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Abstract. The amount of information about the genome, transcriptome
and proteome, forms a problem for the scientific community: how to find
the right information in a reasonable amount of time. Most research aim-
ing to solve this problem, however, concentrate on a certain organism or
a very limited dataset. Complementary to those algorithms, we devel-
oped CONAN, a system which provides a full-scale approach, tailored
to experimentalists, designed to combine several information extraction
methods and connect the outcome of these methods to gather novel in-
formation. Its methods include tagging of gene/protein names, finding
interaction and mutation data, tagging of biological concepts, linking to
MeSH and Gene Ontology terms, which can all be found back by query-
ing the system. We present a full-scale approach that will ultimately
cover all of PubMed/MEDLINE. We show that this universality has no
effect on quality: our system performs as well as existing systems.

1 Introduction

It is an often quoted fact that the number of articles in MEDLINE and PubMed
is growing exponentially [1]. The problem for the scientist is that interesting
and useful information, like interaction data and mutation data, could appear
in papers they have not read. Therefore, important facts might get overlooked
and the scientific work might be affected. To overcome these problems, many
systems have been developed that search the literature automatically for the
relevant information [2]. Most systems, however, focus only on a very specific
aspect of literature, on a very limited dataset or on a certain organism.

Complementary to those systems, we want to address - as completely as
possible - the problem of experimentalists to find certain information “hidden”
in the abstracts of biomedical literature. We present here the first release of
CONAN, a system which is as complete as possible, offering a wide range of
information. This information is also combined to construct new information, e.g.
the output of a protein name tagging method is used as input for a method which
finds Protein-Protein-Interaction Data and as input to find protein synonyms.
Our system can be regarded as the “right-hand” of a scientist: given a query, it
hands the researcher back a set of essential results.



Fig. 1. Flow Diagram of CONAN

Our goal is not to find new algorithms, but to integrate interesting and
important algorithms into one system. The system can be installed locally or
accessed via a web-service.

The road map of this paper is as follows: In the next section, we describe the
general architecture of CONAN and its components. In Section 3, we show the
performance evaluation, and we discuss the results. In Section 4, we draw the
conclusion and give future directions.

2 Approach

The general architecture is shown in Figure 1. It shows that MEDLINE XML
Files, containing abstracts, serve as input for several processing steps, namely
BLAST-searching and the tagging of Gene and Protein names. These Gene and
Protein names serve as input for the detection of Protein-Protein-Interaction
Data. Mutation Data is also extracted from the abstracts. MeSH- and Gene
Ontology (GO)-terms serve as additional input, the data is combined and in-
tegrated in the Data Integrator-Step (see Section 2.4), before it gets stored in



an XML-File. This XML-File can be queried directly by XPath-queries or via a
Web-Interface, using pre-defined queries.

2.1 Input

MEDLINE The basis of all the tagging and information extraction are the
MEDLINE files released by the National Library of Medicine. The database
contains over 12 million citations dating back to the mid-1960’s. PubMed is the
system which provides access to bibliographic information that includes MED-
LINE [3]. Via a licensing system, users are allowed to download MEDLINE files
or are able to get the files wanted on tape sent to them by the NCBI. These
files are in the MEDLINE XML format. For this experiment, only articles were
taken into account which are completed, meaning that it is the final version of
articles which have an abstract and were written in English.

MeSH The second source of information are the MeSH (Medical Subject Headings)-
terms. MeSH (http://www.nlm.nih.gov/mesh) is the National Library of Medicine’s
controlled vocabulary thesaurus. It consists of sets of terms naming descriptors
in a hierarchical structure that permits searching at various levels of specificity.
MeSH terms are part of NCBI’s MEDLINE distribution.

Gene Ontology The third source of information is the Gene Ontology (GO)
Database [4] and, more specifically, the current annotation of Uniprot terms
by GO (GOA) [5]. The concept of GO is to develop three structured ontolo-
gies, namely Biological Processes, Cellular Components and Molecular Func-
tions. Protein names found in text have a certain synonym in UniProt [6]. These
synonyms again are annotated by the EBI, assigning GO-terms to Uniprot-terms.

ENSEMBL As an additional source of information, for each gene/protein name
found in text, the corresponding ENSEMBL-identifier is retrieved. ENSEMBL
[7] provides complete and consistent annotation across the human genome as
well as other genomes. ENSEMBL identifiers are used as cross-references to
other identifiers and are therefore included in our system.

