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Abstract. In this paper, we address the issue of communication between
agents with heterogeneous ontologies. Our approach aims at providing
the agents with a shared communication vocabulary. Instead of adopting
a central service which carries out this task, we follow a decentralized
approach, i.e. the task is performed collectively by every agent in the
system. We describe four communication strategies which, when used by
individual agents, give rise to a shared communication vocabulary on a
global level. We evaluate these strategies using simulation techniques,
which enables us to compare their performance according to specified
criteria.

1 Introduction

A fundamental problem of communication in open multi agent systems is caused
by the heterogeneity of the agent’s knowledge sources, or more specifically of the
underlying ontologies. Although ontologies are often advocated as a complete so-
lution for knowledge sharing between agents, this is only true when all agents
have knowledge about each others’ ontology. The most straightforward way to
establish this is to develop one common ontology which is used by all agents.
However, this scenario is highly unlikely in open multi agent systems, like those
on the internet, as it requires all involved system developers to reach consensus
on which ontology to use. Moreover, a common ontology is disadvantageous for
the problem solving capabilities of the agents as different tasks typically require
different ontologies [3].

To deal with this problem, we deliberately diverge from the definition of
an ontology as an explicit specification of a shared conceptualization [7]. We
adopt private ontologies, which are not shared, and an intermediate ontology
(or interlingua [13]) which is (partially) shared and not explicitly specified. The
private ontology of an agent is used for storing and reasoning with operational

knowledge, i.e. knowledge relevant to a particular problem or task at hand. The
intermediate ontology is used for the communication of operational knowledge;
we therefore refer to it as communication vocabulary (or cv). Communication
proceeds by translating from the speaker’s private ontology to the communi-
cation vocabulary which the hearer translates back again into its own private



ontology. The agent’s operational knowledge base is dependent on the private
ontology; it is not dependent on the communication vocabulary. The cv can
therefore be treated as a dynamic ontology [8]. The agents’ private ontologies,
on the other hand, are static, i.e. they do not change over time.

Initially, the communication vocabulary is empty. To enable communication
between agents, the cv is built. This raises the question: how is it built? Most ap-
proaches that deal with these issues use some centralized service which facilitates
in publishing and making decisions about the the communication vocabulary. For
example, the FIPA ontology agent [1] publishes information about ontologies and
thereby facilitates communication by mediating between heterogeneous agents.
Also, the Ontolingua server [6] is intended as a service to achieve consensus on
a shared ontology in heterogeneous groups. However, these techniques are not
straightforwardly applicable in systems which lack a clear organization. Con-
sider, for example, the group of agents on the world wide web. If there would be
one ontology agent that aligns every ontology in the system, it would be very
difficult to make every agent accept its authority. Furthermore, this agent runs
a high risk of getting overloaded. If, on the other hand, there would be a number
of ontology agents on the web, communication problems would arise between
agents that use different ontology agents.

In this paper, we try to overcome these problems by exploring ways to estab-
lish a communication vocabulary in a fully decentralized way. This means that,
instead of making one agent pursue the goal of building a cv, we design every

agent to pursue this common goal. This way, a shared cv emerges in the system
due to the interactions of individual agents. We describe several communication
strategies the agents can follow, and evaluate their quality according to specified
criteria. One of these criteria is that the strategy should give rise to a cv which
is limited in size, yet sufficiently expressive ([5]). Multiple terms with the same
meaning (synonyms) are therefore not preferable; they increase the size of the
cv, without adding anything to its expressivity.

Although this paper is primarily intended for the ontology integration com-
munity, we follow an approach which is related to research done in the language
evolution community. Following Luc Steels [12], we assume that the meaning of
a concept can be conveyed to another agent by pointing to shared instances. Fur-
thermore, we also approach a language (or an ontology) as a complex adaptive
system which can be studied by means of simulation [11, 9]. However, whereas
most research on language evolution has an explanatory goal, our goals are purely
constructive. Our primary aim is to provide a technique which can be used for
ontology integration. Our work can thus be viewed as an application of language
evolution to ontology integration.

In the next section, we present the communication protocol. Because the com-
munication protocol is non-deterministic, a communication strategy is required
to guide the agents in making the right choices. Section 3 presents four possible
strategies. The strategies are compared in three simulation experiments which
serve to evaluate how the strategies contribute to the agents’ mutual under-
standing, what kind of cv the strategy gives rise to, and how well the strategy



performs in a sparsely connected network. We conclude in section 4 and give
directions for future research.

