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Fluid–fluid coexistence in colloidal systems with short-ranged strongly
directional attraction

Norbert Kerna) and Daan Frenkelb)

FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

~Received 17 June 2002; accepted 3 March 2003!

We present a systematic numerical study of the phase behavior of square-well fluids with a ‘‘patchy’’
short-ranged attraction. In particular, we study the effect of the size and number of attractive patches
on the fluid–fluid coexistence. The model that we use is a generalization of the hard sphere square
well model. The systems that we study have a stronger tendency to form gels than the isotropic
square-well system. For this reason, we had to combine Gibbs ensemble simulations of the fluid–
fluid coexistence with a parallel tempering scheme. For moderate directionality, changes of the
critical density and the width of coexistence curves are small. For strong directionality, however, we
find clear deviations from the extended law of corresponding states: in contrast to isotropic
attractions, the critical point isnot characterized by a universal value of the reduced second virial
coefficient. Furthermore, as the directionality increases, multiparticle bonding affects the critical
temperature. We discuss implications for the phase behavior, and possibly crystallization, of
globular proteins. ©2003 American Institute of Physics.@DOI: 10.1063/1.1569473#
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I. INTRODUCTION

Many fluids, both simple and complex, exhibit coexis
ence of a liquid and a vapor phase in some part of their ph
diagram. In the simplest case, this feature can be reprod
by the van der Waals equation of state, where particle in
actions are described by their excluded volume and a m
field attractive energy only.1 Liquid–vapor-like transitions
occur not only for simple atoms and molecules, but also
suspensions of colloids and~bio! macromolecules such a
proteins~see, e.g., Ref. 2!. In protein solutions, each particl
consists of thousands of atoms. As a result, the pair inte
tion between two protein molecules is much more comp
than that between atoms or spherical colloids. It is clea
desirable to know how the interaction between proteins
solution affects their phase behavior. Unfortunately, while
is in principle possible to compute the effective interacti
between two protein molecules in solution, such calculati
are extremely time consuming and are, at present, ba
feasible. Experiments yield only partial information on t
interaction between proteins: either through their osmo
compressibility at low concentrations, or through the str
ture of the crystals that they form. In practice, there is
unique way to deduce a pair potential from this informatio
Hence there is, at present, no direct way to predict the ph
behavior of protein solutions. Still, measurements of the c
lective behavior of protein solutions make it possible to o
tain at least some average information on the protein–pro
interactions. This approach has been employed by Ge
and Wilson,3 who showed that, under crystallization cond
tions, the value of the~reduced! second osmotic virial coef
ficient of globular proteins falls within a rather narrow rang
This observation was generalized by Rosenbaumet al.,4 who
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demonstrated that a model of hard spheres with an isotr
short-ranged attraction is a useful starting point for desc
ing the phase behavior of many solutions of globular p
teins.

The fact that, to a first approximation, globular protei
can be described as hard spheres with short-ranged at
tion, makes it possible to exploit parallels with colloidal sy
tems that can be described with a similar model. One p
ticularly striking feature of the phase diagram of ha
spheres with short-ranged attraction is the disappearance
stable fluid–fluid coexistence curve. A transition betwe
two stable fluid phases of different densities is only possi
for relatively long-ranged attractions. For shorter rang
~shorter than a value between roughly 10% and 30% of
particle diameter, depending on the particular model us!
the fluid–fluid coexistence becomesmetastable.5,6 Although
not an equilibrium phase, the presence of a fluid–fluid cr
cal point can substantially lower the free energy barrier
nucleation of a crystalline germ, and can thus indirectly p
mote the crystallization.7 Understanding fluid–fluid phas
coexistence is thus an integral part of studying the ph
behavior of protein solutions, as it may be an important
gredient toward predicting suitable crystallization condition
Among the results that have emerged in the context of sim
fluid models is the remarkable fact that the reduced sec
virial coefficient ~i.e., the value ofB2 relative to its equiva-
lent for the corresponding hard-sphere model! has an ap-
proximately constant value at the critical temperature
fluid–fluid coexistence.8 This value appears to depend on
weakly on the precise form of the interparticle potential8,9