2.2 Output

We designed our system to give scientists a tool to help them find and process
valuable information in abstracts. What we want the system to achieve is to com-
bine several sources of input, thereby finding “novel” knowledge in biomedical
literature and presenting this knowledge to the user. The “novel” information
should be accessible as easily as the original information. The data available
consists of information per abstract. The user can use several entry points to
gather information. Specific PubMed ID numbers (PMIDs), Protein and Gene
Names, Protein-Protein-Interactions, Gene Ontology (GO) identifiers, UniProt



identifiers or EnSeMBL codes, but also specific biological concepts like Cell, Cell
Component or Cell Type can be given to display all information extracted from
a particular abstract. The user can query the database in two different ways,
discussed in the next two sections. Dependent on which way the researcher used
the system, several of those questions can be combined to one query.

XML-Output The basic output of CONAN is an XML file which holds all
information about a certain abstract. For this XML file, a DTD (Document
Type Definition) file was constructed which defines the legal building blocks of
the XML document. This means that only specific types of data can be entered
in the XML document. XML was chosen because it offers several benefits in
regard to storing data, a major advantage being its platform-independency. The
XML-file can be queried with several XML Query Languages (XQuery, XPath,
XSLT). Using the query language, the researcher can combine several of the
questions mentioned above.

HTML-Output A web-server has been set up which allows users to query our
results. The web-server was built using HTML, the XML database has been
made accessible for querying via a web-server by using the server-side scripting
language Perl. The querying of the XML-file is done via XPath (http://www.w3.
org/TR/xpath) which allows to refine the query while still being fast enough. The
overall goal of this server is to generate reliable results of biological information
in biomedical abstracts, given user-defined input terms. This web-server is an
internet-based application.

There are two main query systems: Quick Search and Advanced Search.

– When starting a Quick-Search session, the user has the option to give two
different types of data as input: the PMID of an article, or the name of a gene
or protein. The logical operators (AND,OR) can be used to combine several
terms to one search term. When giving a PMID, the result page shows all
information found in the specific abstract and all “novel knowledge” found
by combining the different data sources.

– In an Advanced Search, the input can be a Gene name, a Protein name,
an arbitrary keyword,a PMID or a gene ontology number. When giving a
protein name, there is a possibility to search for an interaction or mutation
where this protein is involved.

– In neither of these search-methods, it is currently possible to combine several
questions to one query.

In both Search Methods, the results itself are links to different pages again.
There is no graphical visualization of the results yet, but there are plans to

make this happen in the future.

2.3 Algorithms

In this section, we show the algorithms used in this system. For details about
these methods, please refer to the original publications and to Table 1.



Table 1. Overview of Methods and Algorithms used (derived from original publica-
tions)

Name Measure

BLAST-Searching Recall: 78.8%
Precision: 71.7%

Gene/Protein-Tagging Prediction correct: 77%
Mutation-Tagging Sensitivity: 87.1%

Specificity: 87.9%
Protein Tagging Precision: 75%

Recall: 76%

Table 2. Sample of Databases used in keyword search

Database No. of Terms included

Gene 737801
Protein 41733
Organic Chemical 38258
Disease or Syndrome 36999
Therapeutic or Preventive Procedure 8328
Neoplastic Process 7791
Species 14121
Body Part, Organ or Organ Component 6555
Cell Component 818
Cell Function 456

BLAST-Searching The first method implemented is a BLAST-searching method
first published by Krauthammer et al. [8]. It uses the BLAST-algorithm [9] to
discover relevant biological information in text. In the original method, only gene
and protein names were used.

In our approach, the original method was improved to extract even more
information from an abstract. The UMLS Metathesaurus [10] is used by us to
retrieve lists of biological relevant terms. These terms were split up into different
databases, specified by their so-called Semantic Type. An example of this would
be the terms ”Cell Differentation” and ”Endocytosis” which have the Semantic
Type ”Cell Function” assigned. The system includes now 90 different databases
(Table 2 shows a selection of some databases used). The terms in the databases
are translated to DNA using a specific translation table which can be found
in the original publication. The abstract itself is translated following the same
schema. To adjust the search process,the BLAST-parameters e-value and Word
Size had to be adjusted (see Table 3). After fine-tuning these parameters, the
BLAST-algorithm can be used to extract biological concepts from text in a quick
manner.

