixed with 50 µl of sample buffer [125 mM Tris/HCl, pH 6.8, 4% (w/v) SDS, 10% (v/v) 2-mercaptoethanol and 10% (v/v) glycerol] containing 1 mM NaVO₄, preheated to 100 °C and maintained at 100 °C for 10 min. The samples were analysed after SDS/PAGE by immunoblotting with monoclonal anti-phosphotyrosine antibody (UBI). The amount of anti-phosphotyrosine bound to the blot was determined with peroxidase-labelled horse anti-mouse Ig and enhanced chemiluminescence. To verify equal loading of protein in each lane, blots were subsequently incubated with a rabbit antisera directed against the C-terminus of p47-phox [25], which was detected by peroxidase-labelled horse anti-rabbit Ig antibodies (CLB, Amsterdam, The Netherlands).

Statistical analysis

For statistical analysis, paired Student’s t-tests were performed. P values exceeding 0.05 were considered not significant.

RESULTS

Effect of wortmannin on FcγR-induced Ca²⁺ responses

In a previous study we observed that the heterotypic clustering of both FcγRs on human neutrophils primarily induces Ca²⁺ influx from the extracellular medium [1]. To obtain more insight into the signalling pathways involved, we investigated the effect of wortmannin. Wortmannin has been shown to interfere with a protein kinase C-independent pathway necessary for IMLP-induced superoxide production [26] and has subsequently been shown to inhibit the activity of PtdIns 3-kinase [15,17]. Ca²⁺ influx induced by cross-linking of both FcγRIIa and FcγRIIib, as measured by Mn²⁺ influx, was completely inhibited by 100 nM wortmannin (Figure 1, upper panel).

In neutrophils, the capacitive Ca²⁺ entry model, in which depletion of the Ca²⁺ stores generates a signal that induces Ca²⁺ influx from the extracellular medium, seems applicable [27,28]. To investigate whether the site of action of wortmannin was upstream or downstream of the mobilization of Ca²⁺ from the stores, FcγR cross-linking was performed in the presence of EGTA to prevent Ca²⁺ influx. Under these conditions, the
Ca²⁺ response induced by heterotypic FcγR cross-linking was also inhibited by wortmannin (Figure 1, lower panel). Half-maximal inhibition was observed at a concentration of approximately 25 nM wortmannin (results not shown).

Effect of wortmannin on FcγR-induced Ins(1,4,5)P₃ accumulation

Under our experimental conditions, the heterotypic cross-linking of FcγR released Ca²⁺ from intracellular stores. This probably results from the generation of Ins(1,4,5)P₃ [29]. Measurements of the levels of Ins(1,4,5)P₃ indeed showed a clear increase upon heterotypic FcγR cross-linking (Figure 2A), suggesting that the Ca²⁺ response is (at least in part) mediated by a rise in InsP₃. The increase in the Ins(1,4,5)P₃ accumulation after FcγR cross-linking was also inhibited by wortmannin (Figure 2A). For comparison, the fMLP-induced generation of Ins(1,4,5)P₃ was also measured in these experiments and found to be unaffected by wortmannin (Figure 2B). This latter finding is in accordance with previous data showing that the Ca²⁺ response evoked by fMLP is not sensitive to wortmannin [26]. The difference in sensitivity to wortmannin is not due to the different amounts of Ins(1,4,5)P₃ accumulation. Higher concentrations of streptavidin (10 µg/ml) induced an increase in the accumulation of Ins(1,4,5)P₃ of 3.24 ± 0.92 pmol/10⁶ cells at 20 s after stimulation. In the presence of wortmannin, this accumulation was inhibited by 95% (to 0.16 ± 0.1 µmol/10⁶ cells).

The IC₅₀ value for the wortmannin inhibition of Ins(1,4,5)P₃ accumulation after FcγR cross-linking (under conditions of cross-linking with 10 µg/ml streptavidin) was approx. 25 nM (results not shown), which is comparable with the wortmannin concentration needed for inhibition of the Ca²⁺ response under these conditions. In addition, the accumulation of Ins(1,4,5)P₃ upon heterotypic FcγR cross-linking was also inhibited by another inhibitor of PtdIns 3-kinase, LY 294002 [30]. The IC₅₀ for LY 294002 was approx. 1.5 µM (results not shown).
Localization and activity of PtdIns 3-kinase

Because early signalling events after FcyR cross-linking appeared sensitive to Wortmannin and LY 294002, we investigated the possibility that PtdIns 3-kinase is activated very early after Fcy receptor activation in human neutrophils. We observed an increased amount of the p85 subunit of PtdIns 3-kinase in the membrane after only 5 s (Figure 3), before any increase in Ins(1,4,5)P_3 was observed under these suboptimal conditions of cross-linking (Figure 2A). Neither biotinylated Fab fragments of anti-FcyR mAb nor streptavidin alone induced translocation of p85 to the membrane (results not shown). We did not always observe a clear decrease in the amount of p85 in the cytosol fraction, probably due to the relatively small amount of PtdIns 3-kinase translocating to the membrane. The Ca^{2+} ionophore, ionomycin, did not induce translocation of p85 to the membrane (results not shown) indicating that the FcyR-induced translocation was not the consequence of the Ca^{2+} elevation observed.