2 Communication Protocol

Fig. 1. Communication Protocol

The communication protocol in figure 1 defines the possible dialogues that
may happen when an agent informs another agent about something. After Agi

has sent its message to Agj , Agj may respond in two ways. When it knows the
terms in the message, it translates the terms to its own ontology and responds
“OK”. When it doesn’t know a term, it responds with “ConceptUnknown”,
which leaves no option for Agi but to teach the meaning of the term to Agj . For
the purposes of this paper, it suffices to say that the teaching agent presents a
number of examples of the term which enables the other agent to discover its
definition in terms of its private ontology. For a more elaborate discussion on
this teaching process, the reader is referred to [4]. After Agj has learned the
meaning of the term, it translates the message to its own ontology after all, and
the dialogue finishes.

We now discuss the inform action in further depth. In doing so, we distinguish
the following agent components of agent Agi:

– ONTi : The set of concept names defined in the agent’s private ontology.
– AKBi : The assertional knowledge base, consisting of statements of the form

x(a), where x ∈ ONTi and a is an element from the (shared) domain of
discourse.

– VOCi : The set of terms constituting the agent’s knowledge of the commu-
nication vocabulary.

– DEFi : {〈x, y〉|x ∈ VOCi ∧ y ∈ ONTi}: A set of concept pairs, defining
every concept in VOCi as a concept in ONTi. We write DEFi(x) to denote
y ∈ ONTi, where 〈x, y〉 ∈ DEFi. For the purposes of this paper, it suffices to



regard these definitions as precise mappings. For a discussion on approximate
mappings, the reader is referred to [4].

– SCRi : VOCi → N is a data structure which assigns a score to every term.
This score is used by the agent’s strategy.

We omit the subscripts of the components when it is clear to which agent the
component belongs. The communicative abilities of the agents are specified as
actions. During the execution of actions, messages are sent through the instruc-
tion send(Agj , 〈SpeechActType, p1, .., pn〉), where Agj is the addressee of the
message, the SpeechActType specifies what the message is about, and p1..pn

are parameters of the message. The effect of this instruction is that Agj is able
to perform a Receive(Agi, 〈SpeechActType, x1, .., xn〉) action, where Agi is the
sender of the message and x1..xn are instantiated to p1..pn. In the specification
of actions we will adopt Agi as the sender and Agj as the receiver of messages.
The Inform-action is specified as follows:

Action SendInform(Agj , x(a))
where x(a) ∈ AKB

Candidates := {y′|〈y′, x〉 ∈ DEF}
y := Select(Candidates), where Select is implemented in the agent’s strategy

Send(Agj , 〈Inform, y(a)〉)

Action ReceiveInform

Receive(Agi,〈 Inform,x(a)〉)
If x ∈ VOC Then Add y(a) to AKB, s.t. 〈x, y〉 ∈ DEF
Else Send(ConceptUnknown)
UpdateScore(Agi,x), where UpdateScore is implemented in the agent’s strategy

We assume that initially, for all Agi the set VOCi = ONTi, and DEFi =
{〈x, x〉|x ∈ VOCi}. This means that the agents start communication by us-
ing their private concept names. The SendInform action therefore always sends
a message because there is always a way to translate a concept in ONT to a term
in VOC. The ReceiveInform action does not always translate a received term to
the private ontology because there is not always a translation available in DEF.
In these cases, the agent responds with “ConceptUnknown” after which the un-
known term will be taught to him. When Agi teaches a term x to Agj , Agj adds
the term to VOCj , adds the definition of the term to DEFj and sets SCRj(x)
to 0. For this reason, an agent soon ends up having multiple ways to translate a
concept in ONT to a term in VOC: one possible translation is its private concept
name (a translation which is available due to the initialization of VOC), other
translations are terms it has learned from other agents. All possible translations
are listed in the set “Candidates” in the SendInform-action. Although all terms
in the Candidate-set are allowed translations, the agents follow a strategy to
select the best candidate. An agent Agi bases its decision on the score of the
term, given by SCRi. The agents may update the score of a term each time they
receive a message with that term from other agents, i.e. in the UpdateScore



action which is performed at the end of the ReceiveInform action. Different im-
plementations of Select and UpdateScore give rise to different communication
strategies. This is the topic of the next section, but first we present an example
to illustrate the need for a communication strategy.