This makes it possible to focus on simple models~e.g., hard
spheres with an attractive square well, HSSW!, since systems
with complicated potentials can be mapped onto such s
pler model systems.9

There is, however, an important limitation in the work
2 © 2003 American Institute of Physics
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Refs. 8 and 9: both papers only consider potentials that
independent of the relative orientation of the interacting m
ecules. This simplifying assumption is certainly not justifi
in the case of protein interactions. It is therefore importan
identify the differences between the phase behavior of sim
isotropic model systems and that of the more general mo
with anisotropic interactions. Anisotropy in protein–prote
interactions may be due to various physical mechanisms
teractions between nonuniformly distributed surface charg
the presence of hydrophyllic/hydrophobic zones on the p
tein surface, and the formation of hydrogen bonds at spe
surface locations. Several groups10–13 have provided evi-
dence that isotropic interaction models cannot properly
count for experimentally observed phase diagrams of pro
solutions.

Theoretical models have been put forward in order
take into account the effect of directionality of short-rang
attractive forces on the fluid–solid phase boundaries.11,14The
Sear model,14 and variations of it, have also been used
interpret experimental data on fluid–fluid coexistence in p
tein solutions.12,13 Models of this class are formulated i
terms of ‘‘binding sites,’’ represented by off-center attracti
square well potentials, localized at the particle surface,
they can be treated in the framework of the Wertheim the
of associating fluids.15–17 This perturbative approach allow
one to deduce an analytical equation of state for the flu
However, the theory does not take into account formation
ring-like clusters~at least not in a first-order formulation!.
Moreover, it assumes that the structure of the associa
fluid can be modeled by that of a hard-sphere fluid. T
theory is thus intrinsically limited to the ‘‘weak bonding
regime, and it may be less suited to obtain accurate dat
the fluid–fluid coexistence in the case of highly direction
interactions.13 Numerical work on these systems has be
presented by Vega and Monson,18 who determine coexist
ence curves involving solid phases for a particular set
parameters and particles with tetrahedral symmetry, aime
mimicking the phase behavior of water. Fluid–fluid coexi
ence, however, has not been studied numerically.

An alternative class of models has been proposed
Lomakin et al.10 In this work, the attraction is localized o
patches of the protein surface. For one particular represe
tive of these models, the authors have used numerical a
ments to deduce an equation of state, thus enabling the
compare phase diagrams to experimental data on protei10

The approach of Ref.10 relies on the hypothesis that an e
fective interparticle potential~strictly speaking, a free en
ergy! can be obtained by orientational preaveraging of
Boltzmann factor associated with the pair interactions.

In the present paper, we wish to approach the problem
the phase behavior of systems with directional attractions
direct computer simulation. To do so, we formulate a sim
generic model for directional attraction in terms of a p
potential, designed to separate effects of range and an
ropy of the attractions. Next, we present Monte Carlo sim
lations that explore how the directionality affects the fluid
fluid coexistence.
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II. MODEL

Our aim is to study a model for particles with strong
directional interactions. Rather than elaborating models
specific protein molecules, we choose to focus on a sim
model that can represent a strong directionality of attractio
To this end, we consider ‘‘patchy’’ attractive HSSW pa
ticles. Two particles attract if they are within a predefin
range and the vector joining their center of mass intersect
attractive patch on the surface ofbothparticles. Such patchy
spheres can be considered as a schematic model for th
teraction between protein surfaces where strong short-ran
attractions can exist between hydrophobic regions of the
faces on different proteins. We define the pair potential a
product of a square-well potential with an angular modu
tion

ui j ~r i j ;Ṽ i ,Ṽ j !5ui j
hssw~r i j !• f ~Ṽ i ,Ṽ j !, ~1!

where the radial dependence is given by the regular squ
well potential of reduced rangel,

ui j
hssw~r !5H ` for r ,s

2e for s<r ,ls

0 for ls<r .