Gene-Tagging The second method implemented is a Gene/Protein-tagging
method called AbGene first published by Tanabe [11]. It uses a combination of



Table 3. Parameters used in BLAST-search

Term length (characters) e-value Word Size mismatch penalty

3 1e
−15 12 6

4-5 1e
−15 16 6

6-10 1e
−20 20 3

11-20 1e
−25 40 3

20 or more 1e
−25 80 3

statistical and knowledge-based strategies. It does not make a distinction be-
tween Gene and Protein Names. This method incorporates automatically gener-
ated rules from a transformation-based part-of-speech tagger, and manually gen-
erated rules from morphological clues, low frequency trigrams, indicator terms,
suffixes and part-of-speech information. The original source code was taken and
altered slightly to suit the needs of CONAN.

Mutation-Tagging The third method implemented is based on the MuText
application [12]. It takes several regular expressions to detect mutations men-
tioned in an abstract.The pattern usually starts with one amino-acid in one- or
three-letter-code, followed by a number and another amino-acid abbreviation.
The result of these regular expressions are verified or falsified by the surround-
ing elements in the text. While there is still a chance of false positives (e.g.
the pattern of one-letter/number/one-letter is frequently found in names of cell
lines), comparing it to data obtained by the other methods lowers the false
positive ratio. As an example, if the BLAST-searching method finds the words
“mutation” or “mutagenesis” in the abstract, there is a high probability that
the mutation found is really a mutation.

Protein-Tagging Another method to find protein names and information about
these proteins in the text comes from the so called NLProt method [13, 14]. It
automatically extracts protein names from the literature and links those to as-
sociated entries in a sequence database. It uses rule-based filtering and Support
Vector Machines (SVMs) to tag protein names in PubMed abstracts. It also gives
the corresponding UniProt entries of the protein names as well as the organism
this protein belongs to.

Interaction-Finding The last method implemented is used to extract inter-
action data from text. The basis of this method are again regular expressions
as used in the PreBIND and BIND system [15, 16]. Some regular expressions
have been deleted by us from the set due to redundant results. There are several
categories of possible interactions:

– positive interactions
– negative interactions (inhibitions)



– positive/negative complex building / subunit / association
– positive binding
– negative binding
– activation
– (de-)phosphorylation
– (co)precipitation
– conjugation
– mutation

It is very important to notice that not only positive interactions are found
by this method.

2.4 Data Integrator

Having different methods to obtain data, the main focus is to combine this data
to gather new information. There are two major ways in CONAN to join data.

– The first way is to combine data before storing it in the Output-XML-file.
This is done in the case of Interaction Data. The output of the NLProt-
method serves as input for the Interaction-Tagging method. The list of pro-
tein names found by NLProt is passed through to the Regular Expressions
which give Protein-Protein-Interactions as a result. Additionally, the output
of the NLProt method is used to find the related UniProt, ENSEMBL and
GO-identifiers.

Another example of this type of integration of data is the validation of those
protein names found by NLProt. NLProt offers a reliability-score (ranging
from 0 to 1), assigning a score to each protein-name found in text. Given this
score, a list is constructed which holds each occurrence of a protein name in
text and its score. The list is compared to the list of protein names found
by the BLAST-searching-method and the list of Gene- and Protein-names
found by the Gene/Protein-Tagging-method. If certain terms are found by
the other methods as well, the reliability score increases (+0.1 for each ad-
ditional method) and it decreases, if the name is not found by the other
methods (-0.1 for each method). If a protein-term is not found by NLProt,
but by the BLAST-searching method or the Gene/Protein-tagging method,a
score of +0.1 per method is also added.

The methods can be compared because they all give the exact position of the
term in the text. In this way, the number of false-positives and false-negatives
is minimized.

– The second way is to combine data at the time when the Output-XML-
file is queried. This is done with the mutation data. As explained above,
to filter out false positives, the co-occurrence of the mutation and a term
related to “mutation” is looked for. This mutation-related term has to be a
result of the BLAST-searching method, also stored in the Output-XML-file.



Specific XPath-Queries have been created to verify this co-occurrence. When
searching for interactions between proteins, the XML file is again searched
through by an XPath Query.
Let Np be the number of abstracts where the interaction of two proteins is
shown to be positive, Nn the number of abstracts where it is shown to be
negative (e.g. inhibition). Na is the total number of abstracts found where
two specific proteins are found to participate in an interaction. The num-
ber and type of interaction is computed by Wt = Np/Na, Wf = Nn/Na. If
Wt > Wf , it is more likely that the interaction is positive than negative.

