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Fluid—fluid coexistence in colloidal systems with short-ranged strongly
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We present a systematic numerical study of the phase behavior of square-well fluids with a “patchy”
short-ranged attraction. In particular, we study the effect of the size and number of attractive patches
on the fluid—fluid coexistence. The model that we use is a generalization of the hard sphere square
well model. The systems that we study have a stronger tendency to form gels than the isotropic
square-well system. For this reason, we had to combine Gibbs ensemble simulations of the fluid—
fluid coexistence with a parallel tempering scheme. For moderate directionality, changes of the
critical density and the width of coexistence curves are small. For strong directionality, however, we
find clear deviations from the extended law of corresponding states: in contrast to isotropic
attractions, the critical point ieot characterized by a universal value of the reduced second virial
coefficient. Furthermore, as the directionality increases, multiparticle bonding affects the critical
temperature. We discuss implications for the phase behavior, and possibly crystallization, of
globular proteins. ©2003 American Institute of Physic§DOI: 10.1063/1.1569473

I. INTRODUCTION demonstrated that a model of hard spheres with an isotropic
short-ranged attraction is a useful starting point for describ-

Many ﬂUi(.jS’ both simple and qomplex, exhibit co_exist— ing the phase behavior of many solutions of globular pro-
ence of a liquid and a vapor phase in some part of their pha %i
e

diagram. In the simplest case, this feature can be rgpropluc The fact that, to a first approximation, globular proteins
by the van der Waals equation of state, where particle inter-

actions are described by their excluded volume and a meafo be described as hard spheres with short-ranged attrac-

field attractive energy only.Liquid—vapor-like transitions tion, makes it possible to exploit parallels with colloidal sys-

occur not only for simple atoms and molecules, but also ifems that can be described with a similar model. One par-

suspensions of colloids andhio) macromolecules such as ticularly s.tnkmg feature of the_ phgse dlggram of hard
proteins(see, e.g., Ref.)2In protein solutions, each particle spheres with short-ranged attraction is the disappearance of a

consists of thousands of atoms. As a result, the pair interac's-table fluid—fluid coexistence curve. A transition between

tion between two protein molecules is much more comple%wo stable fluid phases of different densities is only possible

than that between atoms or spherical colloids. It is clearlyfOr relatively long-ranged attractions. For shorter ranges
desirable to know how the interaction between proteins irfShorter than a value between roughly 10% and 30% of the
solution affects their phase behavior. Unfortunately, while itParticle diameter, depending on the particular model used
is in principle possible to compute the effective interactionthe fluid—fluid coexistence becomewtastable*® Although
between two protein molecules in solution, such calculation§0t an equilibrium phase, the presence of a fluid—fluid criti-
are extreme|y time Consuming and are, at present, bare@al pOint can SUbStantia”y lower the free energy barrier for
feasible. Experiments yield only partial information on the nucleation of a crystalline germ, and can thus indirectly pro-
interaction between proteins: either through their osmotidnote the crystallizatioh. Understanding fluid—fluid phase
compressibility at low concentrations, or through the struccoexistence is thus an integral part of studying the phase
ture of the crystals that they form. In practice, there is nobehavior of protein solutions, as it may be an important in-
unique way to deduce a pair potential from this information.gredient toward predicting suitable crystallization conditions.
Hence there is, at present, no direct way to predict the phasdmong the results that have emerged in the context of simple
behavior of protein solutions. Still, measurements of the colfluid models is the remarkable fact that the reduced second
lective behavior of protein solutions make it possible to ob-virial coefficient(i.e., the value oB, relative to its equiva-
tain at least some average information on the protein—proteilent for the corresponding hard-sphere modehs an ap-
interactions. This approach has been employed by Georgaroximately constant value at the critical temperature for
and Wilson® who showed that, under crystallization condi- fluid—fluid coexistencé.This value appears to depend only
tions, the value of théreduced second osmotic virial coef- weakly on the precise form of the interparticle poterftial.
ficient of globular proteins falls within a rather narrow range. This makes it possible to focus on simple mode&ls)., hard
This observation was generalized by Rosenbatial,* who  spheres with an attractive square well, HSS¥ihce systems
with complicated potentials can be mapped onto such sim-

dpresent address: Physics Department, Trinity College, Dublin, Ireland. pler mOdeI_ SyStem%- ) o
PElectronic mail: frenkel@amolf.nl There is, however, an important limitation in the work of

