
PSYCHOMETRIKA--VOL. 69, NO. 3, 481-498 
SEPTEMBER 2004 

M O D E L  B A S E D  C L U S T E R I N G  O F  L A R G E  DATA SETS:  

T R A C I N G  T H E  D E V E L O P M E N T  O F  S P E L L I N G  A B I L I T Y  

HERBERT HOIJTINK 

UTRECHT UNIVERSITY 

ANNELISE NOTENBOOM 

FREE UNIVERSITY AMSTERDAM 

There are two main theories with respect to the development of spelling ability: the stage model and 
the model of overlapping waves. In this paper exploratory model based clustering will be used to analyze 
the responses of more than 3500 pupils to subsets of 245 items. To evaluate the two theories, the resulting 
clusters will be ordered along a developmental dimension using an external criterion. Solutions for three 
statistical problems will be given: (1) an algorithm that can handle large data sets and only renders non- 
degenerate clusters; (2) a goodness of fit test that is not affected by the fact that the number of possible 
response vectors by far out-weights the number of observed response vectors; and (3) a new technique, 
data expunction, that can be used to evaluate goodness-of-fit tests if the missing data mechanism is known. 
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1. Introduct ion 

This paper  will  present  an exploratory mode l  based cluster ing approach for the analysis of  

deve lopmenta l  data. As  will  e laborated in the next  section, the proposed  approach will  be  used 

to trace the deve lopment  of  spell ing ability. Basical ly  a mode l  based cluster analysis (another 

name  that is often used is latent class analysis) searches for homogeneous  groups of  persons (in 

the application at hand, pupils at tending e lementary  school),  that is, groups of  persons that g ive  

similar  responses  to a set of  i tems. In the application at hand each i tem is a word  that has to be  

writ ten down.  The  latter can be done  correctly,  or different  kinds of  mistakes can be  made.  The  

approach is suited for the analysis of  deve lopmenta l  data because  an external cri terion will  be  

used to order the result ing clusters along a deve lopmenta l  dimension.  In the application at hand 

the average grade of  the pupils in a cluster is used to order the clusters. 

The  approach proposed  addresses a number  of  practical  p roblems that often arise in ex- 

ploratory mode l  based cluster analysis of  deve lopmenta l  data: 

1. The  application at hand concerns  a large data set (3614 pupils  and 245 items). Obtaining 

clusters for large data sets is not a wel l  deve loped  area. Based  on two conjectures  a cluster ing 

a lgor i thm that renders  non-degenera te  clusters will  be  proposed.  

2. For  large data sets the usefulness  of  the l ikel ihood ratio goodness  of  fit test is ques t ionable  

because  the number  of  possible  response  vectors by far out-weights  the number  of  observed 

response  vectors.  An  alternative that does not  suffer f rom this l imitat ion is proposed.  

3. In the application at hand data are miss ing by design: each pupil  receives  a specific subset of  

the 245 i tems in the test. It wil l  be  shown how to deal  with the miss ing data both for obtaining 

clusters and goodness  of  fit evaluation.  
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In the application at hand the item responses are nominal (correct and various kinds of in- 
correct answers are possible). Furthermore, not all response categories apply to all the items. 
With and without missing data the model based clustering approach described in this paper 
can handle this kind of item responses. 
Finally, the shape of the item category response curves as a function of the developmental 
dimension is not at all clear. For some item categories the response curve may be increasing 
(the higher the position of a pupil on the developmental dimension, the larger the probability 
of a certain response category). For other categories the response curve may be unimodal (the 
category is popular for a certain degree of development, but not below and above that degree). 
Furthermore, the range of the developmental dimension where the category is popular may 
differ from item to item. The approach proposed does not need pre-specified item category 
response curves. However, if the clusters are ordered along a developmental dimension using 
an external criterion, category response curves can be reconstructed from the results of the 
model based cluster analysis. 

An alternative for model based clustering using an external criterion to order the clusters 
along a developmental dimension, might be dimensional approaches like item response theory 
and factor analytic approaches (see Hoskens & Boeck, 1995, 1997 for examples with respect 
to spelling skills). However, as far as known to the authors, there are currently no dimensional 
approaches that can deal with nominal item responses, different response categories across items, 
response curves that may be different for different items and response categories, missing data 
and large data sets. 

In Section 2, two theories with respect to the development of spelling ability (the stage 
model and the model of overlapping waves) will be described. Section 3 presents the design of 
the study and the data. Section 4 presents the statistical theory involved in model based clustering 
of large data sets. Section 5 deals with goodness of fit and the determination of the number of 
clusters. Section 6, 7 and 8 present the main results of the analysis of the data with respect to 
spelling ability. The paper is concluded with a discussion in Section 9. 

2. The Development of Spelling Ability 

Learning to spell is a challenging cognitive problem. At the heart of all alphabetic languages 
lies the knowledge of sound-letter relationships, but as no spelling system is completely regular, 
knowledge of word-specific irregularities, ambiguous but high-frequency letter-combinations, 
and understanding of consistently spelled grammatical elements are important as well. How do 
children learn these skills? What is the developmental trajectory of spelling ability? 