Example

Consider an English, French and a Dutch agent (Ag1, Ag2, Ag3 respectively),
which all have an ontology consisting of one concept which they use to represent
cheese. The agents’ components are as follows:

ONTi VOCi DEFi

i = 1 {Cheese} {Cheese} {〈Cheese,Cheese〉}
i = 2 {Fromage} {Fromage} {〈Fromage,Fromage〉}
i = 3 {Kaas} {Kaas} {〈Kaas,Kaas〉}
Consider the following conversation in which Ag1 wishes to inform Ag2 that
object a is cheese :

1 Ag1 sends to Ag2: Inform(Cheese(a))
2 Ag2 sends to Ag1: ConceptUnknown
3 Ag1 teaches Cheese to Ag2

4 Ag2 adds Cheese to VOC2 and adds 〈Cheese,Fromage〉 to DEF2. Because it
now knows the definition of Cheese, it can understand the received Inform
message and adds Fromage(a) to AKB2.

Suppose Ag1 also informs Ag3 about the fact that object a is Cheese. This results
in a similar dialogue in which Ag1 also teaches Ag3 the meaning of Cheese. Now,
the agents’ components are as follows:

ONTi VOCi DEFi

i = 1 {Cheese} {Cheese} {〈Cheese,Cheese〉}
i = 2 {Fromage} {Fromage, Cheese} {〈Fromage,Fromage〉, 〈Cheese,Fromage〉}
i = 3 {Kaas} {Kaas, Cheese} {〈Kaas,Kaas〉, 〈Cheese,Kaas〉}
Now, suppose that Ag2 wishes to inform Ag3 about the fact that object b is
Fromage. There are two possible dialogues because Ag2 knows two terms which
mean Fromage. The dialogues are:

5a Ag2 sends to Ag3: Inform(Fromage(a))
6a Ag3 sends to Ag2: ConceptUnknown
7a Ag2 teaches Fromage to Ag3

8a Ag3 now knows the definition of Fromage, and adds Kaas(a) to AKB3.

or

5b Ag2 sends to Ag3: Inform(Cheese(a))
6b Ag3 sends to Ag2: OK. Because Ag3 knows the definition of Cheese, it can

immediately translate the term and add Kaas(a) to AKB3

Both dialogues are allowed by the communication protocol. However, we prefer
the second dialogue, which leads to an immediate understanding of the mes-
sage. This illustrates the issues surrounding the implementation of the agent’s
communication strategy.



3 Strategies

Description of strategies

The decision to be solved by the agent’s strategy involves choosing a term among
the possible candidates when sending an inform message. We assume that Select
always returns the term with the highest score. The differences between the
strategies lie in the way the scores are updated after a message is received.
Strategy s1 only attributes a score to its private concept name. Therefore, in
systems with agents that use strategy s1 (s1-systems), every agent holds on to
its own private concept names when it comes to speaking. To understand other
agents, they learn each other’s concept names. This strategy is analogous to
ontology alignment ([10]): every agent has a mapping to every other agent’s
ontology. Strategy s2 attributes a score of 1 to the most recently received term;
all other terms with the same definition are attributed a score of 0. In s2-systems,
an agent chooses the candidate term it has most recently received from another
agent. Strategy s3 increases the score of a term each time a message with that
term is received. This way, the agents in a s3-system choose the candidate term
which they have most frequently received. Strategy s4 is similar to s3 but also
takes into account which agents have used the term. The score of a term is
increased more when an agent with many acquaintances uses the term than when
an agent with few acquaintances uses the term. We assume that the number of
acquaintances of an agent can be known by the agents. In systems where every
agent has an equal amount of acquaintances, s4 gives rise to the same behavior
as s3. We therefore only discuss s4 in section 3.3, where we consider networks
in which the agent’s number of acquaintances differ. The four communication
strategies are specified in figure 2.

Description of experiments

We evaluate the performance of these strategies using simulation experiments. To
obtain a clear picture of the properties we are interested in, in the experiments,
we abstract away from as many irrelevant aspects as possible. This way, the
agents only exchange one meaning (but may use different terms to do so). An
experiment consists of t steps at which randomly a speaker and a receiver is
selected from the set of connected agents. The agents follow the communication
protocol as described in the previous section. Because the agents only exchange
one meaning, for every agent Agi, the elements in the set VOCi all have the same
definition in DEFi. Therefore, all elements in VOCi are allowed candidates when
Agi sends a message. We distinguish between the terms that are understood by
an agent (the understandable terms), and those that are spoken by an agent
(the spoken terms). The understandable terms of Agi are those in the set VOCi.
The spoken terms are those that are selected from VOCi by the agent’s strategy.
Using s1 and s2, there is only one spoken term per agent, because there is only
one term with a highest score. s3 and s4 may give rise to several terms with an
equal highest score, amongst which the the strategy randomly chooses one. In