0021-9606/2003/118(21)/9882/8/$20.00 9882 © 2003 American Institute of Physics

Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 118, No. 21, 1 June 2003 Fluid—fluid coexistence in colloidal systems 9883

Refs. 8 and 9: both papers only consider potentials that are
independent of the relative orientation of the interacting mol-
ecules. This simplifying assumption is certainly not justified
in the case of protein interactions. It is therefore important to
identify the differences between the phase behavior of simple
isotropic model systems and that of the more general models
with anisotropic interactions. Anisotropy in protein—protein
interactions may be due to various physical mechanisms: in-
teractions between nonuniformly distributed surface charges,
the presence of hydrophyllic/hydrophobic zones on the pro-
tein surface, and the formation of hydrogen bonds at specific
surface locations. Several grodPs? have provided evi-
dence that isotropic interaction models cannot properly acrG. 1. Iiiustration of patch definition. A patch is described by a solid

count for experimentally observed phase diagrams of proteigngle(half opening angles about an axig,). Two particles attract if their
solutions. separation vectar;; intersects some pat¢hot necessarily the same oran
both particlesand if they are within range.

Theoretical models have been put forward in order to
take into account the effect of directionality of short-ranged
attractive forces on the fluid—solid phase boundari¢éThe
Sear modet and variations of it, have also been used to
interpret experimental data on fluid—fluid coexistence in prodl. MODEL
tein solutions:*® Models of this class are formulated in
terms of “binding sites,” represented by off-center attractive ~ Our aim is to study a model for particles with strongly
square well potentiaB, localized at the partic|e surface, angirectional interactions. Rather than elaborating models for
they can be treated in the framework of the Wertheim theorpPecific protein molecules, we choose to focus on a simple
of associating fluid$>~Y” This perturbative approach allows mode.l that can represgnt a strong directione}lity of attractions.
one to deduce an analytical equation of state for the fluid!0 this end, we consider “patchy” attractive HSSW par-

However, the theory does not take into account formation oficles- Two particles attract if they are within a predefined
ring-like clusters(at least not in a first-order formulatipn range and the vector joining their center of mass intersects an

Moreover, it assumes that the structure of the associatingttraCtIVe patch on the surface léth particles. Such patchy

fluid can be modeled by that of a hard-sphere fluid. The pherf* can be conS|d(_ared as a schematic model for the in-
. o . “ ., teraction between protein surfaces where strong short-ranged
theory is thus intrinsically limited to the “weak bonding

redime. and it mav be less suited to obtain accurate data attractions can exist between hydrophobic regions of the sur-
gime, . Y : . o ces on different proteins. We define the pair potential as a
the fluid—fluid coexistence in the case of highly directional

. . 3 . product of a square-well potential with an angular modula-
interactions-> Numerical work on these systems has bee

. ) Tion
presented by Vega and Monsthwho determine coexist-
ence curves involving solid phases for a particular set of

D B —h 5 0
parameters and particles with tetrahedral symmetry, aimed at uij (rij ;€ 'Qj)_uijssmtrii)’f(ﬂi ), @
mimicking the phase behavior of water. Fluid—fluid coexist-

ence, however, has not been studied numerically. where the radial dependence is given by the regular square-

An alternative class of models has been proposed byvell potential of reduced range,
Lomakin et al? In this work, the attraction is localized on
patches of the protein surface. For one particular representa- o for r<o
tive of these models, the authors have used numerical argu-
ments to deduce an equation of state, thus enabling them to
compare phase diagrams to experimental data on prdfeins.
The approach of Ref relies on the hypothesis that an ef-

uihjssm(r): —e for osr<io )
0 for No=r.

fective interparticle potentialstrictly speaking, a free en- For.the ori.entational dependence, we associate attractive
ergy) can be obtained by orientational preaveraging of thdntéractions with patchea=1, ... n on the surface of the
Boltzmann factor associated with the pair interactions. particles, each corresponding to a conical segmerthaif)