It has been theorized that learning how to spell develops through stages, which are qualified 
by the static and consistent use of one strategy to solve the problem. Moving from one stage to 
another would mean that there is a qualitative shift in the use of a strategy (Bear & Templeton, 
1998; Ehri, 1986; Frith, 1980, 1985; Gentry, 1982; Henderson & Templeton, 1986). According to 
stage theory, change occurs instantly, not gradually. Presented in more detail here are the models 
given by Ehri (1986) and Gentry (1982). Both specify five developmental stages. There is a 
significant relationship between the spelling ability level and the quality of error types children 
make (Morris, Nelson & Perney, 1986; Treiman & Bourassa, 2000). Thus, the appropriate coding 
of the error-types of children's spellings may provide information on strategy-use at different 
points of development. In the sequel the words busje (little bus), explosie (explosion) and niveau 
(level) will be used to illustrate the coding of the error-types. These words will be coded on, 
respectively, the spelling of the silent e, the letter x and the letter combination eau (occurring in 
Dutch for some French loan-words only). 
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During the first, precommunicative stage, a child first uses alphabetic symbols to represent 
words, but demonstrates no knowledge of sound-letter relationships. Preschoolers are typically 
at this stage. A spelling attempt of the word busje would be a random string of symbols, that is, 
M 6 S. Since preschoolers are not part of our sample, error types corresponding to the precom- 
municative stage will not receive further attention. 

As the child progresses to the second, semiphonetic stage, letters are used to represent 
words, but they do not form a complete mapping of the sound-structure of the word. Children 
typically use the letter-name strategy in their spellings. At this stage spellers are commonly in 
kindergarten or just entering first grade. Indicative of the semiphonetic stage are responses that 
show an inadequate approximation of the sound structure, such as usuj for busje, eposie for ex- 
plosie and mefo for niveau. Some letters are missing in these spelling attempts, and the order of 
letters does not correspond to the sequence of sounds. 

During the third, phonetic stage, all sounds of a word are mapped to letters or combination 
of letters, but the spellings at this stage do not show any knowledge of orthographic conventions. 
Most first graders fall into this category. Responses typical for the phonetic stage are busju, 
eksplosie and nivoo. 

The fourth developmental stage is called transitional (Gentry, 1982) or morphemic (Ehri, 
1986). Now, instead of exclusive reliance on sound-letter correspondences, the speller begins to 
adhere to basic spelling patterns and orthographic conventions. The transitional stage may begin 
midway through the second grade. Examples of responses are exsplosie for the word explosie 
and nivau or nivea for the word niveau. 

In addition, there is a fifth, a correct stage, in which the speller masters all factors that 
attribute to competence. If the target part of the word is correctly spelled, but another part in- 
correctly spelled although it provided an adequate approximation of the sound structure, like 
nieveau, or explosi, the response is coded as an "other error" The response category other error 
is not directly indicative for one of the stages, and is thus less relevant for the purposes of this 
study. 

The stage model is questioned on several grounds. According to the model of overlapping 
waves (Siegler, 1996)--which turned out to be a promising alternative to stage theories in other 
domains of cognitive development such as number conservation (Siegler, 1995), arithmetic com- 
putation (Siegler & Stern, 1998) and balance beam problems (Siegler &Chen,  1998)----children 
use a variety of strategies in solving cognitive problems. These various strategies compete with 
each other over prolonged periods of time. Changes in strategy-use may occur, but these are 
gradual, and have varying rates. Thus, the model of overlapping waves does not question the 
multiplicity of strategies children use, but denies the static, consistent use of only one at a point 
of development (Siegler, 2000). The results of several studies on the development of spelling 
ability are consistent with the overlapping waves approach. At a given time in development, 
children have different strategies available, and they are able to choose adaptively among them 
(Bowman & Treiman, 2002; Rittle-Johnson & Siegler, 1999). Furthermore, during development, 
gradual changes in use of strategies occur (Steffler, Varnhagen, Treiman & Friesen, 1998; Varn- 
hagen, McCallum & Burstow, 1997). Thus, the model of overlapping waves could also account 
for the development of spelling. 

In this study, the development of the acquisition of Dutch spelling was studied using model 
based clustering (also-called latent class analysis). The resulting clusters will be ordered along a 
developmental dimension using an external criterion: the average grade of the pupils in a cluster. 
We will investigate whether stage theory or the paradigm of overlapping waves would provide a 
more satisfying account of the development of spelling ability. Three criteria, derived from the 
two theories, will be used to evaluate the ordered clusters: 
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TABLE 1. 
The schedule of i tem adminis trat ion 

Grade Number of items Range of items 

1 84 1 - 8 4  
2 140 1-140 
3 141 55-195 
4 131 85-215 
5 132 114-245 
6 132 114-245 

1. The first criterion concerns the consistency of responses within clusters. As stage theory as- 
sumes that children use a single strategy at a time, it follows that there should be clusters, 
corresponding to the semiphonetic, phonetic, transitional and correct stages defined above. 
Stated otherwise, it should be possible to characterize the clusters by the consistent use of 
one of the response categories. The theory of overlapping waves, on the other hand, assumes 
that children use multiple strategies, and therefore predicts that clusters should be character- 
ized by the use of various response categories. 

2. The second criterion concerns the change in the use of the response categories along the devel- 
opmental continuum. Stage theory predicts that changes in dominance of response categories 
occur instantly; the theory of overlapping waves, on the other hand, predicts that changes 
occur gradually. 

3. Third, stage theory predicts a clear developmental sequence in dominance of response cat- 
egories. At  the onset of development, errors should be mainly semiphonetic, followed by a 
dominance of phonetic, transitional and correct responses. According to the theory of over- 
lapping waves, there will be no outspoken and invariant sequence of error-types along the 
developmental continuum, because children are able to adapt the choice of a strategy to the 
type of problem they have to solve. 