// The Select action is the same in every strategy
// Select returns the concept from Candidates with the highest score
// If several concepts have an equal highest score, it randomly picks one from them
Action Select(Candidates)
Randomly choose y from {y′|y′ ∈ Candidates and

for all z ∈ Candidates: SCR(z) ≤ SCR(y′)}
return y

Strategy s1:

// Always speak your own concept name.
The scores of the agent’s private concept names is kept equal on 1.
// The score of every other term therefore remains 0.
Action UpdateScore(Ag

i
, x)

For all y ∈ VOC ∩ ONT Do SCR(y) := 1

Strategy s2:

// Speak the term which most recently another agent used
Action UpdateScore(Ag

i
, x)

SCR(x) := 1
For all y 6= x with DEF(y) = DEF(x) Do SCR(y) := 0

Strategy s3:

// Speak the most frequently used term
Action UpdateScore(Ag

i
, x)

SCR(x) := SCR(x) +1

Strategy s4:

// Speak the most frequently used term weighted by the user’s number of acquaintances
// The number of acquaintances of Agi is denoted by k(Ag)
Action UpdateScore(Ag

i
, x)

SCR(x) := SCR(x) + k(Agi)

Fig. 2. Implementations of different strategies



these cases we say that there are several spoken terms, i.e. those with the highest
score. The model-components are summarized below:

– A multi agent system is a network of agents, where:

• n is the number of agents.
• AG = {Ag1..Agn} is the set of agents
• CAG ⊆ AG × AG is the set of pairs of connected agents, i.e. those that

can communicate with each other. We assume that the graph 〈AG,CAG〉
is connected.

– UTi is the set of understandable terms of Agi. This is equal to VOCi

– STi ⊆ UTi is the set of Spoken terms of Agi. STi is equal to the set of terms
with a maximum score.

We evaluate the communication strategies using the following criteria:

– How many steps does it take before every agent understands each other?
– How many different terms are used in the system?
– How does the strategy perform in sparsely connected networks?

These criteria are described in the following sections.

3.1 Understandings rate

We define that agent Agi understandable for agent Agj when every spoken term
of Agi is understandable for Agj , i.e. STi ⊆ UTj . We define the understandings
rate to be the number of connected agent pairs that are understandable to each
other (without having to teach each other new concepts) divided by the total
number of connected agents. This is formalized as follows (we use # to refer to
the number of elements in a set)

Definition 1. UR =
#{〈Agi,Agj〉|〈Agi,Agj〉∈CAG∧STi⊆UTj}

#CAG

All communication strategies eventually result in an understandings rate of 1,
a situation which we call common understanding. This is because the commu-
nication protocol prescribes that in case a of an unknown term, the term is
taught to the ignorant agent. However, the strategies differ in the number of
steps it takes before common understanding is achieved. Following strategy 1,
common understanding is achieved only after every pair of connected agents
have communicated with each other. Given that at each time step a random
pair of communicating agents is selected, probability theory predicts that the
expected number of steps before UR = 1 is given by:

E(X) = q
∑q

r=1
1
r

where

– X is the number of steps it requires to reach common understanding.
– q = #CAG



Fig. 3. Strategy performance w.r.t. understandings rate

Consider an agent system where n=20 and CAG = AG × AG, i.e. every agent
speaks to every other agent. In this system, the formula above predicts that com-
mon understanding is reached after approximately 2400 turns. This prediction
is confirmed by the experimental results shown in figure 3. The experiment also
reveals that s2 and s3 require much fewer steps than s1 to reach common under-
standing. We argue that this is because s2 and s3 incites the agents also to speak
each other’s terms which gives rise to groups of agents that speak the same term.
Therefore, two agents from the same group that never communicated before, are
able to understand each other nevertheless. This explains the fast increase of UR
in s2- and s3-systems.

Besides the speed of increase in UR , another important issue is the size of
the communication vocabulary. s1 gives rise to a communication vocabulary of
size n, i.e. every agent’s private concept name eventually becomes part of the
communication vocabulary. Besides the fact that this is the main cause for s1’s
slow increase in UR, another disadvantage is that newcomers in the system would
have to learn a large number of terms to be able to understand everyone. It is
therefore desirable that the total number of different terms which are spoken by
the agents is as small as possible. This aspect is studied in the following section.

3.2 Number of terms

We refer to the number of terms that are used in the system with NT which is
defined as follows:

Definition 2. NT = #
⋃

i STi



Obviously, in an s1-system the NT remains equal on n. For s2, it holds that,
eventually, the NT becomes 1 in which case we say that the communication
vocabulary has converged.