In the present paper, we wish to approach the problem oppening angles around the directior,, (cf. Fig. 1). In our
the phase behavior of systems with directional attractions bynodel we did not allow patches to overlap, although this
direct computer simulation. To do so, we formulate a simplg€striction is not essential. All particles carry identical
generic model for directional attraction in terms of a pairPaiches in a body-fixed frame of reference, but the patch
potential, designed to separate effects of range and anisg¥rientationse, are modified as the particles rotate. The an-
ropy of the attractions. Next, we present Monte Carlo simu9ular mogulation of the interaction is taken to depend on the
lations that explore how the directionality affects the fluid—directionr;; of the particle separation vectoy , but also on
fluid coexistence. the particle orientation§);, Q;, as
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1 (&,-f;j=<cosé) for some patchy oni
"~ i A )
fi(rij ;9,8 = and (eg-rjj<cosé) forsomepatctBonj . 3
0 otherwise
|
Attraction is thus limited to configurations where two In order to facilitate comparison with the literature on

patches face each other. Similar models have been used, e.iggotropic potentials, we use the expression Bgrto define
by Ghonasgi and Chapm¥ras a perturbation potential to a the “stickiness” coefficient 1#, introduced by Baxter in the
Lennard-Jones interaction, tailored to modeling wéteira-  context of the adhesive-sphere motfel:
hedral arrangement of patches with particular binding ener-
gies for the individual sites 2 _q _ @
Properties of the model potentialhe proposed model B;'S 4t
strictly separates radial and angular features, thus allowin
us to assess the effect of both separately. The choice of
discontinuous radial potential is convenient as it makes it 1
ible to gi bi definition to the particle 7 =4'x**(\*=1)-(e"<T—1). ®)
possible to give an unambiguous definition to the particle 7
size (here given by the hard core diametg)y. The model N )
potential defines the radial dependence in terms of particld N€ coefficientr can be considered to be a measure of the
propertiespatches The case considered here is the simplesfemperature. As Eq8) shows, is a monotonically increas-
one (all patches attractive, with identical binding energiesi"d (but nonlinear function of T. For a given set of param-
and patch sizésbut generalizations to more complex mod- €t€rs &,€,x) Egs.(7) and(8) allow us to relate the critical
els are straightforward. temperature to a corresponding “critical” virial coefficient.
In the following, we will be interested in the effect of the
reduced attraction rang&, the numbern of attractive |lI. SIMULATION TECHNIQUES

patches, and their sizelescribed by the anglé). Note that ) , . )
the intermolecular interactions can be made less isotropic 1 N€ isotropic HSSW system has been studied numeri-

either by decreasing the number of patches or by decreasirﬁ?"y by a large number of authors. While the earlier numeri-

the size of individual patches. To facilitate the comparisoncaI work often focused on square-well widths that were con-

between different geometries, it is convenient to characteriz§dered to be typical for simple I|qU|d§, more recent StUd_'eS
the size of the patches in terms of the tatatface coverage have explored the wider range of widths of the attractive

21-23 24 .
x (percentage of the particle surface covered by paiches WelIS”™ = Work by Vegaet al,™ based on Gibbs ensemble
is related to the number of patches and their size by simulations, has provided accurate reference data on the

critical behavior of isotropic HSSW systems for ranges down
s to A=1.25. We have generalized both Gibbs ensemble and
in-sinz(—). (4) NVT simulation techniques to perform simulations on
2 nonisotropic particle interactions.

%or the present model, 44s thus given by

The simplicity of the model allows us to write down an A- Gibbs ensemble

analytic expression for the second virial coefficieBj, In order to establish the fluid—fluid coexistence curves
which characterizes the effective interaction between parthinodalg for systems consisting of “patchy” HSSW par-
ticles: ticles, we used Gibbs ensemble simulati®h$® We per-

formed such simulations for varying surface coverage
1 ~ ~ patch numben, and interaction range. Whilst it is straight-
B2=~3v d3rlf dQlf d3r2f dQo[e”™9-1) t5rvard to establish fluid—fluid coexistence for isotropic par-
(5) ticles with moderate rangea & 1.5), equilibration becomes
more difficult for shorter ranges and for strongly directional
where 8=1/kgT as usual, with the Boltzmann constdeqt. attractions. For low temperaturdbelow kgT/e=0.5, the
The angular integrations, represented by the solid anglegrecise value depending on the range and the patchiness of

d{}, stand for integration over all particle orientations. Forthe potential the simulations become prohibitively expen-

the patchy HSSW model, the integrals can be evaluated an&ive. This imposes a significant restriction on the temperature
lytically, yielding range that can be studied, which indeed prevents access to

the coexistence region for strongly anisotropic potentials. In
order to obtain coexistence curves for strongly directional