3. Study Design and Data 

The test that is the focus of this study is the PI-dictee (Geelhoed & Reitsma, 1999), which 
is a widely used measure for assessing spelling ability in the Netherlands. The test consists of 
245 words (items), covering all facets of spelling ability at elementary education. Participants 
were 3614 pupils from grades one to six of elementary schools in the Netherlands. The schools 
were representative on background variables like social class and geographical region. Of each 
grade, approximately 600 children participated. Because of the high abili ty-range at elementary 
education, not all items were administrated to all pupils; the selection of items was dependent 
upon the grade. Table 1 gives a summary of the subsets of items that were presented to the 
children of the different grades. The items generally increase in difficulty as the test proceeds. 
The first few items are high-frequent and regular, but further on, items with irregular sound- 
letter mappings, silent letters, spelling rules, and word-specific inconsistencies are also included. 
Note that not all response categories discussed in the previous section are relevant for all items. 
Therefore, the number of response categories of items ranged from two to five. 

4. Model  Based Clustering of Large Data Sets 

4.1. Model Based Clustering when Data Are Missing by Design 

Let Xij denote the response of person i = 1, . . . ,  N to item j = 1, . . . ,  J ,  X an N x J 
matrix containing the item responses, and xi a J vector containing the responses of person i. 
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Each x E {1 . . . . .  5}, 1 denotes a correct response, 2 a semiphonetic response, 3 a phonetic 
response, 4 a transitional response, and 5 another error. 

In this study (see Table 1) some of the responses are missing by design. Stated otherwise, 
the fact that a response is missing does not depend on either the missing or the observed item 
responses (Schafer & Graham, 2002, pp. 151-152). The matrix M is an N x J indicator matrix 
where a 0 indicates that a response is missing and a 1 that a response is observed. 

Not all response categories apply to all items. Let k j  denote the number of response cat- 
egories (excluding "missing") that apply to item j .  In the sequel it is implied that sums and 
products with respect to k j  are only with respect to the response categories that apply to item j .  

The density of the data of the cluster model for the spelling data is 

N Q 
g(X ] 7r, to, z, M) = I - I  ~ P ( x i  ] ri = q)ooqlz, 

i=1 q= l  

where 

(1) 

P ( x i  I "ci = q) = I - I  zrx~jlq. (2) 
jlmij=l 

Note that zi c {1 , . . . ,  6} denotes the grade of a pupil, z an N vector containing the grades 
the pupils and "c i C {1 . . . . .  q . . . . .  Q} a pupil's unobserved cluster membership. Grade is an 
important variable for the developmental data at hand. The average grade of the pupils in each 
cluster will be used to order the clusters along a developmental dimension. Grade is included in 
the cluster model via the cluster weights o)el z = P (vi = q I z ) .  T h e  6 x (2 matrix to contains the 
cluster weights. 

The so-called cluster specific probabilities rrxj Iq = P ( x j  I "ci = q)  form the basis for the 
evaluation of the main research questions addressed in this paper. After the clusters are ordered 
along a developmental dimension using grade, the category response curves can be reconstructed 
by plotting rrxj Iq as a function of the ordered cluster numbers for all items, subsets of items and 
single items. Since the zrxj Iq are unrestricted, there are no shape restrictions on these curves (see 
the fifth practical problem in the introduction). The 5 x J x (2 matrix 7r contains the cluster 
specific probabilities. Some entries of 7r are empty due to the fact that not all response categories 
apply to each item. In the sequel, the vector 0 will be used to denote all the parameters of the 
cluster model, that is, ~" and to. 

Using standard uninformative and mutually independent Dirichlet priors for the model pa- 
rameters, the prior density becomes: 

(2 J 6 

h(Tr,  to) = I - I  I - I ( k j  - 1)! I - I (  Q - 1)!. (3) 
q=l  j = l  z=l  

With a reasonable initial allocation of the persons to the clusters (in the next section it will be 
explained how these can be obtained) it is easy to obtain a sample from the global mode of the 
posterior distribution: 

Post(w, to I X, z, M) o( g(X I 7r, to, z, M) x h(Tr, to), (4) 

using the Gibbs sampler (Gelman, Carlin, Stern, & Rubin, 2000, pp. 320-335; Zeger & Karim, 
1991). As will be elaborated below this sample can be used to obtain point estimates and central 
credibility intervals for the parameters of the cluster model. After initialization, that is, assign- 
ing each person to a cluster (step 1), the Gibbs sampler is an iterative procedure over steps 2 
through 4: 
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1. To be able to execute this step, a reasonable allocation of the persons to the clusters is needed. 
How this can be obtained will be explained in the next section. For q = 1 , . . . ,  Q and 

Nqlz z = 1 , . . . ,  6, OOql z = '-~-z ' where Nql z denotes the current number of persons from grade z al- 
located to cluster q, and Nz the number of persons in grade z. For q = 1 . . . . .  Q, j = 1 . . . . .  J 
and xj  = 1 . . . . .  k j ,  

Nxj Iq 
YrXj ICl - -  i q  ' 

2. 

where Nxj Iq denotes the number of persons in cluster q responding x j  and Nq denotes the 
number of persons in cluster q. 
For i = 1 , . . . ,  N sample ri from a multinomial distribution with probabilit ies 

P(x i  I "ci = q)°)qlz for q = 1 . . . . .  Q. 

Pqli = ~,ClL 1 P(x i  I "ci = q)o)cllZ 

3. For q = 1 . . . . .  Q and j = 1 . . . . .  J sample rc U Iv . . . . .  rckjlq from a Dirichlet (N UIq + 1, 
• . . ,  Nkjlq + 1), where Nxjlq denotes the number of persons allocated to cluster q in step 1 
responding x to item j .  Note, once more, that l j , . . . ,  kj  refers to the response categories 
applying to item j .  