To establish that the p85 subunit of PtdIns 3-kinase recovered in the membrane fraction was part of an active enzyme complex, the activity of PtdIns 3-kinase was measured in membrane and cytosol fractions after FcyR cross-linking. Increased PtdIns 3-kinase activity in the membrane was observed after 5 s of heterotypic FcyR cross-linking (Figure 4). Even under conditions of suboptimal cross-linking using 1.5 μg/ml streptavidin, before any increase in Ins(1,4,5)P_3 accumulation was detected (Figure 2A), an increased PtdIns 3-kinase activity was observed. In addition, a decrease in PtdIns 3-kinase activity was found in the cytosol after FcyR cross-linking.

Inhibition of the FcyR-induced tyrosine phosphorylation and translocation of PtdIns 3-kinase by CD45

In order to investigate the role of tyrosine phosphorylation in the FcyR-induced translocation of PtdIns 3-kinase in human neutrophils, the protein tyrosine phosphatase, CD45, was co-cross-linked with FcyR. As observed by Hofmeyer et al. [31], co-cross-linking of CD45 with FcgRIb or FcgRIia strongly inhibited the FcyR-mediated Ca^{2+} response (Table 1). The inhibitory effects of co-cross-linking appeared to be specific for CD45, because co-cross-linking of FcyR with another surface molecule, MHC class I, of these cells [by cross-linking biotinylated CLB-Fcg1R Fab with biotinylated W6/32 Fab(ab’)_2 with streptavidin] did not affect the Ca^{2+} response caused by FcgRIib cross-linking (results not shown). The Ca^{2+} response induced by heterotypic cross-linking of both FcyRIia and FcyRIib was inhibited by co-cross-linking of CD45, but to a lesser extent than that induced by FcyR cross-linking alone (Table 1).

Additional experiments were performed with a bsAb, able to bind to both FcyRII and CD45. Treatment of neutrophils with the bsAb FcgRIIb × CD45 followed by cross-linking with GAM F(ab’)_2 induced only a slight increase in [Ca^{2+}]_i, which was 10% of the control response observed after cross-linking of anti-FcgRII Fab with GAM F(ab’)_2 (Table 1). Co-cross-linking of CD45 together with anti-FcgRIIib Fab fragments also abolished
The inhibition of tyrosine phosphorylation by co-cross-linking of FcγR with CD45 was then used to investigate the role of protein tyrosine phosphorylation in the translocation of PtdIns 3-kinase. Both cross-linking of FcγRIIa and of FcγRIIIb resulted in inhibition of FcγR-induced Ca²⁺ response after heterotypic cross-linking of FcγRIIa and FcγRIIIb (Table 1), the effect of co-cross-linking of CD45 on tyrosine phosphorylation proved to be less pronounced than its effect on the separate FcγR responses (results not shown).

Inhibition of FcγR-induced degranulation

We also investigated the effect of CD45 and wortmannin on functional responses of neutrophils induced via FcγR cross-linking. Cross-linking of FcγRIIa hardly induced any release of β-hexosaminidase (results not shown). Cross-linking of FcγRIIib in cytochalasin B-treated neutrophils evoked within 30 s the release of β-hexosaminidase (Figure 6), an enzyme present in azurophilic granules [32], and vitamin B₁₂-binding protein (results not shown), a marker for specific granules [33]. In the absence of cytochalasin B, virtually no granule proteins were detected in the supernatant (results not shown). Upon cross-linking of CD45 into the FcγRIIib complex, the release of β-hexosaminidase was abolished (Figure 6) at early time-points. At later times there was some increase in the amount of β-hexosaminidase in the supernatant, indicating that the process of degranulation was delayed under these conditions. A similar pattern of inhibition was observed for the release of vitamin B₁₂-binding protein (results not shown). In addition, we also found almost complete inhibition of both FcγRIIib- and heterotypic FcγR-induced release of β-hexosaminidase by 100 nM wortmannin: a release of 88% of the total amount of β-hexosaminidase for heterotypic FcγR activation was only 9% in the presence of wortmannin and a release of 34% of the total amount of β-hexosaminidase for FcγRIIib activation was only 6% in the presence of wortmannin.