2 =1—x%-(A\3—1)-(e"¥KT—1), (6) potentials, and particularly so for shorter ranges, it was nec-
B5® essary to make use of more sophisticated simulations
schemes that we briefly describe in the following.
WhereB§S=2mr3/3 stands for the virial coefficient associ- Using the Gibbs ensemble method, we have performed
ated with hard spheres of diameter simulations with two different ranges of attraction= 1.50
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and\ = 1.25, respectively All simulations were carried out “reasonable” initial pressure, which would be difficult. In
with N=512 particles. The overall density used for theaddition, we avoid the problem that, inside the binodal, large
longer range wag= 0.30, andp,;=0.40 for the shorter density changes may occur in systems at constant pressure.
range. Within each simulation cycle we attemptée-512 ~ We have simulatedNg =24 subsystems, each at a different
particle displacements and the same number of particle rotaemperature, attempting a configuration swap between neigh-
tions. Furthermore, two attempts at exchanging volume weréoring levels after a fixed number of sweeps éaichlevel.
made per cycle. The number of attempted particle exchangds order to be able to explore a large range of the various
per cycle was variable, adjusted during equilibration runs aparameters, we had to ensure that individual simulations
to target an exchange of about 2@n averaggof all par-  were cheap. We therefore used rather small systemsNvith
ticles during a cycle; this typically required 500 attempts for=128 particles. For the present study, this is not a serious
the longer range, and up to a few thousand attempts for theestriction, since our main goal is to identify trends, and the
shorter range. Equilibration was for a minimum of 500 00Oavailable literature data on the isotropic HSSW system sug-
cycles for the longer range, with production runs of at leasgest that even these rather small system sizes allow a fair
another 500 000 cycles. For the shorter range, equilibratioestimate of the critical temperature. Temperature differences
and production lasted a minimum of one million cycles eachbetween neighboring levels were chosen sufficiently small to
(some substantially longer ensure good acceptance of swapping moves.

To estimate the critical temperature and the critical den-  For each set of parameters for the interaction potential
sity for each set of parameters, we assumed that the densiti@gnge, surface coverage, patch number and geoimnétig
of the coexisting phases and of the critical point were relatednethod requires simulating a series of such runs, at several
through the law of rectilinear diametét: densities, yielding Ng =24 pressure—temperature pairs

-~ each; this effectively establishé$,,=24 isotherms. It is

(Pig+ Pgad /2= pet A-|T=Tdl, © typically easy to identify those isi)ytsherms corresponding to
Piiq— Pgas= B+ | T—T¢[*% (100  temperatures just above and just below the critical tempera-
This fit also supplies an estimate for the width of the coex—ture’. and. sincg the sP ac.ing of temperatgre levels is very nar-
. 0.32 ) . ) row in this region, this gives a very straightforward estimate
istence curvesh=B-Tc”4 which characterizes the width " i i

for the critical temperaturd .. The critical density on the

of the binodals n termg of the dimensionless temperatur%ther hand cannot be determined in this way with any degree
relative to the critical pointt=|T/T.—1|.

of accuracy; this would require fitting the data to a model for

the equation of states. We have not attempted to do so here.
B. Parallel tempering (NVT)

The parallel tempering method is often used to simulate
systems that have a very rugged potential energy:. pressure calculations
landscapé®?® In a parallel tempering simulation, several . _ o .
Monte Carlo runs, each at a different temperature, are per- An additional technical complication arises in pressure

formed in parallel. To speed up equilibration, special Swap_measurements: the usual way of evaluating the virial contri-

ping moves are introduced that exchange configurations bdution through interparticle forc&cannot easily be applied
longing to different temperatures. The underlying idea is thafiue to the discontinuities in the radial potential. However,

coupling to high temperatures leads to more efficient Sam‘ghe discontinuities in the interaction energy are reflected in

pling of configuration space. Systems that, at low temperathe radial distribution functiog(r), and the pressure can be
ned from the Ilatter through an extrapolation

tures, would be stuck in the environment of one particula®Pt@

local energy minimum, can escape to other local minima b>procedur€’.1'32"1'.l"he underlying relation is the link between