4. For z = 1, . . . ,  6 sample o)llz, . . . ,  O)Q[z from a Dirichlet (Nllz + 1, . . . ,  NQI z + 1). 

However, without excellent starting values, sampling the posterior using steps 2 to 4 is not 
easy. The probabili ty of degenerate solutions (empty clusters) will increase rapidly with the num- 
ber of clusters. Furthermore, with an increasing number of clusters it will be virtually impossible 
to sample the global mode. In the next section a heuristic algorithm rendering a sample from the 
global mode will be presented. 

Let T denote the number of iterations of the Gibbs sampler after burn-in. It will render 
a sample of size t = 1, . . . ,  T from the posterior distribution of ~" and oJ. Let O denote any 
of the parameters of the model based cluster model. The expected a posteriori estimate of O is 
~ t r -  - 1 Ot /T .  The 95 % central credibil i ty interval for O is given by the 2.5th and 97.5th percentile 
of the distribution of O 1 , . . . ,  O f Note that (contrary to the confidence intervals resulting from 
maximum likelihood estimation), these intervals do not assume that the posterior distribution can 
be approximated by a multivariate normal distribution (Gelman, Carlin, Stern & Rubin, 2000, 
Chapter 4). 

4.2. An  Algori thm That Can Handle  a Large Number  o f  Clusters and Outliers 

Richardson and Green (1997) mainly discuss and illustrate analyses of mixtures of one 
variable. Their sampling algorithm contains steps in which two clusters are combined, or, one 
cluster is split into two. This lead to the following two conjectures: 

Conjecture 1. The mode of the posterior distribution for Q - 1 clusters equals the mode of 
the posterior distribution for Q clusters with two of the Q clusters combined into one. 

Conjecture 2. Let Qmax denote the maximum number of clusters for (a subset of) the data. 

1. If  Qmax = 1, sampling the posterior with Q = 2 will render the one cluster and an empty 
cluster. 
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2. If  Qmax = 2, sampling the posterior with Q = 2 will render the two clusters. 
3. If  Qmax > 2, sampling the posterior with Q = 2 will render two clusters that are non- 

intersecting combinations of the Qmax clusters. 

Both conjectures imply the hierarchical algorithm presented in Figure 1. The core of the 
hierarchical algorithm is the sampling algorithm described in Section 4.1. In the first iteration 
of the hierarchical algorithm it is used to split the whole sample of persons in two clusters. In 
all subsequent iterations, the sampling algorithm is i. used to split the largest cluster into two 
clusters, and ii. applied to all current clusters to allow between cluster transitions. If  the expected 
number of persons in each resulting cluster is at least one, a new iteration (Q = Q ÷ 1 in Figure 
1) is started. If  at least one of the clusters is empty, the current iteration is repeated by splitting 
the next largest cluster (r = r + 1 in Figure 1). 

The hierarchical algorithm renders a sample from the global mode of the posterior distri- 
bution for Qmax clusters. Two issues deserve further attention: label switching (Stevens, 2000) 
and local modes (Richardson & Green, 1997). Both papers mainly consider mixtures of one vari- 
able. Although the theory in both papers can in principle be applied to model  based clustering 

d • "l Q = Q + I  

r = 0  

sort the Q clusters from large 
to small and index them 

1 . . . . .  r . . . . .  Q 

r = r + l  

randomly divide members 
cluster r over cluster r and Q+I 
and apply sampling algorithm 

apply sampling algorithm to 
all Q+I clusters 

yes 

Q=O 

n o  

n o  

yes 

FIGURE 1. 
The hierarchical  a lgori thm. 
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as discussed in this paper, the practical generalization to mixtures of 245 variables might not be 
easy. 

Local modes will be discussed in the next section. Interestingly enough, label switching is 
not a practical problem for mixtures of large numbers of variables. The probabilities computed 
in step 2 of the Gibss sampler are almost always close to zero or one, and hardly change from 
iteration to iteration. The implication is that there is only a small amount of between cluster 
migration across iterations of the Gibbs sampler, and that the majority of persons almost never 
leave the cluster they were allocated to in the initialization. 

As far as is known to the authors, the hierarchical algorithm is the first algorithm that is able 
to deal with outliers. If  for response vector xi, P(x i  I ri = q)  is small for all clusters, a cluster 
will be created containing only person i. As will be shown in the sequel, in the data at hand there 
were two outliers. 

5. Determining the Number of Clusters 

5.1. Global Modes and Local Modes 

Conjecture 1 presented in the previous section can be used to define the local modes of the 
posterior distribution of the cluster model: a local mode consists of Q < Qmax clusters, each 
corresponding to non-overlapping combinations of the Qmax clusters. Note that this definition 
implies that there are no local modes for Q = Qmax, and that empty clusters (see the first 
decision step in Figure 1) are excluded. Stated otherwise, for Q = Qmax a sample from the 
mode is sufficient for valid parameter estimation and goodness of fit evaluation. 

However, before analysis of the data the number of clusters in the population is unknown, 
which makes Q a (discrete) parameter instead of an ancillary statistic. In model based clustering 
and latent class analysis, it is common to estimate parameters and evaluate goodness of fit condi- 
tional upon the estimated value of Q. Although it is not unreasonable to report inferences for the 
best model, the uncertainty related to the estimation of Q is ignored. The latter is accounted for 
in the approach proposed by Richardson and Green (1997). In their reversible jump algorithm 
Q is a parameter that is sampled along with the class weights and class specific parameters. 
Richardson and Green (1997) illustrate their approach using mixtures of one variable. In their 
case the density of the variable implied by the mixture of mixtures with different Q can be used 
to summarize the sample of parameter vectors from the posterior distribution. 