Although the probability that an interaction is positive is more likely if Wt >
Wf , it is not impossible that the interaction is negative (e.g. inhibition) or
that, under certain circumstances, both kinds of interactions can occur. Due
to this fact, all results are displayed with their respective weights (Wt, Wf ).

3 Results and Discussion

In this section we show how we evaluated the system in terms of performance
and discuss the results.

3.1 Performance Evaluation

Overview The big problem in most literature-mining systems is the large
amount of false-positives in their results. In CONAN, the sheer amount of data
rules out a large number of these false positives. When looking at different ab-
stracts about the same topic, we assume that the underlying information should
be the same. This means that, if one false-positive result is obtained by com-
puting one abstract and several other true-positive results are acquired, the
false-positive is overruled by the true-positives. A perfect example are inter-
action data in literature. Automatic extraction of interaction data is difficult,
especially dealing with false positive results. If abstract A shows that proteins
P1 and P2 inhibit each other, abstracts B, C and D on the other hand show
that proteins P1 and P2 interact positively, the probability that abstract A is
wrong is quite high. The same strategy can be applied for abstracts which have
the right information, but this information is extracted wrongly (false-positive).
In CONAN, such a false-positive remains in the data, but is overruled by true-
positives.

Experiment Design All experiments that are shown, were conducted on an
Intel Pentium 4, 2 GHz, 512MB RAM, running SuSE Linux 8.3.

In a first test of the reliability, stability and speed of the system, the latest
100,000 articles published on PubMed were processed. These files were med-
line04n0576.xml - medline04n0594.xml, including articles from every field. The
whole collection of articles is approximately 745 Megabytes big. The compu-
tation of the details of all those articles took about two weeks. The resulting



XML files have been merged and used as a basis of analysis. The result was that
CONAN is stable enough and fast enough to cope even with a large amount of
data. For the final version, quicker and larger machines will be used to cover the
whole of MEDLINE.

Test Set Construction Unfortunately, there are no benchmark databases
against which the accuracy of CONAN could be measured. With no well-annotated
dataset at the moment, in order to analyze interaction data, a dataset of 1,765
abstracts has been created, all of these containing one or more interactions. This
was done because a high percentage of MEDLINE abstracts does not contain
interactions at all and we only wanted articles including interactions in our set.
These 1,765 abstracts are a combination of available lists of PMIDs from BIND
[16] and DIP [17], ensuring that the abstracts contained at least one interaction.
As these test-datasets are not or only partially annotated, there was a need to
annotate a test set by hand, resulting in a more precise annotation. One hundred
of those 1,765 abstracts have been selected completely at random by us to en-
sure that no organism or protein family is overrepresented and those interactions
have been manually annotated. This annotation was done by one person only,
resulting in no inter-annotator difficulties.

The 100 abstracts is a quite small number compared to the 100,000 ab-
stracts originally processed by our system, but the effort of manually annotating
100,000 abstracts or even 1,765 abstracts would have been too high. This set
of 100 manually annotated abstracts is considered by us of being the test-set.
Not only interactions were manually annotated in this set, but also biologically
interesting keywords (see Section BLAST Searching) and Gene/Protein names
(see Section Protein Tagging) have been annotated.

This test-set of 100 abstracts was run by CONAN to give us data to evaluate.
We used this test-set of 100 abstracts for all three following evaluations (see
Sections BLAST Searching, Protein Tagging and Interactions), thus giving a
coherent evaluation of the whole method.

BLAST Searching Firstly, the BLAST searching algorithm was evaluated.
Both Precision, defined as the fraction of retrieved relationships that are relevant,
and Recall, defined as the fraction of relevant relationships retrieved, have been
computed. When analyzing the BLAST-searching method, we see that we get
recall and precision comparable to the original method, even though we are using
more and much more extensive dictionaries, containing not only Protein and
Gene names, as in the original publication, but also more “real language”-terms,
like the terms in the “Therapeutic Procedure”-database. Those “real language”-
terms cannot be evaluated, because there is overlap between terms and there
are no sharp term-boundaries, so we concentrated on Gene and Protein Names.
We used the manually-annotated test-set of 100 abstracts (see Section Test Set
Construction). By being very strict in our cut-offs, especially with the e-value,



we get a higher precision than in the original publication, namely 80%, the recall
of our implementation of the method still is 71%.