Property 1. In every s2-system: limt→∞ P (NT=1 after t steps) = 1

Proof: In every s2-system, the probability that NT becomes 1 after n steps
is greater than 0 (recall that n is the number of agents). This happens when
n times a speaker is selected with SC = x, and every agent with SC 6= x is
selected at least one time as a hearer. Furthermore, each “trial” (the execution
of n steps) is independent of the other trials: the failure of one trial to result
in NT= 1, does not systematically influence the probability that the next trial
results in NT =1. Therefore, by the definition of chance, as the number of steps
approaches infinity, the probability that NT=1 approaches 1.

�

Although the property described above is a nice theoretical result, in practice
we are interested in the speed at which NT decreases. To obtain statistical
significance, in the next experiment we use n=1000. Again, we set the structure
as a fully connected network, i.e. CAG = AG × AG. Figure 4 shows the decrease
of NT in this experiment. The results of this experiment show that the s2-system

Fig. 4. Strategy performance w.r.t. number of terms

gives rise to a great decrease of NT at first, but does not lead to a fully converged
cv. After 100000 steps, there were still 9 different terms in use, and it would
have taken a very long time before the cv would have converged. S3, on the



other hand, performs relatively poorly at first, but gives rise to a converged cv
after approximately 35000 steps. By that time, every agent spoke 35 times on
average, which is not a bad result given the large size of the system.

The reason why the cv does not converge within reasonable time in an s2-
system, is that in these systems NT decreases only by coincidence. At the end,
the probability becomes very small that one of the terms “dies out”, because
each term is used by many agents. Agents that follow s3, keep an approximation
up to date of which terms are most frequently used. Because every agent uses
the term which they believe to be most frequently used, NT not only decreases
by coincidence, but is guided by the beliefs of the agents.

Because s3 gives rise to a stable and converged cv, s3 is preferable over
s2. In the next section we discuss the strategy’s performance in other network
structures.

3.3 Network structure

In the previous sections, we have evaluated the strategies in fully connected
agent networks. In this section we discuss the strategy’s performance in a more
sparsely connected network. In doing so, we adopt some terminology from graph
theory. We assume that the network is a non-directed graph, i.e. 〈x, y〉 ∈ CAG →
〈y, x〉 ∈ CAG. We call the number of acquaintances of an agent, the degree of
an agent, denoted by k:

Definition 3. k(Agi) = #{Agj |〈Agi,Agj〉 ∈ CAG}

Many networks, amongst which the world-wide-web, are structured as a scale-

free network [2]. Networks of this type are characterized by a large number of
nodes with a relatively small k. A few nodes, however, are stars in the network
and have a relatively high degree. Stated more precisely, the degree distribution
follows a power law: P (k) ∼ k−γ , where P (k) denotes the probability that a
node has k edges.

The next experiment describes the results of s3 and s4 in a scale-free network,
with n=1000, an average k of 3.11, and a maximum k of 50.

Although s3 gave rise to a converged communication vocabulary in fully
connected networks within reasonable time, the NT does not go below 140 in
the experiment described above. This happens because most agents have a low
degree and are not capable to form a realistic approximation of which terms
are most frequently used. To overcome this problem, s4 using agents take into
account the degree of the speaking agent when they update their scores. Agents
with a high degree have a more realistic approximation of the most frequently
used sign, and are therefore taken more seriously than agents with a low degree.
This explains why s4 performs better than s3 in this experiment, although it
still does not give rise to a fully converged communication vocabulary.



Fig. 5. Strategy performance w.r.t. NT in a scale-free network

4 Conclusion and future research

In this paper, we have described four strategies which, when used by individual
agents, give rise to a shared communication vocabulary on a global level. While
evaluating these strategies, the following issues were demonstrated. Firstly, a
strategy which incites the agents to adopt each others’ concept names for speak-
ing (such as s2 and s3) has considerable advantages over a strategy in which
every agent holds on to its own concept names for speaking (such as s1 or on-
tology alignment). Secondly, the strategy of adopting the most frequently used
concept name (s3) is usable in a network with a simple interaction pattern, i.e.
when everyone speaks to everyone with equal probability. Thirdly, it was demon-
strated that in a scale-free network, the performance of the strategy of adopting
the most frequently used concept name is improved when the agents’ number of
acquaintances is taken into account (as is done in strategy s4).

We continue this line of research by testing the strategies in networks with
more complicated interaction patterns and by exploring adjustments which could
lead to better performance in those environments. Furthermore, we intend to
explore combinations between these communication strategies and centralized
services for ontology integration as mentioned in the introduction of this paper.
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