However, with 245 variables (as is the case in our application) this is no longer possible. 
Using Conjecture 1, the number of mixtures (local and global maxima of the posterior distribu- 
tion if Q is considered to be a parameter) can be computed. For Qmax = 4 this number is 14 
(1 mixture of 4 clusters, 6 mixtures of 3 clusters in which two of the 4 clusters are combined, 
6 mixtures of 2 clusters, and 1 mixture of 1 cluster). Presentation and interpretation of all these 
mixtures and their posterior weights will be impossible, especially if the number of clusters is 
large (in our application Qmax will turn out to be 19). 

This paper will adhere to the tradition in model based clustering and latent class analysis 
to describe and present the mode of the posterior distribution for an estimate of the number of 
clusters in the population, where the estimate is usually determined using goodness of fit tests 
and information criteria. The user's guide for Latent Gold (Vermunt & Magidson, 2000) contains 
examples of this approach on pages 88-90, 116, and 134-137. As will be elaborated below, in 
this paper the number of clusters is estimated using Qmax, a pseudo-likelihood ratio test and a 
Bayesian information criterion. 

5.2. Qmax, Relative and Absolute Fit 

One of the challenges in model based cluster analysis is to determine the number of clusters. 
According to Conjecture 1 and Conjecture 2, the number of clusters in the data set at hand is equal 
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to Qmax. However, this is not necessarily the number of clusters in the population from which 
the data set is sampled. Determination of the number of clusters for large data sets containing 
many clusters is an under-explored area of statistics, and clear procedures and guidelines do not 
exist. For small data sets usually two approaches are combined to estimate the number of clusters 
in the population: information criteria (Lin & Dayton, 1997; Vermunt & Magidson, 2000, p. 61), 
and likelihood ratio tests (Everitt, 1988; Vermunt & Magidson, 2000, p. 61). 

In this paper the following criteria will be used to determine the number of clusters for the 
large data set at hand: 

1. The number of clusters in the sample Qmax is used as the point of departure. 
2. A Bayesian information criterion, (see Section 5.3) will be used to avoid over-fitting, that 

is, choosing a cluster model with too many clusters. If  the Bayesian information criterion 
indicates that Qmax is too large, a smaller number of clusters will be chosen. 

3. To avoid a cluster model that is not able to reconstruct the main features of the data set a 
pseudo-likelihood ratio test will be used (see Section 5.4). It will be computed for the number 
of clusters chosen using the Bayesian information criterion. 

Application of these criteria will render a reasonable estimate of the number clusters in the pop- 
ulation. Whether or not these criteria can be improved upon is an area for further research. 

Before a description of the Bayesian information criterion and the pseudo-likelihood ratio 
test both will shortly be introduced using traditional information criteria and likelihood ratio 
test as the point of departure. Information criteria penalize the maximum of the likelihood for 
a specific number of clusters with the size of the cluster model. For AIC (Akaike, 1987) the 
penalty is a function of the number of parameters in the model, for CAIC (Bozdogan, 1987) and 
BIC (Congdon, 2001, pp. 472-474) the penalty is a function of the number of parameters and the 
sample size. Information criteria are relative fit measures. They can be used to determine which 
of a number of different models (here differing in the number of clusters) is the best. 

Likelihood ratio tests are absolute fit measures. The main components are the frequency 
with which each possible response vector x is observed and predicted (by the model at hand). 
Likelihood ratio tests are useless if the data set contains many items. Had the data been complete, 
for the data set at hand the number of possible response vectors would have been 2213s241°5537 
(21 items had 2 response categories, etc.). It is clear that even with a sample size of N = 3614 this 
constitutes a very sparse contingency table. In this (complete data) situation the null-distribution 
of the likelihood ratio test is unclear (see, for example, Agresti, 1990, pp. 246-247). The situation 
is complicated further by the presence of data that are missing by design. 

5.3. Relative Fit via the Marginal Likelihood 

The marginal likelihood (see Kass & Raftery, 1995, for a comprehensive overview) can be 
seen as a Bayesian information criterion. The interested reader is referred to Congdon (2001, 
pp. 4 7 2 4 7 4 )  who derives the BIC from the marginal likelihood assuming a multivariate normal 
likelihood function and a prior that is worth one observation. The marginal likelihood functions 
as a fully automatic Occam's razor (Smith & Spiegelhalter, 1980). Stated otherwise, although 
not directly visible from the formulation of the marginal likelihood (5), it does account for model 
complexity. For a general discussion, illustration and further references the interested reader is 
referred to Hoijtink (2001), Berger and Pericchi (2001), and Jefferys and Berger (1992). 

In the sequel, minus twice the logarithm of the marginal likelihood will be used. This brings 
it on the same scale as the traditional information criteria 

f 
P (X  ] Q, z, M) = - 2 l o g  [ g(X ] 0 Q, z,M)h(oQ), ~ 2 ~ 0 g 

J 

oQ 

(5) 
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where 0 Q denotes the parameters of a cluster model with Q clusters. Note that the computation 
of (5) is not hindered by the presence of missing data. However, due to the integral computation is 
not easy. According to Hoijtink (2001) stable estimates of (5) are obtained using an idea that can 
be found in Newton and Raftery (1994) and Kass and Raftery (1995). They propose to sample 
1 - c~% parameter vectors from the posterior distribution of a cluster model with Q clusters, and 
to sample c~% from an imaginary distribution where each parameter vector has a density equal to 
the marginal likelihood. Subsequently, solution of the implicit equation 

[ _ : r ~ , r  g(X I 0 Q, z, M) '~ 

renders an estimate - 2  log / ;  of (5). The interested reader is referred to Hoijtink (2001) for a 
solution algorithm that converges quickly. The smaller minus twice the logarithm of the marginal 
likelihood, the better the corresponding number of clusters. The interested reader is referred to 
Kass and Raftery (1995) who give guidelines for the interpretation of differences in the size of 
(5) for different models. 