~2!

For the orientational dependence, we associate attrac
interactions with patchesa51, . . . ,n on the surface of the
particles, each corresponding to a conical segment of~half!
opening angled around the directionêa ~cf. Fig. 1!. In our
model we did not allow patches to overlap, although t
restriction is not essential. All particles carry identic
patches in a body-fixed frame of reference, but the pa
orientationsêa are modified as the particles rotate. The a
gular modulation of the interaction is taken to depend on
direction r̂ i j of the particle separation vectorr i j , but also on
the particle orientationsṼ i , Ṽ j , as

FIG. 1. Illustration of patch definition. A patcha is described by a solid

angle~half opening angled about an axisêa). Two particles attract if their
separation vectorr i j intersects some patch~not necessarily the same one! on
both particles,and if they are within range.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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f i j ~ r̂ i j ;Ṽ i ,Ṽ j !5H and ~ êb• r̂ j i <cosd) for some patchb on j

0 otherwise

. ~3!

Attraction is thus limited to configurations where two
patches face each other. Similar models have been used, e.g.,

In order to facilitate comparison with the literature o
isotropic potentials, we use the expression forB2 to define
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ed
by Ghonasgi and Chapman19 as a perturbation potential to
Lennard-Jones interaction, tailored to modeling water~tetra-
hedral arrangement of patches with particular binding en
gies for the individual sites!.

Properties of the model potential.The proposed mode
strictly separates radial and angular features, thus allow
us to assess the effect of both separately. The choice
discontinuous radial potential is convenient as it make
possible to give an unambiguous definition to the parti
size ~here given by the hard core diameters). The model
potential defines the radial dependence in terms of par
properties~patches!. The case considered here is the simpl
one ~all patches attractive, with identical binding energi
and patch sizes!, but generalizations to more complex mo
els are straightforward.

In the following, we will be interested in the effect of th
reduced attraction rangel, the numbern of attractive
patches, and their size~described by the angled). Note that
the intermolecular interactions can be made less isotro
either by decreasing the number of patches or by decrea
the size of individual patches. To facilitate the comparis
between different geometries, it is convenient to characte
the size of the patches in terms of the totalsurface coverage
x ~percentage of the particle surface covered by patches!. x
is related to the number of patches and their size by

x5n•sin2S d

2D . ~4!

The simplicity of the model allows us to write down a
analytic expression for the second virial coefficientB2 ,
which characterizes the effective interaction between p
ticles:

B252
1

2 VE d3r 1E dṼ1E d3r 2E dṼ2@e2bu(1,2)21#,

~5!

whereb51/kBT as usual, with the Boltzmann constantkB .
The angular integrations, represented by the solid an
dṼ, stand for integration over all particle orientations. F
the patchy HSSW model, the integrals can be evaluated
lytically, yielding

B2

B2
HS

512x2
•~l321!•~e1e/kT21!, ~6!

whereB2
HS52ps3/3 stands for the virial coefficient assoc

ated with hard spheres of diameters.
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the ‘‘stickiness’’ coefficient 1/t, introduced by Baxter in the
context of the adhesive-sphere model:20

B2

B2
HS

[12
1

4t
. ~7!

For the present model, 1/t is thus given by

1

t
54•x2

•~l321!•~e1e/kT21!. ~8!

The coefficientt can be considered to be a measure of
temperature. As Eq.~8! shows,t is a monotonically increas
ing ~but nonlinear! function of T. For a given set of param
eters (l,e,x) Eqs.~7! and ~8! allow us to relate the critica
temperature to a corresponding ‘‘critical’’ virial coefficient

III. SIMULATION TECHNIQUES

The isotropic HSSW system has been studied nume
cally by a large number of authors. While the earlier nume
cal work often focused on square-well widths that were c
sidered to be typical for simple liquids, more recent stud
have explored the wider range of widths of the attract
wells.21–23 Work by Vegaet al.,24 based on Gibbs ensemb
simulations, has provided accurate reference data on
critical behavior of isotropic HSSW systems for ranges do
to l51.25. We have generalized both Gibbs ensemble
NVT simulation techniques to perform simulations o
nonisotropic particle interactions.