Protein Tagging When analyzing the different Protein-name-tagging methods,
we see that the Data-Integrator-Step boosts the performance of those methods.
We again used the same test-set of 100 manually annotated articles (see Sec-
tion Test Set Construction) as in the evaluation of the BLAST searching. The
original NLProt method shows a Precision of 75% and a Recall of 76%, the
Protein/Gene-Tagging methods shows a correctness of 77%. Manual annotation
showed 480 protein names in the abstracts, whereas CONAN found 504 pro-
tein names. When integrating the Protein-Tagging-data with the data found by
the BLAST-search and the Gene/Protein-Tagging method, as described in Sec-
tion 2.4 , we see an increase of Precision to 80.9% (408/504) and of Recall to
85%(408/480), when evaluating Protein names.

The same articles were used as in the evaluation of the Protein-Interaction-
Tagging. It has to be said that most articles in this set are Yeast (Saccharomyces
cerevisiae)-related articles and Protein-Tagging-Methods usually perform better
on Yeast-articles than on articles related to Drosophila, a fact that is also men-
tioned in [13]. This result is also supported by the good result of the Interaction-
Tagging method (see Section Interactions), because the tagging of interaction
data is highly dependent on the tagging of Protein Names in text.

Interactions Finally, the protein-protein interactions were evaluated. In this
analysis, no distinction was made between different groups of interactions. Pos-
itive interactions have been counted as well as negative interactions (e.g. inhibi-
tions). In the 100 manually-annotated abstracts, a total of 427 interactions are
documented. Those 427 interactions were manually annotated. CONAN found
477 interactions in total, compared to the 427 interactions which were annotated
manually in the abstracts, this yields a number of 50 or more false positives. An-
alyzing those abstracts achieved a precision of 81.55% (389/477) and a recall of
91.10% (389/427).

Here we see that, by using our system, we get very good results in a fast and
easy way, detecting almost all available interactions mentioned in the abstracts.

The main reason why CONAN did not detect the remaining 38 interactions is
the failure to recognize certain generalized protein names. Although we use three
different methods for tagging Gene/Protein names, we still get false-positives and
false-negatives. This is why the regular expressions used for finding interactions
cannot give back all results.

But, does it scale ? In Section 3.1, we describe the design of the experiment.
We ran the latest 100,000 articles of PubMed with our system, using a single-
processor machine. This calculation took 17 days. After indexing the output files



with the freely-available XML-indexing software Gnosis (http://gnosis.cx),
we determined the speed of the queries used in the system. A simple query of
those 100,000 articles takes 90 seconds on the same single-processor machine.
There are already plans for using a multi-processor, high-memory cluster for
this system which will definitely improve speed in processing the articles and
querying the results, respectively.

This indicates that CONAN can handle big amounts of data in a fast and
reliable way, showing reproducible results. On a reasonably powerful machine,
the method can be applied to the whole of MEDLINE, giving the user a tool
which shows him all available information.

4 Conclusion

Our goal is to address, as completely as possible, the problem of experimentalists
to find certain information “hidden” in the abstracts of biomedical literature.
Most systems available at the moment either focus on a very small dataset, a
specific organism or specific information (e.g. only interaction data, only Gene
Ontology identifiers). We constructed CONAN, which is as complete as possible,
offering a wide range of information, from Gene and Protein Names to Mutation
Data, Interaction Data and tagging of distinct biomedical entities The big plus
of our approach is that we integrate different sources of information to build one
system useful for experimentalists.

The results we are obtaining are encouraging. We are performing better
or at least as good in the methods we are using (Protein-Interaction Data,
Protein/Gene-Name-Tagging), compared to similar systems like Chilibot [18]
and present much needed information, like Mutation Data or reliable Interaction
Data. The approach presented here provides good methods for all the problems
addressed, putting everything into a bigger perspective.

The system itself is currently under consideration of several biologists. Their
experience will give us new insights for improving the system and finally putting
it accessible to everyone.

Future directions include generating interaction networks from our data, and
graphical representation of those networks. Time is required to cover all of MED-
LINE, but the ultimate goal is to cover every article published.
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