5.4. Absolute Fit via the Pseudo-Likelihood Ratio Test 

5.4.1. Dealing with Large Data Sets 

The pseudo-likelihood ratio test (7) is a discrepancy measure (Meng, 1994), that is, a test 
statistic that is a function of both the data and the unknown model parameters. 

kj (e(xj  = - 2  [ o,)) 
jC=j: v = l  w = l  

(7) 
where 

E(xj =v,x/=w l Tr, oJ)= ~-]zwvjlqzwwjlq( ~ Pq]i). 
'lmij=l,mij/=l 

(8) 

Note that N(.)  and E(.)  denote the observed and expected number of persons responding ac- 
cording to the argument, and that ~ilmij=l,mij/= 1 Pqli denotes the expected number of persons 

in cluster q responding to both items j and j : .  
Where the likelihood ratio test evaluates whether the observed frequency of each possible 

response vector x can be predicted by a model with Q clusters, the pseudo-likelihood ratio test fo- 
cuses on two-dimensional summaries of expected and observed frequencies of the J-dimensional 
contingency table. The implication is that it ignores three-way and higher-order interactions 
among the J items, and that it only evaluates whether main effects and two-way interactions 
are adequately predicted. 

It is safe to state that a good cluster model should be able to predict main and two-way 
interaction effects. Whether this is enough is to a large extent an open question. Simulations by 
Hoijtink (1998, 2001) indicate for sparse contingency tables that the pseudo-likelihood ratio test 
has a better performance than the likelihood ratio test. 
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5.4.2. Dealing with Missing Data Using Expunction 

Formal hypothesis testing in the presence of missing data is usually based on multiple im- 
putation (Rubin, 1987; Schafer, 1997; Schafer & Graham, 2002). However, multiple imputation 
cannot be used to evaluate most goodness of fit tests, that is, tests that address "fixed" proper- 
ties of a model like normality, linearity and homoscedasticity. The consequence for model based 
cluster analysis is that multiple imputation cannot straightforwardly be used to deal with ques- 
tions like "how good is the fit of a model with (2 clusters," and, "how good is the fit of a model 
assuming conditional independence of the item responses within each cluster." 

As will be elaborated below, data expunction is a novel idea that can be used to evaluate 
the pseudo-likelihood ratio goodness of fit test introduced in the previous subsection. However, 
this can only be done if researchers are willing to develop special purpose software (as was done 
for this paper) in order to be able to execute the required analyses. Data expunction does not 
impute the missing values, which makes it suited for goodness-of-fit evaluation. However, further 
research is needed to determine its usefulness for the evaluation of hypotheses with respect to 
model parameters. 

Data expunction evaluates model-fit using only the observed data. The main difference with 
multiple imputation is the "expunction" of data from matrices X rep replicated from the null popu- 
lation, instead of imputation of missing data in the observed data matrix X. Both for data expunc- 
tion and multiple imputation it holds that the resulting inferences are only valid if the missing 
data mechanism is known. In our application the data are missing by design based on the grade 
of a pupil (see Table 1). This implies that the missing data mechanism is exactly known. 

The pseudo-likelihood ratio discrepancy measure (7) can be evaluated using posterior pre- 
dictive p-values (Gelman, Carlin, Stern & Rubin, 2000, pp. 167-173; Meng, 1994) if the missing 
data mechanism is explicitly accounted for: 

P ( D ( X  rep, z, M, ~, ~o) > D(X, z, M, ~, ~o) I X, z, M), (9) 

where M is an N × J design matrix in which a 0 indicates that an item response is missing by 
design, and a 1 that an item response is observed. As can be seen, only the observed data (and 
their replicated counterparts) are used in (9). It is evaluated with respect to the distribution of the 
three random variables X rep, "tr and ~o: 

g(  xrep, ~ ,  ~ I X, z, M)  = g (X  rep I ~ ,  ~ ,  z, M)  Post(Tr, ~o I X, z, M).  (10) 

As can be seen (10) decomposes into two parts that each account for the missing data mechanism 
represented by M. The density of X rep is defined for the values that are observed as indicated by 
M. The posterior distribution of 7r and ~o also accounts for M. This posterior is a valid basis for 
inference, since conditional on grade the data are missing completely at random. 

A four-step simulation is used to actually compute (9): 

1. For t = 1 . . . . .  T sample 0t from (4). 
2. For t = 1 . . . . .  T sample X~ ep from (1). This can be done in two sub-steps: (i) sample the 

complete X~ ep, and (ii) use M to delete the entries that are missing by design. 
3. For t = 1 . . . . .  T compute D(X~ ep, z, M, Ot) and D(X, z, M, Or). 
4. Compute the proportion D(X~ ep, z, M, Ot) > D(X, z, M, Or). 

6. The Number of Clusters and Developmental Stages 

The hierarchical algorithm presented in Section 4.2 rendered 19 clusters. Stated otherwise, 
it was not possible to create 20 clusters such that the expected number of persons in each cluster 
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TABLE 2. 
Determining the number of clusters 

Number of p-value - 2  log 
clusters Pseudo likelihood Marginal likelihood 

12 .00 539551 
13 .01 538990 
14 .02 538887 
15 .04 538187 
16 .11 537789 
17 .11 537108 
18 .16 535622 
19 .16 535000 

was larger than one. Accord ing  to the criteria presented in Sect ion 5.2, the marginal  l ikel ihood 

will  be  used to avoid over-fitt ing result ing f rom the use of  (2max = 19 clusters. As  can be  seen in 

Table 2, the marginal  l ikel ihood is at its m i n i m u m  for 19 clusters and thus there is no indicat ion 

of  over-fitting. The  pseudo- l ike l ihood ratio test is used to ensure that 19 clusters is enough to 

reconstruct  the main features of  the data. As  can be  seen in Table 2, the p -va lue  of  .16 indicates 

that 19 clusters are sufficient to mode l  the data. 