A. Gibbs ensemble

In order to establish the fluid–fluid coexistence curv
~binodals! for systems consisting of ‘‘patchy’’ HSSW par
ticles, we used Gibbs ensemble simulations.25–28 We per-
formed such simulations for varying surface coveragex,
patch numbern, and interaction rangel. Whilst it is straight-
forward to establish fluid–fluid coexistence for isotropic pa
ticles with moderate ranges (l>1.5), equilibration becomes
more difficult for shorter ranges and for strongly direction
attractions. For low temperatures~below kBT/e.0.5, the
precise value depending on the range and the patchines
the potential! the simulations become prohibitively expe
sive. This imposes a significant restriction on the tempera
range that can be studied, which indeed prevents acces
the coexistence region for strongly anisotropic potentials
order to obtain coexistence curves for strongly directio
potentials, and particularly so for shorter ranges, it was n
essary to make use of more sophisticated simulati
schemes that we briefly describe in the following.

Using the Gibbs ensemble method, we have perform
simulations with two different ranges of attraction (l51.50
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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andl51.25, respectively!. All simulations were carried ou
with N5512 particles. The overall density used for t
longer range wasr tot50.30, andr tot50.40 for the shorter
range. Within each simulation cycle we attemptedN5512
particle displacements and the same number of particle r
tions. Furthermore, two attempts at exchanging volume w
made per cycle. The number of attempted particle exchan
per cycle was variable, adjusted during equilibration runs
to target an exchange of about 2%~on average! of all par-
ticles during a cycle; this typically required 500 attempts
the longer range, and up to a few thousand attempts for
shorter range. Equilibration was for a minimum of 500 0
cycles for the longer range, with production runs of at le
another 500 000 cycles. For the shorter range, equilibra
and production lasted a minimum of one million cycles ea
~some substantially longer!.

To estimate the critical temperature and the critical d
sity for each set of parameters, we assumed that the den
of the coexisting phases and of the critical point were rela
through the law of rectilinear diameter:29

~r liq1rgas!/25rc1A•uT2Tcu, ~9!

r liq2rgas5B•uT2Tcu0.32. ~10!

This fit also supplies an estimate for the width of the co
istence curves,b5B•Tc0.32, which characterizes the widt
of the binodals in terms of the dimensionless tempera
relative to the critical point,t5uT/Tc21u.

B. Parallel tempering „NVT…

The parallel tempering method is often used to simul
systems that have a very rugged potential ene
landscape.30,28 In a parallel tempering simulation, sever
Monte Carlo runs, each at a different temperature, are
formed in parallel. To speed up equilibration, special sw
ping moves are introduced that exchange configurations
longing to different temperatures. The underlying idea is t
coupling to high temperatures leads to more efficient sa
pling of configuration space. Systems that, at low tempe
tures, would be stuck in the environment of one particu
local energy minimum, can escape to other local minima
‘‘diffusing’’ up ~and subsequently down! in temperature. The
acceptance probability for a swap of systemi, initially at
temperatureTi , and systemj, initially at temperatureTj , is

P5minS 1,exp2S 1

Ti
2

1

Tj
D •(Ej2Ei) D . ~11!

This condition30,28 guarantees that all the individual su
systems are maintained in thermal equilibrium. The comm
nication overhead between configurations, required for
swapping moves, is small, and we have therefore imp
mented the simulations in a parallel fashion.