“diffusing” up (and subsequently dowin temperature. The the compressibility factor and the radial distribution function

acceptance probability for a swap of systéminitially at ~ 9(") (S€e, e.g., Hansen and MacDortd

temperaturel;, and systenj, initially at temperaturdl;, is BP 2 o
BTk

3 du
o 9(112)'dT dryy, (12
0 12

P=min

1 1
1,exp—<?—? ~(EJ-—Ei)). (11 _ _

i where (.) denotes an anguldii.e., nonweighted average.
This conditiof®2® guarantees that all the individual sub- Smith et al*! showed how the integrals are to be evaluated
systems are maintained in thermal equilibrium. The commufor piecewise constant potentials in the case of isotropic in-
nication overhead between configurations, required for théeractions. This method has been used by various authors in
swapping moves, is small, and we have therefore implethe context of isotropic HSSW potentidls.g., Refs. 23 and
mented the simulations in a parallel fashion. 22). For the “patchy” potential Egs. (1)—(3)] this approach

In order to achieve a reasonable acceptance probabilitgan be shown to generalize to
of such parallel-tempering moves, the temperature diﬁerencgp 5
. . a

between systemisandj should not be too large. Moreover, — =1+ _pg3[g(g+)_)\3.(gpp()m*)_gpp()w+))]
the configurations in the two systems should be energetically” 3
similar. The parallel-tempering scheme can be used in vari- (13
ous ensembles. We found it most convenient to work withwhereg,(r) is the radial patch—patch distribution function,
systems at fixed volume. This obviates the need to select iee., the partial radial pair distribution function which consid-
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L L. + x=1.00 +
andgy,(Ao ™) stand for the limiting values of the distribu- 12t %:g-%fﬁ X
tion functions as the discontinuities are approached from b 4 + Xx=0.60 =
above and below, respectively. o & o .
@
3 09} x .
g Z X
IV. RESULTS g o8}
. _ _ . g o7l s s N
We have performed Gibbs ensemble simulations for in- o L "
teraction ranges of =1.50 and\ = 1.25. The longer range is 0'5 B ~m.g,
one of the most frequently used values in the literature on the -l
isotropic HSSW, such that reference values are readily avail- 04 01 02 03 04 05 06 07 08 09
able. The shorter range is what Lomaléhal. have esti- (a) density p
mated as an upper limit for the interaction range of 076 F ;
. .21 . . . g oo n=6 +
y-crystallin proteing! For both values the fluid—fluid criti- 074 \ n-4 x
. . . . r / E *
cal point is known to be stablef. Refs. 8 and Pfor isotro- X % o "
. ) . o2t 4§ ¥,
pic interactions f=100%). Concerning the layout of e ool LN
. Fo+ F
patches on the surface, we focus on symmetrical arrange- e | 3x x B
ments with 2 patche@t opposite poles of the sphereiith 4 8 068 1 Iy g
patches(in a tetragonal arrangeméntand with 6 patches E 0681 X %
(with cubic symmetry. Since we do not allow patches to T o0e4r,
overlap, there is an upper limit on the surface coverage that 062
can be achieved for each geometry. In particular, only the 0.6 [x *
n=2 case can attain .the isotropic limit, whereas the others U865 81 52 08 B2 5 BE 07 0 00
are subject to a maximum surface coverageygf{(n=4) (b) density p

~0.8453 andy,a{N=6)~0.8787, respectively. For a selec-
tion of values for the surface coverage we then obtain  FIG. 2. Examples of coexistence curves obtained by Gibbs ensemble simu-
phase coexistence curves by performing a series of GibHations: (a) rangex =1.50,n=2 patches, for various surface coverages
Simulations at. several temperatures, which immediately (-1, S St 010 brECoLS pacies The
yields the liquid—gas binodals. eter, the critical points shown are as determined from these fits.