The  number  of  pupils per  cluster is given in Table 3. For  i = 1, . . . ,  N each pupil  was 

assigned to the cluster for which Pqli was the highest.  In order to be  able to evaluate  the stage 

mode l  and the mode l  of  overlapping waves,  the clusters have  to be  ordered along a deve lopmenta l  

d imension  represent ing spell ing skills. As  can be  seen in co lumn 2 of  Table 3, the average grade 

TABLE 3. 
For each duster proportion of pupils per grade and total number of pupils 

Cluster Average Grade 
number grade 1 2 3 4 5 6 Total 

1 1 1.00 66 
2 1 .99 .01 91 
3 1 1.00 24 
4 1 1.00 90 
5 1 1.00 82 
6 1 1.00 109 
8 1.5 .45 .55 164 
7 1.8 .25 .70 .05 96 
9 2.1 .03 .88 .09 296 
10 2.4 .02 .61 .34 .03 391 
11 3.2 .82 .18 51 
12 3.5 .47 .52 .01 392 
13 3.6 .53 .37 .08 .02 403 
14 4.8 .39 .43 .18 477 
15 5.3 .73 .27 230 
16 5.7 .34 .66 326 
17 5.7 .29 .71 324 

Outlier 1 1 1.00 1 
Outlier 2 6 1.00 1 

Total 577 657 603 557 615 605 3614 
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of the cluster members is used to order the clusters. To order clusters 1-6 which all have the 
same average grade (ignoring 1 pupil in cluster 1 that is a second grader), the proportion of 
correct responses to items 1-84 is used. 

As can be seen in Table 3 the order obtained is validated because the distribution of cluster 
members over the grades shows a nice parallelogram structure with one top per cluster. This 
structure should appear if the ordering of the clusters represents an ordering with respect to a 
developmental dimension (spelling skills). The lower cluster numbers contain without exception 
pupils with a low grade (spelling ability). The higher cluster numbers contain without exception 
pupils with a high grade (spelling ability). Also clusters 10-13 contain mainly pupils with an 
average grade. Stated otherwise, each cluster is associated with a homogeneous range of grades. 

Two of the 19 clusters had only one member. They were outliers, and their response patterns 
were very different from the rest of the data. For most children, learning irregular sound-letter 
mappings did not affect their spelling of regular words. This was not true, however, for outlier 1, 
who spelled regular words in an erratic way. Outlier 2 was a sixth grader with rather low spelling 
skills. Since there is no overlap in the items given to the first and sixth graders, this child became 
a cluster by itself: there are no other children responding to about the same subset of items that 
have about equal spelling skills. 

7. Evaluation of Clusters 

Excluding the outliers, an interpretation of the 17 remaining clusters involves an evaluation 
of roughly 5 x 17 x 245 ~ 20,000 cluster specific probabilities. To be able to do this the clusters 
have been ordered using the average grade of the pupils in each cluster, figures will be given 
for clusters 1-10, and clusters 10-17. The reason for the split is that the overlap of items is too 
small for a comparison of clusters 1 through 17. Figures 2 and 3, which will be discussed in the 
next section, will be used to discuss the results for clusters 1-10. Figures 4 and 5 will be used 
to discuss the results for clusters 10-17. The figures give only a part of the results obtained in 
this study. In each figure, for each cluster the probability of (some of) the five possible responses 
to subsets of the items will be given. To give an example, in Figure 2 it can be seen that the 
proportion of semiphonetic responses to items 1-84 was about .40 in cluster 3. Figures 2 and 4 
are used to evaluate the stage model and the model of overlapping waves, and Figures 3 and 5 
are added to further illustrate the results. For a complete overview of these (nonstatistical) results 
and conclusions, the interested reader is referred to Notenboom, Hoijtink, and Reitsma, 2004. 

Z1. Clusters 1-10 

In Figure 2 for items 1-84 the proportion responses given to each of four possible response 
categories are presented for clusters 1-10. Transitional responses are not possible for these items 
and are thus not included in Figure 2. The first cluster depicted in Figure 2 has a high propor- 
tion of responses indicative of the semiphonetic stage. This proportion decreases rapidly over 
subsequent clusters, whereas the proportion correct increases concurrently. Responses indicative 
of the phonetic stage show a typical non-linear pattern. At the beginning of development, chil- 
dren do not know how sounds can be represented by letters; then they master this principle, and 
subsequently, they learn the irregular forms as well. 