In order to achieve a reasonable acceptance probab
of such parallel-tempering moves, the temperature differe
between systemsi and j should not be too large. Moreove
the configurations in the two systems should be energetic
similar. The parallel-tempering scheme can be used in v
ous ensembles. We found it most convenient to work w
systems at fixed volume. This obviates the need to sele
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‘‘reasonable’’ initial pressure, which would be difficult. I
addition, we avoid the problem that, inside the binodal, la
density changes may occur in systems at constant pres
We have simulatedNsys524 subsystems, each at a differe
temperature, attempting a configuration swap between ne
boring levels after a fixed number of sweeps foreachlevel.
In order to be able to explore a large range of the vario
parameters, we had to ensure that individual simulati
were cheap. We therefore used rather small systems witN
5128 particles. For the present study, this is not a seri
restriction, since our main goal is to identify trends, and
available literature data on the isotropic HSSW system s
gest that even these rather small system sizes allow a
estimate of the critical temperature. Temperature differen
between neighboring levels were chosen sufficiently sma
ensure good acceptance of swapping moves.

For each set of parameters for the interaction poten
~range, surface coverage, patch number and geometry!, this
method requires simulating a series of such runs, at sev
densities, yielding Nsys524 pressure–temperature pai
each; this effectively establishesNsys524 isotherms. It is
typically easy to identify those isotherms corresponding
temperatures just above and just below the critical temp
ture, and since the spacing of temperature levels is very
row in this region, this gives a very straightforward estima
for the critical temperatureTc . The critical density on the
other hand cannot be determined in this way with any deg
of accuracy; this would require fitting the data to a model
the equation of states. We have not attempted to do so h

C. Pressure calculations

An additional technical complication arises in pressu
measurements: the usual way of evaluating the virial con
bution through interparticle forces28 cannot easily be applied
due to the discontinuities in the radial potential. Howev
the discontinuities in the interaction energy are reflected
the radial distribution functiong(r ), and the pressure can b
obtained from the latter through an extrapolati
procedure.31,32,1The underlying relation is the link betwee
the compressibility factor and the radial distribution functi
g(r ) ~see, e.g., Hansen and MacDonald1!:

bP

r
512

2p

3
•brE

0

`

r 12
3 K g~1,2!•

du

dr12
L dr12, ~12!

where ^.& denotes an angular~i.e., nonweighted! average.
Smith et al.31 showed how the integrals are to be evalua
for piecewise constant potentials in the case of isotropic
teractions. This method has been used by various autho
the context of isotropic HSSW potentials~e.g., Refs. 23 and
22!. For the ‘‘patchy’’ potential@Eqs.~1!–~3!# this approach
can be shown to generalize to

bP

r
511

2p

3
rs3@g~s1!2l3

•~gpp~ls2!2gpp~ls1!!#

~13!

wheregpp(r ) is the radial patch–patch distribution functio
i.e., the partial radial pair distribution function which consi
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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ers only particles with facing patches.g(s1), gpp(ls1),
and gpp(ls2) stand for the limiting values of the distribu
tion functions as the discontinuities are approached fr
above and below, respectively.

IV. RESULTS

We have performed Gibbs ensemble simulations for
teraction ranges ofl51.50 andl51.25. The longer range i
one of the most frequently used values in the literature on
isotropic HSSW, such that reference values are readily av
able. The shorter range is what Lomakinet al. have esti-
mated as an upper limit for the interaction range
g-crystallin proteins.21 For both values the fluid–fluid criti-
cal point is known to be stable~cf. Refs. 8 and 9! for isotro-
pic interactions (x5100%). Concerning the layout o
patches on the surface, we focus on symmetrical arran
ments with 2 patches~at opposite poles of the sphere!, with 4
patches~in a tetragonal arrangement!, and with 6 patches
~with cubic symmetry!. Since we do not allow patches t
overlap, there is an upper limit on the surface coverage
can be achieved for each geometry. In particular, only
n52 case can attain the isotropic limit, whereas the oth
are subject to a maximum surface coverage ofxmax(n54)
'0.8453 andxmax(n56)'0.8787, respectively. For a sele
tion of values for the surface coveragex, we then obtain
phase coexistence curves by performing a series of G
simulations at several temperatures, which immedia
yields the liquid–gas binodals.