Figure 2 shows the coexistence curves obtained\for
=1.50 andn=2, for progressively decreasing surface cover-pression for the virial coefficiedtf. Eq.(8)], one can relate
age, illustrating the general behavior for surface coveragesritical temperatures for the different sets of parameters to a
down to 60%. With decreasing, the critical temperature critical stickiness parameter, ;. Doing so for the present
decreasesas is to be expected, since the total strength ofGibbs-ensemble simulation data, we find that the values of
attraction is decreasgdit the same time the critical density that correspond to the critical temperature are lower than the
pc shows only a weak variation; the same holds as the nuntuniversal” value that is found for isotropic potentials. How-
ber of patches varies at a given surface covepagm con-  ever, our Gibbs-ensemble simulation results are limited to
trast, the critical density is known to increase as the range models with only modest anisometry. We should expect the
decreasetsee, e.g., Ref. 31Apparently, for the surface cov- effect to be even more pronounced yass decreased below
erages considereg, is not very sensitive to the degree of 60%, but for this range of values we cannot use the Gibbs-
directionality of the attractions. ensemble method. This is due to the fact that the critical

Figure 3 examines the effect of the directionality on thetemperature decreases gsand/or A are reduced. Conse-
width of the coexistence curves. To facilitate the comparisonquently, simulations at low temperatures are required in or-
we use reduced temperatureB*&T/T.). The data forn der to determine the fluid—fluid coexistence curves. But for
=1.50 clearly collapse onto a single master curve, implyingsuch low temperatures it becomes increasingly difficult to
that a possible widening of the coexistence curves with inbreak bonds once they are formed. If only standard Monte
creasing anisotropy must be weak. This is confirmed, by ex€arlo moves are used, simulations at low temperatures be-
amining the parameteb= B~TS'32 (indicated in Table )| come prohibitively expensive because the attractive particles
which characterizes the width of the coexistence cya® tend to form long-lived clusters. Although these clusters will
obtained by the fit paramet@ in Eq. 9] in terms of the eventually break up in a sequence of energetically unfavor-
nondimensional temperatute: | T/T.—1|: no significant in-  able bond-breaking moves, it takes a long time to equilibrate
crease is observed, to the precision available, until the susuch systems. Indeed, a system of such anisometric spheres
face coverage is lowered jo=60%. The data for the shorter is likely to form an “attractive glass” more easily than a
range\ = 1.25, however, show that significant widening doessystem of spherically symmetric particles with short-ranged
occur for shorter ranges. Indeed, this trend is in agreemerattraction>>~3" This tendency to form percolating clusters
with experiments on the phase behavior of several types ahay explain why no direct simulations of fluid—fluid coex-
y-crystallin?! which indicate that models that assume isotro-istence have been reported, even for spherically symmetric
pic short-ranged attraction seriously underestimate the widtBquare-well systems foxk<1.25. In fact, the problem of
of fluid—fluid coexistence curves. Using the analytical ex-equilibration in this regime is explicitly mentioned by Vega
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0.98 : : : - — A=1.50, n=2 —+—

0.96 - X X on=g x| 041 A=1.50, n=4 -

E % D=6 % A=1.30, N=4 s [ *
e £~ = A=1.50, is0 -~
E oear % % ¢ 0.08 -
e * + €
é 092 +§ 3;( :8
2 ool +" & £ 006}
g 8
and L w
g 088 ¢ oo4f
g oss 5 3‘;, e

® X
084 1 0.02 | 3
’ ’ 3-fold
0.82 - - - - - - ¥
0 01 02 03 04 05 06 07 0 , fod . . .
(@) density p 0 0.2 0.4 0.6 0.8 1
] surface coverage y,
¥=0.8453 +
0.99 x=0.80 x FIG. 4. The “stickiness parameter?,; at the critical poinfequivalent to
%=0.70 * S - - . :
098 %=0.60 | the critical virial coefficient, cf. Eq(7)], as obtained from parallel tempering
= . o simulations. The curves shown are for=1.50 (=2 andn=4) and for
5 0.97 & o* 1 N=1.30 (n=4). For comparison, the dotted line indicates a literature value
S 09 *” N 1 obtained for thesotropic system(Ref. 24, corresponding to a range af
g 0.95 g Xxg‘; | =1.50. The lines joining the data points are a guide to the eye o_nIy. The
hes < « arrows labeled “3-fold” indicate the surface coverages at which either of
g 0841 T ] two types of triple bonds become possilté. Fig. 5, and see the main text
? 093 x x 1 for an interpretation
X
0.92 + * 1
0.91 L—— : : — : . .
0 01 02 03 04 05 06 07 08 09 1 ) . )