DISCUSSION

The results of this study indicate that FcγR-induced Ca²⁺ signalling in human neutrophils involves the activation of PtdIns
3-kinase at a step prior to the generation of Ins(1,4,5)P$_3$. The evidence for this notion comes from two directions. Firstly, we observed inhibition of Ins(1,4,5)P$_3$ production, Ca$^{2+}$ mobilization and influx after heterotypic FcγR cross-linking by wortmannin, an inhibitor of PtdIns 3-kinase [15,18], with an IC$_{50}$ value of about 25 nM. This concentration is somewhat higher than the concentration of wortmannin required to inhibit the purified PtdIns 3-kinase [34], but similar to the wortmannin concentration required for treatment of intact cells to inhibit PtdIns 3-kinase activity recovered in the membrane fraction after FcγR cross-linking (results not shown). In addition, another specific PtdIns 3-kinase inhibitor, LY 294002, also inhibited the accumulation of Ins(1,4,5)P$_3$ upon heterotypic FcγR cross-linking with an IC$_{50}$ of approximately 1.5 µM, which is comparable with an IC$_{50}$ of 2.5 µM to inhibit IMLP-induced superoxide production in neutrophils [35] and a IC$_{50}$ of 1.4 µM against purified PtdIns 3-kinase [30]. PtdIns 4-kinase, the enzyme involved in the generation of PtdIns(4,5)P$_3$, has been reported not to be inhibited by treatment of intact cells with wortmannin at concentrations up to 300 nM [36] or by LY 294002 [30], suggesting that the inhibition of the Ins(1,4,5)P$_3$ accumulation by these inhibitors was not due to an inhibition of PtdIns 4-kinase. It should also be noted that, in neutrophils, wortmannin was without effect on IMLP-induced Ins(1,4,5)P$_3$ generation (Figure 2B), making an effect on PtdIns metabolism as an alternative explanation highly unlikely.

A second observation indicating the involvement of PtdIns 3-kinase in FcγR signalling in human neutrophils is the very early activation of this enzyme. When suboptimal cross-linking of FcγR was induced, translocation of PtdIns 3-kinase occurred before the increase in Ins(1,4,5)P$_3$ (Figures 2A and 3). An increase in PtdIns 3-kinase activity in the membrane was observed also very soon after activation (Figure 4), indicating that, in addition to the presence of the p85 subunit of PtdIns 3-kinase, p110 (the catalytic subunit) translocates after FcγR cross-linking. In human neutrophils, there is a suggestion of an alternative PtdIns 3-kinase activity [37]. This enzyme is activated via G-proteins and also inhibited by wortmannin. Our observations, indicating abolishment of both the FcγR-induced protein tyrosine phosphorylation and the translocation of PtdIns 3-kinase by co-cross-linking the tyrosine phosphatase CD45 into the FcγR complexes, suggest a role for the classical PtdIns 3-kinase, although the involvement of the alternative PtdIns 3-kinase cannot be excluded.

The reason for investigating the effect of CD45 co-cross-linking was primarily to manipulate intracellular levels of protein tyrosine phosphorylation. For this purpose, other studies have employed various synthetic or natural compounds interfering with tyrosine kinase activities. In some preliminary experiments we found that most commonly used inhibitors (genistein, herbimycin A) were not very effective in preventing FcγR-mediated tyrosine phosphorylation at non-cytotoxic doses. Co-cross-linking of CD45 proved to be most effective in this respect but the number of CD45 molecules expressed on the surface might be a limiting factor. This could explain the observation that FcγRIIa-mediated activation is more susceptible to co-cross-linking of CD45 when compared with FcγRIIib-mediated activation, because FcγRIIa expression is ten times higher than that of FcγRIIb on human neutrophils [38].

The complete inhibition of FcγR-induced enzyme release by wortmannin and the partial inhibition by CD45 co-cross-linking (Figure 6) indicates a role for PtdIns 3-kinase in FcγR-induced degranulation. Most probably, this inhibition is due to the concomitant inhibition of the Ca$^{2+}$ response under these conditions. Increased [Ca$^{2+}$], is required to elicit a degranulation response in human neutrophils [39,40].

At this point in time, it is difficult to speculate on the exact role of PtdIns 3-kinase in early signal transduction upon FcγR cross-linking. There are some proposals in the literature for a role for the cytoskeleton in FcγR-mediated Ca$^{2+}$ mobilization [41,42]. The enzyme PtdIns 3-kinase may be involved here, because it has been suggested that this enzyme can regulate cytoskeletal reorganization [43,44]. Recently, Rameh et al. [45] reported the ability of PtdIns(3,4,5)P$_3$, one of the products of PtdIns 3-kinase activity, to bind to SH2 domains, including to those of the p85 subunit of PtdIns 3-kinase itself. Our results indicate that PtdIns(3,4,5)P$_3$ does not play a role in the recruitment of PtdIns 3-kinase to the membrane, because this translocation proved to be insensitive to wortmannin (results not shown). However, it is conceivable that the generation of PtdIns(3,4,5)P$_3$ does play an instrumental role in the recruitment to the plasma membrane of phospholipase Cy2, which is probably involved in the FcγR-induced formation of Ins(1,4,5)P$_3$ [46].

This study was supported by Grant 900-512-092 from the Netherlands Organization for Scientific Research (NWO). We thank Lily Kannegieper for purification of the bispesic antibody. We thank Dr M. Theelen for the gift of anti-p85 antisemir and for stimulating discussions.

REFERENCES

Received 10 January 1996/29 October 1996; accepted 13 November 1996