Figure 2 shows the coexistence curves obtained fol
51.50 andn52, for progressively decreasing surface cov
age, illustrating the general behavior for surface covera
down to 60%. With decreasingx, the critical temperature
decreases~as is to be expected, since the total strength
attraction is decreased!. At the same time the critical densit
rc shows only a weak variation; the same holds as the n
ber of patches varies at a given surface coveragex. In con-
trast, the critical density is known to increase as the rangl
decreases~see, e.g., Ref. 21!. Apparently, for the surface cov
erages considered,rc is not very sensitive to the degree
directionality of the attractions.

Figure 3 examines the effect of the directionality on t
width of the coexistence curves. To facilitate the comparis
we use reduced temperatures (T* 5T/Tc). The data forl
51.50 clearly collapse onto a single master curve, imply
that a possible widening of the coexistence curves with
creasing anisotropy must be weak. This is confirmed, by
amining the parameterb5B•Tc

0.32 ~indicated in Table I!,
which characterizes the width of the coexistence curve@as
obtained by the fit parameterB in Eq. 9!# in terms of the
nondimensional temperaturet5uT/Tc21u: no significant in-
crease is observed, to the precision available, until the
face coverage is lowered tox560%. The data for the shorte
rangel51.25, however, show that significant widening do
occur for shorter ranges. Indeed, this trend is in agreem
with experiments on the phase behavior of several type
g-crystallin,21 which indicate that models that assume isot
pic short-ranged attraction seriously underestimate the w
of fluid–fluid coexistence curves. Using the analytical e
Downloaded 11 Oct 2004 to 145.18.129.130. Redistribution subject to AI
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pression for the virial coefficient@cf. Eq. ~8!#, one can relate
critical temperatures for the different sets of parameters
critical stickiness parameter, 1/tcrit . Doing so for the presen
Gibbs-ensemble simulation data, we find that the valuest
that correspond to the critical temperature are lower than
‘‘universal’’ value that is found for isotropic potentials. How
ever, our Gibbs-ensemble simulation results are limited
models with only modest anisometry. We should expect
effect to be even more pronounced asx is decreased below
60%, but for this range ofx values we cannot use the Gibb
ensemble method. This is due to the fact that the criti
temperature decreases asx and/or l are reduced. Conse
quently, simulations at low temperatures are required in
der to determine the fluid–fluid coexistence curves. But
such low temperatures it becomes increasingly difficult
break bonds once they are formed. If only standard Mo
Carlo moves are used, simulations at low temperatures
come prohibitively expensive because the attractive parti
tend to form long-lived clusters. Although these clusters w
eventually break up in a sequence of energetically unfav
able bond-breaking moves, it takes a long time to equilibr
such systems. Indeed, a system of such anisometric sph
is likely to form an ‘‘attractive glass’’ more easily than
system of spherically symmetric particles with short-rang
attraction.33–37 This tendency to form percolating cluste
may explain why no direct simulations of fluid–fluid coe
istence have been reported, even for spherically symme
square-well systems forl<1.25. In fact, the problem of
equilibration in this regime is explicitly mentioned by Veg

FIG. 2. Examples of coexistence curves obtained by Gibbs ensemble s
lations: ~a! rangel51.50, n52 patches, for various surface coveragesx,
~b! rangel51.50, surface coveragex50.70, for n52,4,6 patches. The
dashed lines are binodals obtained by fitting to the law of rectilinear dia
eter, the critical points shown are as determined from these fits.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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and Monson.18 For square-well systems with attractions
shorter ranges, Lomakinet al.21 have estimated the locatio
of the fluid–fluid coexistence curve based on an extrap
tion of simulation data that were collected aboveTc , where
gelation is not yet a problem.