(b) density p scribed earlier. This allowed us to extend our study to much

lower surface coverages. The essential results are summa-
_TIT. for (@ A—1.25. y=0.70, withn—2.4,6 and(b) A 150, n—4, rized in Fig. 4, which shows the value of the virial coefficient
with various surface coveragas No significant widening of coexistence 2t the critical point(as characterized by the stickiness coef-
curves is observed. ficient 7) as a function of the surface coverageNote, first

of all, that the data series for the 2-patch systems 2)

recovers the isotropic case in the limit of complete surface
and Monsont® For square-well systems with attractions of coverage §=100%). The limiting value for the critical
shorter ranges, Lomakiet al?! have estimated the location virial coefficient (r.~0.1) is consistent with literature data
of the fluid—fluid coexistence curve based on an extrapolaen the critical temperaturé.
tion of simulation data that were collected abdve where An important result is evident from Fig. 4: the fluid—
gelation is not yet a problem. fluid critical point in systems with directional attractions is

We have chosen to address the problem by improvingiot characterized by a unique value for the virial coefficient.

the sampling, using the parallel tempering technique deThis is consistent with theoretical predictions by Kulkarni

FIG. 3. Coexistence curves in terms of the reduced temperakdire

TABLE |. Synthesis of results with detailed information on the Gibbs ensemble simulations. The symbols
represent the followingx: number of patches,: range of attractive welly: surface coveragd. : extrapolated
critical temperaturep.: extrapolated critical density, B: fit parameters to the law of rectilinear diameter. Also
provided is the parametdr=B-Tc’32 describing the width of the binodalgn terms of the dimensionless
temperature relative to the critical point: | T/T.—1|). More details on the simulation conditions are given in

the text.
A n Y Pe A T, B b
1.50 2 1.00 0.24) 0.2013) 1.2375) 0.9911) 1.051)
0.8453 0.201) 0.294) 0.9735) 1.092) 1.072)
0.70 0.281) 0.286) 0.7262) 1.162) 1.052)
0.60 0.2%2) 0.7(4) 0.5564) 1.274) 1.053)
4 0.8453 0.301) 0.2(1) 0.9582) 1.161) 1.142)
0.80 0.321) 0.02) 0.8983) 1.141) 1.101)
0.70 0.301) 0.23) 0.7553) 1.173) 1.063)
0.60 0.302) 0.4(4) 0.6063) 1.383) 1.183)
6 0.70 0.301) 0.31) 0.7653) 1.172) 1.072)
0.60 0.282) 0.4(4) 0.6214) 1.283) 1.103)
1.25 2 0.70 0.3a) 0.1(6) 0.4971) 1.984) 1.583)
4 0.8453 0.42) —0.1(4) 0.6343) 1.764) 1.524)
0.80 0.392) 0.54) 0.6332) 1.773) 1.533)
0.70 0.382) 1.06) 0.5202) 2.004) 1.623)
0.60 0.373) 2.(2) 0.44Q1) 2.195) 1.684)
6 0.70 0.341) 1.92) 0.5171) 1.863) 1.51(2)
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TABLE Il. Opening angless and corresponding surface coverages below
which three particle bond®f type “3” and “3") are no longer possible.
See Fig. 5 for an illustration. All values refer to symmetric arrangements of
1 patches. Note that the “type 3" multiple bonds wileveroccur if more than
6 patches are present, since each patch must then hévalfaopening

' angle smaller than 30°.
" 0 %3 83 X3 X3

n=2 30° 60° 0.13 0.50
FIG. 5. lllustration of both multiple bonding scenarids: threefold bonds n=4 30° 27.74° 0.27 0.18
(type “3”) between three patches, each binding to both other pat@hes, n=6 30° 15° 0.40 0.03

threefold bondgtype “?’) simultaneously involving two patches on each
particle.