If  the criteria from Section 2 are applied, Figure 2 is more supportive of the model of over- 
lapping waves than for the stage model. Although it is clear that the first two clusters can be 
characterized by semiphonetic responses and the last two clusters by correct responses, none of 
the other clusters can be characterized by the use of only one response category. Furthermore, 
changes among clusters occur gradually, not instantly. Finally, although in the beginning of de- 
velopment semiphonetic responses are dominant, this is later not followed by a dominance of 
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FIGURE 2. 
Summary of the results for clusters 1-10, for items 1-84. 
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phonet ic  responses.  At  higher  levels of  deve lopment  there is no preference  for semiphonet ic  or 
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To elaborate  and further il lustrate these results, in F igure  3 the response  curves for the word  

beste are displayed;  the second e of  this word  is silent. At  the onset of  development ,  chi ldren 

are not able to represent  all sounds of  the word  adequately,  result ing in a high proport ion of  

semiphonet ic  responses.  Subsequently,  chi ldren spell the word  either phonet ical ly  (e.g., bestu) 
or semiphonet ical ly ,  and finally main ly  correct  responses are given. These  results are along the 

same lines as the results obtained for all 84 i tems displayed in F igure  2. 
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Zooming in on the results for clusters 1-10, the spelling of the word beste. 
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7.2. Clusters 10-17 

495 

Responses indicative of the transitional stage were present for two types of items, admin- 
istered to the second and higher grades. One type of items involved the application of spelling 
rules; the other type of items contained irregular letter-combinations. Presented in Figure 4 are 
response proportions for the response categories of the latter type of items (a total of 46) only. 

If  the criteria from Section 2 are applied, Figure 4 is more supportive of the model  of over- 
lapping waves than for the stage model. None of the clusters can be characterized by the consis- 
tent occurrence of just one response category. Both the phonetic and transitional response cate- 
gories are used fairly often, although at higher levels of development mainly correct responses 
are given. Stated otherwise, there are no clusters that consistently prefer one of the response cate- 
gories. Furthermore, there is no clear developmental sequence in prevalence of error-types along 
the continuum. Changes occur gradually, but not smoothly. This is probably a result of the use of 
grade to order the clusters along a developmental continuum. An ordering based on the propor- 
tion of correct responses within each cluster would have rendered smooth curves. However, the 
paral lelogram structure presented in Table 3 would then have been lost. A potential solution for 
this problem is to restrict the cluster model  used to render a one-dimensional ordering of clusters. 
However, this an area for future research. 

To elaborate and further illustrate these results, the response curves for a subset of three 
items including the letter combination eau, administered at the fourth and higher grades, are pre- 
sented in Figure 5. As can be seen, semiphonetic responses are dominant for cluster 11, whereas 
phonetic responses, like nivoo for niveau (level), are characteristic for the clusters 10, 12, 13 and 
15. For clusters 14 and 16 the proportion of phonetic and transitional responses (like nivau or 
nivea) are rather similar, and in clusters 11 and 15 phonetic spelling is dominant although tran- 
sitional spelling is also used. Again, most clusters do not consistently use one response strategy, 
changes occur gradually, and there is no clear developmental sequence in prevalence of error- 
types along the continuum. The results in Figure 4 and 5 provide more support for the model of 
overlapping waves than for the stage model. 
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FIGURE 4. 
Summary of the results for clusters 10-17, for 46 items containing irregular letter combinations. 
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FIGURE 5. 
Zooming in on the results for clusters 10-17, three items containing the letter combination e a u .  

8. Research Questions and Answers 

Stage theory predicted clusters corresponding to the semiphonetic, phonetic, transitional 
and correct stages specified before. Model based clustering rendered 17 clusters (excluding the 
two outliers). Most of these clusters could not be characterized by the consistent occurrence of 
one response category. It could be seen that the dominance of the response categories changed 
gradually along the developmental spectrum, although the sequence predicted by stage theory 
was not always clearly visible. 

In clusters 1-3, responses are mainly inadequate approximations of the sound structure, 
indicative of the semiphonetic stage. Children in clusters 4-8 produced mainly an adequate (al- 
though in the case of irregular words incorrect) rendering of the sound structure of words, char- 
acteristic for the phonetic stage. Nevertheless, semiphonetic spellings are still current at a mod- 
erate level. Children in clusters 9 and 10 mainly responded correctly to the 84 easiest items of 
the spelling test. At clusters 10-15 both phonetic and transitional responses are given. In clusters 
16 and 17 mainly correct responses are given. 

Although stage theory provides a rough description of the developmental trajectory pre- 
sented in Figures 2 to 5, the basic assumptions are untenable. There was no clear succession 
in error-types found along the developmental continuum. Furthermore, the variety of response 
strategies found for the clusters, and the gradual changes between the clusters, fit better in the 
developmental paradigm of overlapping waves. The interested reader is referred to Notenboom, 
Hoijtink, and Reitsma (2004) for a nonstatistical elaboration of the main results presented here. 

9. Discussion 

This paper presented a model based clustering or latent class approach for the analysis of a 
large data set of which part was missing by design. A number of problems had to be solved in 
order to be able to analyze this data set. First of all, an algorithm that is able to handle large data 
sets and renders only non-degenerate clusters was proposed. Secondly, a pseudo-likelihood ratio 
test that is not affected by the fact that the number of possible response vectors is by far out- 
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weighted by me number of observed response vectors was proposed. Thirdly, a novel approach, 
"data expunction," that enables the computation of a p-value if the missing data mechanism is 
known was proposed. 

The resulting model based clustering approach was applied to data with respect to the de- 
velopment of spelling skills. The conclusion was that the results are more in accordance with the 
paradigm of overlapping waves than with the stage model. 

Although this paper shows that the approach proposed is viable, research with respect to the 
clustering of large data sets is not finished. Possible avenues of further research are: providing 
a proof for Conjectures 1 and 2; studying the frequency properties of the posterior predictive 
p-value computed for the pseudo-likelihood ratio test; a further study of the marginal likelihood 
and its role in determining the number of clusters; extension of the cluster model such that it 
renders clusters that are located in a low dimensional space; and, a study of simple summaries of 
the huge amount of information that results from the model based clustering of large data sets. 
However, each of these will be the topic of separate and future papers. 
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