We have chosen to address the problem by improv
the sampling, using the parallel tempering technique

FIG. 3. Coexistence curves in terms of the reduced temperatureT*
5T/Tc , for ~a! l51.25, x50.70, with n52,4,6 and~b! l51.50, n54,
with various surface coveragesx. No significant widening of coexistenc
curves is observed.
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scribed earlier. This allowed us to extend our study to mu
lower surface coverages. The essential results are sum
rized in Fig. 4, which shows the value of the virial coefficie
at the critical point~as characterized by the stickiness co
ficient t) as a function of the surface coveragex. Note, first
of all, that the data series for the 2-patch systems (n52)
recovers the isotropic case in the limit of complete surfa
coverage (x5100%). The limiting value for the critica
virial coefficient (tc'0.1) is consistent with literature dat
on the critical temperature.24

An important result is evident from Fig. 4: the fluid
fluid critical point in systems with directional attractions
not characterized by a unique value for the virial coefficie
This is consistent with theoretical predictions by Kulkar

FIG. 4. The ‘‘stickiness parameter’’tcrit at the critical point@equivalent to
the critical virial coefficient, cf. Eq.~7!#, as obtained from parallel temperin
simulations. The curves shown are forl51.50 (n52 andn54) and for
l51.30 (n54). For comparison, the dotted line indicates a literature va
obtained for theisotropic system~Ref. 24!, corresponding to a range ofl
51.50. The lines joining the data points are a guide to the eye only.
arrows labeled ‘‘3-fold’’ indicate the surface coverages at which either
two types of triple bonds become possible~cf. Fig. 5, and see the main tex
for an interpretation!.
bols

o

in
TABLE I. Synthesis of results with detailed information on the Gibbs ensemble simulations. The sym
represent the following.n: number of patches,l: range of attractive well,x: surface coverage,Tc : extrapolated
critical temperature,rc: extrapolated critical density,A, B: fit parameters to the law of rectilinear diameter. Als
provided is the parameterb5B•Tc0.32 describing the width of the binodals~in terms of the dimensionless
temperature relative to the critical point,t5uT/Tc21u). More details on the simulation conditions are given
the text.

l n x rc A Tc B b

1.50 2 1.00 0.29~1! 0.20~3! 1.237~5! 0.98~1! 1.05~1!
0.8453 0.29~1! 0.28~4! 0.973~5! 1.09~2! 1.07~2!
0.70 0.28~1! 0.28~6! 0.726~2! 1.16~2! 1.05~2!
0.60 0.25~2! 0.7~4! 0.556~4! 1.27~4! 1.05~3!

4 0.8453 0.31~1! 0.2~1! 0.958~2! 1.16~1! 1.14~1!
0.80 0.32~1! 0.0~2! 0.898~3! 1.14~1! 1.10~1!
0.70 0.30~1! 0.2~3! 0.755~3! 1.17~3! 1.06~3!
0.60 0.30~2! 0.4~4! 0.606~3! 1.38~3! 1.18~3!

6 0.70 0.30~1! 0.3~1! 0.765~3! 1.17~2! 1.07~2!
0.60 0.28~2! 0.4~4! 0.621~4! 1.28~3! 1.10~3!

1.25 2 0.70 0.39~1! 0.1~6! 0.497~1! 1.98~4! 1.58~3!
4 0.8453 0.42~2! 20.1~4! 0.634~3! 1.76~4! 1.52~4!

0.80 0.39~2! 0.5~4! 0.633~2! 1.77~3! 1.53~3!
0.70 0.38~2! 1.0~6! 0.520~2! 2.00~4! 1.62~3!
0.60 0.37~3! 2. ~2! 0.440~1! 2.19~5! 1.68~4!

6 0.70 0.34~1! 1.9~2! 0.517~1! 1.86~3! 1.51~2!
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and Zukoski.12 Note that this observation is of direct re
evance for experimental protocols to achieve optimal cr
tallization conditions: assuming isotropic attractions, expe
mental conditions close to the fluid–fluid critical point ca
be targeted simply by monitoring the virial coefficient~e.g.,
through light scattering measurements!, adjusting the solven
conditions in order to approach the, supposedly, unive
critical valuetc'0.1. Clearly, this is no longer justified onc
the directional character of the attraction is important. Dev
tions from the isotropic value are slight for quasi-isotrop
attractions (x>70%), but they become considerable as
surface coverage is reduced.