ever, depending on the precise patch-distribution, there is a
and Zukoski? Note that this observation is of direct rel- critical value ofy below which triplets cannot form. Below
evance for experimental protocols to achieve optimal crysthat value of x, the effective attraction between patchy
tallization conditions: assuming isotropic attractions, experi-SPheres is much less screened. We can make this argument
mental conditions close to the fluid—fluid critical point can More quantitative by considering when triplets can form. A
be targeted simply by monitoring the virial coefficigietg.,  first type of 3-particle bonding involves one patch on each
through light scattering measurementadjusting the solvent Particle, each one binding twoth other particlegcf. Fig. 5).
conditions in order to approach the, supposedly, universalhis clearly requires ghalf) opening angle o6=30°, inde-
critical valuer,~0.1. Clearly, this is no longer justified once Pendent of the arrangement of patches on the particle sur-
the directional character of the attraction is important. Deviaface. Another type of 3-particle cluster can occur, involving
tions from the isotropic value are slight for quasi-isotropictWo patches on each particlef. Fig. 5). In this case, the
attractions §=70%), but they become considerable as thePrecise geometry matters for the required opening angle,
surface coverage is reduced. which needs to be determined by geometrical considerations.

The data show furthermore that directionalityversthe ~ Table Il lists the required opening angles for all geometries
critical virial coefficient, implying a lowefi.e., more nega- Studied, as well as their corresponding surface covergges
tive) virial coefficient at the critical point. It is interesting to and x3. For a given patch geometry; and x; indicate
compare the 4-patch geometry with its 2-patch equivalent fowhere each type of 3-particle bonding becomes impossible
the same values of and y. As Fig. 4 shows, the data for as the surface coverage is reduced. The corresponding values
n=2 lie consistently below those fan=4. The intuitive  for y are indicated in Fig. 4. As can be seen from Fig. 4, the
interpretation of Fig. 4 is that a stronger attraction is requirecchange in slope of the,—y curve does indeed coincide with
in order to compensate for the loss in orientational entropythe point where triplet formation first occurs.

Another interesting feature appears when all three curves
in Fig. 4 are compared as the surface coverpgiecreases. V. CONCLUSIONS
For x close to complete coverage, the critical valuercdt
fixed A hardly depends on the number of patches. Howeverd
around y~70%, the behavior of different geometriea (
=2 andn=4 for A=1.50) starts to differ. Finally, in the
limit of low surface coveragex=0.30), all influence of the

We have used Monte Carlo simulations to establish how
irectionality in the particle attractions affects the fluid—fluid
coexistence. The model used is a modified attractive hard
sphere square well potential, which restricts attraction to ori-
range appears to have vanished, as the curveanfo4 and ehntanons with twc_) ;a;:mg pa;n/:hes. Dlrectlona::ty IS sr':ro?lg_:jn
A=1.50 practically coincides with the one fa=4 and\ t ose s_ystems with Tew andor narrow patches. The fluid
— 1.30. However, these asympiotic curves clearly differ fromﬂu'd critical temperature is lowered as the patches become

~ ' smaller, whereas the number of patches has a much smaller

:Ereeogfevv:rthr;t:rgnp?tcc:]ifesétﬁ)%g?rzg:gc’;ttixscriglcagvt:mgsr?)_ effect. Variations in the associated critical density are small
y gy 9 Ydown to surface coverages of 60%.

the arrangement of patches rather than by the interaction In terms of the reduced temperatdiéT, , no significant

range. This is |mporf[ant, as it implies that, even in the I'n."tmdenmg of the binodals occurs down to a surface coverage
of very short attraction ranges, knowledge of the attractive . . - .

i ; - ) of 60%. Most importantly, the virial coefficient associated
fraction of the surface alone isot sufficient to predict the

: with the critical temperature drops with increasing direction-
phase behavior. L . : . L
- - . ality: in contrast to the isotropic case, the fluid—fluid critical
As can be seen in Fig. 4 initially increases slowly

with increasingy. However, beyond a well-defined value point isnot characterized by a universal value of the reduced

. ) : second virial coefficient.
there is a sudden increase in the slope. We argue that this

f:hange in slope is related to the onset of multlpartlgle biond- CKNOWLEDGMENTS
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