The data show furthermore that directionalitylowersthe
critical virial coefficient, implying a lower~i.e., more nega-
tive! virial coefficient at the critical point. It is interesting t
compare the 4-patch geometry with its 2-patch equivalent
the same values ofl and x. As Fig. 4 shows, the data fo
n52 lie consistently below those forn54. The intuitive
interpretation of Fig. 4 is that a stronger attraction is requi
in order to compensate for the loss in orientational entro

Another interesting feature appears when all three cur
in Fig. 4 are compared as the surface coveragex decreases
For x close to complete coverage, the critical value oft at
fixed l hardly depends on the number of patches. Howe
around x'70%, the behavior of different geometries (n
52 and n54 for l51.50) starts to differ. Finally, in the
limit of low surface coverage (x<0.30), all influence of the
range appears to have vanished, as the curve forn54 and
l51.50 practically coincides with the one forn54 andl
51.30. However, these asymptotic curves clearly differ fro
the one withn52 patches. Apparently, the critical temper
ture of very strongly directional attractions is governed
the arrangement of patches rather than by the interac
range. This is important, as it implies that, even in the lim
of very short attraction ranges, knowledge of the attract
fraction of the surface alone isnot sufficient to predict the
phase behavior.

As can be seen in Fig. 4,tc initially increases slowly
with increasingx. However, beyond a well-definedx value,
there is a sudden increase in the slope. We argue that
change in slope is related to the onset of multiparticle bo
ing events. It is clear that a triplet, such as shown in Fig
has a decreased possibility to form an attractive bond w
another particle because of steric screening. We should
pect the critical point to drop rapidly as more of the attra
tion becomes ‘‘screened’’ by such triplet formation. How

FIG. 5. Illustration of both multiple bonding scenarios:~i! threefold bonds
~type ‘‘3’’ ! between three patches, each binding to both other patches~ii !

threefold bonds~type ‘‘3̄’’) simultaneously involving two patches on eac
particle.
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ever, depending on the precise patch-distribution, there
critical value ofx below which triplets cannot form. Below
that value of x, the effective attraction between patch
spheres is much less screened. We can make this argu
more quantitative by considering when triplets can form.
first type of 3-particle bonding involves one patch on ea
particle, each one binding tobothother particles~cf. Fig. 5!.
This clearly requires a~half! opening angle ofd530o, inde-
pendent of the arrangement of patches on the particle
face. Another type of 3-particle cluster can occur, involvi
two patches on each particle~cf. Fig. 5!. In this case, the
precise geometry matters for the required opening an
which needs to be determined by geometrical considerati
Table II lists the required opening angles for all geometr
studied, as well as their corresponding surface coveragex3

and x̄3 . For a given patch geometry,x3 and x̄3 indicate
where each type of 3-particle bonding becomes imposs
as the surface coverage is reduced. The corresponding va
for x are indicated in Fig. 4. As can be seen from Fig. 4,
change in slope of thetc–x curve does indeed coincide wit
the point where triplet formation first occurs.

V. CONCLUSIONS

We have used Monte Carlo simulations to establish h
directionality in the particle attractions affects the fluid–flu
coexistence. The model used is a modified attractive h
sphere square well potential, which restricts attraction to
entations with two facing patches. Directionality is strong
those systems with few and/or narrow patches. The flu
fluid critical temperature is lowered as the patches beco
smaller, whereas the number of patches has a much sm
effect. Variations in the associated critical density are sm
down to surface coverages of 60%.

In terms of the reduced temperatureT/Tc , no significant
widening of the binodals occurs down to a surface cover
of 60%. Most importantly, the virial coefficient associate
with the critical temperature drops with increasing directio
ality: in contrast to the isotropic case, the fluid–fluid critic
point isnot characterized by a universal value of the reduc
second virial coefficient.
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